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Chapter 1

Introduction

1.1 Context and motivations

With the information revolution, digital sources increased and the amount of

information available growth exponentially. It led to traditional computing ap-

proaches being unable to manage or provide valuable insights on large volumes

of data. At that point, a new term used to describe these huge quantities of

information appeared, the Big data era started.

Being able to analyze information is imperative in scientific and business con-

texts. Gathering and studying data provides insights on inefficiencies or patrons

that will support decision-making, discover new opportunities or identify subtle

changes.

Since 2012, a wide range of projects tailored to Big data emerged. However,

the influence of traditional methodologies such as the presence of a single point of

failure or the inefficient use of hardware is still present. The focus of this work lies

on the latter, in particular, in the inefficiency of sharing data by storing it on slow

and limited bandwidth storage.

Due to the cost and capacity of volatile memory data has been stored in ro-

tational disks (HDD) or solid state drives (SSD) more recently. Although SSDs

brought substantial improvements in latency and bandwidth, they are still far from

RAM specs. However, with recent advancements in technology where high volumes

of RAM are possible and the adoption of the new NVMe technology, delivering

near RAM performance at a cheaper cost while being non-volatile, make necessary
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a shift on the Big data ecosystem paradigms.

A frequent use case consists of transforming a dataset and applying multiple

analytics to extract knowledge. It is commonly done by reading the data from disk,

elaborating the data, and storing it again. Others use methods to allow concurrent

access, such as databases, or dividing the cluster into compute and storage nodes.

All these approaches rely on storing data to disks and performing multiple accesses.

This mechanism is time-consuming due to latency and bandwidth while having the

same data loaded for different programs reduces the available memory.

The work presented in this document develops the hypothesis that introducing

a shared memory region between applications working on the same data will im-

prove their performance. This concept is known as a staging area and defined as

intermediate storage where applications interchange data.

In-memory computation can be simplified as doing calculus by only accessing

memory and avoiding storage. This concept is tightly tied to this project because it

provides unified and efficient data access for applications. Consequently, software

that brings in-memory computing to Big data should be used to evaluate the

introduction of a staging area. Two relevant open source projects implementing

in-memory computation are available, Apache Ignite and Alluxio.

In the context of streaming analytics, latency and processing times are crucial

due to the nature of data. Our proposal aims to speed up access to fresh or

frequently consumed data. Therefore, it is a promising area for evaluating and

testing in-memory computing with a staging area.

In conclusion, this work aims to improve current big data approaches by propos-

ing a solution which considers recent advancements in high-speed memory. In this

context, the addition of a staging area to in-memory computation will be investi-

gated and later evaluated in streaming analytics.

1.2 Aims of the Work

The following points summarize the scope of this work:

• Evaluate the introduction of a staging area in the Big data context.

• Design and deploy a big data system to evaluate the proposal through ex-
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perimentation.

• Contribute to the actual Big data ecosystem.

1.3 Approach and methodology followed

At least three paths have been devised to demonstrate the benefits of using a

portion of the memory as a staging area. The first would be using software already

designed for this purpose. Since no solution satisfies our requirements, it becomes

necessary to conceive and implement our approach. However, the production of

a new tool is time-consuming and out of the scope of a master thesis duration.

Besides, there are many tools readily available, stable, supported and adaptable

for our purposes. Consequently, modifying an existing and widely used product is

the third and best option.

Firstly, a survey of the big data ecosystem needs to be conducted to select

the best fitting tools for the realization of an in-memory staging area. Projects

that will allow implementing a realistic prototype will be chosen according to the

following defined criterion:

• Community support.

• Licensing.

• Open source.

• Innovative.

• Widely used.

• Stable.

• Favors integration.

A proposal should be made consisting of a system able to process amounts of

records in the order of thousands, as a standard situation nowadays. Also, the

proposed system should be designed to scale horizontally. Since the specifying the

correct configuration and deployment of a complete system can be time-consuming,
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a smaller prototype providing data caching and computation will be deployed and

tested.

Finally, verification of the performance should be carried through experimen-

tation. For this purpose, the Rutgers University offered a cluster to conduct the

tests. The first step will consist of evaluating the difference of accessing the data

from different supports in terms of performance and usability. The storage systems

analyzed will depend on the particularities of the cluster, but will include at least

an in-memory system and a typical network filesystem. Secondly, since the avail-

able RAM is typically smaller than other storage devices, strategies of memory

eviction and reusability will be explored.

To perform a complete evaluation, a short experimentation phase will be carried

at the end of the project. The proposed prototype will be deployed and evaluated

following synthetic tests which might be based on real use cases. The scope is to

get a realistic idea of the potentials of this work by measuring the consumption of

resources and confront the results with similar approaches.

1.4 Planning of the Work

The steps illustrated in 1.1 have been planned to achieve the goals with a

realistic timeline. Despite 15/07/2018 is the official deadline, we have proposed

31/05/2018 to be the target time with substantial time allocated for unforeseen

events that could delay the project until 31/06/2018.

Table 1.1: Concrete dates with scheduled deliveries highlighted in red.

At the same time, a more visual approach to representing the tasks organization

and the partial deliveries is shown in 1.1. The initial steps are well defined at this
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time and can be split into smaller tasks.

Figure 1.1: Gantt chart with scheduled deliveries highlighted in red.

1.4.1 Planning achieved

The deliverables were performed accordingly to the original plan until March

2018. Then, due external reasons unrelated to the project the advancements were

slowed down from that point until the final delivery on 15th of July. The lesson

learned with is that unforeseen external factors need to be accounted for when

planning a project by allocating an extra period of time between deliverables.

On the other hand, the Big data ecosystem research took longer than expected

due to the vast number of projects, their complexity, and coupling. This step, as

well as the internal analysis of the selected software, was essential to succeed in

proposing and building a realistic prototype.

Finally, evaluation and information extraction from a prototype running in a

distributed cluster can be time-consuming. For instance, the first configuration

of the prototype did not take advantage of data locality, and thereby tests were

running slow until it was fixed.

In overall, the project has suffered a delay of a month an a half due to a variety

of reasons. It represents a delay of the 20% with respect to the initial delivery

date on 1st of June. It can be considered a typical delay in software development

processes such as Agile, particularly when the previous knowledge is reduced.

1.5 Brief summary of products obtained

The work conducted demonstrates the potential benefits of an accessible in-

memory staging area. A prototype has been proposed and evaluated featuring

Alluxio for an in-memory staging area and tiered storage. The prototype was
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responsible to support concurrent running programs continuously modifying the

same dataset. This feature is not supported by Alluxio and has been done exter-

nally after analyzing the implementation and management of data in both Apache

Spark and Alluxio.

Experimentation has been conducted to evaluate a variety of storage config-

urations for Alluxio and Spark. The results showed a far superior performance

obtained with the prototype when compared to actual approaches. In particular,

we obtained a constant capacity usage of the in-memory staging area, which is far

less than current setups. Typically, datasets stored in Alluxio need to be deleted

or evicted after a period of time, since updates are not supported.

On the other hand, the prototype avoided the use of locks, enabling applications

to access data without synchronizations. This characteristic resulted in a speedup

of 3x in the query execution time in confront of the traditional approach where

many reads would have been affected by deletes or writes locking the content for

a period of time.

When this approach is compared to accessing data stored in a GPFS, or setting

up GPFS as a second tier, a performance speedup of 10x is obtained.

In conclusion, the presented work motivates future research in the field of in-

memory data staging, particularly in the field of data streaming and continuous

processing.

1.6 Thesis organization

The structure of this thesis is divided into 6 chapters.

The related work is discussed in Chapter 2. Works with the potential to con-

tribute to the knowledge and development of this project are reviewed and dis-

cussed.

Then, in Chapter 3 a technological background is performed as a short survey

analysis of the Big data ecosystem. This phase enables discussing the selection of

the Big data components in Chapter 4 based on technological arguments.

Chapter 5 reviews the research done to propose, configure and deploy success-

fully a prototype to demonstrate the viability of this project. The taken decisions,

the prototype structure, and particular modifications are explained and justified.
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A reduced version of the proposed prototype is evaluated on Chapter 6. With

this purpose the prototype is deployed in a cluster and evaluated following different

metrics, discussing the results obtained. Different configurations are tested to

justify the proposed in-memory staging area with enabled updates.

Finally, in Chapter 7 the conclusions extracted during the fulfillment of this

project are presented. Results are shortly reviewed and linked with the knowledge

gained.

To finish with, ideas on how this work can be continued and improved are

presented in Chapter 8. Because this project demonstrates the viability of an idea,

different research paths will need to be explored.
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Chapter 2

Related work

The scope of this chapter is to review the literature on the relevant techniques

applied in this project. Instead, the technological background and related software

frameworks will be analyzed in Chapter 3.

Sections 2.1 and 2.2 shortly review the set of techniques to be applied. Then,

recent hardware advancements are discussed on section 2.3 to clarify how the men-

tioned techniques can be applied to obtain software improvements.

2.1 Staging area

In most systems, raw data can come in a variety of formats, is heterogeneous,

and may have missing or irrelevant information. It is essential to adapt, trans-

form and clean the data in order to make it available to other processes requests.

The place where this process occurs is named staging area, a term introduced in

computer science by Business Intelligence specifications.

The scientific community employs this mechanism to improve performance

when writing data to storage systems. Firstly, computing applications benefit

from executing calculations dedicating less time to write and read data to persis-

tent, low storage. Secondly, the data is gathered and then stored in continuous

chunks. Performance for sequential writes is notably higher than random I/O,

because of the reduction in seek time and hardware strategies. Moreover, if the

data needs to be sent over the network, sending big packets of information is more

efficient [15].
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The results obtained when introducing an staging area vary according to differ-

ent factors. For an instance, in some cases Solid State Drives (SSDs) are employed

as staging areas of Hard Disk Drives (HDDs) while other set a staging area in the

DRAM. In particular, a staging area has proven useful in those cases where data

was being re-utilized such as [13].

Finally, raw data needs to be available in a designated location to be accessed

on demand. The designated area receives the name of landing zone, which is closely

coupled with the staging area. In the landing zone raw data is deposited without

pre-processing or post-processing, whereas, in a staging area data can be processed

and mutated.

2.2 In-memory computing

In-memory computing is a technique used to speedup computational processes

by replacing slow storage accesses for fast DRAM accesses. Its main objective is

to reduce the execution time of applications run in datacenters.

In this context, different types of applications with their particular data access

patterns are benefited. Data-intensive applications will be rewarded with a reduced

latency on data accesses by several orders of magnitude, resulting in faster execu-

tion times. Secondly, applications handling large datasets benefit from keeping in

memory frequently accessed data, allowing them to read and write huge amounts of

data quickly. Lastly, the reduction in latency is crucial in situations where taking

quick decisions is needed as in real-time analysis, where also information changes

constantly.

A common approach to apply this technique is to keep the data in high speed

memory such as DRAM, and then backing up the changes to slow storage. This is

done transparently to the user by using parallelization, shared memory technologies

and performing operations asynchronously.

In the near future, a closer integration with modern network technologies could

extend this approach. New network technologies allow nodes to write remotely into

the memory of another node without interrupting the computation on the CPU.

This feature enables applications to distribute large volumes of data among nodes

without slowing down the execution. The analysis of the hardware particularities
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that make in-memory computation feasible are described in section 2.3.

Ensuring that the data stored into volatile memory is not lost and avoiding

coherency issues is one of the most challenging parts in in-memory computation.

Therefore, it is impractical to develop an in-memory computation software for

each use case. Already existing solutions which have demonstrated to have a good

performance and behaviour are used instead, reviewed in 3.

On the other hand, including this mechanism in workflows has a significant

impact. Processes spend less time accessing and retrieving data, therefore blocked

without doing computation, leading to shorter processing times. Straightorward

consequences are more users being able to use the system, shorter response times

and a reduction of the cost associated of running the cluster.

However, not all types of applications will benefit from this technique. For an

instance, simple applications, or computation intensive applications producing few

data will incur the penalty of setting up the mechanism and leasing computational

resources to the software managing the in-memory mechanism. Therefore, it is

clear that this mechanism is particularly beneficial for Big data applications but

is not suited for all HPC applications.

2.3 Big data architecture and distributed com-

puting

Current computational frameworks divide the data and computation into logi-

cal blocks, and then apply the computation to each distributed piece. Then, results

are presented to the user as a single logical entity. A widely adopted implementa-

tion of this idea is the MapReduce framework introduced by Google [5]. However,

other traditional approaches are based on centralized architectures where some

nodes act as masters and the rest as workers []. What they all have in common

is that they try to take advantage of data locality by applying the computation

where the data resides.

To achieve this distribution of tasks, different computation nodes are used

transparently. They are made of processing power with volatile memory attached,

interconnected by a network, and sometimes with storage devices attached.

When we analyze storage, two different setups are found. Clusters where each
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node has a storage device, called local storage, or clusters with a set of nodes

dedicated to storage. In the first example, storage is accessible only during com-

putation, and data needs to be moved at the end of the execution. On the latter,

storage is always accessible and physically shared among different users. Hybrid

systems are a common setup nowadays.

The second aspect to consider is the network which may have different usages

depending on the framework or application. For an instance, some applications

send control messages and small pieces of information, while others rely on it

to transmit huge amounts of data constantly. Nevertheless, it is important to

highlight that new technologies such as IBM’s Infiniband and Intel’s OPA allow

processes to send data from node to node without interrupting the CPU, thus

updating other’s computer memory remotely with a reduced latency [12].

As an example, commonly used SATA/SAS SSD drives deliver write and read

bandwidths in the order of hundreds of MB/s, while NVMe SSD perform around

a thousand MB/s in common 4K tests. However, DDR4 at 2.666Mhz delivers

bandwidths of 40-60 GB/s in 4 channel mode. A more important factor, latency,

is reduced from 40-70 microseconds in SATA/SAS SSDs or a constant 10-20 mi-

croseconds obtained with the new NVMe SSD to roughly 14 nanoseconds in DDR4

[4], [6]. As a side note that SSDs performance degrades as the I/O operations

queue. However, SATA SSDs usually have a small queue of 32 operations while

NVMe SSD may have up to 65.000 queues with a queue depth of 65.000 operations

each [14]. As a consequence, it is more difficult to fill up the operations queue of

NVMe SSDs and degrading their performance.

In conclusion, huge difference in bandwidth and latency make the in-memory

computation to be an interesting field. While at the same time, fast memory and

high speed networks provide a good support to include staging areas in current

Big data workflows.
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Chapter 3

Related software technologies

Since 2003, after the publication of the Google File System [8] paper, different

processing and storage solutions have been proposed to achieve horizontal scal-

ability, fault tolerance and availability. Since an increasing number of software

solutions exists, their features need to be evaluated to decide how to structure a

system. Since big data is about how to organize information for efficient process-

ing, the first characteristic to be reviewed is the data accessing pattern, closely

related to the nature of data. As an example, connected data from the internet or

logs will be treated differently than scientific data.

As advanced in 2.3, relevant Big data frameworks are inspired by the MapRe-

duce programming model provided by Google and implemented in Hadoop or the

resilient distributed datasets of Spark. The following sections will review software

available for HPC with the potential to be part of the proposal. Projects discussed

in this chapter are summarized in Table 3.1. Analysis will be based focusing on

the aspects that will enable developing a proposal that can be verified, and impor-

tantly, its impact evaluated.
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Category Software Subsection

Computation
framework

Apache Hadoop MapReduce 3.1.1
Apache Spark 3.1.2
Apache Storm 3.1.3
Apache Flink 3.1.4

In-memory
computing

Alluxio 3.2.1
Apache Ignite 3.2.2

Storage
Apache Cassandra 3.3.1

Apache Hadoop Distributed FileSystem 3.3.2
Apache Hbase 3.3.3

Ceph 3.3.4

Axilliary
systems

Apache ZooKeeper 3.4.1
Apache Kafka 3.4.2
Apache Beam 3.4.3
Apache Hive 3.4.4

Presto 3.4.5

Table 3.1: Summary of the analyzed Big data ecosystem projects.

3.1 Computation frameworks

3.1.1 Apache Hadoop MapReduce

Hadoop was started from the ideas behind the Google File System [8] and

the needs to scale data processing to more nodes. The main contribution of

Hadoop consisted of the MapReduce programming model that allowed analyz-

ing large datasets in parallel, and efficiently. On the other hand, Hadoop included

its filesystem providing support for distributing datasets among nodes. The novel

idea of sending the tasks where the data was stored, instead of moving the data,

produced a programming model shift.

MapReduce is a strategy to organize the execution of a method over a dataset.

The first step consists of executing the user-defined function over the data parti-

tions, spread in a cluster, in parallel. Then, the partial results obtained are unified

through the reduce task defined by the user. For instance, to count the number

of lines in a file, one would write a map method computing the lines of a chunk of

data, and then a reduce method which adds all the partials results.

This model has many advantages respect to previous techniques. First, the
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execution takes place where the information is stored, avoiding moving or copying

large data sets. Secondly, if a map or reduce task fails in one node, it can be

rescheduled in any node with a copy of the data. Fault tolerance is significantly

improved through this policy, while performance increases by not restarting the

whole execution and minimizing data movements.

Companies and research centers still use Hadoop. However, it makes intensive

use of persistent storage, since the results of each MapReduce task are flushed to

disk. Therefore, to reuse the data in a another Hadoop job, data must be read

again from storage. Secondly, Hadoop is structured around a single master called

NameNode and many DataNodes. The architecture produces horizontal scalability

issues as the NameNode becomes a bottleneck and availability shortages occur.

3.1.2 Apache Spark

After considering the design issues of Hadoop, presented in the previous section

3.1.1, Apache Spark was proposed by extending the MapReduce framework with

substantial changes. The core functionality of Spark resides in the introduction of

Resilient Distributed Datasets (RDDs) [16].

RDDs key aspect is immutability, which guarantees that an object won’t be

modified once written. Through this characteristic, Apache Spark reuses data by

keeping it in memory. Also, since no modification can occur, methods applied to

data are lazily evaluated. It results in improved performance as operations can be

chained and scheduled together. Finally, strategies to maintain coherence become

also simpler.

Another feature is the extension of MapReduce by adding more parallel opera-

tions working with RDDs [17]. In Spark, there is a difference between actions and

transformations. Actions describe procedures applied to RDDs which produce a

result presented to the user. On the other hand, RDDs transformations generate

new RDDs by taking advantage of lazy computation. Transformations are only

computed when actions that require them are applied.

The introduction of Spark represented a step-up in Big data thanks to its flex-

ibility, notable performance and easiness of use. The learning curve allows inexpe-

rienced users to interact with Spark easily. Like Hadoop, Spark offers mechanisms

for integration and the list of supported software is extensive.
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3.1.2.1 Apache Spark Streaming

There are many situations where a constant flow of information needs pro-

cessing. Typical examples are information provided by sensors or the analysis of

system logs. In both cases, the input data needs to be analyzed and probably,

stored later.

The most important factor is the time to process information since it is made

available. Processing the information as soon as possible is not always possible be-

cause many sources of data need to be integrated. For instance, two sensors placed

at different places. One may have lower latency and make the data available be-

fore, but their information has to be processed together. In this case, computation

is delayed until the data from both sources of information, corresponding to the

same timestamp, is available. In this context, Apache Spark Streaming seeks to

provide support to workflows including streams of data.

Apache Spark Streaming is an API that extends Spark in order to bring pro-

cessing of continuous flows of data with the Spark core and its RDDs. Until the

newest version, the strategy has been to perform microbatching. RDDs are built

from the input stream of data and iteratively processed in batches. The user can

define a particular window of time of at least half a second. In this way, it is

possible to customize the trade-off between performance and data freshness while

ensuring that corresponding data from streams are treated together.

With Spark 2.3, the Spark Streaming underlying mechanism has shifted to

Structured Streaming through Continuous Processing, tagged as experimental [2].

This change should reduce the processing time from half a second to milliseconds,

thus reducing latency and increasing throughput. The idea originated after alter-

native software solutions started to perform better than Spark Streaming, and the

long processing time was the main reason why people were using other solutions.

Other advantages of Spark Streaming are the guarantee of not losing or ignoring

data, easy integration with other software and the convenience of RDDs, which

can be reused from Spark.
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3.1.3 Apache Storm

One of the first projects that aimed at processing distributed flows of data.

It focuses on unbounded streams of data with processing times in the order of

milliseconds. Storm supports both continuous flows of data and microbatching. In

fact, Storm is very versatile because allows the user to write programs that will

enable any processing pattern.

At-least-once and at-most-once semantics are guaranteed when processing data.

However, exactly-once can only be achieved through a different high-level API

called Trident [3].

Storm versatility is also one of its drawbacks since users need to implement

many functionalities that other systems provide out of the box. On the other

hand, users programming for Storm don’t need to be highly skilled in Java and

can simulate deployments in local mode, which can be paused and debugged.

3.1.4 Apache Flink

In the context of Big data, numerous use cases include continuous flows of

data as sources of information. Apache Flink is a project designed to process data

streams in a distributed environment, focusing on high performance and accuracy

of data.

Flink implements exactly once semantics, which means that each object is

evaluated exactly once. Other systems provide weaker constraints of at-least-once

or at-most-once where multiple evaluations can occur or none at all respectively.

Occasional delays when analyzing data can occur due to its lightweight fault

tolerance. If a Flink node crashes, it is restarted and data is not lost due to

distributed checkpoints. Then the execution is resumed, and as a side effect, the

analysis of the stream is delayed.

3.2 In-memory computing

After accounting the growth of information to be processed and a change in

computing hardware around 2010, novel approaches appeared to speed up data

accesses. The hardware elements that have made these solutions possible are a
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reduction of the price per gigabyte of volatile DRAM, the introduction of Solid

States Drives (SSDs) and the popularization of clusters with high-density memory

nodes and local storage.

Different solutions had been implemented to take advantage of those changes to

provide memory latency access to distributed datasets that don’t fit the available

memory. Coherence, fault tolerance, and the interconnection of storage systems

are some of the challenging aspects of in-memory computing.

3.2.1 Alluxio

Formerly named Tachyon, started as a project in the UC Berkeleys AMPLab

and was open-sourced by the end of 2012. Its community has been growing at

a notable speed, mainly thanks to the number of companies and research centers

that started to include Alluxio in their workflow with satisfactory results.

Besides achieving data accesses at DRAM speed when possible, Alluxio pro-

vides a single layer of storage unification to reduce the efforts of managing tiered,

disparate storage and their access from between applications. Because it lever-

ages applications data access to storage systems, it can be said that Alluxio sits

in-between computation frameworks and storage systems, reviewed in sections 3.1

and 3.3 respectively.

On the top, an API exposes the distributed in-memory data, streaming sources

of data and storage systems as a unified storage. Since the amount of volatile

DRAM is typically smaller than the datasets, local caching and eviction strategies

are employed to guarantee fast accesses to frequently used data. By letting Al-

luxio manage the data, different jobs can share results at memory speed and take

advantage of data locality.

From a programmers perspective, Alluxio provides an API for memory-mapped

I/O and an alternative filesystem interface. The latter allows Hadoop and Spark

among others to interact with Alluxio as a storage system. As a non-programmer,

datasets, performance metrics and storage usage can be browsed easily through a

WebUI.

Recently, with Alluxio v1.6 a new feature named Lineage has been intro-

duced. Upon activation, data is stored in memory and backed up to storage

asynchronously. The main benefit is an increased performance at the cost of lower
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fault tolerance. Checkpointing allows handling errors and tasks failures. Lineage

assumes that applications are deterministic and will restart a task upon a failure.

On the bottom, Alluxio provides an abstraction of storage systems through

pluggable backends exposed in a unified API. Consequently, users will interact

with an aggregated view of the data from different sources. Due to Alluxio’s

ability to cooperate with various storage solutions, it can also handle tiered storage

transparently.

Lastly, by having Alluxio handle the configuration to access underlying storage

systems, the time dedicated to setup storage access for each user is eliminated.

Concerning the architecture, Alluxio follows a master-slaves design. A primary

master is in charge of handling the metadata, while a secondary master stores the

changes produced in the primary master. Since Alluxio partitions data into blocks

which then distributes, the primary master is in charge of keeping track of the

blocks.

Alluxio contains a high availability mode that can be activated when ZooKeeper

is present. In this scenario, ZooKeeper tracks the master state, and when a failure

occurs, elects a new master from a pool of standby masters. During this recovery

process, clients will perceive the master node as unavailable and receive timeouts

or communication errors.

On the other side, worker nodes are only responsible for managing their blocks.

As stated before, workers don’t have a concept of the mapping between blocks and

files. Consequently, clients need to contact first the primary node to obtain infor-

mation regarding the workers holding the desired data and the blocks distribution.

With that information, clients will contact the workers directly to request storing

or reading blocks. Once a block is stored in a worker, it is not moved to a different

node for rebalancing purposes, reducing the overall communication.

3.2.2 Apache Ignite

In the field of in-memory computing, a new project starts to gain popularity.

Apache Ignite provides in-memory data access for caching but acting like a dis-

tributed database, and optionally, persistent storage. The project aims to obtain

the benefits of the three mentioned solutions; horizontal scalability, SQL and key-

value data access patterns, availability, strong consistency, data locality and fast



19

data access.

An Ignite cluster is composed of homogeneous nodes which hold data and

process tasks. Data is distributed evenly through hashing and rebalanced upon

cluster changes. These features allow Ignite to scale horizontally.

Initially, Ignite only provided memory caching and SQL-like data access pat-

terns. It allowed performing SQL operations such as Joins and access data as

key-value on the in-memory data. It handled distribution, fault tolerance. On the

downside, SQL or scan queries only included results stored in memory, and not in

the external database, since Ignite cannot index external data because it would be

too computationally expensive.

In recent version, persistent storage has been added. It allows Ignite to per-

form the same in-memory queries to persistent storage, and be able to provide

in-memory data access for datasets which wouldn’t fit into the cluster memory.

By letting Ignite handle also the persistent storage data can be indexed, which

was not supported using 3rd party storage.

Ignite can operate in two modes, transactional and atomic. The first enables

ACID properties by grouping multiple operations into a transaction. The latter,

performs each atomic operation independently. Since the transactional mode is

more restrictive and makes use of locks, it decreases the performance notably.

Consequently, it is recommended to use atomic mode whenever ACID properties

are not mandatory, for instance, when out of order execution doesn’t affect the

results.

Lastly, Ignite supports partial operations when running in atomic mode. For

example, operations on large datasets can fail but won’t rollback the results. In-

stead, they alert the user of the failure and report which keys weren’t modified.

With this mechanism, the user can take the opportune course of action and re-

computation is not needed.
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3.3 Storage

3.3.1 Apache Cassandra

Back in the years when pools of storage were built upon rotational disks, data

stores developers and users tried to optimize data access patterns to reduce slow

random I/O. Because of the physical layout of data, HDDs deliver fast read and

write operations, but mixing random accesses degrades the performance notably.

Apache Cassandra is a NoSQL database designed to reduce random I/O and

promote sequential reads, and especially, writes, which are the most expensive

operation in terms of latency. Cassandra was open-sourced by Facebook, who got

inspired by BigTable and DynamoDB.

A cluster of Cassandra nodes is homogeneous, all nodes have the same role,

and data is distributed by hashing which ensures a certain degree of load balance.

This mechanism allows clients and nodes to be aware of data locality. When a

client performs a petition to a node, it gets propagated to the nodes responsible

for the information. Then, the answers are gathered and sent back to the client.

Lastly, after adding or removing a node, existing nodes delegate or assume a block

of hashes. This architecture ensures horizontal scalability and rebalancing of data.

More internally, Cassandra organizes its data into SSTables of key-value pairs,

called commit logs, allowing only append and read operations. In this way, writes

are sequential, and only a penalty is incurred when reading is mixed. However,

since it maintains order by keys, sequential reads can be easily achieved for most

workloads.

On a remove command, a tombstone is written because a deletion would be

costly and is unsupported by the commit log. When data is accessed, the SSTable

is read backward with the most recent data found earlier, allowing to read consis-

tently.

When the commit log grows as data is added, the time to process a read is

also increased. To mitigate this effect, and to save storage space, Cassandra has

a mechanism called compaction which runs from time to time. During this step,

operations in SSTables are merged updating the most recent value for each key

and removing duplicates.

Cassandra can achieve good performance and maintain horizontal scalability.
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However, since it runs inside a JVM and makes use of locks for communication

other solutions can achieve higher transactions per seconds, particularly with newer

storage technologies.

3.3.2 Apache Hadoop Distributed FileSystem

HDFS, as the name indicates, is a FileSystem as opposed to other solutions

reviewed on this section such as NoSQL DBMS. HDFS is designed to run in mul-

tiple nodes, each owning a portion of the data. Replication and partitioning are

used to produce a highly available and fault-tolerant storage.

However, HDFS makes use of a master-slaves architecture, with the master

called NameNode. The workers, named DataNodes, hold the information split in

blocks. Each file is registered into the NameNode together with the information

of the decomposed blocks and their locations.

When a client wants to access the data, it will ask the NameNode who assign

a set of blocks. Therefore, when a cluster grows, all clients end up contacting the

NameNode and DataNodes sending messages regarding blocks metadata, quickly

becoming a bottleneck even if data is kept only in memory.

Also, running applications on top of HDFS should make a balanced use of data

since HDFS does not provide rebalancing. However, it includes a utility with this

purpose that users can run to rebalance the cluster.

HDFS is a component of the Hadoop framework, which works very well with

the MapReduce paradigm thanks to blocks distribution, which allows MapReduce

tasks to execute benefiting from data locality.

3.3.3 Apache Hbase

Based on BigTable which is under proprietary license by Google, the main ideas

were described in [1] and HBase was built following them with minor modifications.

HBase can be described as a NoSQL database storing data as key-value pairs

following a columnar model. Additionally, HBase indexes the data which allows

for fast look-ups. Therefore, HBase is more prone to obtain a good performance

accessing small, random objects, while HDFS was designed for writing or reading

sequentially large amount of data. As opposite as many other NoSQL systems,
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strong consistency is guaranteed.

From an architectural point of view, HBase is similar to HDFS since it follows

a master-slaves design, where the master is responsible for monitoring metadata

changes and the RegionServer nodes manage the data. A configuration with mul-

tiple master nodes in standby is possible with ZooKeeper, which will be ready to

designate a new master upon failure. Since clients communicate directly with the

RegionServers, the cluster and clients could withstand a master failure for a short

period of time. Lastly, when nodes join or leave a cluster, data is automatically

rebalanced

In overall, HBase performs well in use cases involving large amount of data,

that can be described following a key-value model with individual accesses.

3.3.4 Ceph

Ceph brings a totally different approach with respect to the storage solutions

reviewed in this section. Ceph is a data store designed to be deployed in a small

cluster with lots of storage devices. Frequently, computation on storage nodes is

forbidden, and users wanting to access the data need to be authenticated. Ceph

may have high usages of CPU, making convenient to avoid co-allocating computa-

tion and storage.

Designed as a layered storage system, includes a filesystem, a block storage and

an object storage. Users wanting to obtain the best performance typically need

to interact with the rados block storage, which require a high level of expertise.

As many other NoSQL storage systems, Ceph uses hashing to partition, distribute

and directly locate data.

To improve performance, Ceph provides a cache tier, recommended to be run

with SSDs. This approach allows Ceph to be run with slower technologies and

reduce its cost. However, since typically Ceph runs in separate nodes, there is

no data locality and the network can become a bottleneck easily, or slow down

accesses because of latency.

From an architectural point of view, Ceph is an heterogeneous cluster com-

prised of Object Storage Daemons (OSD), Metadata Servers (MDS), Monitors

and Managers. The most important being the OSD which handles the read and

write operations, coherence and distribution. Secondly, the MDS acts as a master
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storing metadata information about the objects. A single MDS is active at a time,

with other MDS waiting in standby. Lastly, the Monitor holds the cluster infor-

mation and configuration, while the Manager is only responsible for keeping track

of metrics and provide a REST API.

3.4 Auxiliary systems

In this section software with different functionalities are reviewed. The most

relevant for this project have been selected. They aim to help running distributed

software smoothly, help reducing failures or participate in some form in data gov-

ernance.

3.4.1 Apache ZooKeeper

Started by the Apache Foundation, Zookeeper has the scope of supporting

distributed software by providing coordination mechanisms. It can run in a set

of nodes, which will maintain the messages received by the nodes running in the

data center. For an instance, a master node can send a heartbeat to ZooKeeper,

but upon failure, ZooKeeper will react and contact standby masters to elect a new

master node. Typically, ZooKeeper stores node status, configuration of nodes, and

cluster layouts.

ZooKeeper runs in multiple nodes, called ensemble, where one is the leader and

others the followers who replicate the transactions and serve information to clients

directly. This mechanism allows ZooKeeper to be fault tolerant, and perform well

under a heavy read load.

The leader is responsible for storing status information in chronological order

as forwarded by the followers, who receive the petitions from clients. Therefore,

ZooKeeper can serve information from any node but the leader will end up gath-

ering all the updates to be written in serial order, which ends up in great read

performance but poor write performance in when writes represent more than a

tenth percent of the operations.

Since writes need to be propagated, a node can answer to a client with outdated

information, which is why ZooKeeper is eventual consistent.
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Changes are applied at the master node, in memory, and then flushed to disk

into log files. Nodes keep all data in-memory for fast access, which limits also the

amount of information that can be stored in ZooKeeper to the amount of memory

available.

3.4.2 Apache Kafka

When internet companies see their user base grow, the number of user interac-

tions increases exponentially. For any large business, analyzing user behavior and

reacting in real-time, let it be through recommendations or updating an informa-

tion panel, is essential.

On the other hand, HPC systems needing to process data streams may en-

counter inappropriate the streaming processing projects mentioned in section 3.1

due to performance, scalability and fault tolerance properties.

With these ideas, and wanting to unify the flows of data, Linkedin started the

Kafka project, later open-sourced. Kafka does not provide elaborated process-

ing capabilities. Instead, organizes events from different sources and makes them

available to processing frameworks or storage systems to be consumed. Conse-

quently, Kafka does not aim to replace data streaming processing engines but to

complement them.

The smallest unit of data is the record, which follows a key-value format. They

are assigned to a topic, which in turn is split into partitions. Thanks to the division

of topics into partitions, it is possible to distribute a topic among nodes to ensure

scalability and availability. On the other hand, partitions behave like commit log

only supporting appends and reads of records. This organization makes possible

maintaining the order of the data received, guarantee consistency and perform

efficient reads and seeks. Since storing the data infinitely would saturate the

persistent storage, data can be marked to expire after a period. Figure 3.1 and 3.2

illustrate how Topics and Partitions are organized internally. is time and can be

split into smaller tasks.
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Figure 3.1: Internal organization of a Kafka topic.

Figure 3.2: Kafka internals and producer-consumer mechanism.

To access the data, Kafka follows a producer-consumer by subscribing to a

partition of a topic. When a consumer subscribes, data streams layout is retrieved,

and the subscription is performed directly to the node. If a node fails or the layout

changes, the connection is dropped and consumers fetch the updated layout. Then,

since the consumer keeps track of the event offset, it can jump to the desired

position.

Lastly, because Kafka was designed to interact with other systems, it needs

to be plugged with connectors. They are responsible for transmitting the data to

Kafka following a particular format, which is the same used internally in persistent
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storage or to interact with producers and consumers. This aspect permits Kafka

to perform zero copies and help improve performance.

To sum up, Kafka delivers a distributed, fault-tolerant and efficient event man-

ager which integrates nicely with other technologies.

3.4.3 Apache Beam

Typically, each data streaming processing software come with its own API.

Apache Beam unifies APIs into an abstract API and decouples them from the

execution runtime. The same code can be executed with Apache Flink, Spark or

some others .

Batch and streaming are the same API. Key concept is portability, easy to

migrate and to test on different backends/engines.

3.4.4 Apache Hive

Relational Database Management Systems founded the grounds of data ware-

houses. They use SQL-like queries, which are intuitive and describe human reason-

ing. However, unlike RDMBS, big data projects don’t guarantee ACID properties

nor a strong consistency, or even indexation, making it difficult to support SQL-

like queries. However, data scientists need to access the data in a transparent and

organized manner describing what they want to analyze in simple statements.

Hive tries to fill this gap by providing a data warehouse built on top of Hadoop

MapReduce and its runtime. It can be deployed alongside many big data software

to provide near SQL capabilities to data scientist. By expressing queries in HiveQL,

which is similar to SQL, data scientist can analyze the data without knowledge of

the underlying system. These queries are transformed to Hadoop MapReduce jobs

and then executed by Hive.

At its turn, the Hive Metastore component stores information about confgured

backends, their layouts and how to contact them. It can be used without Hadoop

to provide a service describing the storage systems and their access.

The main flaw is the large amount of time it takes to complete queries, and that

simple user queries can be expanded into very complex data accesses consuming

lots of resources. It is a consequence of the trade-off taken in order to expose
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heterogeneous storage systems as a data lake.

3.4.5 Presto

Because of the need to run light queries over large datasets, from the perspective

of a data scientist, Facebook developed Presto and released it under Apache 2.0

Licensing. It is designed to run analytical queries on HDFS without transforming

the data and taking addvantatge of its own runtime, instead of Hadoop jobs.

With the popularization of Presto among big data companies, many connectors

have been developed. Nowadays, Presto supports a wide variety of data sources.

It is designed to run interactive lightweight queries, as opposite of Hive, which is

design for complex processing. Thanks to the quick processing of queries, Presto

is gaining popularity. It is currently used by Shazam, Facebook and many others

while its adoption in HPC is limited to few use cases.
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Chapter 4

Proposed approach: In-memory

data staging

Reviewing big data software solutions in the previous chapter 3 was the first

step towards designing an in-memory big data solution. The second step consists

of formulating a working architecture where both individual and collective aspects

are considered.

The following sections aim to highlight how individual characteristics will con-

tribute to the projects, as well as, describe their interactions. Through this process,

software components will be selected to propose an architecture to fulfill our re-

quirements.

4.1 Software stack discussion

4.1.1 Computation frameworks

Two different approaches are considered in data processing frameworks, batch

and stream processing. Apache Spark is the most promising tool in the field of

batch processing among the discussed frameworks in section 3.1.

Its efficiency in batch processing is tightly related to smart data-aware schedul-

ing policies. In particular, implements mechanisms to restart and reschedule failed

tasks without restarting the complete job while taking in consideration data lo-

cality to speed up the execution. Also, its stability and the ability to integrate
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with the big data ecosystem help Apache Spark to be some steps ahead of Apache

Hadoop MapReduce regarding efficiency and flexibility.

The field of stream processing is evolving fast with many new players joining

the big data ecosystem. In the context of stream processing, both Apache Flink

and Apache Storm deliver the highest performance in terms of records processed.

However, Apache Storm requires a higher degree of expertise and doesn’t guarantee

the exactly-once semantics, while Apache Flink does. Also, Storm is more robust

and tolerant to failures than Flink’s fault tolerance, based on checkpoints and

restarting. Recently, also Apache Spark has joined the stream processing ecosystem

with its new runtime called Continuous Processing. It offers unbounded processing

at the same time as batch processing.

Due to the simplicity of being able to test both stream and batch processing,

the published performance, and the simplicity to deploy and integration, Apache

Spark is preferred for batch processing over the alternatives. Otherwise, for stream

processing, combining a setup with Apache Spark and Apache Flink will interest-

ing.

4.1.1.1 In-memory computing

Secondly, the in-memory projects presented in 3.2 are confronted in this section.

Both Alluxio and Apache Ignite deliver in-memory speed data access and integrate

with data stores. The former has been around for many years, implements the

Hadoop FileSystem API and can be deployed as part of Spark replacing its executor

and cache. Furthermore, its community has been growing at an incredible rate at

the same as its adopters. On the other hand, Ignite is at an early stage and

features are still rolling out, with support for persistent storage recently added.

Ignite provides nice features for end users, such as SQL like language to explore

the data and machine learning capabilities.
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Figure 4.1: Spark and Alluxio integration schema.

Apache Ignite features a homogenous architecture which should scale horizon-

tally, while Alluxio features a single master - multiple slaves architecture. None of

the adopters have reported scalability issues with Alluxio while most of the reports

focus on the benefits obtained when performing data processing at memory speed.

Regarding the consistency level, both projects provide strong consistency. Al-

luxio implements a lock at the data block level during writes and moves. On the

other hand, Ignite offers tunable consistency at two levels: ACID properties or

eventual consistency.

One relevant feature of Alluxio is the tiered storage, that can be defined at

different levels and small granularity if needed. Ignite lacks this degree of config-

uration which is more general.

Lastly, because Alluxio can be easily integrated with Spark, and offers support

for Apache Flink and Apache Kafka, it will be used in this work.

4.1.2 Storage

The frameworks selected for computing and memory management constrain

the storage solutions. A distributed storage enabling Apache Spark and Alluxio to

be aware of data locality is essential. Since Alluxio handles data as storage blocks,

we might be more interested in sequential access performance rather than random

I/O, which will be intercepted by Alluxio in subsequent data accesses.

Scalability and performance concerns discard Ceph for this proposal. Secondly,



31

Apache Cassandra can’t be easily integrated with Alluxio, whereas HBase and

HDFS can. Finally, Hbase is focused on random I/O and analytics on continuous

changing data while HDFS provides fast sequential access on both reads and writes.

Since the amount of random I/O reaching the underlying storage should be minimal

thanks to Alluxio, the best fitting storage to start with is HDFS.

There are situations, such as testing, where the data doesn’t have to be persisted

after a set of computations. In this case, since the cluster should be always available

and failure tolerant, local storage devices such as SSDs and NVMe can be used as

the underlying storage.

4.1.3 Auxiliary systems

Nowadays, a big data infrastructure is composed of a set of services running

distributed in a cluster. Since managing the individual configurations and node

failures is necessary for any deployment, different projects have emerged to fill

this gap. In this area, Apache ZooKeeper is the most prominent, which offers

support for discovering heterogeneous services. In addition, it can handle services

configuration and redeployment upon failures, as well as support election protocols

for master nodes. The mentioned benefits compensate for the small amount of

resources required for this extra player.

With regards to message brokering, Apache Kafka can play an important role

when used with stream processing software such as Apache Flink and Apache

Storm. Because of its efficiency and highly scalable properties, Apache Kafka

should be deployed in most setups involving large-scale stream processing.

In its turn, Apache Hive and Presto can provide interesting features to an

already running cluster for data analysis. They offer data insights with ease and

abstract the final user from the underlying storage infrastructure. Consequently,

the adoption of these solutions is subjective to the type of data analysis to be

conducted, based on user expertise and data characteristics.

Finally, Apache Beam has the potential to speed up data processing workflows.

However, since it is not tightly related with this project and will not participate in

demonstrating the benefits of an in-memory staging system, it will not be included

as part of the proposal.
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4.2 Design the architecture

Compute nodes are typically divided into memory, storage and computation

units. Due to the use of tiered storage in this project, it is necessary to propose

a logical division between storage tiers. Furthermore, as mentioned in the pre-

vious section 4.1, our proposal will also provide external services to the running

applications.

The data discovery group will enable data to be queried directly by the users,

responsibility delegated to Apache Zeppelin. In the second layer, Apache Spark and

Apache Kafka will perform the data delivery process from external sources. Lastly,

Alluxio will be in charge of the in-memory layer while HDFS will be responsible

for the persistence of data. Figure 4.2 illustrates the proposed schema along with

the proposed software stack.

Figure 4.2: Software assigned to the proposed functional architecture.

The presented classification divides and groups the software according to the

data management responsibilities. However, a concrete design mapping the soft-

ware stack and their data movements to hardware is given by Figure 4.3. It is

clearly described how the computation, data delivery and data discovery frame-

works will access the data stored in the system.
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Figure 4.3: Software and hardware correlation.

It can be appreciated the data partitioning schema proposed in this work.

Alluxio will be in charge of managing the data at different levels. First, it will

provide computation frameworks the ability to access data at memory speed when

possible or to load data from an another Alluxio node or HDFS transparently.

Secondly, it will be in charge of forwarding the data to the persistence layer.

In its turn, HDFS will be responsible for data replication to avoid fault tolerance

and improve the chance to exploit data locality in various nodes.

4.3 Software components interactions

4.3.1 Memory management by Alluxio

Alluxio handles data as files stored in different storage tiers, according to the

particular configuration. The primary purpose of Alluxio consists of taking advan-

tage of high-speed volatile memory to save objects and allow external applications

to share the data.

The memory management is performed by storing the objects as regular files

in a temporal filesystem (tmpfs) or a ramdisk with a ram filesystem (ramfs), both

providing POSIX compliance. The first method will automatically send the data

stored from the memory to the swap space when is becoming full. An undesired

behavior in this situation because Alluxio manages different tiers of storage with
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eviction strategies better than the tmpfs. Also, it would come with a noticeable

penalty, since the swap space might be allocated in a slow hard drive. These

reasons make the ramdisk the preferred mechanism for Alluxio in-memory storage,

which should deliver better performance and stability.

Alluxio applies data placement in blocks, where each block is stored as a file

in the storage tier designated. As a consequence, in-memory data can be accessed

easily from a terminal by navigating to the Tier 0 path configured in Alluxio.

Then, internal data can be accessed and visualized as shown in 4.4, where each

block is mapped to a file that can be opened and visualized. File names are given

by the block identifier, designated by the master node. And because no encoding

takes place, contents can be easily inspected with external tools.

Figure 4.4: Alluxio in-memory blocks organization on a Tier 0 ramdisk.

Objects managed by Alluxio are immutable, and so are the blocks where they

are placed. Because management of tiers is done transparently, Alluxio provides

a simple FileSystem API to create files identified by a URI as shown in Table 4.1.

With this mechanism, it is able to map files to block ids and their locations.
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AlluxioURI path = new AlluxioURI(”/myFile”);

Table 4.1: Addressing a file through the Alluxio FileSystem API.

4.3.2 Apache Spark Objects

As explained previously in section 3.1.2, the core objects of Spark are the RDDs.

Nevertheless, DataFrame and DataSets objects have been introduced recently. A

dataset groups different RDDs, while a DataFrame groups a set of DataSets holding

rows of RDDs in a columnar manner, with a name given for each column.

Following the Spark methodology, DataFrames and DataSets are lazy evalu-

ated, which means they are computed only when their data is needed. Meanwhile,

they are stored in a working plan of how to obtain the data. Since they are com-

posed of RDDs, they will also be immutable. Because an RDD is typically spread

among different nodes, immutability guarantees the reproduction of failed tasks,

simplifies strategies for allocating computing resources, distributing the datasets

and implement failure tolerant techniques.

However, immutability comes with a cost when information is updated con-

tinuously. Real-time analyses or simulations are two representative examples. In

these situations, recent data is more relevant and has higher probabilities of being

accessed. As a result, RDDs need to be created and distributed continuously which

is a costly operation.

RDDs are written in the Scala language and can be stored in FileSystems, Data

Stores and many others. Different subclasses exist to provide particular operations

related to the type of data they represent. For instance, the PairRDDFunctions

class provides operations to be applied to keys such as foldByKey or groupByKey.

Finally, different mechanism allows persisting RDDs to storage, with the most used

being saveAsObjectFile and saveAsTextFile.

The saveAsObjectFile method groups small-sized objects, serializes them, and

writes a large SequenceFile. The format of a SequenceFile was developed by the

Hadoop community to reduce the number of small objects and files to be tracked,

improve I/O and reduce memory consumption by the NameNode.

On the opposite, the saveAsTextFile method serializes objects using their String

representation. Later, they are stored as Hadoop files with its data optionally

compressed.
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4.3.3 Alluxio integration with Spark Objects

The recommended procedure to store and retrieve Spark objects from Alluxio

is to save objects as text files and then reconstruct them. This mechanism permits

accessing objects individually, whereas storing the objects with the java serializer

through the method saveAsObjectFile, which groups small objects, would have an

overhead. The default serializer is provided by Java, with the Kyro serializer being

a popular second choice. Custom serializers can also be implemented.

On the other hand, the design of the saveAsObjectFile was made thinking on the

premises that reading and storing blocks of data performs better than individual

accesses. However, the increased throughput that random access memory provides

removes the I/O bottleneck. As an example, writing 512 bytes blocks of data

outperform 4k writes in any SATA drive. This difference is less significant when

looking at random access memory instead of hard disks or solid state drives. Also,

it moves the bottleneck from the storage to the processor. Therefore, since also

serializing and deserializing puts pressure on the processor, RDDs should be stored

into Alluxio through the saveAsTextFile method. In this way, RDDs will be used

as if they were a regular file.

Because an RDD is spread throughout a set of nodes, having a caching layer

in the same node will guarantee that further accesses to the RDD are performed

at memory speed. Besides, thanks to the tiered storage management, when the

memory starts to fill up, stale data can be sent to lower storage tiers to leave space

for new data. Occasionally, Spark stores partial computational results temporally,

until they are garbage collected. In concrete, shuffle results are kept for the same

object.

Lastly, the newer DataFrame API in Apache Spark includes new support for

different storage backends. A frequently used method to access and retrieve

DataFrames from Spark is employing parquet files. Through its API, designed

to work with HDFS blocks, data is reorganized to obtain increased performance

following a columnar model. By reading a metadata file, data chunks are lo-

cated to allow sequential read of blocks. Since the underlying mechanism is based

on files, they can also be stored into Alluxio as parquet files or as text files with

df.write.parquet(alluxioFile) or df.write.text(alluxioFile) respectively. Besides plain

text files, other output formats such as JSON and CSV are supported by the API
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which will be successfully stored in Alluxio.

4.3.4 ZooKeeper applied to this work

To allow service discovery and organization, ZooKeeper provides a namespace

following a tree architecture and the same syntax as a filesystem. Therefore, nodes

can register by creating a node in the hierarchy with associated data. Secondly,

clients can place a watch on a node to receive a notification if a change occurs.

These mechanisms allow standby masters to monitor the active master and de-

tect failures. Since Spark, Alluxio and HDFS rely on standby masters, ZooKeeper

can support their recovery processes when a master experiences a failure.

Standby masters have an open connection with a ZooKeeper maintained with

heartbeats. When an active master fails, and a secondary master needs a promo-

tion, an election takes place. By using the namespace mechanism and timestamps,

an agreement can is established on which node will be elected master if a determi-

nate node fails.

4.3.5 Alluxio and HDFS data models

HDFS stores data partitioned in blocks of up to 128MB in the current HDFS

3.0.3. In its turn, Alluxio follows a data model based on blocks of 512MB by

default. To enhance data locality and optimize space, the best configuration will

be to configure the block size to the same value.

However, in situations where data locality is not common, setting bigger blocks

in Alluxio than HDFS should deliver better results. In this way, when a piece of

information should be requested by the client, Alluxio will receive blocks from

different nodes simultaneously and keep them in memory for later access.

In the scenario where the HDFS blocks are bigger than Alluxio’s blocks, it

would be possible that data not requested and which will never be used will be

placed into memory, reducing the amount of memory for other useful objects and

triggering evictions.

As in many other cases, the theoretical numbers may be subject to hardware

and workload characteristics. Therefore, configuration depends on the use case

and experimentation should be conducted to define reasonable parameters.
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Chapter 5

Development

Due to time constraints and the inherent complexity of deploying a complex

software stack in an HPC cluster, a subset of the proposed system will be imple-

mented as a prototype.

The selected software stack must be able to accomplish the project objectives.

With this purpose, a more in-depth analysis of the key aspects will be conducted

in section 5.2 to individualize the restrictions and required modifications. The

analysis focuses on the features needed to demonstrate the efficacy of staging data

in-memory. This chapter aims to link implementation characteristics essential to

the prototype and to expose the limitations to be solved to complete this project.

5.1 Requirements

1. Perform updates on RDDs from Spark. Two forms of updates are desir-

able, complete and partial. Being able to update a fraction of a distributed

dataset would have a huge impact on performance, and in particular, on

continuous processing analytics. Besides, being able to replace RDDs would

reduce considerably the amount of memory used and reduce programs com-

plexity, since the most recent data will be present under the same location

and id.

2. Evaluate Spark awareness on modifying external data. Spark caches

intermediate results to speed up executions. Understanding the operations
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and situations where data is cached is essential to evaluate modified RDDs.

Otherwise, computation will be unaffected by changes on externally stored

RDDs or files.

3. Support operations at block level in Alluxio. Because datasets loaded

into Alluxio or RDDs stored through Spark are divided into blocks, updating

their content is essential for this project.

4. Understand Alluxios operations on metadata. Characteristics of files

such as the number of blocks, their location or size are stored in the master

node. Since updating data stored inside the blocks can potentially change

these characteristics, understanding the consequences, and possibilities of

updating their metadata is relevant to the project to enable shrinking or

extending already existing datasets.

5.2 Deep code inspection

5.2.1 Spark RDDs updates and changes detection

Spark, by default, does not provide the option to overwrite objects using the

same namespace. To achieve this behaviour, the option

spark.hadoop.validateOutputSpecs=false

needs to be added in $SPARK HOME/conf/park-defaults.conf. With this change,

data can be replaced with an updated version or an entirely different dataset.

Nevertheless, with this mechanism enabled, the entire RDD will be replaced.

As a consequence, no minor updates on distributed blocks is possible with the

current Spark implementation.

The internals of Spark are complex, and partially updating an RDD would

have consequences on many components such as the scheduler or failure tolerance

mechanism. Modifying Spark’s internal code represents a complex challenge, which

is unnecessary to demonstrate the potential of this project.

With regards to the data access, Spark caches shuffle results, its most expensive

data transformation. However, by accessing an external storage, a new RDD is

created, avoiding reuse of cached data of former RDDs.
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For the scope of this project, operations performing shuffles will be avoided.

Thereof, calculations will access the in-memory storage, enabling correct perfor-

mance measurements. Secondly, the mechanism provided by Spark to update data

by replacement enables the evaluation of different methods for in-memory data

staging.

5.2.2 Granular operations in Alluxio

The provided operations handle entire blocks of data. The most relevant

methods are implemented in the worker process. In particular, the data store

(org.alluxio.worker.block.T ieredBlockStore) is responsible to provide the follow-

ing functionalities to the worker:

• Create block: Given an id and the required bytes, allocates a block and

writes its contents.

Method: ShortCircuitBlockWriteHandler.handleBlockCreateRequest();

Proceeds as follows:

1. Lock the worker metadata structure.

Method: TieredBlockStore.createBlock();

2. Allocates space in the worker registry and registers the new block meta-

data

Method: TieredBlockStore.createBlockMetaInternal();

3. Creates the path, the file and sets up the permissions for the new block.

Method: TieredBlockStore.createBlockF ile();

4. Write the data through the ProtoBuffer library.

5. Confirm the write with the Netty library

Method: Channel.writeAndF lush();

• Lock and unlock block: Sets a lock on the block’s metadata, denying write,

delete or move operations. This method enables higher-level operations on

blocks.

Methods: TieredBlockStore.[lockBlock|unlockBlock]();
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• Commit or abort a block: Confirms a block in order for the caching

strategy to take the necessary actions to guarantee space in the storage tier.

Abort in its turn frees the space, deletes the contents and cancels temporal

metadata.

Methods: TieredBlockStore.[commitBlock|abortBlock]();

• Move block: Changes the path to a block with Fileutils inside the same

node.

Methods: TieredBlockStore.moveBlock();

From the list, we can conclude that no method allows a partial or complete

update on a block. The explanation can be found in the design decision to force

immutability on data. This decision is common among distributed storage systems

to avoid coherence, corruption and reduce synchronizations.

Besides, analyzing the methods used by Spark to store data in Alluxio we find

the operations provided have the same characteristics. The org.alluxio.hadoop

.AbstractF ileSystem class is responsible for interfacing Alluxio with software fol-

lowing the FileSystem API such as Spark and Hadoop. This class delegates oper-

ations to other parts of the client application, which will contact Alluxio nodes to

perform the requests. Different methods are provided to create, delete, rename or

get information but no method allows altering already existing data:

• Create a file: create();

• Delete a file: delete();

• Retrieve hosts providing a data block: getFileBlockLocations();

• Make a directory: mkdir();

• Rename a file: rename();

• Open a file for reading: open();

• Confirm a file exists: ensureExists();

• Obtain the block that constitute a file: getFileBlocks();
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On the other hand, the Alluxio master node only writes and removes meta-

data, as requested by the workers. Meaning that no alteration of the metadata

is expected. Therefore, shrinking or extending blocks is not contemplated in the

original design.

5.3 Deployment plan

To be able to update stored blocks in Alluxio, completely or partially, different

approaches have been defined. Their particularities, benefits, and drawbacks are

discussed in this section.

1. Modify the blocks externally, without Alluxio’s knowledge.

The fastest approach not needing to implement new mechanisms and strate-

gies in Alluxio nor Spark. However, metadata will be kept in the memory

of the Alluxio process as seen in the subsection 5.2.2. Consequently, blocks

can’t be created externally or resized without corrupting Alluxio’s memory.

To avoid coherence issues in tiered storage environments, an approach where

updates are applied in all tiers should work. This strategy has the potential

to demonstrate how computations can benefit from this project in terms of

data freshness, execution time and memory footprint.

2. Implement partial or complete updates of blocks inside Alluxio.

The required functionality for Alluxio to allow partial or complete updates

on blocks should be added. This approach consists of taking actions to avoid

major coherence issues between storage tiers, workers and the master meta-

data. The coherency level could be relaxed for this project, since having

eventual consistency could be enough. First, functionality to modify blocks

metadata inside the master should be added. Secondly, mechanisms to prop-

agate the data changes in tiered storage should be implemented. And lastly,

an API to perform partial updates should be defined.

From the two possible approaches, the first option has been selected. Different

reasons have driven this decision, including but not only, the uncertainty behind

the complexity of modifying a distributed software without previous knowledge of

its internals and the duration of the project.
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The selected path allows studying the performance impact of sharing memory

regions between applications in the big data environment without the need to

develop a production-ready software. Therefore, if the results are promising future

work could be done to extend Alluxio with this idea. Also, the work carried out

analyzing Apache Spark and Alluxio enables continuity of this project.

5.4 Final prototype

5.4.1 Deployment

The Rutgers Discovery Informatics Institute has offered the Caliburn cluster

[10] to deploy, test, and evaluate the prototype. Because configuration in a cluster

is more challenging, a set of scripts to support the deployment have been devel-

oped. They are in charge of extracting environment information from the nodes

and customize the software stack according to the available hardware. The main

characteristics of the cluster are the use of NVMe and dense memory technologies,

Omnipath internode communication and Quickpath for intranode communication

between processors. In its turn, every node consists of 2 processors featuring 18

cores each for a total of 36 cores. The cluster span to 560 nodes and a total of

20.160 cores.

NVMe disks are partitioned to distribute the storage among the network file

system and the swap space. In its turn, a mounting point featuring a tmpfs

running on top of the RAM space plus the swap space is provided under /dev/shm.

Consequently, files stored in this partition will be placed inside the memory RAM

as cached data until there is a need for freeing space. At that point, the system

will offload RAM data to the NVMe disk.

Regarding user storage, two main systems are provided. The Network FileSys-

tem with low latency and high throughput, and a GPFS partition to store large

datasets with a higher capacity and reduced performance compared to the NFS.

5.4.2 Deployed prototype

The deployed prototype consists of the Apache Spark project relying on Alluxio

for data storage. Spark has been setup in standalone mode, meaning that Spark’s
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scheduler is used instead of Apache Mesos or YARN, which are also frequently used.

In this mode, applications are submitted and run in the master node, allocating

the required executors. In cluster mode, the program called driver would be sent

to a node to be executed.

In order to achieve data locality between Alluxio and Spark, it is mandatory to

declare the $SPARK LOCAL HOSTNAME environment variable, preferably

in the configuration file $SPARKconfspark − env.sh. Otherwise, Alluxio will

represent hosts by their interface name while Spark will use IP addresses. Then,

it is impossible for the scheduler to take advantage of data locality because the

naming representation differs as observed in [11] and [7].

The following snippets summarizes the Apache Spark configuration:

@File: spark/conf/spark-defaults.conf

spark.driver.extraClassPath {user_home}/alluxio-1.7.0-client.jar

spark.executor.extraClassPath {user_home}/alluxio-1.7.0-client.jar

spark.hadoop.validateOutputSpecs false

spark.executor.cores 1

spark.executor.memory 4g

spark.driver.cores 4

spark.history.fs.logDirector {user_home}/sparkHistory

spark.eventLog.enabled true

spark.executor.heartbeatInterval 30s

spark.network.timeout 300s

spark.driver.maxResultSize 2g

@File: spark/conf/spark-env.sh

SPARK_LOCAL_HOSTNAME=$(hostname)

SPARK_WORKER_MEMORY=64g

SPARK_WORKER_INSTANCES=2

SPARK_WORKER_CORES=16
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The rationale behind the Spark configuration is tightly related to the cluster

characteristics. Since a total of 256GB of RAM are present in each node, half of

it has been dedicated to the Apache Spark workers. Having Spark workers with

high memory capacity has a negative impact on the Java Virtual Machine (JVM).

The garbage collector performance is directly related to the amount of RAM and

objects in memory. Therefore, having workers with big amounts of memory is

unadvised and for this project, two workers per node have been setup.

As a remarking point, Spark allocates a fraction of the memory more than

requested for the JVM. Then, a portion of the available memory will be used by

executors to perform computation, or optionally, to cache RDDs which is not ap-

plicable to this work. Even if these settings can be customized, they have been left

to the defaults values. The document provided by [9] is a good start to understand

the effects of modifying the memory fractions.

Regarding the cores dedicated to each worker, we need to leave some cores

available for Alluxio and the Operating System. Since Spark is CPU intensive, as

opposite to Alluxio, 32 cores have been dedicated to Spark to leave 4 cores for the

rest of services.

Finally, depending on the application and the hardware, a different number of

executors is recommended. In this case, since we want to analyze parallel appli-

cations with almost no data sharing, 1 executor per core has been assigned. This

decision leaves each node with 2 Spark workers with 64GB of available RAM each,

where each worker has 16 executors available with 4GB of RAM each.

On the other hand, configuring Alluxio turned out to be very smooth. Only

a single file has been modified and the only requirement has been to enable ssh

to localhost on the laptop during the development since in the Caliburn cluster it

was already enabled.

@File: alluxio/conf/alluxio-site.properties.template.

# Common properties

alluxio.master.hostname=PLACEHOLDER_MASTERHOSTNAME

alluxio.underfs.address=PLACEHOLDER_UNDERFS



46

# Worker properties

alluxio.worker.memory.size=128GB

alluxio.worker.tieredstore.levels=1

alluxio.worker.tieredstore.level0.alias=MEM

alluxio.worker.tieredstore.level0.dirs.path=/dev/shm/alluxioworker

alluxio.worker.tieredstore.level0.dirs.quota=128GB

# Options to enable NVMe as a second tier

#alluxio.worker.tieredstore.level1.alias=SSD

#alluxio.worker.tieredstore.level1.dirs.path=/tmp/alluxioworker

#alluxio.worker.tieredstore.level1.dirs.quota=64GB

#alluxio.worker.tieredstore.level1.watermark.high.ratio=0.9

#alluxio.worker.tieredstore.level1.watermark.low.ratio=0.7

Finally, in order to manage the deployed services and the running applications

a bash script has been created. Because the Caliburn cluster uses Slurm, the first

action the script takes is to setup the job to span a determinate number of nodes

with 36 tasks on each.

Following next, one node is elected master from the reserved nodes. It will be

used as a master node for both Alluxio and Spark, and will run the submitted

applications.

Then, storage characteristics are decided. As the UnderFS of Alluxio the path

gpfsgpfsscratch/{username}/alluxio has been used while the memory tier has

been setup in devshm/{username}. Thanks to this setup we achieve a large

storage pool with low latency access for frequently accessed data.

Because the configuration changes from execution to execution, configuration

files are adapted with unix commands to the current job setup. For instance, the

master node is defined in the Spark and Alluxio configuration files.

Then, Alluxio formats the memory tier, starts its processes and gives way to

Spark to start its own processes. Once all systems are up and running, the desired

application is submitted to Spark to be run in the distributed cluster.

Upon completion, the script stops all the started services and finished, freeing

the resources to be scheduled for another job.
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Chapter 6

Experimental evaluation

To demonstrate the viability and potential of this project, a set of tests will

be conducted. The deployed infrastructure will be tested with synthetic bench-

marks to evaluate the resources used and to assess the performance of different

storage layers. In order to study the proposed in-memory staging prototype, dif-

ferent strategies to update and access flows of data will be applied to offer a rich

comparison.

6.1 Methodology

Because multiple factors are relevant, logging for post analysis plays a key role.

For this purpose, Spark will be configured to log the application summary to be

analyzed with the Spark History Server. This service allows launching a SparkUI

to analyze applications independently of their status. The history logs can be

synchronized to a local computer and opened with a web browser without having

a Spark cluster running.

Secondly, coded tests need to print logging information time-stamped. This

information gives insights on the time needed to propagate data changes on the

storage layer or the frequency of the updated and other relevant aspects. This

information will be analyzed in section 6.3 to extract knowledge through different

metrics.

Because the main interest is to evaluate the performance of in-memory staging

in a distributed architecture, tests will apply different data access strategies based
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on storage layers to observe the effects on the executing programs. The scalability

factor is excluded from this evaluation since this topic has been already explored

and discussed by the community. For this reason, all the experiments will be

conducted on the same physical resources.

The strategy chosen to assess the performance is based on a continuous process-

ing of a distributed dataset. On one hand, an application will be responsible for

updating the information at the highest rate possible. On the other hand, a second

application will continuously analyze the data and extract some characteristics.

To assess the correctness of the query results, both programs should log infor-

mation to enable post-verification. In concrete, it is important to corroborate that

the data changes are being detected and extract the time needed to propagate the

updates.

6.2 Tests design and implementation

The approach chosen to evaluate the prototype is by comparing different con-

figurations with metrics. Firstly, a set of tests will be designed to evaluate how

can updates be handled when they are performed at different storage layers.

To implement a continuous dataset, a base RDD made of Long elements will be

used. New datasets will be derived from this object, according to the particularities

of the test. This decision arises from the fact that is easier to verify the correctness

of results and detect incoherence with numerical data. Secondly, numerical data

is common in the scientific community and represents a realistic workload.

Then, another program will be responsible for extracting statistics from the

dataset and log them to a file. This query needs to be I/O intensive to highlight

the side effects of the storage setup.

These test will be a proof of concept to demonstrate the feasibility and the

power of the idea behind this work.

6.2.1 Test setups

A set of tests has been defined which run in the proposed prototype. They

are designed to demonstrate the great impact on the data analysis when using
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different data storage systems. Four tests based on the same use case have been

setup. Each of them features minor changes on the prototype configuration, where

the case number 3 features the proposed architecture and methodology.

Case 0: GPFS based storage. In this setup, Apache Spark will store the RDD to

the Network FileSystem provided by the Caliburn cluster for large datasets.

The aim of this experiment is to obtain a baseline of the approach which uses

a slow storage system, compared to the proposed in-memory proposal.

In this case, each update on the RDD will result in a new Spark RDD being

generated and stored under a different namespace. The query will be respon-

sible to wait until the most recent RDD is available to analyze and extract

the features.

Case 1: Alluxio in-memory storage with tiered storage. In this setup, new

RDDs will be forwarded to Alluxio which will be responsible to manage its

memory space and evict data to the GPFS when necessary. For this purpose,

the Least Recent Used algorithm (LRU) will be used.

As in Case 0, each update will generate a new RDD which will be forwarded

to Alluxio under a different namespace. This approach is a realistic use

case since high-density memory nodes are just emerging. As a consequence,

Alluxio tends to run out of space and needs to move data to lower storage

tiers.

Then, the query implemented for Spark will retrieve the data from the in-

memory tier and accesses will be at memory speed. However, it is expected

that the update task will be slowed down once evictions start.

Case 2: Alluxio in-memory storage. Data will be stored in-memory inside Spark

and keeping the memory usage constant. This will be achieved by configuring

Spark to allow overwriting data in the configuration files.

Thanks to this mechanism, it won’t be necessary to evict in-memory data

stored in Alluxio to other storage tiers. To ensure that the performance

consists of only accessing the memory level tier, other storage tiers have

been disabled.
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Case 3: Alluxio in-memory staging with in-memory blocks being updated.

This scenario implements the proposed prototype with the data being con-

tinuously updated inside the Alluxio memory tier by a third program. It is

expected that this setup highlights the potential of this approach and arises

the required work to deploy this prototype in a production environment.

Apache Spark will be continuously querying Alluxio for the same namespace

to obtain fresh data. Then the same query will be performed to extract

statistical properties from the dataset.

On the other hand, another program will be running in each node to perform

the updates in the staging area. These updates will be done transparently

to both Alluxio and Spark, and will use at most the same physical resources

as the tasks responsible to derive the RDD in the other test setups reported

in this work.

To deploy and evaluate each configuration, 32 nodes will be used. The first one

will be designated the master node, where the Spark Master, the Alluxio Master

and the Spark driver program will run. The other 31 nodes, accounting for a total

of 7.75TB of RAM space and 1.116 cores, will be used to deploy the in-memory

staging area and the Spark executors that will access and update the data. Figure

6.1 illustrates the division between services configured in each node. Because of

the proposed division, RDDs will be split into 16 slices for each worker node to

achieve enough granularity to map each executor with a single slice.

Figure 6.1: Mapping services to hardware in worker nodes.
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6.2.2 Codes

To implement the query, a simplistic program in Scala has been written to query

the data under a particular namespace, let it be Alluxio cached files or regular files

on the GPFS.

First, an initial version 6.2 was written to select a portion of the dataset and

extract characteristics. It was done by reordering the distributed dataset and

analyzing the top 1% higher elements. This approach resulted in a computational

expensive query due to the complete shuffling of the dataset.

Figure 6.2: Initial query code.

Also, the initial version was based on generating a List and parallelizing the

object to obtain an RDD. Nevertheless, this mechanism did not scale in the cluster,

since the List is generated in the driver program and then forwarded to the workers,

becoming the master node a bottleneck because of the driver program.

val largeArray = sc.parallelize(List.fill(N)(value),slices)

Table 6.1: Parallelization of the initial data structure.

Then, a simplified query applying the method RDD[Long].stats() was imple-

mented and tested successfully, with short execution times bounded by storage

accesses. Since the purpose of this tests was to evaluate I/O bound scenarios,

the query illustrated in Figure 6.3 query was made final. Nevertheless, a minor

modification was applied to adapt the query to test cases not reusing the same
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namespace in each iteration. In these situations, the iteration id was added to the

end of the namespace both in the query and the program performing the updates.

It is also important to notice that the try-catch enveloping the data access are

unnecessary for the test case 3. In this configuration Alluxio always has the data

available and updates have no effect on data availability. As a consequence, the

query for the Case 3 could be reduced to just accessing the RDD in Alluxio at

each iteration and extracting the stats.

Figure 6.3: Fragment of the query used.

The printed results consist of statistical measurements and a timestamp, writ-

ten to a file. Figure 6.2 features a simplified version of the captured output.

(count: 899999999, mean: 815189145.93, stdev: 61975544.61,...), 12:48:46.266
(count: 899999999, mean: 877943486.12, stdev: 62113695.39,...), 12:48:48.299
(count: 899999999, mean: 937784556.33, stdev: 57787949.33,...), 12:48:50.489
(count: 899999999, mean: 977382943.85, stdev: 40803947.57,...), 12:48:52.638
(count: 899999999, mean: 992378753.20, stdev: 24666262.19,...), 12:48:54.754
(count: 899999999, mean: 996632734.41, stdev: 13273459.60,...), 12:48:56.861

Table 6.2: Query output example simplified.

Since Alluxio holds the metadata in its process memory, such as the size of

each block, the initial RDD and its updated versions need to match the same

block size for the Test Case Number 3 to succeed. With this purpose, the initial

RDD and its subsequent version have their values in the range [base, base*10-1].
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By updating elements according to this schema, the Alluxio in-memory blocks

shape is maintained and subsequent reads will succeed. Therefore, all the tests

were conducted using an RDD of the same size which is kept during the whole

execution.

To avoid the penalty of initializing and finalizing program drivers, both the

query and the update programs loop over their operations a user-defined number

of times. In this way increases the query and data update frequency.

Finally, to update the data in the Alluxio in-memory staging area, a Bash code

has been written. Runs on each node through the queue launching command, in

this case, srun. Works by iterating over the data blocks, and launching a Python

script on each block as sub-processes. Then waits until all the launched processes

return to proceed with the next update.

This mechanism allows updating the in-memory data in parallel while doing

it step by step. This behavior is important to avoid data races and to be able to

confirm the query results for a given timestep.

In its turn, the Python script takes an initial value, the current iteration,

the total iterations and the path to the data block. Then updates its contents

by computing a Normal distribution where the mean is based on the sinusoidal

function as shown in Figure 6.4. This decision was made to obtain a realistic

variation of data in a distributed environment analyzing with scientific workloads.

Figure 6.4: Fragment of the Python block updates.

All these scripts and programs are managed by a job script written in Bash for

Slurm. The script executes the following steps to deploy and evaluate applications:

1. Configure nodes. Picks a master node from the allocated nodes and leave

the rest as workers.
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2. Update configuration. Configuration files in Spark and Alluxio folders

are adapted to the test. In concrete, the paths are updated accordingly and

information on which nodes will be used to start the services is updated.

3. Format Alluxio’s memory tier. To avoid coherence issues with old data,

all nodes format the memory tier before starting up.

4. Launch services. The following methods are used to deploy Alluxio and

Spark inside the job script:

$ALLUXIO_HOME/bin/alluxio-start.sh all NoMount &

$SPARK_HOME/sbin/start-master.sh

sleep 15

$SPARK_HOME/sbin/start-slaves.sh spark://$MASTER_NODE:7077

5. Configure and submit applications: For instance:

$SPARK_HOME/bin/spark-submit

--total-executor-cores $((16*$NWORKERS))

--class ArrayGeneration

--master spark://$MASTER_NODE_IP:7077

--driver-memory 4G $HOME/usecase.jar

"alluxio://$MASTER_NODE_IP:19998/myArray" $VAL0 $SLICES

srun --ntasks-per-node=1 --cpus-per-task=4

-n $NWORKERS --nodelist=‘echo ${WORKER_NODES// /,}‘

sh $HOME/NodeTest.sh $TMPFS/alluxioworker/ $NITER $VAL0

>> $GPFS/python_updates &

6. Stop all services and updates Alluxio and Spark services are stopped

through their scripts. If the Python update application is running, it is stop

with a simple kill command run in each node.
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6.3 Results

In this section, the evaluation results are reported and discussed. For each

configuration in subsection 6.2.1 a set of metrics will be gathered and analyzed.

The most important metrics are related to the time needed for an update or

query to complete, the frequency in which they succeed, and most importantly,

the time passed until an element is analyzed. The latter can be seen as the time

an element is present in the system.

Finally, metrics regarding memory and storage will be monitored and discussed

thanks to the Spark history server and logging information in Alluxio.

In all configurations, the generated data is split into 16 slices for each worker,

to match the number of executors per worker. Also, since on each node both

the query and the updating applications will access the same data, this means

that the scheduler should be able to divide the executors equally between the two

applications, and each application will have the same number of executors as slices.

At its turn, each stage is divided into 496 (16*31) tasks spread to 31 working

nodes. The query stages take as input 8.4GB of data without generating an output.

Instead, the update application takes 8.4GB of input data and generates 8.4GB.

6.3.1 Case 0: GPFS based storage

As already mentioned, the first setup consists of Apache Spark running dis-

tributed and using the available GPFS to read and store data. The program

responsible for generating data accepts a value and a namespace. The first step

consists in creating an RDD of Longs set to the given value and saved as text to

the given namespace. In successive steps, the program iterates and transforms the

RDD, which is stored under a different namespace generated from the original.

With this approach, also the program performing the query follows the same

pattern to access the next RDD to evaluate. However, since there is a high chance

that the query finishes evaluating an RDD before the next one is available, checks

that the new RDD exists before accessing it. This situation occurs because reading

data from GPFS is faster than generating the distributed the dataset and writing

it to the GPFS.

Figure 6.5 reports the period between creations of new RDDs. Only 9 mea-
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surements were possible since the quota limit of 100GB was reached. The mean

time is high for a creation of a file, but the measurements seem stable with little

variance.

Figure 6.5: Time needed to update an RDD in GPFS.

In its turn, the Figure 6.6 reports the time needed for the query to process

an update after the data is generated. The variance is small in this situation as

observed when creating the dataset.

Figure 6.6: Elapsed time since an element is updated until evaluation in GPFS.

By analyzing the data reported by the Spark history server, the data update

job was active for 26 minutes, while the query only 6.5 minutes. Meaning that

the query spent roughly 20 minutes waiting for the data to be available in the

driver program, while 6.5 minutes were dedicated to data retrieval and process.

Therefore, on average, it took 35.5 seconds for the query to execute on iteration.
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6.3.2 Case 1: Alluxio In-memory Storage with

Tiered Storage

The first experiment to include an in-memory storage layer. Commonly, Alluxio

is used in a tiered storage setup to offload the in-memory data when it becomes

full. In the following experiments, two setups have been explored, using the GPFS

as a secondary tier or the fast NVMe attached to each node.

Because reaching the maximum capacity configured for the Alluxio memory

tier will take more than one hour worth of data processing, its capacity has been

decreased to 8GB per node. This is a frequent configuration among clusters not

provisioned with high-density memory.

Apache Spark has been configured to not overwrite data, which is the default

behavior, and new RDDs are stored as new files. This approach was taken to

leave the query unaffected by the locking mechanism in Alluxio when blocks are

overwritten.

6.3.2.1 GPFS as a secondary tier

In this test, the same GPFS directory used in the Case 0 has been designated

as a secondary storage tier. To make sure Alluxio stays inside the quota limit of

the GPFS (100GB), it has been configured to allocate a maximum of 64GB of the

GPFS.

The time it takes for the query to analyze the updated data is reported in Figure

6.7. The data access and processing time stay within a similar range during the

whole execution.

Figure 6.7: Mean time to propagate an update.
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However, by observing the time individually we can observe the effects of the

eviction. Figure 6.8 illustrates the evolution of the processing time needed after

each update. It is clear that evictions have a consequence in performance. How-

ever, since the recently updated data stays always in the memory tier, the query

is affected by increasing a 34% the time it takes for an update to be detected.

However, since data accesses are performed at memory speed, this increase means

a delay of 700ms over the 2 seconds it took on average before evictions started.

Figure 6.8: Time for an updated RDD to be processed by the query.

On the other hand, the execution time of the updates is greatly affected as

shown in 6.9. When evictions start the time to store the new RDD is increased

notably as Alluxio moves the least recently accessed data to the GPFS. The in-

crease is smoothed by the fact that the eviction was configured with watermarks

in the range of [0.7,0.9]. Meaning that when the capacity of Alluxio is over 70%

evictions start until the 90% is reached when Alluxio blocks successive writes.
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Figure 6.9: Time to write a new RDD into Alluxio, backed by GPFS.

The elapsed time between the first and last query executed is 768 seconds.

During this period, a total of 34 queries finished, resulting in a throughput of

0.0455 queries/second.

6.3.3 NVMe as a secondary tier

The situation is completely different when using a secondary tier based on

fast storage such as a NVMe. The eviction takes place at the same moment as

in the previous experiment but the effect on the updates elapsed time is almost

imperceptible as shown in 6.10. The time oscillates slightly during the test but

when the eviction takes places the tendency is to stay stable at a similar value.
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Figure 6.10: Time to write a new RDD into Alluxio, backed by NVMe storage.

The time between the first query result and the last is 368 seconds. In-between

49 queries were performed, resulting in a throughput of 0.1332 queries/second

being accomplished. The time dedicated to performing the query is similar to

the previous experiment but with smaller variability since Alluxio alteration by

evicting blocks to the NVMe disk has been minimal compared to GPFS. Figure

6.11 shows the mean time needed to evaluate an updated RDD. It can be seen

that before evictions the time stays in a range. However, after evictions one step

took longer than the average due to Alluxio being slowed down by moving data.

When comparing the results with the experiment using the GPFS as secondary

storage, there is a noticeable difference but still processing times stay in a low

range between 2 and 3 seconds. Compared with the previous experiment where

only GPFS was used, these results are comforting if considering that the mean

time without Alluxio would be 29.70s compared to 2.6s or 2.1s obtained when

using GPFS and NVMe as secondary tiers respectively.
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Figure 6.11: Time for the query to evaluate an update.

6.3.4 Case 2: Alluxio in-memory storage

After observing the impact of tiered storage using different technologies, and

the slowdown they suppose on I/O intensive workloads, Alluxio has been setup to

provide a single layer storage based on RAM memory.

This experiment is designed to obtain a baseline of the performance obtained

in the best conditions, where no evictions occur and data is always read and write

from and to the memory tier.

For this test, the updated RDD are saved as new files with new namespaces,

as in previous experiments. Alluxio capacity has been left intact to 128GB, which

provides enough space for the execution to run for nearly one hour.

The average time for an update to be noticed from Spark is reported by Figure

6.12 measured as the time elapsed since the update confirmed the write into the

Alluxio staging area until the query logged the updated result.
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Figure 6.12: Mean time to propagate an update.

The Alluxio in-memory tier storage fills up during 6 minutes and 6 seconds

at a rate of 1.15 GB/s, until reaching 420GB of distributed data. Because the

application runs in 32 nodes, one of them being the master, in the end, each one

holds an average of 13.54GB.

On the other hand, Spark processes a total of 930.1GB as reported by the

History server. In average, each executor takes 1.9GB of input to the process,

meaning that the limit of 4GB of RAM per executor defined is adequate.

Because data is stored as new files, the memory usage grows quickly. Alluxio

has been setup to manage 128GB of RAM per node, meaning that after an hour

of the execution, the Alluxio memory tier will be full and evictions triggered.

However, the query is performed at intervals of more than 7 seconds as shown

in Figure 6.13, which is three times the time it takes to execute as seen in Figure

6.12.

Figure 6.13: Time between queries.

And observing the frequency by which the data is successfully updated in Figure

6.14 we can observe a correlation between the two frequencies.
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Figure 6.14: Time between updates complete.

6.3.5 Case 3: Alluxio in-memory staging with in-memory

blocks being updated

In this experiment, we feature the proposed architecture and evaluate the effects

of updating the data in the in-memory staging area, instead of creating new objects.

For this purpose, the data generation program has been replaced by the Python

script reported in 6.2.2. The data is being continuously updated in the staging

area by this external program while Apache Spark continuously obtains statistics

from the data. A schematic organization can be observed in Figure ??.

This mechanism provides continuous updates with a high frequency and smaller

granularity. Updates are performed at the Alluxio block level, corresponding to

an RDD slice. With this setup, 34388 updates are performed in a period of time

of 109.53s. This leaves an update frequency of 3ms, which compared to the Spark

job is increased by a factor of 2345x. However, if we compare the time needed

for an RDD to be completely updated, we obtain that every 1.58s in average all

the RDD slices are updated, which is slightly shorter than the frequency obtained

with Spark in previous experiments.
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Figure 6.15: Node organization used to evaluate the proposal.

Figure 6.16 reports the mean value of the distributed dataset during the exe-

cution. It is confronted with the mean value reported by the Spark query, which

graphically shows that the time it takes for the query to compute the mean value

of the dataset once it has been updated stays in the range of 2 to 5 seconds. It

is also relevant that despite the high update frequency the query is able to follow

the data changes and detect inflections, minimums, and maximums.
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Figure 6.16: Evolution of externally updated data analyzed from Spark.

To compute the time it takes for the prototype to detect an update, the period

between [12:48:28,12:49:22] illustrated in the figure 6.16 has been used. Before the

timestamp 12:48:28 there were blocks of data who hadn’t been updated yet, and

thus, the preceding period is considered a warming up phase.

On the other hand, the query results reported after 12:49:22 are influenced by

nodes with at least one block of data no longer updated. Consequently, the time

after this timestep has also been discarded to compute the elapsed time between

an updated until it is processed by the query.

These measurements are reported in 6.17, where the number of queries per-

formed under these circumstances is reduced to 26 from the 50 original measure-

ments. It is clear that the time needed to propagate an update to the query is

similar to the previous experiments, where data access were also performed at

memory speed.
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Figure 6.17: Time for the prototype to detect and process and update.

However, when we analyze the frequency at which queries are executed, shown

in Figure 6.18, we find that the time has been notably reduced to 2 seconds com-

pared to other configurations. The explanation resides in that Alluxio doesn’t

need to allocate space for new blocks and handle the addition of new files. As a

consequence, the capacity of Alluxio stays constant at 99.79%, with 8.4GB out of

3.86TB of memory space used. Because in this scenario the query is independent

of the updates, all 50 measurements have been used.

Figure 6.18: Time between query results.

6.4 Experimentation summary

In this section results from the different setups are summarized and discussed.

Figure 6.19 reports the most relevant aspects of each configuration.
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Figure 6.19: Summary of the experimentation results.

Firstly, the time elapsed since an RDD is updated until is analyzed by the

query is kept constant in situations where the data is read at memory speed, and

Alluxio is not being slowed down by a slow secondary tier. This is, using the GPFS

in any configuration results in slower data accesses due to the slower throughput

or Alluxio being saturated by evicting data to a GPFS secondary tier.

The second relevant characteristic is the memory usage. Only when updates

were performed to the Alluxio data blocks the memory usage was kept constant.

In all the other configurations growth linearly at 4GB/s, which is unsustainable

for long running executions unless a garbage collection mechanism is configured.

Finally, one of the most relevant findings is the number of queries performed

successfully. Tests representing current deployments obtained a throughput of

0.1339 queries/second at best. However, the proposed prototype was able to deliver

0.4717 queries/second, representing a speedup of 10x compared to storing data into

GPFS or 3x to storing and reading data from the Alluxio memory tier.

The comparison between the different configurations tested during the experi-

mentation is illustrated in Figure 6.20. For each configuration, the time between

each query has been computed and displayed. It clearly shows the difference in
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performance when using different storage technologies and strategies.

Figure 6.20: Frequency of the query execution for the different configurations.



69

Chapter 7

Conclusions

The realization of this work has served to evaluate the potential of introducing

an in-memory data staging area for Big data. This field is populated with a wide

variety of projects, and selecting the best components for a Big data infrastructure

is not trivial.

The survey on current Big data projects highlighted a shift to stream compu-

tation in the recent years. However, it also revealed the pending developments to

integrate stream processing with current in-memory staging frameworks.

To evaluate an in-memory staging area with frequent updates a prototype has

been proposed. The objective was to test a prototype that with minor modifica-

tions should deliver massive performance to the in-memory staging area provided

by Alluxio.

To demonstrate the viability of the proposal a reduced prototype has been

tested and confronted to current deployments. It featured Apache Spark as the

processing engine and an in-memory staging area provided by Alluxio.

Experimentation showed the prototype obtained a speedup of 10x compared to

designating GPFS as the storage layer for Spark. But most importantly, accessing

the same object stored in Alluxio, but updated externally provided a 3x speedup

compared to reading and writing a new object in each step.

From a numerical perspective, the prototype was able to deliver a through-

put of 0.4717 queries/second compared to 0.1339 queries/second with the current

deployments of Apache Spark and Alluxio.

In part, the difference in performance is explained by different factors. First,
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by updating the data blocks there was no need to allocate new space. Secondly,

since the same object was reused, there was no need to register new objects. And

finally, when accessing an object that is being written, the reader is blocked until

the object is completely written by all workers. However, by updating the blocks

individually Alluxio was accessing always the most up-to-date information stored

without applying locking mechanisms.

Lastly, by updating the in-memory data instead of creating new objects, the

prototype was able to keep the Alluxio capacity stable, while the other deployments

failed after an amount of time when the disk or memory space available were

exceeded or suffered the penalty of having to evict data to secondary storage

layers.



71

Chapter 8

Future research

This project verified the benefits of implementing an in-memory staging area

based on Alluxio. However, to accomplish the objective data updates have been

applied by an external program to the in-memory blocks handled by Alluxio.

Therefore, it will be desirable to implement this mechanism as part of Alluxio.

The benefits obtained will consist of enabling updates on datasets that alter the

block size, a restriction identified in this project, that limits the number of elements

and their size during updates.

Secondly, to develop this project Apache Spark RDDs have been used. Future

research on supporting Spark datasets and dataframes will contribute on integra-

tion Apache Spark Streams with Alluxio efficiently and with a reduced memory

usage. With this purpose, implementing a custom connector for Alluxio and Spark

that takes advantage of the Alluxio future updates will be necessary.

Finally, this project has been evaluated in a cluster by allocating 32 high-density

memory nodes. Spark and Alluxio were responsible for handling a constant flow

of 4GB/s wort of data representing nearly 450M records/s. Further testing with

workloads that increased the required space and the transfer could reveal relevant

performance trends.
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