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Abstract:

Gene expression regulated by DNA methylation patterns has been long studied in

relation to cancer. There exists a negative correlation between the expression

of a gene and its methylation level. An integrative analysis of expression and

methylation arrays was performed using three datasets for colorectal cancer:

TCGA, GEO and own data. The datasets had over 11000 genes, 9000 of which were

common.

Based on the preconception that methylation represses expression, we selected

genes that showed an L-shaped expression and methylation scatterplot with 4

different methods. The first method used, naive, was based on a significant

negative correlation. Another methodwas based on Conditional Mutual Information

(CMI). A heuristic method was carried out by superimposing a grid on each

scatterplot and weighing the cells according to an L-shape. Finally, a

scagnostics selection analysis was based on 9 parameters defining the shape of

scatterplots. The scagnostics needed to be used in conjunction with other

methods for optimal results.

The accuracy, sensitivity and specificity were measured for the various methods

and the one with the best diagnostic measures was the Heuristic, followed by the

CMI and the naive. The one that fared lowest was the scagnostics.

The final gene list was obtained from a pool of all methodologies.It resulted in

179 target genes, mostly coding for ATP-binding, transcription and zinc finger

proteins.
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1 INTRODUCTION

1 Introduction

Cancer is an illness related to changes in the cell cycle, when cells go through uncontrolled
cell division. Cancer cells behave differently than normal cells because:

NORMAL CELLS CANCER CELLS

Controlled growth (contact inhibition) Invasive

Repair or apoptosis when damaged or old No apoptosis when damaged or old

Stick together in a group Float away and metastasize

Mature Immature

Functional Malfunctioning (sometimes)

Controlled angiogenesis (growth, repair) Continuous angiogenesis

Controlled by growth (tumor supressors) Evade growth supressors

Energy source Krebs Cycle (oxygen) Energy source Glycolysis (no oxygen)

Mortality Immortality

Ability to hide

Usual DNA and chromosome number Abnormal chromosome number, mutated DNA

Table 1: Differences between normal and cancer cells

In the cell cycle regulation there are two types of genes: the oncogenes which are
positive cell cycle regulators, and the tumor suppressors, which are negative regulators.
Oncogenes are in the body as proto-oncogenes that become opartional if there is a mu-
tation, or a change in expression, that makes them become overactive. Many proteins
related to cell growth factors are proto-oncogenes.Tumor suppressors have the opposite
effect, they reduce or even stop the activity of the cell cycle. Mutations in proteins related
to reducing or stopping the cycle of an aberrant cell will not function, and the cell with
damaged DNA will proliferate. The activation of proto-oncogenes or the inactivation of
tumor suppressor genes is what will produce cancerous cells (??).
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1 INTRODUCTION

Figure 1: Diagram representing a DNA region in a normal cell, with hypermethylated and

hypomethilated regions and their reationship to cancer ([?]).

There are many ways in which gene expression is regulated in eukaryotes. DNA methy-
lation occurs in CpG dinucleotides and is one of several epigenetic mechanisms that cells
use to control gene expression. It has been long known the involvement of methylation in
numerous cellular processes ( [?]; review in [?]), including embryonic development ([?]),
X-chromosome inactivation and preservation of chromosome stability ([?]). Methylation
has a critical role in gene expression and cell differentiation, and most research has been
focused on tumor repressor genes, which are often silenced in cancer cells due to hyper-
methylation ([?]). However, cancerous cells tend to have hypomethylated genomes, but
show hypermethylation in certain genes related to processes such as cell cycle regulation,
tumor cell invasion, and DNA repair among others; when compared to normal cells ([?]).
The generation of large amounts of data has posed a challenge, which has resulted in
various methodologies being developed for the analysis and interpretation of such data.

Colorectal cancer (CRC) is the third most common cancer in the world in men, and
the second one in women. It is a type of cancer that is related with development and
income ([?]). Various studies have identified methylated genes ([?], [?]) and hypermethy-
lation of promoters ([?], [?], [?]). Changes in methylation profile of the CpG islands are
a very powerful tool that can be used for biomarker identification ([?], [?], [?], [?]). In
CRC, it has been found that both methylation and demethylation vary along the cancer
progression. Methylation is progressive, but also, genes change their methylation status at
different stages, going from methylated to demethylated and viceversa([?]). That implies
that methylation is a dynamic process in cancer.

One of the aims of using epigenetic alterations in cancers it to develop specific therapies
to combat cancer in a les invasive manner ([?]). In addition to that, the identification of
genes highly regulated by methylation, would be a useful tool for early detection ([?]).
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1.1 Project context and justification 1 INTRODUCTION

1.1 Project context and justification

Tradicional cancer detection techniques are not accurate enough to predict the occur-
rence of cancer, and it relies on the doctor’s oppinion to decide on the treatment. Nowa-
days, there are various high-throughput techniques available to study cancer by analyzing
gene expression and methylation patterns, i.e. CpG islands analysis through microarray
technology, Reduced Representation Bisulfite Sequencing. These techniques can provide
biomarkers that may be able to detect and predict cancer with better results. However,
the large numbers produced in the data still pose an analysis and interpretation challenge
([?]).
As new large datasets will continue to be produced, the development of new analysis and
visualization techniques will keep developing. There are various softwares available for the
analysis of gene expression in relation with methylation: PiiL, MEXPRESS, methylPipe,
among others. PiiL is a genome web browser that allows for the visualization of methyla-
tion and gene expression at various levels. It allows the selection of genes or CpG island,
single or multiple samples. It then draws pathways, selects genes by methylation and ex-
pression pattern ([?]). MEXPRESS ([?]) is a package that has a web interface that allows
the user to visualize expression and methylation data from genes in the TCGA data. The
visualization collocates for each selected gene, CpG islands, with transcripts expression
together with other clinical values such as gender and age. The tool also generates p-
values in relation to the variables specified. Another application developed in R language
is methylPipe ([?]. This software package works together with compEpiTools that allow
integrative analysis of diverse epigenomics datsets. The first one performs an analysis of
the methylation high-throughput data, and the second allows for the integration of these
data with other sources. They work both together and independently.

There is an direct association between expression an methylation that varies in dif-
ferent regions of a gene. High methylation is associated with high expression inside the
gene, however, this correlation is inverse in the gene promoters (?? which are the re-
gions upstream of a gene involved in regulation of expression)([?]). In addition to that,
CpGs shores, found in close proximity to CpG islands, are associated with cancer specific
methylated regions ([?]). A recent paper studied correlations between gene expression
and methylation in cancerous and non cancerous tissues ([?]). In this paper they ob-
served that there are correlation diffferences between the the cancer and normal tissues
in breast cancer. In addition to that, the found out that the genes involved in the dif-
ferentially significant correlations were not necessarily neither differentially expressed nor
differentially methylated. Therefore, they concluded that a gene selection by correlation
may detect a different set of genes for biomarker generation that would not have been
found in usual differential studies.

8



1.2 Data used in the analysis 1 INTRODUCTION

Figure 2: Structure of a gene with differently methyated regions according to normal or

cancerous.

This work aims to explore the negative relationship between expression and methy-
lation by reviewing some of the existing methodologies to detect genes with L-shaped
scatterplots, and fine tune the parameters for the optimal selection of genes regulated by
methylation. The final aim of this thesis is to build a package and develop an application
to identify a short-list of potential candidates related to CRC from medical data.

1.2 Data used in the analysis

The data used to carry out the research has originated from 4 different datasets, 2 pub-
licly available, one from a collaborator and another one used for testing of parameters
has been artificially generated. The 2 publicly available datasets were obtained from The
Cancer Genome Atlas (TCGA) and from the Gene Expression Omnibus datasets from
NCBI (GEO, GSE25070 for the expression data and GSE25062 for the methylation data).
These datasets are readily available from the respective websites. The collaborator’s data
has been then analyzed based on the L-shaped methodology tested, with the final aim to
obtain biomarkers for CRC.

All datasets consist of expression microarray data and methylation data (Illumina 27k
methylation array).The TCGA dataset has originated from clinical data and has gene
expression values for 223 samples. The GEO dataset has 25 samples and the researchers
dataset has 30 samples which are the same ones as the TCGA. The TCGA dataset has
11788 genes, the GEO has 11191 genes and the experimental dataset has 11359 genes in it.
Most genes on these datasets are common.All datasets have been previously normalized
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1.2 Data used in the analysis 1 INTRODUCTION

before download or pre-processed in other projects prior to this anlysis. The data has
also been formatted for analysis. The formatting has ensured that both methylation
and expression matrices have the same genes and samples and that missing values were
removed from the dataset, since some functions implemented will not accept missing
values. In addition to that, the order of the genes and the samples has to match in both
matrices.
Finally, the creation of an artificial dataset has helped in the standardization of the
scagnostics method. This dataset has been constructed in 2 parts, one with true L-shaped
genes, by randomly creating data with a logarithmic distribution. The non-L-shaped data
has been created by using a random normal distribution. Both artificial datasets have
been created with R software functions.

Figure 3: Venn diagram representing the overlapping of genes found between the 3 datasets

used for analysis.
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1.2 Data used in the analysis 1 INTRODUCTION

1.2.1 Generation of the artificial dataset

The artificial data was generated with the rnorm function in R. Two datasets were gen-
erated, one for the L-shaped genes and another one for the non L-shaped genes. For
the L-shaped genes 2 parameters were adjusted to force the L in the scatterplot. The
parameters were the distribution and the shape of the slope. The distribution was set
between 0.3 and 0.7, with a step of 0.09 units. The slope was set between 0.1 and 0.3
with a step of 0.03 units. The flexibility in the parameters was introduced to have diverse
L-shaped scatterplots; however they all had a “perfect’ L-shaped distribution. To include
more variablility int he “true” L-data, another artificial dataset was created with negative
correlations, ranging between r = (−0.5,−0.9). These two “true” positive datasets were
merged into one.
The non L-shaped were created with the same function, but with random sd and random
mean, to generate more diversity in the scatterplots.
Various dataset combinations were tested to create a realistic sample despite being arti-
ficially generated:

• Equal numbers of L and non L-shaped data

• Different dataset sizes

• Unequal combinations of L and non L-shaped scatterplots

For the final dataset used for testing and method evaluation, with the data for both L
and non L artificial gene values, a subset of 30 L-shaped “genes” had been mixed with 200
and 500 random “genes” to test for diagnoastic measures to evaluate the various methods.
Smaller sample numbers did not seem realistic to test. However, there are no changes
in the parameters between the 2 datset sizes and therefore the 200+30 sample has been
selected to evaluate the methodologies and to optimize the parameters for the heuristic
and for the scagnostic methods.

Figure 4: scatterplots representing the L-shaped and the non L-shaped artificial data.
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1.3 Project Objetives 1 INTRODUCTION

1.3 Project Objetives

1. To evaluate and fine-tune existing methods for selection of L-shaped genes poten-
tially regulated by methylation and apply the tool for the selection of genes related
to colorectal cancer

2. To create an application for cancer driven gene selection.

1.3.1 Specific Objetives

The project objectives are detailed below:

1. To construct and/or evaluate a tool to identify L-shaped genes as potential biomark-
ers

(a) To identify existing methods and test them with sample lists of genes and
identify optimal parameters

(b) To test the methods against other datasets, including L-simulation data.

(c) To fine tune the parameters with the selected method(s).

(d) To analyze the biological significance of the candidate gene list.

2. To create an application to select genes regulated by methylation.

(a) To compile all the methodology developed in an R package.

(b) To finalize an application tool (Shiny) widely available for the selection of genes
potentially regulated by methylation.

To achieve the objectives, the methods will be tested against various relevant datsets,
the most optimal parameters will be evaluated and a final methodology and working
protocol will be developed for the final creation of an r package.

1.4 Focus and methodology

This work is the continuation of previous theses that focused on the identification and opti-
mization of various methodologies for the classification of L-shaped expression/methylation
scatterplots. These L-shaped scatterplots are associated with genes the expression of
which is regulated by methylation. Previous methodologies tested include a näıve method,
a CMI method, a heuristic method and a scagnostics method. These four will be explained
in more detail later in the corresponding section.

The methodological design includes the reviewing and testing of the existing methods;
which involves a negative correlation method, a Conditional Mutual Information (CMI)
and a heuristic method. These have been evaluated, tested and fine-tuned (if required)
with the above mentioned datasets. An additional method called “scagnostics” has also
developed and used for analysis. The method consists of scagnostics analyses of correla-
tion plots ([?]). These 4 methods have been tested on an artificial dataset and also with
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1.5 Work plan 1 INTRODUCTION

manually validated L-shaped gene lists. From these analyses, the optimal parameters
have been identified, and then these same methodologies have been tested with other
3 datasets. The last step has been to fine-tune the parameters of all methods. These
parameters and their optimization will be further discussed in the remaining chapters.

After the first parameter optimization has been completed with the artificial dataset,
various lists of genes have been obtained from each methodology. At this point, another
test of the parameters with visually selected L-shaped genes has also been carried out.
The lists obtained have been compared between them, including the intersections of lists
from different methods. These lists then have been used to evaluate the biological signifi-
cance of the L-shape selection methodology. From these results, the usage of all methods
has also been evaluated. Next, a working protocol describing the approach for selection
of target genes potentially regulated by methylation has been developed (??.

Figure 5: Flow chart sythetising the steps followed for analysis.

The final step is to convert the working protocol into an R package that will be up-
loaded in R Bioconductor. In addition, a Shiny (Shiny:2018) web application for online
and user-friendly parameter tuning will also be developed later on.
The application will be developed in R free software environment also ([?]).

1.5 Work plan

The project was organized according to the following Gantt chart:
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1.6 Description of outputs 1 INTRODUCTION

Figure 6: Gantt chart representing the final timeline for completion of the work.

The various PECs are represented above the rests of the tasks to indicate the various
tasks accomplished during each deliverable.

Some adjustments were made from the original planning. In addition to that, a final
task (the application Shiny) will be completed out of the evaluation period.

1.6 Description of outputs

1. Method. Optimized scagnostics functions for the selection of L-shaped genes based
on 4 datasets

2. Method. Optimized scagnostics functions for the selection of L-shaped genes based
on 4 datasets

3. Product. List of genes potentially influenced by methylation

4. Product. Chromosomal location of genes potentially regulated by methylation
collocated to the existing CpG islands.

5. Product. Compilation od functions in an R package for the identification of L-
shaped genes.

1.7 Brief description of the remaining chapters

The remaining chapters include the following:

1. Introduction. Context, focus, scope and data used
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1.7 Brief description of the remaining chapters 1 INTRODUCTION

2. Optimization of parameters. Description and analysis of the methods tested

3. Results. Description of results between methods, and between datasets; brief bio-
logical significance

4. Output. Package development

5. Discussion and conclusions

6. Future work
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2 OPTIMIZATION OF PARAMETERS

2 Optimization of parameters

The relationship between gene expression and methylation has been associated with can-
cer; and therefore, the study of this relationship has produced fruitful results. The asso-
ciation between gene expression and DNA methylation in the CpG islands in particular
has been long studied; and as a result, negative correlations have been found to relate
to cancer driven mechanisms ([?]). A previously developed method was the selection of
genes with an L-shape association between the expression and the methylation datasets
([?]). In this research, they focused on the CMI and on another method based on spline
regression. They observed that the first method would detect L-shaped genes more accu-
rately in big datasets. On the other hand, the spline clustering was not size dependent,
but it would yield a smaller number of samples. Other research exists that aimed to iden-
tify genes regulated by methylation according to the expression methylation patterns;
however, they only use a particular methodology like the CMI ([?]) with positive results.
Another paper focused on the identification of genes regulated by methylation through
unsupervised clustering techniques to identify CRC subtypes was able to confirm existing
subtypes that clustered together as well as to define new subtypes or classifications ([?]).

Selection of L-shaped genes was approached based on 4 different methods, which
depended on a variety of parameters. The methods tested were as follows:

1. Naive

2. CMI

3. Heuristic

4. Scagnostics

Changing the parameters affects not only the final the number of genes called “L-
shaped”, but also the genes themselves were different. For that there is a need to identify
an optimal set of parameters for each method, such that some diagnostic measures like
as accuracy, sensitivity or specificity that could be improved. For that purpose, the arti-
ficially generated data has been used in all methods except with the heuristic.

However, the artificial datset is too perfect to adjust to the reality of the gene expres-
sion and methylation data. Therefore, a set of L-shaped genes from real data has also
been used for parameter calibration. However, a set of “TRUE L-shaped Positives” and
“TRUE L-shaped Negatives ” has not been possible to obtain. The reason for that is that
none of this genes has been proven to be related to methylation.
A way around it was to visually inspect the genes’ scatterplots and select a set of data
that were clearly L-shaped and another set with opposite characteristics (non-L-shaped).
This methodology, however, incurred in human error, since the differentiation between
L and non L is not that clear. Moreover, the amount of genes with an L-shape in a
particular genome is not expected to be very high.
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2.1 Naive method 2 OPTIMIZATION OF PARAMETERS

2.1 Naive method

The naive method is based on a negative and significant correlation to identify L-shaped
scatterplots of the expression and methylation data. This method uses a correlation
matrix function; where given two matrices X (m,n) , Y (m,n) this function can compute
Pearson and Spearman correlation coefficients and also their significance p-values. This
computation is for every pair of row vectors. The function has the following parameters:

• X matrix with methylation data

• Y matrix with expression data

• adj is a logical variable indicating if the p-value returned should be adjusted or not.
The default is set to TRUE, which will then return an adjusted p-value.

• pValCutoff the upper limit to be used for the p-value. The default is 0.05.

• rCutoff is the upper limit to be used for the correlation coefficient. Default is 0,
which means thereis no cut off.

• sortByCorrs is a logical that if it is TRUE, results will be ordered in ascending
order by p-value. In the function, the default is set to FALSE.

The parameters that can be adjusted for optimization of the performance measures are
“the pValcutOff” and the “rCutOff”. This method had been previously set to an optimal
adjusted p-value of 0.25 and a r coefficient cut off of -0.5. These parameters produce the
following results for our three datasets:

TCGA GEO researcher

72 190 456

Table 2: Naive results with the TCGA, GEO, and researchers’ datasets
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2.1 Naive method 2 OPTIMIZATION OF PARAMETERS

The number of genes obtained was largest with the researchers’ dataset, probably
including many more genes than the expected to be regulated by cancer research.

The accuracy, sensitivity and specificity calculated with the artificial dataset resulted
in the following values obtained for accuracy were of 100%, for sensitivity of 100%, and
for specificity of 100%.

The accuracy, sensitivity and specificity were also calculated with a visually selected
list of true L-shaped positive genes and with a subset of the true non L-shaped posi-
tive genes (from the expressiion/methylation scatterplots). The values obtained were for
accuracy were of 72%, for sensitivity of 44%, and for specificity of 64%.

As an example, if we wanted to improve these values we could for example increase
the r coefficient to -0.7. However, this has a negative effect, since only 5 genes of 50 are
detected as true L-shaped. This could be explained by the fact that most genes have a r
coefficient below -0.6 (??).

Figure 7: Distribution of the correlation coefficients of the selected genes with ajusted p-value

of 0.25 and r coeff of -0.5.
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2.2 Conditional Mutual Information method (CMI)

The Conditional Mutual Information method was based on the expression and methy-
lation values computed at different points between 0 and 1 reached a minimum. This
minimum should be small enough according predefined thresholds. This minimum was
considered to be the cutoff point for methylation.

The cMI function computes cMI values for different t values, from 0 to 1 and a step
of 0.01. The output is stored in a data frame. For each gene, the optimal threshold is the
t-value that results the minimum CMI. This function has the following parameters:

• X is a matrix with methylation data

• Y is a matrix with expression data

• h is a number used for tuning of the kernel width, and empirically set at a default
of h = 0.2.

• smallR numeric value representing the ratio mincM I(t)/cMI(0. Default is 0.25.

• minCMI Minimum value of unconditioned CMI. The default is set at 0.1.

L-shaped genes (regulated by methylation) are selected according to three conditions
(parameters were chosen according to a random permutation test as in [?]): 1. Ratio
mincM I(t)/cMI(0) must be small enough, r < 0.25. 2. Minimum value of uncondi-
tioned CMI must be large enough, cMI(0) > 0.1. 3. Expression values must be higher
on the left side of the plot than on the right side.
These parameter values had been previously optimized, and the values used as default in
the function were found to be optimal. Therefore, this function has not been calibrated
for the present work.

The number of genes identified as L-shaped with the CMI method is represented in
??:

TCGA GEO researcher

301 263 795

Table 3: CMI results with the TCGA, GEO, and researchers’ datasets
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2.3 Heuristic method 2 OPTIMIZATION OF PARAMETERS

The accuracy, sensitivity and specificity calculated with the artificial dataset were:
accuracy of 75%, sensitivity of 41%, and specificity of 69%.

The values obtained were a 84% for accuracy , for a 68% for sensitivity , and a 76%
for specificity.

2.3 Heuristic method

The heuristic method is intended to select L-shaped scatterplots by overimposing a grid
on it and defining certain regions which have to (or do nott have to) contain a minimum
(or maximum) percentage of points if the scatterplot is to be called L-shaped. a second
layer involves the method computing a scoring that favors selected cells, which then score
positively and penalizes cells off the L-region that score negatively. An appropriate setting
of scores and weights should yield positive scores for L-shaped scatterplots and negative
scores for those that are not. One of the main interests of this approach is the possibility
to tune the selection process by changing the scoring parameters.

Figure 8: Graphic representation of the 3x3 grid for the heuristic method.

For this analysis a 3x3 grid is created over the scatterplot and the function calculates
the frequency of point on each cell of the scatterplot with the calcFreqs function, followed
by a conversion of frequencies to points to facilitate the scoring. The next step is to apply
weights to each cell of the grid to select the genes based on the closest L-shaped pattern
distribution. Two final weights matrices are used, one to identify L-shaped distributions
and one to penalize non L-shaped scatterplots. This is represented on ??, where the
greener the color, the more favorable scored the cells are.

The parameters for this function are as follows:

• mets is a matrix containing methylation values.

20



2.3 Heuristic method 2 OPTIMIZATION OF PARAMETERS

• expres is a matrix containing expression values.

• aReqPercentsMat is a matrix of minimum maximum percentage of counts to have
in a given cell.

• aWeightMifL is a matrix of weights to score the previous counts only if the scat-
terplot has been classified as L.

• aWeightMifNonL is a matrix of weights to score the previous counts only if the
scatterplot has been classified as non-L.

• x1, x2, are the coordinates of the vertical points in the X axis. Since it is expected
to contain methylation values that vary between 0 and 1 after normalization, the
default values are 1/3 and 2/3.

• y1, y2, are the coordinates of vertical points in the Y axis. Leaving them as NULL
assigns them the percentiles of yVec defined by ‘percY1‘ and ‘percY2‘.

• percY1, percY2 are the values used to act as default for ‘y1‘and ‘y2‘ when these
are set to ‘NULL‘.

A set of matrices with percentages, maximum and minimum counts, and weights for
L and non L genes were the following:

10 20 1

5 40 20

0 5 10

Table 4: Percentatges matrix

3 6 0

2 12 6

0 2 3

Table 5: Counts matrix

2 -2 -25

1 0 -2

1 1 2

Table 6: Weights matrix L genes
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0 -2 -25

0 0 -2

0 0 0

Table 7: Weights matrix non L genes

With the artificial dataset, accuracy was of 100%, for sensitivity of 100%, and for
specificity of 100%.

With the visually selected L- positives, the accuracy with these parameters was 73%,
the sensitivity was 46%, and the specificity was 69%.

Varous combinations were tested and finally a set of matrices with different percentages
and weights for L and non L genes were tested again:

2 20 5

1 40 20

0 1 2

Table 8: Percentage matrix
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1 6 2

0 12 6

0 0 1

Table 9: Counts matrix

2 -2 -sample size/5

1 0 1

1 2 2

Table 10: Weights matrix L genes

0 -2 -sample size/5

0 0 -2

0 0 0

Table 11: Weights matrix L genes

The accuracy with these new parameters was 95%, the sensitivity was 91%, and the
specificity was 90%.

These last matrices were then found to produce an optimal number of genes from
each dataset. Changing these parameters any further did not improve the results, neither
quantitatively nor qualitatively.
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2.4 Scagnostics method 2 OPTIMIZATION OF PARAMETERS

TCGA GEO researcher

442 39 188

Table 12: Heuristic results with the TCGA, GEO, and researchers’ datasets

2.4 Scagnostics method

The scagnostics is a method to characterize scatterplots according to a group of variables
that are used for diagnostics, from here it comes the name. “Scagnostics is a Tukey
neologism for the term scatterplot diagnostics. Scagnostics are characterizations of the
2D distributions of orthogonal pairwise projections of a set of points in multidimensional
Euclidean space. These characterizations include such measures as density, skewness,
shape, outliers, and texture ([?])”.
The method provides 9 coefficients for each gene that describe the scatterplot. These are:
outlying, skewed, clumpy, sparse, striated, convex, skinny, stringy and monotonic. In ??
there is the best graphical representation that characterized each parameter.

Figure 9: Examples of scatterplots and their scagnostics measures.
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2.4 Scagnostics method 2 OPTIMIZATION OF PARAMETERS

There are various packages in R that use the theory of scagnostics to visually char-
acterize scatterplots: i.e. scagnostics and scagExplore. Both packages have been
developed by common authors and the work is similar between both. The first one is the
one used in this present thesis, since it allows the flexibility to imput different datasets
for the psrameter computation. The scagExplorer has a much “fancier” visual display,
but it does not easily allow for input data manipulation. Another interesting feature of
’scagExplorer’ is the cluster or filtering analysis with the resulting scatterplots according
to the various scagnostics measures obtained.

To fine-tune the scagnostics analysis, two artificial datasets were used, one with L-
shaped data and another one with randomly distributed bivariate data. The datasets
contained 200 rows and 20 columns representing the genes and the samples respectively.
The scagnostics result comparison between the TRUE L-shaped genes and the non L-
shaped genes showed few coefficients that could be used to discriminate between datasets
(??).

Figure 10: Boxplots representing the 9 scagnostics values for the classification of L-shaped and

non L-shaped genes from artificially generated data.

The results revealed that the Outlying (< 0.06), Clumpy (> 0.17), Convex (< 0.09)
and Sparse (> 0.20) could be used for classifying between the 2 groups of genes. After a
fine-tuning exercise with the artificial dataset, the same exercise was carried out with a se-
lection of TRUE/FALSE genes from the experimental, the GEO and the TCGA datasets.
The first step was to select the genes selected visually as with L-shape for the DA dataset.
The expression and the methylation datasets were selected based on that ’TRUE L’ list
of genes. These same steps were followed with the other two datasets, the GEO and the
TCGA. These two datasets, instead of visual inspection, the TRUE and FALSE genes
were selected using the naive, heuristic and CMI methods fort the scagnostics tuning.
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To check the validity of these TRUE genes used, a visual selection was also carried out
for the GEO dataset and the results were the same in terms of parameters identified.
Therefore, a visual inspection of the TCGA genes was not done.
The parameters that were selected from the experimental dataset were: Monotonic, Con-
vex, Striated and Clumpy. The parameters that were selected from the TCGA dataset
were: Monotonic, Convex, Skinny and Clumpy. For the GEO dataset, none the param-
eters seemed to be able to discriminate between TRUE and FALSE. That is also why a
visual selection of L-shaped genes was carried out, however the results did not improve.

The boxplots help visually select which are the parameters that discriminate better
between the “true” L-shaped genes and the one sthat are not. Complementing that,
difference Q1(true)-Q1(false); or the opposite as Q1(false)-Q3(true) to identify the chosen
parameters’ thresholds.

Figure 11: Boxplots representing the 9 scagnostics values for the classification of L-shaped and

non L-shaped genes from the researchers’ data.

We also merged results for all 3 datasets, and results for DA and TCGA datasets, to
have more homogenous parameters thresholds (??.

The final parameters that we selected were: Outlying (< 0.06), Clumpy (> 0.17), Con-
vex (< 0.09) and Sparse (> 0.20). However, for TCGA we have to do 2 adjsutments: 1)
remove the striated (it could aslo be removed from the other selections) and 2) increase
the ranges for Convex (< 0.50). The final number of genes obtained was 125 for the
TCGA, 1870 for the GEO and 402 for the experimental dataset. Some of the scatterplots
of the genes selected as true L-shaped were better representatives of a L-shape, but that
the direction of the L is both following a positive and a negative correlation.
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Figure 12: Boxplots representing the 9 scagnostics values for the classification of L-shaped and

non L-shaped genes from the GEO data.

The combination of this method of selection with the naive in particular, and also
the other 2 (CMI and heuristic) will improve the resulting list of selected L-shaped genes
(when the expression is negatively correlated with methylation).

For the artificial dataset, the accuracy was of 92%, for sensitivity of 82%, and for
specificity of 88%.

For the visually selected L genes data, he accuracy for these set parameters was of
59%, the sensitivity was of 18%, and the specificity was of 55%.

If we were to adjust the parameters visually to the particular dataset to improve the
diagnostic measures with a more “real” dataset, it will be Monotonic > 0.09, Convex
< 0.11, and Clumpy > 0.20.Then, the results would be as follows: The accuracy for these
set parameters was of 67%, the sensitivity was of 34%, and the specificity was of 60%.

Still the sensitivity is very low for the visually selected L genes.
The ?? shows the number of genes identified with each dataset, with the original

parameters:

TCGA GEO researcher

125 1870 402

Table 13: Scagnostics results with the TCGA, GEO, and researchers’ datasets
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Figure 13: Boxplots representing the 9 scagnostics values for the classification of L-shaped and

non L-shaped genes from the TCGA data.

The scagnostics method is set in two functions, one that runs the scagnostics function
from the ’scagnostics’ package for 2 large matrices; and the second one is a function that
applies the selection criteia for L-shaped genes, which is basically based on a filtering
or subsetting by multiple conditions. The parameters for the first function are the 2
matrices to input (methylation X, expression Y). For the second function, it is still being
finalized, but the idea behind it is to have a parameter that will filter by the optimal L-
shaped characteristics (Outlying (< 0.06), Clumpy (> 0.17), Convex (< 0.09) and Sparse
(> 0.20)), but then to include an add-on customized option where the default values of the
L-parameters can be changed or added (i.e. Convex > 0.1, Outlying < 0.23). Like that,
the function could also classify for other patterns that do not adjust with the L-shape. In
this way, it would be more flexible and potentially broadly used for other purposes, and
not only for the L-shape classification which is of our interest.
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Figure 14: Boxplots representing the 9 scagnostics values for the classification of L-shaped and

non L-shaped genes from all 3 experimental datasets merged.
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3 Results

The 4 methods have been optimized to the best suited values, and 3 lists have been cre-
ated for each method. These lists contain candidate genes which expression/methylation
follows an L-shaped pattern; and therefore their expression is potentially being regulated
by methylation.

3.1 Analysis of gene lists

One first exploration of these lists is by method: how many common genes have been
identified with the naive method for all 3 datasets? And for the CMI, the heuristic and
the scagnostics? In the Venn diagrams, the researcher’s data is represented by “DA”.

3.1.1 Analysis of gene lists by method

For the naive method, the relation of the genes identified between datasets shows that
there are 40 genes in common between the TCGA and the researcher’s dataset; whereas
there is only one gene in common between the GEO and the researcher’s dataset (??). It
is also clear that there are no genes in common between the TCGA and GEO datasets
identified by this method.

Figure 15: Venn diagram for the Naive gene selection in the 3 datasets

The number of genes selected using the CMI method is 301 for the TCGA, 263 for
the GEO and 865 for the researcher’s dataset. The common genes identified between
datasets are represented in ??. With this method, 4 genes have been commonly identified
in all datasets. In addition to that, 96 more genes have been identified between the TCGA
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and the researcher’s datasets, 28 between the researcher’s and the GEO datasets, and 7
between the TCGA and the GEO datasets.

Figure 16: Venn diagram for the CMI gene selection in the 3 datasets

The number of genes selected with the heuristic method is 442 from the TCGA
data, 39 from the GEO data and 188 from the researcher’s data (??. There were 36 genes
in common between the researcher’s and the TCGA data, 1 between the researcher’s and
GEO data and 4 between GEO and TCGA data. No genes were selected from all datasets.

With the scagnostics method there were 2 genes in common between researcher’
and TCGA and 1 between the researcher’s and GEO datasets. With this analysis, the
GEO and the TCGA had 32 genes commonly selected.

The genes common identified from the various methods is summarized in ??

Selection DA GEO TCGA ALL

1 All common genes 256 16 150 0

2 Interaction genes 59 0 104

Table 14: The number of genes selected by each classifcations is represented in the following

table:

One observation is that there is no common list compiled from a consensus of all
methods and all datasets.
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Figure 17: Venn diagram for the Heuristic gene selection in the 3 datasets

3.1.2 Analysis of gene lists by dataset

A second analysis of the list of genes obtained will focus on the gene selection of all
methods in one set of data: how many common genes were found in the researcher’s data
by all methods? And in the GEO and TCGA data?

The analysis of the researcher’s dataset (DA) yielded 3 genes identified by all 4
methods (??). There were 56 more genes that were identified by 3 out of 4 methods; and
a further 232 commonly selected by 2 different methods.

The first 4 genes identified by the intersection of lists from various methods resulted
in the scatterplot patterns visualized in ?? for the researcher’s data.
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Figure 18: Venn diagram for the Scagnostics gene selection in the 3 datasets

Figure 19: Venn diagram of the selected genes from the researcher’s dataset with the 4 methods

33



3.1 Analysis of gene lists 3 RESULTS

Figure 20: Sample scatterplots resulting from the genes selected from the researcher’s data
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The results for the GEO dataset are less consistant than the ones for the researcher’s
dataset (??).
There were no genes commonly identified by all methods from the GEO dataset, and only
one gene was identified by 3 methods: the CMI, heuristic and scagnostics. There were 21
genes identified by a combination of 2 methods, and the rest of the genes were selected
by one of the methods only.
The heuristic and naive combination did not identify any gene in common from this
dataset.

Figure 21: Venn diagram of the selected genes from the GEO dataset with the 4 methods

All four genes display a very neat L-shaped pattern.

The first 4 genes identified by the intersection of lists from various methods resulted
in the scatterplot patterns visualized in ?? for the GEO data.

If we observe the scatterplots in ??, the selection of L-shaped genes does not show as
clear a pattern as with the researcher’s dataset. One reason for that could be that the
gene list used was the union from all methods, since the list resulting from the ntersection
of all methods resulted empty for the GEO data.

There were 15 genes from the TCGA dataset identified by all for methods, 87 genes
selected by 3 methods and 180 more genes identified by two methods.

The first 4 genes identified by the intersection of lists from various methods resulted
in the scatterplot patterns visualized in ?? for the TCGA data.

The scatterplots in ??, the selection of L-shaped genes show a very clear negative corre-
lation between gene expression and methylation, however, the L-shape is less pronounced
overall.

Four methods to identify genes potentially regulated by methylation were imple-
mented, and the resulting lists yielded 60, 14 and 89 of selected genes for the researcher’s,
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Figure 22: sample scatterplots resulting from the genes selected from the GEO data

the GEO and the TCGA datasets. The researcher’s and the TCGA had 24 genes common
if their selected list, the GEO dataset did not have any common genes with any of the
other 2 datasets.

3.2 Brief biological significance analysis

A functional annotation analysis is a type of biological significance analysis that is based
on the fact that genes that co-express ot “appear” together will participate in the same or
a similar function. This is possible because of the strong association between co-expression
and biological funtion. To carry out the analysis DAVID Bioinformatics resources was
used ([?]). This is a web application that performs various funtional annotation analyses
from a list of genes that the user inputs.

The list of genes obtained from each dataset were used as input into the DAVID
application, and cluster analysis was performed individually. The gene-enrichment and
functional annotation analysis generated a table of the clusters identified for each dataset
(??, ??,??). The scores for the significance level are a modified Fisher exact p-value.

Despite having only 24 genes in common, the functional annotation of the researcher’s
dataset and the TCGA dataset showed the same cluster results. In this first cluster (??,
??) most genes are related to zinc finger, DNA binding, and regulation of transcription;
all processes related to cander.
The GEO dataset produced different results with lower significance score, but it could be
related to the low number of genes used for analysis.
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Figure 23: Venn diagram of the selected genes from the TCGA dataset with the 4 methods

3.3 Positioning of selected genes onto chromosomes and methy-

lation pattern analysis

CpG islands are regions of the genome with higher Guanine (G) and Cytosine (C) per-
centage than other regions. These are usually under methylated, and are associated with
the promoters of the genes, which is the region that controls expression. In the process
of tumor generation, these low methylated areas (or hypomethylated), become highly
methylated (or hypermethylated) ([?]). CpG island hypermethylation has been described
in almost all cancers and many important cellular pathways are affected by the hyper-
methylation of these islands ([?]). therefore, the collocation of the candidate genes on
these islands will reinforce the assumption that their expression is in fact regulated by
methylation.

Another interesting feature related to methylation, expression and cancer is the DNA-
seI hypersensitive sites (DHSs) are chromatin regions sensitive to cleavage from DNAseI
enzyme. These regions are associated with transcription, and are called regulatory regions.
Methylated CpG that are found within a DHSs does not allow for the the association of
the transcription factor to the DNA, by blocking the access to the chromatin. Moreover,
collocation of genes with CpG islands and DNAse I hypersensitive sites provides a pattern
for gene methylation and expression ([?]).

To test if genes that have been found to be regulated by methylation form this anal-
ysis are located at random in the genome or they collocate with known CpG islands and
DNAse I hypersensitive sites, a methylation analysis workflow from [?] was followed.
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Figure 24: Sample scatterplots resulting from the genes selected from the TCGA data

3.3.1 Obtention of coordinates

The data analysis of the 3 datasets with the 4 methods (naive, cmi, heuristic and scagnos-
tics) generated 12 lists of genes.

A dataset with the model CpG island mapped onto the hg19 genome can be obtained
from the USCS (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.
txt.gz). DHs can be downloaded from: http://hgdownload.cse.ucsc.edu/goldenpath/
hg19/encodeDCC/wgEncodeRegDnaseClustered/.

The first step is to obtain coordinates for the genes selected and the CpG islands and
DHSs. Once the infomation is downloaded we store it in an R object of the type GRanges,
which is a Bioconductor class to efficiently store information about sequences. Next we
will repeat the precedure with the lists of selected genes. The function getGeneLocations
is used to obtain the coordinates.

getGeneLocations is a transcript coordinate annotation tool. Given a vector with Gene
Symbols, it will produce an object with ENTREZ ID, gene name, chromosome number,
start position and end position for Homo sapiens. It has the following parameters:

1. geneSymbolsSEL is a vector containing Gene Symbols (unique abbreviation for
the gene name) to be annotated.

2. sortByChrom is a logical indicating if the results have to be ssorted ascending by
chromosome number. Default to TRUE.

3. csvFileName its is default is NULL; if a name is given, a csv file will be written
as output.
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Figure 25: Cluster 1 resulting from the functional annotation analysis for the researcher’s list

of genes

3.3.2 Obtention of coordinates

Finally, the visualization of the genes onto each chromosome is carried out with Gviz with
the function and plotGenesInChroms..

The plotGenesInChroms is a visualization function that to plot specific genes onto the
corresponding chromosomes. Given a list of genes with their transcript coordenates, the
function will plot the genes on their specific locations on each corresponding chromosme.
It can also collocate the genes with CpG islands information and DNAseI hypersesitive
sites.

1. transcriptCoords object of class containing a list of genes annotated with the
getGenesLocations

2. plotsFilename object with the name of the file that will be used to save the .pdf
with the graphs.

3. minbase number for the smallest basepair position of the chromosome. First posi-
tion on the chromosome from the 5’ side.

4. maxbase number for the largest basepair position of the chromosome. Last position
on the chomosome from the 5’ side.

5. islandData object of class GRanges containing CpG islands position data.

6. dnaseData object of class GRanges containing DNAseI hypersensitive sites position
data.
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Figure 26: Clusters resulting from the functional annotation analysis for the GEO list of genes

Figure ?? shows the genes selected using the Naive method on the DA dataset in the
first chromosome only.
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Figure 27: Clusters resulting from the functional annotation analysis for the TCGA list of

genes
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Figure 28: Plot of chromosome 1 with tracks for the genes selected from all 3 datasets, CpG

islands and DHSs
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3.3.3 Overlap between CpG islands and selected genes

In addition to drawing genes and CpG regions together, the overlap between gene regions
and CpG islands provides a numeric value to the visual display. This can be done by call-
ing “CpG islands” genomic windows whose GC content > 50% and observed-to-expected
CG ratio > 0.6.

The overlap can be computed based on two methods: “standard” and “within” defined
in the documentation of Bioconductor GRanges package.
For example, for the first chromosome and the gene list obtained by the Naive method
on DA dataset we have:

The overlaps between the model CpG islands identified on the human genome and the
genes identified from our query dataset (Naive-DA) were selected by 2 different methods
with the following results: For a non-defined overlap, there were 560 overlaps between
the model CpG islands and the genes selected from the DA data; and for a within feature
overlap, there was 1 overlap found.

3.3.4 Evaluation of the methylation rate of the genome

Once the selected genes with an L-shaped pattern are distributed onto the chromosomes
we want to test whether these genes fit a Poisson Process. The parameters for the Poisson
process are λ and µ. The human genome has 22 + 1 chromosomes, and it is estimated
the total number of coding genes is between 20,000 to 25,000; however, this number is
diferently distributed in each chromosome. We can calculate the Poisson Process per
chromosome, considering only the protein coding genes.

For this analysis, it is considered

λ = methylatedgenes/chromosome (1)

and

µ = λchromosome (2)

However, there is not data for λ, which is the rate of methylated genes in a chromo-
some (or the genome).
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Chromosome Mb ProteinCodingGenes percentMet

1 chr1 249 2058 17

2 chr2 242 1309 11

3 chr3 198 1078 18

4 chr4 190 752 25

5 chr5 182 876 6

6 chr6 171 1048 10

7 chr7 159 989 10

8 chr8 145 677 18

9 chr9 138 786 23

10 chr10 134 733 8

11 chr11 135 1298 17

12 chr12 133 1034 22

13 chr13 114 327 33

14 chr14 107 830 5

15 chr15 102 613 11

16 chr16 90 873 25

17 chr17 83 1197 10

18 chr18 80 270 59

19 chr19 59 1472 15

20 chr20 64 544 27

21 chr21 47 234 47

22 chr22 51 488 27

23 chrX 156 842 24

24 chrY 57 71 3

Table 15: Percentage of methylated genes per chromosome
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4 Development of an R package

To reuse the code and pack it in and ordered way, all functions used in the analysis of L-
shaped genes have been compiled in an R package. The package is called lpattern and its
creation had already been started before. Within this project, the fucntions parameters
have been properly documented and tested.

To create a package in R we need to have installed Rtools (for Windows) in our
computer or an equivalent for the appropiate OS used. LaTeX installation is also a
prerequisite. There is the need to install 3 packages (if not previously done so), that will
be required for the package development:

• devtools

• roxygen2

• testthat

There are 2 basic functions that are used to test if a package is working:

• document() created the documentation file

• check() checks for errors, warnings and notes of any kinds that may affect the
creation or use of the package

The lpattern package has the following structure:

Figure 29: Structure of the R package lpattern

Finally, the following figure shows an example of a function created in .R with roxygen2
template for writing an .Rd file (??).

Next developments for the package are the inclusion of the scagnostics set of func-
tions, that are still under preparation and the polishing of some of the functions that are
currently in the package, but that generate some warnings.
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Figure 30: List of functions of the R package lpattern

Figure 31: Example of a documented function of the R package lpattern

5 Discussion, conclusions and future work

This work has evaluated 4 different methodologies for selecting candidate genes for col-
orectal cancer (CRC) which expression and methylation plot follows an L-shaped pattern.
To acomplish that, 3 different datasets from experimental datahave been used, and one
artificial dataset has been generated for parameter tuning.
To evaluate the various methods, diagnostic measures have been calculated for different
parameters and tested ewith different datasets. In addition to that, the methods have
also been evaluated for their biological significance.

5.1 Discussion

The method evaluation base don the accuracy, sensitivity and specificity produced a series
of results with the 2 datasets used (??)
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Method Accuracy Sensitivity Specificity

Naive 100 100 100

CMI 75 41 69

Heuristic 100 100 100

Scagnostics 92 82 88

Table 16: Diagnostic measures obtained with the artificial dataset

Another different set of diagnostic measures were obtained with the visually selected
L-datset (??).

Method Accuracy Sensitivity Specificity

Naive 72 44 64

CMI 84 68 76

Heuristic 95 91 90

Scagnostics 59 18 55

Table 17: Diagnostics measures obtained with the TCGA, GEO, and researchers’ datasets
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The measures of diagnostic show that the ideal method would be the Heuristic
method and the least recommended the scagnostics method. Looking at these mea-
sures, the heuristic method could be used by itself, without the conjunction of the other
methodologies. A test that would need to be used in conjunction with other methods is
the scagnostics. This methodology also has the setback that, despite selecting for a partic-
ular scatterplot shape, it cannot select for positive or negative correlations and therefore,
some of the selected henes have an inverse L-shape (??).

Figure 32: Example of a scatterplot of a gene selected with the scagnostics package

that shows an inverse L-shape.

Most methods failed to detect true positives (as the sensitivity is the lowest measure).
On of the reasons for that could be the lack of real negative data. This refers to the fact
that the analysis is based on L-shaped, which is well defined, and non L-shaped, which
actually includes all the ones that do not belong to the first category.

The methods have also been compared by looking at the final lists of selected genes.
From these lists, the common number of selected genes identified have been contrasted
both by method and by type of dataset.
The final lists of genes obtained from the intersection of all datasets have been compared
between all 4 methods. This comparison shows that there are no genes commonly identi-
fied by all methods from all datasets, and that only 4 genes have been identified by 3 out
of for methods. One gene between scagnostics, heuristic and naive and 3 between CMI,
heuristic and naive (venn9). These results could be related to the different outputs ob-
tained from each dataset. When comparing the results between methods for a particular
gene list (as in Venn diagrams venn6, venn7, venn8), the researcher’s dataset has 3 genes
in common selected from all methods, and the TCGA dataset had 15 genes in common
between all methods. If we remember that the initial overlap between lists was of about
8-9000 genes, these final numbers may seem too low
These results reflect the fact that each method selects a different set of genes, which also
means that each method has different strengths and witnessess.

The gene lists have also been compared after the functional annotation analysis (dav1,
dav2, dav3). Both the TCGA and the researcher’ list have shown the same functional
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Figure 33: Venn diagram representing common genes between all datasets and all

methods.

annotation clustering. This implies that despite selecting for different genes from each
list (meaning) that the genes as such are not the same, the gene functions of the principal
clusters are the same. Biologically, this could be explained by the fact that the methyla-
tion pattern of a particular gene may be unstable or variable from sample to sample and
change the expression and methylation pattern. However, in global terms, there may be
a group of genes with the same function that are more or less expressed/methylated and
they can exchange between them.

That brings us to the question:

What is the best method or combination of methods to select genes that have an
L-pattern (that are regulated by methylation)?

Probably the answer to that question is that it will depend on our particular dataset
for analysis. However, as a general pipeline for analysis, the pooling of various candidate
genes selected by at least any 2 methods is a good starting point. This argument may
seem a bit arbitrary, however, if a gene has been selected by at least 2 methods with
different strategies, it is a validation of one selection by a second independent method.
In addition to that, the resulting number of genes selected by at least 2 methods is of
good length for biological significance tests.

This work has some limitations:

There is no validated data on what are called “TRUE genes” or “FALSE genes” for
adequate calculations of accuracy, specificity and sensitivity. In addition to that, the
visual inspection and selection of L-shaped genes may not be incorrect, bu then it is also
missing some confirmation to support the information on L-shaped vs non L-shaped genes.

Another limitation encountered is the base for this work. It is widely believed and
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understood that gene expression and methylation levels follow a negative correlation, how-
ever this probably is not always the case.

A limitation related to the above mentioned is the fact that the gene expression and
methylation relationship is not stable, that means it can vary from sample to sample, and
not necessarily due to a change in conditions.

5.2 Conclusions

This work is a description of 4 different methods used for the selection of genes regulated
by methylation in relation to CRC. It also performs a functional annotation of these genes
and their colocations with other experssion and methylation markers such as CpG island
and DHSs.

The functions have been compiled in an R package emphlpattern. This package has
the flexibility to select for L-shaped genes as well as for scatterplots with different patterns
by changing the various function parameters.
Finally, a researcher’s dataset has been analyzed and a list of candidate genes has been
presented both as a proof of concept and for use as candidates for further analysis in the
search of biomarkers for CRC.
Aparently, some test datsets like the TCGA are more suited for that analysis than the
GEO datasets tested. In addition to that, the positive selection of L-shaped genes would
improve with experimentally proven data for genes regulated by methylation and related
to cancer (not any specific one) to fine tune the parameters better,

5.3 Future work

Next steps will be the finalization of the R package emphlpattern, with the scagnostics
functions which are still under construction, proof reading of the documentation and the
creation of vignettes for the package and examples.

In addition to that, a Shiny application will be updated with the latest optimizations
and methodologies.
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6 Glosary

• CRC: colorectal cancer.Also called bowel cancer, is the development of abnormal
growth cells or tumors in the large intestine (colon or rectum).

• Gene expression: is the process by which information of a gene is used in the
synthesis of a functional gene product.

• Gene: is a subunit of DNA that has the information to realize a particular function.

• DNA:is a complex molecule that contains all of the information necessary to build
an maintain an organism. It is composed of 4 bases: Cytosine, Guanine, Adenine
and Timine.

• Methylation: is a process by which methyl groups are addd to the DNA molecule.
DNA methylation typically acts to repress gene expression.

• CpG island: is a sequence of the DNA bases Cytosine (C) followed by a Guanine
(G) highly repeated for 500 to 1500 bases.

• DHSs: DNAse I hypersensitive sites, are regions of DNA chromatin that are sen-
sitive to cleaveage of the DNAse I enzyme. This regions are usually egulating gene
expression.

• Scagnostics: scatterplot diagnostics that are used to characterize 2D plots.

• R: a free programming software environment for statistical computing and graphics.

• TCGA: The Cancer Genome Atlas, is a project to catalogue genetic mutations
responsible for cancer and stores related highthroughput datasets.

• GEO: Gene Expression Obnibus, is an NCBI repository that contains various omics
datsets.

• Shiny: R package to build interactive web apps based on R.
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8 ANNEXES

8 Annexes

This work has been developed with R software. Within R the package knitr has been
used to create the documentation, which is then written into TeX language.

The package lpattern is hosted in /lpattern.

Within the package there are the functions used, the package documentation and a
vignettes folder with examples of application of the various functions.
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