
Universal, fast method for iPad forensics imaging via USB adapter

Luis Gómez-Miralles
Computer forensics and electronic evidence investigator

INCIDE - Investigacion Digital, S.L.
Valencia, Spain
pope@lgomez.es

Joan Arnedo-Moreno
Estudis d’Informàtica, Multimèdia i Telecomunicació

Universitat Oberta de Catalunya
Barcelona, Spain
jarnedo@uoc.edu

Abstract

The Apple iPad is a popular tablet device presented
by Apple in early 2010. The idiosyncracies of this new
portable device and the kind of data it may store open
new opportunities in the field of computer forensics. Given
that its design, both internal and external, is very similar
to the iPhone, the current easiest way to obtain a forensic
image is to install an ssh server and some tools, dump its
internal storage and transfer it to a remote host via wireless
networking. This approach may require up to 20 hours. In
this paper, we present a novel approach that takes advantage
of an undocumented feature so it is possible to use a cheap
iPad accessory, the Camera Connection Kit, to image the
disk to an external hard drive attached via USB connection,
greatly reducing the required time.
Keywords: forensics, iPad, cybercrime, digital investigation,
Apple.

1. Introduction

Portable devices have become a very important technol-
ogy in our society, allowing access to computing resources
or services in an ubiquitous manner. On that regard, mobile
phones have become the clear spearhead, undergoing a great
transformation in the last years, slowly becoming small
computers that can be conveniently carried in our pockets
and managed with one hand. However, as user require-
ments start including new functionalities beyond those that
a mobile phone can realistically offer, advanced portable
devices have been developed in order to fulfill them. Such
devices try to reach a compromise between a high degree of
portability, usability and the ability to provide such advanced
functionalities (for example, being able to read or process
documents).

The latest contender in the field of embedded portable
devices is the Apple iPad, a tablet computer which tries
to take advantage of its ancestor’s success, the iPhone. It
was announced by Apple in January 2010 and launched
in the U.S.A. and Europe between April and May 2010.
After 80 days in the market, 3 million units had been
sold [1]. Given its popularity, it becomes evident that as

such devices become widespread, they will also become
more common and relevant as sources of evidence from a
computer forensics standpoint, providing data about their
users. Such data can become very important in cases of
crime investigation, where it can be used as evidence in
Court or can provide valuable clues to investigators. Since
advanced portable devices are usually closed embedded
systems with their own idiosyncracies, not actually being
fully fledged PCs, forensic data acquisition presents some
interesting challenges. That is specially relevant when it
is necessary to use non-invasive methods, maintaining the
device in the same state (or as similar as possible) as the
one it was before the analysis began.

Currently, the easiest method to obtain a forensic image
of an iPad device (which can also be basically applied to an
iPhone) is to install an ssh server and some tools, retrieve its
internal storage contents and transfer the data to a remote
host via wireless networking. This approach can take up
to 20 hours. In this paper, we present a different approach
which relies on a local USB connection with help of a cheap
and easily available peripheral, the Camera Connection Kit.
This approach greatly reduces the time needed to create a
system image. Furthermore, as an additional contribution,
the presented keeps a compromise in the amount data which
is modified during the acquisition process.

The paper is structured as follows. Section 2 provides
an overview of the iPad architecture, focusing on those
characteristics specially relevant from a forensic analysis
standpoint. In Section 3, a literature review of the current
state of iPhone/iPad forensics is presented. The proposed
forensic data acquisition method is described in Section
4. Concluding the paper, Section 5 summarizes the paper
contributions and outlines further work.

2. iPad architecture overview

From the external point of view, the iPad is basically
a big (24x19 cm.) iPhone with a 9.7” screen, providing a
resolution of 1024x768. While its internals are very similar
to those of its antecesor, the iPad’s bigger form factor
makes it suitable for longer periods of use, which has
motivated the apparition of lots of different applications of

every kind. Therefore, the iPad is able to perform tasks
perviously reserved to common computers or, up to some
point, netbooks.

2.1. Main features

The basic iPad internals are:
• Processor: A custom Apple A4 ARM processor based

on a single-core Cortex-A8, running at a 1 GHz.
• Volatile storage: 256 MB DRAM.
• Non-volatile storage: 16, 32 or 64 GB solid state

storage drive.
• Wireless connectivity: 802.11 a/b/g/n and Bluetooth

2.1, the same as every iPhone.
• In addition, the 3G model features an A-GPS (As-

sisted GPS), and hardware for communicating over
UMTS/HSDPA (820, 1900 and 2100 MHz) and
GSM/EDGE (850, 900, 1800 and 1900 MHz.

In the process described in this paper, we will use the
wireless (802.11) network, and the iPad “Dock” connector,
described in the next section.

2.2. Connectors and buttons

The iPad connectors and buttons are very similar to the
iPhone’s. When placed over the short edge with the round
button in the center, we find:

• Top left: a 3.5” jack capable of functioning simultane-
ously for several audio functionalities.

• Top right: “Lock” button.
• Right edge, near the top: volume and mute controls.

In the previous iOS 3 branch, the mute button was
a rotation lock switch instead; this function has since
been moved to a ‘software switch’ in the device’s
graphical interface.

• Bottom center, frontal face: round “Home” button.
• Bottom center, in the edge (below the “Home” button):

Apple standard 30-pin “Dock” connector, the same used
in every iPhone and most iPods.

.
Figure 1 shows the function of each button. Note that the

“Lock” button performs several functions: when the device
is off, it will turn it on; when the device is on, a short press
will put the device to sleep or wake it form sleep, and a
long press will show a dialogue to turn it off. For clarity,
in this paper we will keep referring to this button as the
“Lock” button. Button configuration is important since, as
will be explained in Section 4.1.1, it may be necessary to put
the device in DFU mode (‘Download Firmware Update’) in
order to setup the device for forensic imaging. When this is
needed, installed software usually instructs the user to press
a particular combination of these buttons to have the device
enter DFU mode.

Figure 1. iPad button configuration (iOS 4 and higher).

2.3. Partition scheme

As noted by Zdziarski [2], all devices belonging to the
iPhone family contain two partitions:

1) A huge user data partition, holding all extra applica-
tions installed as well as all the user’s data.

2) A small system partition containing iOS and the basic
applications.

From a forensics standpoint, as far as the user data
partition is concerned, some iPad applications which may
hold relevant data include enterprise or office software,
such as QuickOffice Connect Mobile Suite [3] or Apple’s
iWork suite [4], [5]. They can all contain text documents
or spreadsheets, which are prone to including sensitive or
financial information. Although similar applications existed
in the iPhone, allowing for direct document editing with
no need for an external computer, the iPad’s form factor
will no doubt boost the existence of documents stored only
within the device (and not, for instance, in the suspect’s main
computer), being edited here and never travelling outside
the iPad (with the possible exception of device backups
performed by iTunes).

Another possible source of information lies within Apple’s
AirPrint framework released in November 2010 as a feature
of iOS 4.2 [6], which provides native printing capabilities to
the iPhone and iPad. But long before AirPrint existed, other
applications such as PrintCentral [7], already allowed the
user to send most document types to a remote printer (con-
nected to a computer with the appropriate server software).
These applications’ disk caches are likely to hold relevant
information such as copies of printed documents.

The system partition contains the base iOS software that
comes bundled inside every iOS software update (which
explains why they weight hundreds of megabytes). This
includes the core operating system and graphical user in-
terface, as well as the standard set of bundled applications
such as: Safari, Mail, Calendar, iPod, etc. Note that only

the application binaries themselves lie within this partition,
whereas the relevant data (for instance, user mail) is stored
in the data partition.

3. Current work on IPad forensics

A very basic approach to acquiring user data is connecting
the device via the standard USB cable to a computer running
iTunes, Apple’s multimedia player which is in charge of
synchronizing content to the device. Using its AFC protocol
(Apple File Connect), iTunes syncs existing information
(contacts, calendar, email accounts, apps...) and can even
retrieve a complete backup of the device; however this
presents two problems:

1) The device needs to be correctly paired with the iTunes
software in order to sync.

2) Even if the investigator has access to an iTunes
backup of the device (say, found in the suspect’s main
computer), it will not contain unallocated space, from
which deleted data can be recovered.

Consequently, more sophisticated methods are required.
However, the iPad is distributed as a closed device, meaning
that access to its internals is limited and only a those ap-
plications approved by Apple may be installed or executed.
With these set of restrictions in place, it is extremely difficult
to acquire any kind of meaningful forensic data. Fortunately,
even though the iPad is a very new device, its internal
architecture is very similar to the iPhone’s and forensic
approaches may be easily ported to the iPad.

On July 6th 2007, just one week after the iPhone was
launched, George Hotz announced [8] the existence of a
method to get a full, interactive shell. This was the first
step towards bypassing Apple’s restrictions on their devices,
making it possible to execute any program and not only
those approved by Apple; a process that has been named
jailbreaking. In other mobile platforms, such as those run-
ning Google’s Android operating system, a similar process
exists which is known as rooting. Vendors usually dislike
this technique, although in most countries it is legal or at
least not definitely illegal. If you ever need to defend this
in court, you can do a brief explanation of why jailbreaking
the device: to get full access to the system, and thus to the
information stored in it, which is crucial in criminal cases
which require forensic analysis of these kind of devices.

The jailbreaking process modifies the system partition
without alteration of the data partition, which means that
it does not alter the user’s data, a very important requisite.
Even if we assume that some current or future jailbreak
methods will modify the user data partition, we can still
obtain plenty of useful information, as long as we know
what alterations we are responsible for. Ever since their de-
velopment, the jailbreak tools have been updated to support
every new iPhone model and every new iOS version. This

method may also be applied to an iPad and, in fact, all the
two major forensic approaches in order to recover a complete
image from the device are ultimately based on jailbreaking.

The main approach was proposed by Zdziarski [2], who
noted that the iPhone can communicate across several
different mediums, including the serial port, 802.11 Wi-Fi,
and Bluetooth. Due to the limitations of Bluetooth on the
iPhone, the two preferred methods are via the serial port
and Wi-Fi. He proposed a basic method for obtaining a
forensic image of the iPhone without tampering the user data
partition by jailbreaking the device and using SSH access
and the dd and netcat standard UNIX tools, which by that
time had already been ported as a part of the growing iPhone
jailbreaking community. Similar methods are explored by
Rabaiotti [9] against a Microsoft Xbox. There was not,
however, a known, public way to communicate with the
device via its serial port, so Zdziarski had to send the
forensic image via the device Wi-Fi interface, which is quite
slow.

Alternate approaches are provided by some forensics
software vendors [10], [11], which have developed solutions
that use rather uncommon techniques to get a dump of
the solid state storage drive. This is often accomplished by
using exploits against more or less known bugs on specific
iOS versions in order to execute arbitrary unapproved code,
which is actually the same jailbreakers do in order to free
their devices. However, these vendors do not need to install
a complete set of tools in the device. Instead, they tend to
upload a tiny, small-footprint software agent which ideally
will take control of the system, dump the solid state storage
drive through the serial port (dock connector), and will then
reboot the device without copying any data to the iPad
internal storage.

These methods offers some advantages over the jailbreak
approach, being a more straightforward process, simpler to
the investigator and leaving little or no footprint on the
acquired system. However, it also has some weak points.

First and most important, any propietary method ulti-
mately makes use of an exploit against vulnerabilities of
the iOS version of the device, because this is the only
way of take such control of the device bypassing every
vendor restriction. With every iOS update (usually every
few months, downloaded via iTunes), the forensics software
must be updated, usually because bugs exploited in previous
versions are fixed in the newer version; but even if an
exploit still works, exploitation parameters such as memory
addresses are very likely to change.

Jansen [12] identified “the latency in coverage of newly
available phone models by forensic tools” as one of the
problems for forensic specialists working with mobile de-
vices. Jailbreaking in the iPad has been moving in a time-
frame of barely 1-5 days following iOS updates. We consider
very realistic that at some point in the near future, jailbreak
updates will be available days or even weeks before some

particular forensics software products get the same needed
updates.

In addition, many of these proprietary methods are closed
and lack any public documentation. Therefore, they are
difficult to audit and it cannot be guaranteed that no footprint
is actually left on the device. Knowing the process the device
is going through, and the precise alterations that this process
causes to the device, is a good practice and very important
to the forensic investigator.

Therefore, even though some of the proprietary methods
may be suitable for the analysis of the device under common
circumstances, vendors of such products may fail to release
in time an update to support newer iOS versions; they may
even not release it at all if, say, the product is discontinued.

Our approach offers what appears to be the best possible
throughput, and this is acomplished with a generic UNIX
approach via jailbreaking, which is likely to live longer than
most iPad forensics software products, thus guaranteeing that
it can be applied in future iOS versions.

4. Forensic data acquisition on iPad devices

In this chapter we will describe our method for fast iPad
imaging via a USB connection. The method is divided in
two general phases: device setup and imaging. Each phase is
also divided in several substeps which must be sequentially
followed. We will not provide detailed instructions about
how to jailbreak an iPad. The description will focus on our
technique to recover an image of user data from an already
jailbroken iPad.

4.1. Device setup

As mentioned in Section 3, before any forensic analysis
may be attempted, a special device setup is required in order
to bypass the access restrictions installed by the manufac-
turer. Once this phase is complete, low level access to the
device is actually possible. In addition, it is necessary to
install the extra packages needed for our proposed imaging
approach.

4.1.1. Jailbreak the device. The actual way to perform
the jailbreak varies depending on the iOS version installed
on the device. An iPad running iOS 3.2.1 (the initial iOS
version preinstalled in most iPads) can be jailbroken by
just browsing to http://www.jailbreakme.com, a
website that exploits a known vulnerability in Safari to take
control of the system. The exploits themselves and related
documentation can be found at [13]. For a complete, up-
to-date chart about jailbreaking tools for each iOS version,
refer to [14].

Many jailbreaking tools (redsn0w, PwnageTool, etc)
will require the user to put the device into DFU mode with a
combination of presses of the “Lock” and “Home” buttons.

When this is needed, the software will give the user the
necessary instructions.

Should we find a device with a recent iOS version for
which no jailbreak procedure exists, it could be acceptable to
downgrade to the latest jailbreakable version, although this
should be done only as a last resort, and always documenting
the steps taken. This would rarely succeed, however, because
Apple does not allow to downgrade a device’s iOS version
after a newer version has been available for some time. There
are some workarounds for this but they are not of use in our
scenario because they require that we have previously saved
some crucial data before installing its present iOS version.
Anyway, it is very unlikely that we hit a non-jailbreakable
iOS. Take, for instance, iOS 4.2.1 (the first iOS 4 release
for the iPad): it was released in November 22 2010, and the
appropriate tool for jailbreaking (in that case redsn0w) was
released the next day [15].

Once a new iOS version has been released, the first
jailbreak methods will probably be tethered: a tethered
jailbreak means that it is only effective as long as the
operating system is running. The moment it is rebooted (not
when the device is locked), the jailbreak is lost, meaning
that two things will happen temporarily until the device
is rebooted again into a tethered jailbreak state with the
appropriate tool: (1) any jailbreak software installed will
not work; and (2) some internal applications (for instance
the Safari web browser) may not work, or in the worst case,
the whole device might not work at all. We state again that
this is only a temporary state, until the device is jailbroken
again. It would be acceptable to use a tethered jailbreak for
imaging purposes, and in fact part of the tests performed in
this paper have taken place over an iPad running iOS 4.2.1,
for which tethered jailbreak is the only jailbreak method
available at this time.

It is important to note that jailbreaking a device does not
mean carrier-unlocking it. Jailbreak is just a precondition
for carrier unlocking. Our proposal needs not perform carrier
unlocking, and in fact this is rarely needed in the iPad given
that it is usually sold carrier-free.

4.1.2. Charge the battery. It may seem obvious, but it is
necessary to have the battery charged to, at least, about 20%.
This is because during the imaging process, the iPad’s dock
connector will be used for USB data transfer, so it will not
be possible to plug the device to a power point.

4.1.3. Run Cydia and upgrade available packages.
After the device has been jailbroken, a new application
labeled Cydia [16] will appear in the home screen. This
is the software manager that allows installing software not
approved by Apple.

When run for the first time, Cydia initializes the device’s
filesystem and exits. In the next execution, it presents a Who
are you? prompt, offering three choices; we must choose

‘Developer (no filters)’, as it offers the widest range of
software. Afterwards, if there are available updates to install,
it is recommended to perform a ‘Complete upgrade’. The
device will then restart. We re-open Cydia and, if asked for
upgrades, we repeat the process.

4.1.4. Install required software packages. Once Cydia has
finished upgrading itself, we use the ‘Search’ function in
Cydia to find and install the following packages:

• openssh. This package contains the SSH server that we
will use to access the iPad.

• coreutils. This package contains the split command,
which is needed due to reasons that will be exposed
later.

The most important tool for this procedure, dd, need not
be installed, as it is contained inside the essential coreutils-
bin package, which is installed by default as part of the
jailbreaking process.

4.1.5. Network and auto-lock settings. It is necessary to
connect the iPad to a wireless network. Another computer
in that network will be used to access the iPad via SSH.

Communication between the computer and the iPad will
be over SSH, and thus, encrypted. However, we strongly
advise to use encryption in the wireless network protocol,
and ideally, to use an isolated network for the computer and
the iPad only. This is because there is a small window of
time in which the device will be accessible with default pass-
words. There is at least one known worm which penetrates
jailbroken iOS devices using these default credentials [17],
although nowadays it is nearly impossible to find that code
in the wild.

To connect to a wireless network we use the relevant
section inside the ‘Settings’ application. If no wireless
network is available, a laptop can be used to create an ad-
hoc network and have the iPad join it. The blue button next
to the network name reveals the IP address in use (usually
acquired via DHCP) and allows the user to manually specify
an IP address if needed. The IP address must be noted, as it
will be needed later for accessing the iPad from the remote
computer.

Still in the ‘Settings’ application, section ‘General’, the
‘Auto-Lock’ option must be set to ‘Never’. This will prevent
the device from going into sleep mode while the forensic
image is being generated, which could interrupt the process.
When not in use, the device should be locked (using the
Lock button; see section 2) in order to save battery.

We have not tested whether the multitasking capabilities
and persistent Wi-Fi in iOS 4 would allow the imaging
process to take place while the device is locked. Anyway,
given that imaging is a long process that can take more
than hour in the biggest devices, we recommend to keep the
device awake all the time.

Local access approach. We found at least two ways to apply
this method without using a remote computer, although both
of them introduce additional complications to the process.

On one hand, it may be possible to install MobileTerminal
instead of openssh, and use the terminal application in the
iPad itself to mount the hard drive and image to it. However,
at the time of this writing, MobileTerminal does not work
in iOS versions 4.x, and this software has a history of long
delays before being updated to support newer iOS versions.

On the other hand, another approach is to install openssh
and run an SSH client on the iPad itself. There are many
such applications in Apple’s App Store, although the fact of
keeping this application running during the image generation
is likely to alter data and will possibly corrupt the image.
Thus, we prefer to use a remote computer and leave the iPad
as untouched as possible. Remounting the partition read-only
is not a possible solution in this case, as will be explained
in Section 4.2.1.

4.2. Device imaging

Once the device is connected to a wireless network,
another computer in that same network is used to connect
to the iPad via SSH. Using this connection, it is possible
to remotely issue commands to the device to initiate the
imaging process.

At this point the iPad is accessible via the standard pass-
word alpine, which works for both the standard mobile
user as well as for the root user, which has full access to
the device. The correct way to proceed would be to access
the iPad via SSH as the root user, and immediately change
its password and the password of the mobile user account,
using the passwd command.

4.2.1. Mounting a USB hard drive. In this step we will
use Apple’s Camera Connection Kit for the iPad [18] in
order to access an external USB hard drive. According to
Apple, “the iPad Camera Connection Kit gives you two
ways to import photos and videos from a digital camera:
using your camera’s USB cable or directly from an SD
card” [18]. Thus, it consists of two adapters, one of them
being a SD card reader, and the other offering a USB female
connector; both of these adapters can plug (one at a time)
to the iPad’s dock connector, placed in the base, below the
“Home” button.

Initial vendor information suggested that the USB adapter
only uses the PTP protocol [19] to access the images stored
in a camera, and that an actual camera, with its camera-to-
USB cable, should be plugged into this connector for the
adapter to import the pictures. When this is done, the Photo
application launches and allows the user to transfer photos
and videos from the connected media to the iPad’s internal
memory.

We have found, however, that the iPad implements the
USB mass storage device class protocol. Thus, the iPad may
mount the disk inserted (regardless of whether it is a hard
or solid state storage drive) looking for a /DCIM directory
as per CIPA DCF standard [20]. If this folder exists, the
Photo application will open, allowing the user to import
contents; if the folder is not found, the device is unmounted
and ignored. We have exploited this undocumented feature
to manually mount an external USB hard drive with the
appropriate parameters.

As for the filesystems supported, we have been success-
ful in mounting FAT and HFS+ (the standard Macintosh
filesystem, which is also the one used for the iPad internal
storage). An important issue for Windows users is that their
operating system will refuse to format a drive larger than
32 GB as FAT [21], although it can normally mount much
bigger FAT partitions and work with them flawlessly. These
users will need to use externals tools such as Fat32Format
[22]. Mac and Linux users will have no trouble with their
standard Disk Utility and mkfs.msdos tools, respectively.

When we have connected the USB external drive to the
iPad (see Figure 2), we can check its presence within the
SSH session by running the folowing command:

ls /dev/disk1

Figure 2. iPad connection to external hard drive via
Camera Connection Kit.

The iPad internal storage disk is assigned the node name
/dev/disk0, so the presence of a /dev/disk1 implies
that the newly connected hard drive has been correctly
recognized. If we get an error and there is no /dev/disk1,
the drive has not been recognized. In our tests, this was
usually accompanied by a dialog in the screen complaining
that “this device requires too much power”, when trying
to connect certain big solid state storage drives and some
portable hard drives that take power from USB only. Under

iOS version 4 the problem gets bigger because the USB port
will no longer emit 100 mA (as it did under iOS 3.x) but
only about 20 mA [23]. We found that best results were
achieved using a full-size external hard-drive with its own
power adapter, or connecting the drive to a powered USB
hub.

This command mounts the first partition of the external
drive in the /mnt directory of the device:

mount -t msdos /dev/disk1s1 /mnt

We were equally able to mount HFS+ partitions using
the -t hfs parameter. Due to the Macintosh EFI support,
finding the correct partition name for HFS-formatted disks
can be tricky. To view the full list of available partitions,
we used the command ls /dev/disk1*, and we tried to
mount all of them until we succeeded.

Zdziarski [2] recommended immediately remounting
the data partition in read-only mode (umount -f
/private/var; mount -r /private/var) prior
to beginning the actual imaging. However, in our tests, we
found that in both iOS 3 and iOS 4 the system halted if
the partition was unmounted; and forcing its remount with
mount -fru was not supported either.

It must be noted that imaging a mounted partition may
alter the integrity of the filesystem contained in the resulting
image. In fact we found out that it is possible to end up with
images that are unmountable. In order to reduce this risk, no
other activity should be taking place in the iPad (neither via
the touch screen, nor through the network) while imaging.

Once the disk has been mounted, the command df -h
/mnt can be used to show its free space and confirm that
the drive had been correctly recognized.

4.2.2. Obtaining the forensic image. At this point the
working directory was changed to that where the external
drive was mounted and the imaging process started with
the command:

dd if=/dev/rdisk0s2 bs=32M | split -b
4000m - part-

The full command can be explained as follows:

• dd - The command dd is invoked,
• if=/dev/rdisk0s2 - Taking as Input File (i.e.

reading from) the device rdisk0s2, which corre-
sponds to the second slice of the iPad’s internal stor-
age, containing the data partition. Due to the partition
scheme used in Mac OS and iOS, it is equally accept-
able to image /dev/rdisk0s2s1.

• bs=32M - Using a block size of 32 MB; actually we
found that the process works, with similar throughput,
for values of 1M and multiples of it.

• | split - Instead of writing all these data to a
huge file in disk, the data is split.

• -b 4000m - Split file size, into smaller files of 4 GB
(4000 MB) each.

• - This dash means the input content to be split is
coming from the previous command, in this case dd.

• part- - And this is prepended to the name of the
output files. The suffix will be two letters, starting
with aa, as this is the default behavior for the split
command.

As a result, several 4 GB chunks named part-aa,
part-ab, etc. were generated. Splitting the image in
smaller 4 GB files would not be necessary when imaging
to a HFS-formatted (Mac) drive.

When finished, the target drive must be unmounted before
disconnecting it from the iPad. This can be done by either
turning the iPad off or unmounting the drive by exiting the
/mnt folder and running umount /mnt.

4.2.3. Reconstructing the image. In order to obtain a full
image that can be processed using standard tools, all the
fragments must be concatenated. This can be done with a
variety of tools in different systems, but a simple command
that will probably work in Mac, Linux, and Windows, would
be:
cat part-* > ipad.dmg

The resulting image can then be treated by the methods
described in [2] to recover data such as: emails, address book
contacts, pictures and videos, Google Maps data, and so on.

As far as image reconstruction is concerned, it must be
noted that, starting with iOS version 4, Apple introduced
a layer of hardware encryption services [24], which, if
activated in the device, will result in partial encryption of
the imaged data. Altogether with this, we found a new
protect option for the mount command, which is by de-
fault applied to the data partition. We have failed to find any
documentation about this parameter, although interestingly
enough, the string protect also appears inside the Mac OS
X mount command. Nevertheless, the inclusion of this iOS
version into the iPad is still very recent at the time of this
writing, so we didn’t have much time to experiment with it.

In this scenario, imaging the partition is possible although
the resulting image may not be mountable. We think that this
is probably due to a layer of encryption, which could be
circumvented if the keys are retrieved from the live system
after gaining SSH access. Still, carving tools such as Scalpel
[25] may be able to recover certain file types.

If the device is just passcode-protected, jailbreaking
and accessing via SSH is equally possible. The sim-
plest jailbreaking methods working in user-land, such as
jailbreakme.com will not work given that we are un-
able to obtain initial access to the device, but other methods
(redsn0w, Pwnage Tool...) could work.

4.3. Performance Results

We performed several experiments measuring the speed
of our imaging process proposal via USB connection using
the Camera Connection Kit. As can be seen in Figure 3,
the process offers a measured throughput of 15.9 MB/s
or 0.95 GB/min. This was the highest transfer rate we
could achieve, always using common serial-ATA hard drives
connected through standard USB-to-SATA adapters. The
Figure represents the output of imaging a 64 GB iPad
running iOS 4.2.1 to a Seagate ST3500418AS drive.

In comparison, we tested the Zdziarski method over an ad-
hoc 802.11n network operating at its maximum theoretical
rate (108 Mbps), and we obtained a throughput of barely
1 MB/s, which means that a 16 GB iPad would be imaged
in 5 hours and a 64 GB one would require about 20 hours.
Our USB approach results in a speed boost of 15x over
traditional Wi-Fi imaging.

Forensics software vendors do not seem to release speci-
fications about the imaging times needed by their methods;
we could only find that information about Jonathan Zdziarski
who states [26] about “the latest version of the Zdziarski
method, which is used in the automated tools available
free to law enforcement agencies worldwide”: “about 15-30
minutes is all it takes, regardless of whether you’re imaging
a 4GB iPhone or a 32GB iPhone 3G[s]”. Assuming he is
able to image 32 GB in ‘about 30 minutes’, we think we
have come to the same limit. This is probably the maximum
transfer rate of the device’s serial port, although it is hard to
tell whether this is a physical limit of the port or a software
matter that could be improved in future iOS versions.

Figure 3. Throughput of system imaging a 64 GB iPad.

5. Conclusions and Future Work

In this paper, we have presented a novel approach that
takes advantage of a hidden feature in the iPad’s USB
adapter so it is possible to use a cheap, universally available
$30 accessory to image the device directly to a USB drive

attached to it. The main contribution of this approach is
resulting speed boost to the process, which greatly outpaces
existing traditional Wi-Fi approaches, becoming one of the
fastest ways to obtain a complete forensic dump of Apple’s
iPad. In fact, we have apparently reached the speed limit of
the iPad’s dock connector.

Up to this day, similar transfer rates could only be
achieved using commercial tools which are paid and/or re-
stricted to law enforcement agencies, opaque to the scientific
community and undocumented. Therefore, it is difficult to
assess what is really happening during the imaging process
and whether the original data is being somehow altered.

As far as iPad forensics is concerned, a fast imaging
method opens some interesting research lines for the future.
The ones we find most interesting are live memory dump
of the device, study of the iOS 4 encryption system, an
autonomous imaging from the iPad to the connected USB
drive eliminating the need of a network and a remote
computer and analyzing of the forensic artifacts left by the
AirPrint subsystem.

Acknowledgments

This work was partially supported by the Spanish MCYT and the
FEDER funds under grant TSI2007-65406-C03-03 E-AEGIS and
CONSOLIDER CSD2007-00004 ”ARES”, funded by the Spanish
Ministry of Science and Education.

References

[1] InformationWeek, “iPad is top selling tech gadget ever”,
2010, http://www.informationweek.com/showArticle.jhtml?
articleID=227700347.

[2] Jonathan Zdziarski, iPhone Forensics: Recovering Evidence,
Personal Data, and Corporate Assets, O’Reilly, 2008.

[3] Quickoffice Inc., “Quickoffice Connect Mobile Suite for iPad
on the iTunes App Store”, 2010, http://itunes.apple.com/us/
app/quickoffice-connect-mobile/id376212724.

[4] Apple Computer Inc, “Pages for iPad on the iTunes
App Store”, 2010, http://itunes.apple.com/us/app/pages/
id361309726.

[5] Apple Computer Inc, “Numbers for iPad on the iTunes
App Store”, 2010, http://itunes.apple.com/us/app/numbers/
id361304891.

[6] Apple Computer Inc., “Apple’s AirPrint Wireless Print-
ing for iPad, iPhone and iPod touch Coming to Users in
November”, 2010, http://www.apple.com/pr/library/2010/09/
15airprint.html.

[7] EuroSmartz Ltd., “PrintCentral for iPad on the iTunes
App Store”, 2010, http://itunes.apple.com/us/app/
printcentral-for-ipad/id366020849.

[8] George Hotz, “iPhone serial hacked, full interactive shell”,
2007, http://www.hackint0sh.org/f127/1408.htm.

[9] J.R. Rabaiotti and C.J. Hargreaves, “Using a software
exploit to image RAM on an embedded system ”, Digital
Investigation, vol. 6, pp. 95–103, 2010.

[10] Katana Forensics, “Lantern”, http://katanaforensics.com/
use-our-tools/lantern/.

[11] Forensic Telecommunications Services Ltd., “iXAM - Ad-
vanced iPhone Forensics Imaging Software”, http://www.
ixam-forensics.com/.

[12] Moenner L. Jansen W, Delaitre A, “Overcoming impediments
to cell phone forensics”, in In Proceedings of the 41st Annual
Hawaii International Conference on System Sciences. 2008,
pp. 483 – 483, IEEE CSP.

[13] Comex, “Comex ‘star’ GIT repository”, 2010, http://github.
com/comex/star.

[14] “Jailbreak Matrix”, 2010, http://www.jailbreakmatrix.com/
iPhone-iTouch-Jailbreak.

[15] iPhone Dev Team, “Thanksgiving with Apple”,
2010, http://blog.iphone-dev.org/post/1652053923/
thanksgiving-with-apple.

[16] Jay Freeman ‘Saurik’, “Bringing Debian APT to the iPhone”,
2008, http://www.saurik.com/id/1.

[17] Sophos Security, “First iPhone worm discovered
- ikee changes wallpaper to Rick Astley photo”,
2009, http://nakedsecurity.sophos.com/2009/11/08/
iphone-worm-discovered-wallpaper-rick-astley-photo/.

[18] Apple Computer Inc, “Apple iPad Camera Connection Kit”,
2010, http://store.apple.com/us/product/MC531ZM/A.

[19] International Organization for Standarization (ISO), “ISO
15740:2008 – Electronic still picture imaging – Picture trans-
fer protocol (PTP) for digital still photography devices ”,
2008.

[20] Camera & Imaging Products Association, “Design rule for
Camera File system: DCF version 2.0”, 2010.

[21] Microsoft Corp, “Limitations of the FAT32 File System
in Windows XP”, 2007, http://support.microsoft.com/kb/
314463/.

[22] Ridgecrop Consultants Ltd., “Fat32Format”, 2009, http://
www.ridgecrop.demon.co.uk/index.htm?fat32format.htm.

[23] 9to5 Mac, “iOS 4.2 emits less USB
power on iPad, Camera Connection Kit crip-
pled?”, 2010, http://www.9to5mac.com/40091/
ios-4-2-emits-less-usb-power-on-ipad-camera-connection-kit-crippled.

[24] Apple Computer Inc, “iOS 4: Understanding data protection”,
2010, http://support.apple.com/kb/HT4175.

[25] LLC Digital Forensics Solutions, “Scalpel: A Fru-
gal, High Performance File Carver”, 2006, http://www.
digitalforensicssolutions.com/Scalpel/.

[26] Jonathan Zdziarski, “iPhone Insecurity”, 2010, http://www.
iphoneinsecurity.com/.

