
Application of Clustering Techniques to Privacy
Protection

MISTIC: Joint University Master in Security
of Information and Communication Technologies

Master thesis report for the studies of Joint University Master in Security

of Information and Communication Technologies presented by Julián Alarte

Aleixandre and directed by Agust́ı Solanas Gómez.

Universitat Oberta de Catalunya, Barcelona, 2018

ii

Abstract

Clustering techniques can be used over numerical datasets to create similar groups of

elements. A well-known application of clustering techniques is the privacy protection

in numerical datasets.

Microaggregation is a data protection method that consists of constructing homo-

geneous clusters from data. Once the clusters are created, the original data of each

member of the cluster is replaced by its centroid. The typical size of the clusters is k

and the maximum size is 2k-1. The higher the k value is, the larger the information

loss is and the less the disclosure risks.

Microaggregation ensures the k -anonymity property. In the case of a release of data,

this property guarantees that the individuals who are subjects of the data will not

be identified while the data continues being useful.

Typical microaggregation algorithms are MD, MDAV and V-MDAV. This work

proposes to study the application of other clustering techniques to ensure the k -

anonymity, concretely the hierarchical agglomerative clustering algorithm (HAC).

The main goal of this clustering technique is to build a hierarchy of clusters. Partic-

ularly, the hierarchical agglomerative clustering is a bottom up technique. Hence,

initially it supposes each observation as a cluster and then it merges pairs of clusters

while the hierarchy increases.

To my wife Ana and my son Julián who encourage and

support me.

Acknowledgements

I would first like to thank my advisor, Agust́ı Solanas, for the guidance, encouragement and ad-

vice he has provided throughout my time as his student. Without his assistence and involvement

in every step in the whole process, this work would have not been accomplished.

I would also express my gratitude to Josep Silva. Under his mentorship I have learnt invaluable

lessons.

I must express my gratitude to Mariana Gómez, who helped me with the English correction.

Finally, I must express my gratitude to my wife, my son, my sister and my parents, for their

continued support and encouragement during all my years as a student.

vii

Contents

1 Introduction 1

1.1 Context and justification . 1

1.2 Objectives . 2

1.3 Approach and method . 2

1.4 Work planning . 3

2 State of the art 5

3 Theoretical concepts 7

3.1 k -anonymity and microaggregation . 7

3.2 Microaggregation algorithms . 9

3.2.1 MDAV . 9

3.2.2 HAC . 10

3.3 Similarity between the k -partition elements . 11

4 Environment 13

4.0.1 Anaconda . 13

4.0.2 Notepad++ . 15

4.0.3 R . 15

ix

5 MDAV 21

5.1 Algorithm . 21

5.2 Test . 22

5.3 Evaluation . 24

6 HAC 27

6.1 Algorithm . 27

6.2 Test . 28

6.3 Evaluation . 29

7 HAC improvements 31

7.1 Maximization of the number of partitions . 31

7.2 Linkage criteria evaluation . 33

7.3 Cluster creation priority . 34

8 MDAV vs improved HAC 37

9 Conclusions 39

Bibliography 41

List of Figures

1.1 Gantt chart of the project . 4

3.1 Linking to re-identify data . 8

4.1 Anaconda installation wizard . 14

4.2 Anaconda directory selection . 14

4.3 Anaconda installation . 14

4.4 Notepad++ installation wizard . 15

4.5 Notepad++ directory selection . 15

4.6 Notepad++ components selection screen . 16

4.7 Notepad++ configuration settings screen . 16

4.8 R directory selection . 17

4.9 R components selection . 17

4.10 R configuration mode . 17

4.11 R configuration settings screen . 18

4.12 R modules mirror selection . 18

4.13 R modules installation selection . 19

5.1 MDAV test file k -partition . 23

5.2 MDAV test file with R . 25

6.1 Hierarchical agglomerative clustering algorithm 27

6.2 HAC test file k -partition . 29

xi

CHAPTER 1

Introduction

1.1 Context and justification

Nowadays, the amount of data collections containing person-specific information is growing

exponentially. There is a great variety of devices that can obtain and store information about

ourselves, such as portable electronic devices, smartphones, IoT devices, wearables, etc. This

fact makes really difficult to control the available amount of data collections about ourselves,

and consequently, it is also difficult to guarantee our privacy protection.

Data holders with limited knowledge need mechanisms that allow them to guarantee the data

privacy and confidentiality. On the one hand, data holders have to be able to produce useful

anonymous data. On the other hand, the data has to be appropiately protected in order to

avoid the identification of the subjects.

For instance, consider a data holder such as a high school, that has private field structured

information from its students, is asked to share that information with researchers that are writing

a paper about school failure. Is there a way to release such information safely guaranteeing that

the students can not be re-identified by comparing that information with other data collections?

Latanya Sweeney proposed a formal protection model named k -anonymity. It ensures that each

person contained in the data collection released can not be distinguished from at least k -1 people

also appearing in the data collection.

The k -anonymity property of a data collection can be achieved through microaggregation algo-

rithms. Microaggregation is a clustering problem whose aim is to cluster a set of points into

homogeneous groups with size between k and 2k.

There are typical clustering algorithms, such as MD, MDAV, V-MDAV, etc., used to ensure the

k -anonymity property of data collections. This work studies the application of other clustering

1

2 CHAPTER 1. INTRODUCTION

techniques in order to ensure the k -anonymity property. The application of these clustering

techniques is compared with the traditional clustering algorithms used for microaggregation.

1.2 Objectives

The main objectives of this work are:

• Implementation and evaluation of a well-known microaggregation algorithm such as MDAV.

Once implemented, the algorithm will be evaluated using a typical data collection called

Census.

• Adaptation of a common clustering algorithm to use it for microaggregation. The selected

algorithm is hierarchical agglomerative clustering. This algorithm will be implemented and

evaluated using the Census data collection.

• Optimization of the hierarchical agglomerative clustering in order to improve the commonly

used linkage criteria. These criteria influence the shape of the clusters. Thus, improving

the linkage criteria will influence the homogeneity of the clusters.

• Development and evaluation of the restrictions needed in order to obtain clusters with

minimum size k and maximum size 2k-1.

1.3 Approach and method

This thesis starts studying a well-known microaggregation algorithm (MDAV). This algorithm

is implemented and evaluated through a data collection called Census. Another well-known

clustering algorithm (HAC) is introduced in order to study its application to microaggregation.

Once this algorithm is implemented, it is also evaluated through the Census data collection.

Due to the evaluation of the two algorithms using the same data collection, both algorithms can

be compared. Then, many changes are introduced to HAC algorithm in order to improve its

eficiency.

In conclusion, this thesis mainly develops the following points:

1. State of the art study: This phase consists of studying the most important publica-

tions related to k -anonymity, MDAV algorithm and hierarchical agglomerative clustering

algorithm.

2. Algorithm implementation: Both algorithms, MDAV and hierarchical agglomerative

clustering will be implemented in Python.

3. Algorithm evaluation: This phase evaluates and compares both algorithms using the

Census data collection for different k sizes.

4. Hierarchical agglomerative clustering improvement: The main goal of this work is

to improve this algorithm in order to obtain a performance similar to the MDAV algorithm.

CHAPTER 1. INTRODUCTION 3

1.4 Work planning

This work has been done in a four-month period, so the time allocation for the development

of the project has been optimized to achieve the goal avoiding risks. The project started in

February and will end in June 2018.

The phases distributed in the Gantt chart are:

• Initial phase: it involved the topic selection, the contact with the advisor and the advisor

confirmation. Once the topic was selected, the objectives and the planning were defined.

• State of the art review: after the topic selection, it was necessary to search and review

the state of the art. Then, two algorithms from the bibliography were selected: a typ-

ical microaggregation algorthim (MDAV), and a clustering algorithm not often used for

microaggregation (HAC).

• Environment configuration: this phase involved the installation of a distribution of the

Python programming language, called Anaconda. Besides, it was installed a programming

language called R, widely used for statistical computing and graphics.

• Algorithm implementation and test: at this stage both algorithms, MDAV and HAC were

implemented. Several small test benchmarks were also created in order to test them.

• HAC improvements: they involved the development, coding and testing of several possible

improvements to the HAC algorithm. These adjustments are based on the HAC ’s linkage

methods and the HAC ’s cardinality methods.

• Documentation: once the adjustments were tested with the Census dataset, the next step

was to write the master’s thesis and document all the processes developed in the project.

• Project delivery: finally, the master thesis was sent to the University for the assessment

process.

Figure 1.4 shows the Gantt chart for the work. It includes all the phases and the tasks done.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Gantt chart of the project

CHAPTER 2

State of the art

The k -anonymity protection model [17], proposed by Latanya Sweeney, ensures that a data

transfer satisfies k -anonymity if the information about each person contained in the data transfer

cannot be distinguished from at least k − 1 individuals whose information also appears in the

data transfer.

Initially, k -anonymity property was implemented by removing/generating the values of the quasi-

identifier attributes (see definition 3.2). Then, it was proven that it is possible to achieve the

same goal by microaggregating the quasi-identifiers, without removing part of the data [5].

Since the 1990’s, microaggregation has been used in several agencies and countries, such as the

European agency Eurostat [3], the German government [14], and other countries [8].

Microaggregation also contributes to artificial intelligence [6] by increasing the knowledge level

of a decision-making system. It is also used in data mining. In this field, it contributes by

reducing a data set while minimizing the data loss. Moreover, microaggregation can contribute

to protect web log data, for instance, in web-based e-commerce [13].

It should be kept in mind that microaggregation satisfies the k -anonymity condition by clustering

a data set in groups of minimum size k and maximum size 2k− 1. The records of the protected

file are replaced by the centroids of each group. Consequently, for a minimum data loss, the

homogeneity of the groups should be maximum.

The most common homogeneity measure is the sum of squared errors (SSE) [10][9][7], which is

the sum of the squares of the distances between the centroid of a group and each record in the

group.

The concept of clustering can be defined as a Machine Learning technique that implies the

grouping of data points. Given a set of data points, a clustering algorithm can classify each

point into a specific group. This classification is based on similar properties or features.

5

6 CHAPTER 2. STATE OF THE ART

In literature, there are several clustering algorithms adapted and used for microaggregation, for

instance:

• Maximum distance (MD): it was proposed in [4] as a multivariate microaggregation method.

It has a O(n3/k) computational cost.

• Maximum distance to average vector (MDAV): this algorithm, proposed in [5], solves the

high computational complexity presented by MD. It has a computational cost of O(n2).

• Variable-size maximum distance vector (V-MDAV): it was proposed in [15]. It tries to

maximize the homogeneity of the groups by creating variable-size groups. It has a com-

putational cost equal to MDAV, O(n2).

• K-means clustering microaggregation for statistical disclosure control: proposed in [11],

this technique starts with one cluster and subsequently partitions the dataset into two or

more clusters such that the total information loss across all clusters is the least. It has a

computational cost of O(ndk+1), where n is the number of records to be clustered.

• Two Fixed Reference Points (TFRP): proposed in [1], this algorithm is divided in two

stages called TFRP-1 and TFRP-2. The algorithm has a computation time of O(n2lk).

This work studies the application of other clustering algorithms, concretely, the adaptation of

the hierarchical agglomerative clustering (HAC) [2] [12] to microaggregation in order to satisfy

the k -anonymity property.

CHAPTER 3

Theoretical concepts

3.1 k-anonymity and microaggregation

In most cases, organizations try to keep the anonymity of the data collections by releasing

and receiving personal data without all explicit identifiers such as name, address, postcode,

telephone number, email, etc. They assume that the only way to re-identify individuals in the

data collection is by using those explicit identifiers. Nevertheless, the remaining data in the

data collection is enough to re-identify individuals. This re-identification can be conducted in

several different ways. For example:

• Matching or linking the remaining data in the data collection with other data collections.

• Examining the data in order to find unique characteristics from the individuals.

The k -anonymity protection model [17] guarantees that a data transfer satisfies k -anonymity if

the information for each individual contained in the data transfer cannot be distinguished from

at least k − 1 individuals whose information also appears in the data transfer.

Sweeney introduces some definitions [3.1, 3.2, 3.3] in order to explain the k -anonymity protection

model.

Definition 3.1 Attributes

Let B(A1, . . . , An) be a table with a finite number of tuples. The finite set of attributes of B are

{A1, . . . , An}.

This definition corresponds to the concept of attribute of the relational database model, where

each row is called tuple and each column is called attribute.

Depending on their value as information, personal data can be classified in 3 main categories:

7

8 CHAPTER 3. THEORETICAL CONCEPTS

• Sensitive data: these attributes have a special value as information. For instance, medical

information, salary, properties, etc.

• Identifiers: attributes that can identify an idividual by themselves. For example, id num-

ber, phone number, email, etc.

• Quasi-identifiers: these are the remaining attributes. They are not particularly important,

but the combination of some quasi-identifiers can be useful to re-identify an individual.

Definition 3.2 Quasi-identifier

Given a population of entities U , an entity-specific table T (A1, . . . , An), fc : U → T and fg :

T → U ′, where U ⊆ U ′. A quasi-identifier of T , written QT , is a set of attributes {Ai,. . . ,Aj} ⊆
{A1,. . . ,An} where: ∃pi ∈ U such that fg(fc(pi)[QT]) = pi.

Figure 3.1: Linking to re-identify data

Figure 3.1 shows that it is possible the re-identification process by directly linking shared at-

tributes by two tables. The table on the left contains data about students with special educa-

tional needs, while the table on the right contains data about children football teams. Note that

there are three attributes contained by both tables.

A quasi-identifier for the table on the right, written QF is {name, address, ZIP,DOB, sex}.
If the football data is linked to the education data, as {ZIP,DOB, sex} are shared by both

tables, and {name, address} belong to the soccer data table, it is clear that there is a disclosure

of educational data.

We can deduce that quasi-identifiers need to be altered in order to protect the privacy of the

individuals. Thus, it will not be possible the re-identification process by using the quasi-identifier

attributes.

Definition 3.3 k-anonymity

Let RT (A1, ..., An) be a table and QIRT be the quasi-identifier associated with it. RT is said to

satisfy k-anonymity if and only if each sequence of values in RT [QIRT] appears with at least k

occurrences in RT [QIRT].

CHAPTER 3. THEORETICAL CONCEPTS 9

Year Grade ZIP Sex Diagnosis

2015 5th 03258 Male ADHD

2015 5th 03258 Male School failure

2015 6th 03560 Female High IQ

2015 6th 03560 Female ADHD

2016 5th 03528 Female ADHD

2016 5th 03528 Female High IQ

2016 6th 03528 Male School failure

2016 6th 03528 Male ADHD

2016 6th 03528 Male High IQ

2017 4th 03560 Female School failure

2017 4th 03560 Female ADHD

Table 3.1: k -anonymity where k = 2 and QI = {Y ear,Grade, ZIP, Sex}

Definition 3.3 implies that a quasi-identifier QIRT must be repeated at least k times in a table

in order to satisfy the k -anonymity protection model. Therefore k -anonymity ensures that the

information for each individual contained in a data transfer cannot be distinguished from at

least k − 1 individuals whose information also appears in the data transfer.

Table 3.1 provides an example of a table T that satisfies the k -anonymity property. The quasi-

identifier is QIT = {Y ear,Grade, ZIP, Sex} and k = 2. Observe that, for each tuple in table

T , the values of the tuple in QIT appear at least twice.

K -anonymity property can be obtained by microaggregation, which is a clustering problem whose

goal is to cluster a set of points into homogeneous groups with size between k and 2k− 1. Once

the groups have been created, each record is replaced by the centroid of its group. Thus, these

groups with size ≥ k satisfy the k -anonymity property. Note that the within-group homogeneity

should be maximized in order to minimize the information loss.

3.2 Microaggregation algorithms

Microaggregation belongs to a group of techniques called SDC (Statistical Disclosure Control).

SDC are techniques developed in order to preserve privacy in databases. Disruptive methods

belong to SDC techniques. These methods change the data to maintain the data privacy. k -

anonymity is a property related to database privacy and microaggregation is a disruptive method

useful to satisfy this property.

3.2.1 MDAV

MDAV (Maximum distance to average vector) was proposed in [5] as part of the multivariate

microaggregation method implemented in µ-Argus software. It obtains the same eficiency as the

Maxium Distance (MD) [4] algorithm, but it has a lower computational complexity.

The MDAV algorithm consists is described below:

10 CHAPTER 3. THEORETICAL CONCEPTS

1. First of all, it computes the centroid 1 of all the records in the dataset. Then, it finds the

furthest record from the centroid (called r) and the furthest record from r (called s).

2. Next, it builds two sets of records near r and s: one set includes r and the k − 1 records

closest to it, and the other set includes s and the k − 1 records closest to it.

3. If there are more than 2k − 1 records that do not belong to the sets built in step 2, the

algorithm returns to step 1, removing from the dataset the records used to build r and s

in step 2.

4. If the number of records that do not belong to the sets built in step 2 is between k and

2k, the algorithm builds a new set with these records and it finishes.

5. But if the number of records that do not belong to the sets built in step 2 is less than k,

the algorithm adds each one to the closest set.

When the algorithm has finished, the result is a k -partition of the initial dataset.

MDAV is an extremely fast algorithm. It executes bn/2kc iterations and the computational cost

of the algorithm is O(n2).

3.2.2 HAC

HAC (Hierarchical agglomerative clustering) is a clustering algorithm that successively merges

pairs of clusters until all of them have been merged into a single cluster. Agglomerative clustering

is a bottom-up method. Thus, each observation starts in its own cluster and merges pairs of

clusters as moving up the hierarchy.

There is also another type of hierarchical clustering called divisive clustering. In this approach,

all observations start in one cluster and they are splited successively while moving down the

hierarchy.

The HAC algorithm consists in the following stages:

1. The algorithm builds a distance matrix between all the records in the dataset. At the

initial phase, one cluster will correspond to one record. The distance depends on the

metric selected. There are several metrics that can be used for this purpose. The most

used are:

• Euclidean distance.

• Squared Euclidean distance.

• Manhattan distance.

• Maximum distance.

• Mahalanobis distance.

• Levenshtein distance.

1The average record

CHAPTER 3. THEORETICAL CONCEPTS 11

• Hamming distance.

2. Then, the algorithm examines the distance matrix and selects the closest two clusters.

3. Once both clusters are selected, the algorithm merges them into one cluster and it updates

the distance matrix depending on a linkage criteria between both clusters. There are

several linkage criterias, the most common are:

• Complete-linkage (maximum).

• Single-linkage (minimum).

• Average linkage (UPGMA).

• Centroid linkage (UPGMC).

• Minimum energy.

4. The algorithm returns to step 2 and it continues merging the clusters until all the records

in the dataset form one cluster.

Compared to MDAV, HAC is significantly slower. The computational cost of this algorithm is

O(n3), while the computational cost of MDAV is O(n2).

3.3 Similarity between the k-partition elements

The efficiency of microaggregation algorithms can be measured using the SSE (Sum of Squared

Errors) metric. This metric is computed using the formula:

SSE =

g∑
j=1

nj∑
i=1

(xij − x̄j)2 (3.1)

Therefore, the distance between each data record and the centroid of its group is squared and

then summed up.

The goal of microaggregation is to produce groups as homogeneous as possible in order to

minimize the information loss. A microaggregation algorithm tries to find a partition that

minimizes the sum of within-group squared error. Thus, the lower the SSE metric is, the more

homogeneous the groups are.

12 CHAPTER 3. THEORETICAL CONCEPTS

CHAPTER 4

Environment

The preparation of the environment consists of the installation of the necessary languages and

software packages in order to implement and test the microaggregation algorithms.

The software packages used in this project are:

• Anaconda: a free open-source distribution of Python and R programming languages.

These languages are widely used in machine learning and data science. This package can

be downloaded from https://www.anaconda.com/distribution/.

• Notepad++: it is an open-source text and source code editor. It can be downloaded

from: https://notepad-plus-plus.org/download/

• R: it is a free software package for statistical computing and graphics. It can be downloaded

from: https://www.r-project.org/.

4.0.1 Anaconda

Anaconda package was installed in a Windows x64 operating system. After executing the down-

loaded Windows executable file, the installation wizard appears.

The first steps are the license acceptance and the multi-user configuration. Next, the installation

directory should be selected.

In the last step, the user has to select if he/she wants to use Anaconda as the default Python

and if he/she wants to add Anaconda to the PATH environment variable.

13

14 CHAPTER 4. ENVIRONMENT

Figure 4.1: Anaconda installation wizard

Figure 4.2: Anaconda directory selection

Figure 4.3: Anaconda installation

CHAPTER 4. ENVIRONMENT 15

4.0.2 Notepad++

Any text editor can be used to write Python code. However, Notepad++ was chosen because

its features provide multiple benefits for coding in several languages. Note that there are several

text editors for coding similar to Notepad++, which have the same or even better features.

Notepad++ package was downloaded and installed in a Windows x64 operating system. After

executing the Windows executable file, the installation wizard appears.

Figure 4.4: Notepad++ installation wizard

After the license acceptance, the installation directory has to be selected.

Figure 4.5: Notepad++ directory selection

The following step is the selection of the components to be installed.

To finish, several configuration settings related to the installation path have to be selected.

4.0.3 R

The decision of using R package in order to test the algorithms and plot the clustering results

is based on the fact that R package is a very powerful package for statistical computing and

16 CHAPTER 4. ENVIRONMENT

Figure 4.6: Notepad++ components selection screen

Figure 4.7: Notepad++ configuration settings screen

graphics.

R package was downloaded and installed in a Windows x64 operating system. After executing

the downloaded executable package, the installation wizard appears.

After accepting the software license, the installation directory has to be selected.

In the next step the user is asked to select the components to be installed.

Next, the user will be requested to configure the program while installing it.

Finally, several configuration settings related to the Windows environment will be selected.

In order to work with MDAV algorithm, a module called “sdcMicro” must be installed. The

“install module” option is located inside the “modules” menu. To continue with the installation

of the module, the installation mirror should be selected.

The next step is the selection of the modules to be installed. In this case the module is “sdcMi-

cro”.

CHAPTER 4. ENVIRONMENT 17

Figure 4.8: R directory selection

Figure 4.9: R components selection

Figure 4.10: R configuration mode

18 CHAPTER 4. ENVIRONMENT

Figure 4.11: R configuration settings screen

Figure 4.12: R modules mirror selection

CHAPTER 4. ENVIRONMENT 19

Figure 4.13: R modules installation selection

20 CHAPTER 4. ENVIRONMENT

CHAPTER 5

MDAV

5.1 Algorithm

The MDAV algorithm is based on an heuristic algorithm that clusters records in a microdata

file so each that cluster contains between k and 2k − 1 records. This algorithm is also valid for

univariate and multivariate microaggregations.

The algorithm has been implemented in Python following these steps:

1. First, the data has to be standardized to compare the data loss caused by microaggregation.

If a variable vi takes a value x, the standardization algorithm replaces it with (x− vi)/svi ,
where vi is the average of the values taken by vi, and svi is the standard deviation of these

values.

2. Next, the program computes the centroid of all the records in the dataset. This is done

by computing the mean vi of each variable vi in the dataset. Once the centroid has been

computed, it finds the furthest record from the centroid, called r, and the furthest record

from r, called s.

The furthest record from the centroid (r) is computed by measuring the Euclidean distance

between the centroid and all the records in the dataset. The maximum distance determines

the r record. The furthest record from r (s) is computed analogously.

3. In the following phase, two sets of records near r and s are built. The first set includes

r and the k − 1 records closest. The other one includes s and the k − 1 records closest.

These sets of records closest to r and s are also computed with the Euclidean distance.

4. Steps 2 and 3 are repeated, removing from the dataset the records used to build r and s

in step 2, until there are less than 2k records in the dataset.

21

22 CHAPTER 5. MDAV

Var1 Var2

2 7

3 6

1 1

1 4

2 12

4 14

5 8

6 2

7 4

3 3

5 9

6 9

1 3

3 13

6 4

4 6

3 7

2 9

4 10

Table 5.1: Algorithm test file

5. Once the loop has finished, if the number of records that do not belong to the sets built

in step 2 is between k and 2k − 1, the algorithm builds a new set with this records and it

finishes. However, if the number of records that do not belong to the sets built in step 2

is less than k, the algorithm adds each one to the closest set.

6. Finally, the program replaces each record by its centroid in order to guarantee the k -

anonymity property.

The final result of the algorithm is a k -partition of the initial dataset.

When the algorithm has finished, the SSE (3.1) algorithm can be computed in order to check

the homogeneity of the resulting k -partition.

5.2 Test

A small test dataset was created so that we can check that the algorithm works properly. This

dataset is composed of 19 records, each one with 2 numeric variables. The dataset was stored

in a ”csv” file. The contents of the file are shown in table 5.1.

The results of executing the algorithm for the test dataset with k = 4 are:

• SSE: 7,93

• Time: 0 sec.

CHAPTER 5. MDAV 23

Figure 5.2 shows the result of executing the MDAV algorithm for the test dataset. Each dot

colour represents a group of records with size between k and 2k − 1, so it can be observed that

records have been classified into 4 distinct groups (1 of them with 4 elements and the other 3

with 5 elements each).

Figure 5.1: MDAV test file k -partition

The same test dataset was evaluated using R, the software environment for statistical computing

and graphics. A package called ‘sdcMicro’ was used in order to compute the MDAV algorithm

for k = 4. The following instructions were executed:

temp = read.csv("C:/Users/Julian/Desktop/UOC/r.csv", sep=";")

temp <- as.matrix(temp)

microData <- as.data.frame(temp)

m1 <- microaggregation(microData, method="mdav", aggr=4)

y <- m1$mx

Once the instructions were executed, the variable y contained the result of the microaggregation,

which is shown in table 5.2:

Figure 5.2 shows the result of executing the MDAV algorithm (for k = 4) with R for the test

dataset. It can be observed that records have been classified into 4 distinct groups (1 of them

with 7 records and the other 3 with 4 records each).

The SSE was computed by squaring and then summing up the distance between each data record

and the centroid of its group (3.1). The SSE obtained was 8,20, which is sightly higher than

24 CHAPTER 5. MDAV

Var1 Var2

3.428571 7.428571

3.428571 7.428571

1.500000 2.750000

1.500000 2.750000

3.250000 12.250000

3.250000 12.250000

3.428571 7.428571

6.250000 4.750000

6.250000 4.750000

1.500000 2.750000

3.428571 7.428571

6.250000 4.750000

1.500000 2.750000

3.250000 12.250000

6.250000 4.750000

3.428571 7.428571

3.428571 7.428571

3.428571 7.428571

3.250000 12.250000

Table 5.2: R output for MDAV test file

k SSE Time (s.)

3 798,44 39

4 1051,28 32

5 1274,83 27

10 1985,65 19

Table 5.3: MDAV algorithm evaluation

the SSE obtained with the developed algorithm. This situation is due to the fact that once the

algorithm has finished its main loop, if the number of unassigned records is less than k, both

algorithms assign them to the closest cluster in different ways.

5.3 Evaluation

In order to evaluate the MDAV algorithm, the Census dataset was selected. This dataset

includes 13 numeric variables and 1080 records. The experiments1 were done for several k

values (3, 4, 5 and 10). The results for each k value (including SSE and time in seconds) are

shown in Table 5.3.

The experiments reveal that lower k values obtain more homogeneous groups, so there is less

information loss. On the other hand, higher k values obtain more heterogeneous groups, which

indicates there is more information loss.

1All the evaluation experiments have been done with an Intel Core i7 4770k 16GB RAM

CHAPTER 5. MDAV 25

Figure 5.2: MDAV test file with R

However, the algorithm is faster for higher k values. For instance, the execution time for k = 3

is twice the execution time for k = 10.

The obtained results are similar to the results described in [16].

26 CHAPTER 5. MDAV

CHAPTER 6

HAC

6.1 Algorithm

The HAC algorithm involves the successively combination of pairs of clusters until all of them

have become a single cluster containing all the records.

Figure 6.1 shows the result of executing the HAC algorithm for the test dataset of table 5.1.

The algorithm combines the clusters until all of them have been merged into one cluster.

Figure 6.1: Hierarchical agglomerative clustering algorithm

As the HAC algorithm final result is one single cluster, it is necessary to establish some re-

strictions to guarantee the k -anonymity property. The main restriction will be that all clusters

should contain between k and 2k − 1 records.

27

28 CHAPTER 6. HAC

The algorithm has been implemented in Python following these steps:

1. As in the MDAV algorithm, the first step is to standardize the data so that the data

loss caused by microaggregation can be compared. If a variable vi takes a value x, the

standardization algorithm replaces it with (x−vi)/svi , where vi is the average of the values

taken by vi and svi is the standard deviation of these values.

2. The program builds a distance matrix between all the records in the dataset. These

distances are measured using the Euclidean distance. However, other metrics can be used

to measure the distances between two records.

3. When the distance matrix has been computed, the algorithm explores the matrix and then,

if the union of the selected clusters do not contain more than 2k− 1 records, it selects the

clusters (or records) with the minimum distance.

4. The selected clusters are added to a new cluster and the distance matrix is updated

following the linkage criteria. This criterion indicates the distance between the new cluster

and the rest of the clusters in the distance matrix. There are several linkage criteria in

literature (e.g. maximum or complete-linkage, minimum or single-linkage, average linkage,

centroid linkage, etc.). In this case, the criterion used is called minimum or single-linkage.

5. Steps 3 and 4 are repeated until the algorithm can not create more new clusters because

all the possible merge operations exceed the 2k − 1 cluster size.

6. Once the loop has finished, if there are clusters smaller than k, the records that belong to

these sets are merged with other clusters or form new clusters. Note that the resultant

clusters size can not be less than k or greater than 2k − 1 .

7. Finally, the algorithm replaces each record by its centroid so that the k -anonymity property

can be guaranteed.

The final result of the algorithm is a k -partition of the initial dataset.

After the algorithm has finished, the SSE (3.1) algorithm can be computed in order to check

the homogeneity of the resulting k -partition.

6.2 Test

The test dataset of table 5.1 shows how to check the proper functioning of the algorithm. The

dataset is composed of 19 records, each one with two numeric variables.

The results of executing the algorithm for the test dataset with k = 4 are:

• SSE: 20,56

• Time: 0 sec.

CHAPTER 6. HAC 29

Figure 6.2 shows the result of executing the HAC algorithm for the test dataset. Each dot

colour represents a group of records with size between k and 2k − 1, so it can be observed that

records have been classified into 3 distinct groups (1 of them with 7 elements and the other 2

with 6 elements each).

We can remark that this microaggregation is worse than the MDAV test. While with MDAV

the SSE was 7,93, with HAC the SSE has been 20,56. Since the HAC algorithm produced only 3

clusters with more than k records, there is more information loss because the records are usually

farther than the centroid of the group. The more clusters are produced, the less information is

lost.

Figure 6.2: HAC test file k -partition

6.3 Evaluation

The Census dataset is selected with the purpose of evaluating the HAC algorithm. This dataset

includes 13 numeric variables and 1080 records. The experiments were done for several k values

(3, 4, 5 and 10). The results for each k value (including SSE and time in seconds) are shown in

Table 6.1.

As it was stated in chapter 5, experiments reveal that lower k values obtain more homogeneous

groups, which implies less information loss. Besides, higher k values obtain more heterogeneous

groups, so there is more information loss.

30 CHAPTER 6. HAC

k SSE Time (s.)

3 1284,95 192

4 1919,07 169

5 2154,53 175

10 3469,41 150

Table 6.1: HAC algorithm evaluation

HAC algorithm is significantly slower than MDAV. Note that, as in MDAV, HAC is faster for

higher k values.

CHAPTER 7

HAC improvements

This chapter presents several optimizations that can be applied to the HAC algorithm to increase

the cluster homogeneity:

• The first optimization maximizes the number of clusters so their homogeneity increases.

• The next optimization evaluates different linkage criteria to test which criterion obtains

more homogeneous clusters. This evaluation is done using the algorithm with the maxi-

mized number of clusters.

• The last optimization prioritizes the merging of the clusters whose sum of elements is near

k. This last optimization includes the other two.

7.1 Maximization of the number of partitions

On the one hand, figure 6.2 shows that the 19 records included in the test dataset only formed 3

partitions when using the HAC algorithm. On the other hand, experiments reveal that smaller

k values produce more homogeneous groups. Therefore, HAC algorithm can be modified to

maximize the number of partitions created while the number of records of these partitins are

not less than k.

The modified algorithm includes these steps:

1. The first step is to standardize the data. If a variable vi takes a value x, the standardization

algorithm replaces it by (x− vi)/svi , where vi is the average of the values taken by vi, and

svi is the standard deviation of these values.

31

32 CHAPTER 7. HAC IMPROVEMENTS

2. Then, it builds a distance matrix between all the records in the dataset. This distances

are measured using the Euclidean distance.

3. Once the distance matrix has been computed, the algorithm explores the matrix. Then, if

the sum of the selected clusters do not contain more than k records, it selects the clusters

(or records) with the minimum distance.

4. The selected clusters are added to a new cluster and the distance matrix is updated

following the linkage criterion. In this case, the used criterion is minimum or single-

linkage.

5. Steps 3 and 4 are repeated until the algorithm can not create more new clusters because

all the possible merge operations exceed the k cluster size or the maximum number of

clusters have been created. The maximum number of clusters is computed dividing the

number of recors in the dataset between k.

6. Once the loop has finished, there will probably be clusters with size lower than k. These

clusters are merged with other clusters, prioritising those with size less than k.

The number of clusters with k size has to be maximum. Note that the size of the resultant

clusters can not be lower than k or greater than 2k − 1 .

7. Finally, the algorithm replaces each record by its centroid so that the k -anonymity property

is guaranteed.

Remark that this version of the HAC algorithm differs from the previous one (chapter 6) since

it does not create clusters containing more than k records until the maximum number of clusters

has been reached and the number of clusters with size equal to k is maximum.

The Census dataset was selected in order to compare this improvement with the original HAC

algorithm. The experiments were also done for several k values (3, 4, 5 and 10). The results for

each k value (including SSE and time in seconds) are shown in Table 7.1.

k SSE Time (s.)

3 1038,30 233

4 1363,40 210

5 1664,5 208

10 2379,23 146

Table 7.1: HAC maximum partitions algorithm evaluation

Table 7.1 shows a significant improvement as a result of the maximization of the number of

partitions. For instance, for a k value equal to 4 the SSE is 1363,40 for the modified algorithm

and 1919,07 for the original algorithm. For all the k values tested, the modified algorithm is

significantly better than the original one. This is due to the fact that if the partitions have less

records and these records are closer to the centroid, so the value of SSE is less than the HAC

algorithm in chapter 6.

CHAPTER 7. HAC IMPROVEMENTS 33

7.2 Linkage criteria evaluation

When two clusters are merged, linkage criteria establish the distance between the new cluster

created and the rest of the clusters in the distance matrix. Therefore, the distance matrix needs

to be updated with the distance from the new cluster to the rest of the clusters. Some of the

most important linkage criteria are: maximum or complete-linkage, minimum or single-linkage,

average linkage, centroid linkage, minimum energy clustering, etc.

In order to test the effectiveness in using a certain linkage criterion, some of them have been im-

plemented and the obtained results have been analyzed. It is important to emphasize that these

linkage criteria have been implemented for the HAC algorithm with the number of partitions

maximized (section 7.1). The selected and implemented linkage criteria are:

• Minimum or single-linkage. When two clusters are merged, the algorithm updates the

distance matrix with the minimum distance from either of the two merged clusters to each

one in the matrix. Hence, every time the distance matrix is updated, the two clusters

whose two closest members have the smallest distance are merged (the two clusters with

the smallest minimum pairwise distance). The single-linkage criterion between 2 clusters

A and B is:

min{d(a, b) : a ∈ A, b ∈ B} (7.1)

• Maximum or complete-linkage. When a merge operation between two clusters occurs,

this criterion updates the distance matrix with the maximum distance from either of the

two merged clusters to each one in the matrix. Hence, every time the distance matrix

is updated, the two clusters whose two closest members have the smallest diameter are

merged (the two clusters with the smallest maximum pairwise distance). The complete-

linkage criterion between 2 clusters A and B is:

max{d(a, b) : a ∈ A, b ∈ B} (7.2)

• Centroid linkage. Due to a merge operation between two clusters, the distance matrix is

updated with the distance from the centroid of the new created cluster to the centroid

of the rest of clusters in the distance matrix. The centroid linkage criterion between two

clusters A and B, where ca is the centroid of A and cb is the centroid of B, is:

||ca − cb|| (7.3)

Table 7.2 shows the comparison between the three implemented linkage criteria. This compar-

ison is based on the results of executing the three algorithms for the Census dataset. It can

be observed that single-linkage criterion obtains better SSE values than complete-linkage and

centroid linkage. Centroid linkage obtains SSE values similar to single-linkage, but for each

tested k size its SSE values are higher than single-linkage. Finally, complete-linkage SSE values

obtained are far worse than centroid linkage and single-linkage SSE values.

34 CHAPTER 7. HAC IMPROVEMENTS

Regarding the algorithm execution time, for the same k size complete-linkage execution times

are slightly higher than single-linkage execution times. The centroid linkage execution times are

extremely high because the centroid of each cluster has to be computed each time it is modified.

Therefore, as it obtains the lower SSE values, the single-linkage criterion produces more homo-

geneous clusters. In addition, this linkage criterion is also faster than the other implemented

linkage criteria.

Single-linkage Complete-linkage Centroid linkage

k SSE Time (s.) SSE Time (s.) SSE Time (s.)

3 1038,3 233 1908,67 271 1703,3 20598

4 1363,4 210 2196,23 240 1679,7 19547

5 1664,5 208 3852,33 231 1979,91 19276

10 2379,23 146 4771,5 309 3112,41 20209

Table 7.2: HAC linkage criteria evaluation

7.3 Cluster creation priority

HAC algorithm creates and builds several clusters simultaneously. There are usually several

uncomplete clusters and the algorithm decides in each iteration which clusters will be merged.

An effective technique to improve the HAC algorithm could be to prioritize the completion of

clusters. The priorization of the cluster completion process has been developed by modifiying

step 3 of the HAC algorithm. Every time the distance matrix is updated, the 2 clusters selected

for the next merge operation follow this criterion:

min
{

d(a,b)
|A|+|B| : a ∈ A, b ∈ B } (7.4)

The distance (of the distance matrix) between a and b is divided by the sum of the sizes of

the clusters A and B. The higher the sum of the sizes of the clusters A and B is, the lower the

obtained value is. Therefore, the probability of selecting both clusters for the merge operation

will be higher. Note that the sum of the sizes of the clusters A and B can not be higher than k

to ensure the maximization of the number of clusters.

HAC algorithm with the number of partitions maximized with single-linkage criterion has been

modified in order to implement and test this cluster creation criterion. Table 7.3 shows the result

of this improvement using the Census dataset. It can be observed that for lower k cluster sizes,

SSE values are better than the values obtained in section 7.1. As expected, for high k cluster

sizes, this improvement is not decisive because it unduly penalises the creation of new clusters

and the completion of clusters with few records. On the other hand, regarding the execution

time, this criterion execution time is considerably higher because the algorithm has to compute

the criterion for all values in the distance matrix, and then it has to select the minimum. Table

7.3 shows that the application of this improvement increases the execution time more than 10

times.

CHAPTER 7. HAC IMPROVEMENTS 35

k SSE Time (s.)

3 877,39 5470

4 1338,52 3529

5 1624,83 4710

10 2802,90 4232

Table 7.3: Cluster completion priority evaluation

36 CHAPTER 7. HAC IMPROVEMENTS

CHAPTER 8

MDAV vs improved HAC

As part of this work consists of the adaption of a clustering algorithm such as HAC to be used

for microaggregation, several improvements for HAC algorithm were done and tested in chapter

7. These improvements achieve cluster homogeneity values close to the MDAV algorithm, at

least for small k values. On the other hand, the computation time needed by the improved HAC

algorithm is considerably higher than the computation time needed by MDAV.

MDAV Improved HAC

k SSE Time (s.) SSE Time (s.) SSE diff.

3 798,44 39 877,39 5470 78,95

4 1051,28 32 1338,52 3529 287,24

5 1274,83 27 1624,83 4710 350,00

10 1985,65 19 2802,90 4232 817,25

Table 8.1: MDAV vs improved HAC

Table 8.1 shows the result of executing both algorithms with the Census dataset. There is an

obvious relationship between the k size and the SSE difference (difference between the SSE

values obtained by both algorithms).

For a k size of 3, the difference (column SSE diff.) between both SSE values is 78,95. This means

that, even though MDAV is better, HAC algorithm obtains a similar cluster homogeneity, so

the information loss will also be similar.

The difference between both SSE values rises up to 287,24 for a k size of 4. The value obtained

by the HAC algorithm is similar to the value obtained by MDAV, but an increase of one unit

in the k size also produced an increase in the SSE difference of about 3,5 times.

For a k size equal to 5, the SSE value obtained by the HAC algorithm is still similar to the

value obtained by MDAV. The difference between both SSE values is 350, which is about 60

units higher than it is for a k size equal to 4.

37

38 CHAPTER 8. MDAV VS IMPROVED HAC

Finally, for a k size equal to 10, the SSE difference between both algorithms is 817,25. The

duplication of the k cluster size produced an increase of the SSE difference of about 2,5 times.

In conclusion, the experiments reveal that both algorithms obtain similar cluster homogeneity

values for small k sizes. However, the obtained clusters when increasing k are not as homogeneous

as they are for lower k values.

Regarding the execution time, table 8.1 shows that HAC algorithm is more than 100 times slower

than MDAV algorithm for all k cluster sizes. However, table 7.1 shows that HAC algorithm with

the number of partitions maximized has a computation time higher than MDAV. However it is

more than 10 times lower than the improved version (which includes cluster creation priority)

of the HAC algorithm.

CHAPTER 9

Conclusions

As the amount of data collections containing person-specific information is growing exponen-

tially, and a great variety of devices collect and store information about us, it is necessary to

guarantee our privacy protection.

The protection model named k -anonymity ensures that each person contained in a released

data collection can not be distinguished from at least k -1 people also appearing in that same

collection.

Typical clustering algorithms are MD, MDAV, V-MDAV, K-means, TFRP, etc. They can be

used in microaggregation to ensure the k -anonymity property of data collections. This work has

evaluated the cluster homogeneity obtained by MDAV algorithm with the Census dataset. In

addition, a clustering algorithm, called hierarchical agglomerative clustering (HAC) has been

implemented and improved in order to obtain satisfactory results.

HAC algorithm starts considering each record of the dataset as one cluster and then, it merges

pairs of clusters until they become one single cluster. Therefore, it has been modified to stop at

a maximum cluster size, because cluster size can not be greater than 2k−1. Once implemented,

the algorithm has been evaluated and compared to MDAV. This comparison reflects the need to

improve the standard HAC algorithm in order to obtain clusters with high homogeneity. This

is due to the fact that the more cluster homogeneity is achieved, the less data loss is produced.

The improvements made to the HAC clustering algorithm were:

• Maximization of the number of clusters produced by the algorithm. This implies that the

number of clusters of k size has to be maximum.

• Evaluation of different linkage criteria in order to determine which criterion obtains better

SSE values for the Census dataset.

39

40 CHAPTER 9. CONCLUSIONS

• Assignation of priorities to the cluster creation process. This priority encourages the

creation of clusters with size near to k instead of creating new clusters.

The improved HAC algorithm obtained good SSE values, similar to MDAV for small k sizes.

However, for greater k cluster size values, the third improvement (cluster creation priority)

obtained worse results than if this improvement was not applied. Regarding the execution time,

the improved HAC algorithm takes a long time compared to MDAV. In addition, it is also

significantly slower than the HAC algorithm without the third improvement.

Possible future work could be the reduction of the execution time of the improved HAC algo-

rithm. This could be achieved by storing some frequent operations, as the centroid computation,

in data structures to avoid computing them in each iteration. Furthermore, the third improve-

ment (cluster creation priority) should be studied in order to improve the results for large k

cluster sizes. This could be accomplished by ponderating the priorities for different k cluster

sizes. Experiments could be designed in order to obtain the best ponderation values for different

k sizes.

Bibliography

[1] Chin-Chen Chang, Yu-Chiang Li, and Wen-Hung Huang. Tfrp: An efficient microaggregation algorithm for

statistical disclosure control. J. Syst. Softw., 80(11):1866–1878, November 2007.

[2] R Lopez de Mantaras and L Saitia. Comparing conceptual, divisive and agglomerative clustering for learning

taxonomies from text. In ECAI 2004: 16th European Conference on Artificial Intelligence, August 22-27,

2004, Valencia, Spain: Including Prestigious Applicants [sic] of Intelligent Systems (PAIS 2004): Proceedings,

volume 110, page 435. IOS Press, 2004.

[3] D. Defays and P. Nanopoulos. Panels of enterprises and confidentiality: The small aggregates method. pages

195–204, 1992.

[4] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation for statistical disclosure

control. IEEE Trans. on Knowl. and Data Eng., 14(1):189–201, January 2002.

[5] Josep Domingo-Ferrer and Vicenç Torra. Ordinal, continuous and heterogeneous k-anonymity through mi-

croaggregation. Data Mining and Knowledge Discovery, 11(2):195–212, Sep 2005.

[6] Josep Domingo-Ferrer and Vicenç Torra. On the connections between statistical disclosure control for mi-

crodata and some artificial intelligence tools. Inf. Sci. Inf. Comput. Sci., 151:153–170, May 2003.

[7] A. W. F. Edwards and L. L. Cavalli-Sforza. A method for cluster analysis. Biometrics, 21(2):362–375, 1965.

[8] E. C. for Europe. Statistical data confidentiality in the transition countries: 2000/2001 winter survey. Joint

ECE/Eurostat Work Session on Statistical Data Confidentiality, (invited paper n.43), 2001.

[9] A. D. Gordon and J. T. Henderson. An algorithm for euclidean sum of squares classification. Biometrics,

33(2):355–362, 1977.

[10] Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American Statistical

Association, 58(301):236–244, 1963.

[11] Md. Enamul Kabir, Abdun Naser Mahmood, and Abdul K. Mustafa. K-means clustering microaggregation

for statistical disclosure control. In Aswatha Kumar M., Selvarani R., and T V Suresh Kumar, editors,

Proceedings of International Conference on Advances in Computing, pages 1109–1115, New Delhi, 2012.

Springer India.

[12] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378,

2011.

[13] Guillermo Navarro-Arribas and Vicenç Torra. Privacy-preserving data-mining through micro-aggregation for

web-based e-commerce. Internet Research, 20:366–384, 01/2010 2010.

41

42 BIBLIOGRAPHY

[14] M. Rosemann. Erste ergebnisse von vergleichenden untersuchungen mit anonymisierten und nicht

anonymisierten einzeldaten amb beispiel der kostenstrukturerhebung und der umsatzsteuerstatistik. G. Ron-

ning y R. Gnoss (editores) Anonymisierung wirtschaftsstatistischer Einzeldaten, Wiesbaden: Statistisches

Bundesamt, pages 154–183, 2003.

[15] Agust́ı Solanas and Antoni Ballesté. V-mdav: Variable group size multivariate microaggregation. COMP-

STAT 2006, pages 917–925, 2006.

[16] Agust́ı Solanas, Antoni Mart́ınez-Ballesté, Josep Domingo-Ferrer, Susana Bujalance, and Josep M. Mateo-

Sanz. Métodos de microagregación para k-anonimato: privacidad en bases de datos. Dept. Enginyeria

Informàtica i Matemàtiques, Universitat Rovira i Virgili.

[17] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based

Syst., 10(5):557–570, October 2002.

BIBLIOGRAPHY 43

Julián Alarte Aleixandre

Barcelona, 2018

44

	Introduction
	Context and justification
	Objectives
	Approach and method
	Work planning

	State of the art
	Theoretical concepts
	k-anonymity and microaggregation
	Microaggregation algorithms
	MDAV
	HAC

	Similarity between the k-partition elements

	Environment
	Anaconda
	Notepad++
	R

	MDAV
	Algorithm
	Test
	Evaluation

	HAC
	Algorithm
	Test
	Evaluation

	HAC improvements
	Maximization of the number of partitions
	Linkage criteria evaluation
	Cluster creation priority

	MDAV vs improved HAC
	Conclusions
	Bibliography

