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Abstract. Steganography is an information hiding application which aims to

hide secret data imperceptibly into a cover object. In this paper, we describe a

novel coding method based on Z2Z4-additive codes in which data is embedded
by distorting each cover symbol by one unit at most (±1-steganography). This

method is optimal and solves the problem encountered by the most efficient

methods known today, concerning the treatment of boundary values. The
performance of this new technique is compared with that of the mentioned

methods and with the well-known rate-distortion upper bound to conclude that
a higher payload can be obtained for a given distortion by using the proposed

method.

1. Introduction and preliminary results

Steganography is a scientific discipline within data hiding, which hides informa-
tion imperceptibly into innocuous media. A comprehensive overview of the core
principles and the mathematical methods that can be used for data hiding can be
found in [6].

An interesting steganographic method is known as matrix encoding, introduced
by Crandall [3] and analyzed by Bierbrauer et al. [1]. Matrix encoding requires the
sender and the recipient to agree in advance on a parity check matrix H, and the
secret message is then extracted by the recipient as the syndrome (with respect to
H) of the received cover object. This method was made popular by Westfeld [9],
who incorporated a specific implementation using Hamming codes. The resulting
method is known as the F5 algorithm and it can embed t bits of message in 2t − 1
cover symbols by changing, at most, one of them.

There are several parameters which are used to evaluate the performance of a
steganographic method over a cover message of N symbols: the average distortion
D = Ra

N , where Ra is the expected number of changes over uniformly distributed

messages; the embedding rate E = t
N , which is the amount of bits that can be

hidden in a cover message; and some authors use instead the embedding efficiency,
which is the average number of embedded bits per change. In our case we will use
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the average distortion and the embedding rate. Given two methods with the same
embedding rate, the one with smaller average distortion will be said to perform
better than the other. A scheme with block length N , embedding rate E, and
average distortion D is called optimal, if all other schemes with the same block
length N have embedding rate E′ ≤ E or average distortion D′ ≥ D. Following the
terminology used by Fridrich et al. [4], the tuple (D,E) will be called CI-rate.

As Willems et al. in [10], we will also assume that a discrete source produces a
sequence x = (x1, . . . , xN ), where N is the block length, xi ∈ ℵ = {0, 1, . . . , 2B −
1}, and B ∈ {8, 12, 16} depends on the kind of source. The secret message s ∈
{1, . . . ,M} produces a composite sequence y = f(x, s), where y = (y1, . . . yN ) and
each yi ∈ ℵ, by distorting x. This distortion will be assumed to be of squared-error
type (see [10]). In these conditions, we may deal with “binary steganography”, in
which information is carried by the least significant bit (LSB) of each xi and the
appropriate solution comes from using binary Hamming codes [9], later improved
using product Hamming codes [7]; or we may deal with “±1-steganography”, where
yi = xi + c for c ∈ {0,+1,−1} and the information is carried by the two LSBs of
xi. Let the absolute value of c be the amplitude of an embedding change.

There are some steganographic techniques [8] in which messages carrying hidden
information are statistically indistinguishable from those not carrying hidden data.
However, in general, the embedding becomes statistically detectable rather quickly
with the increasing amplitude of embedding changes, and our interest goes to avoid
changes of amplitude greater than one. With this assumption, the embedding rate
of our ±1-steganographic scheme will be compared with the upper bound H(D) +
D [10], where H(D) is the binary entropy function H(D) = −D log2(D) − (1 −
D) log2(1−D) and 0 ≤ D ≤ 2/3 is the average distortion. One of the purposes of
steganographers is designing schemes in order to approach this upper bound.

In most papers, ±1-steganography has been treated using ternary codes. Willems
et al. [10] proposed a scheme based on ternary Hamming and Golay codes, which
were proved to be optimal except for a remark which exposed a problem related to
boundary values. Fridrich et al. [4] proposed a method based on rainbow colouring
graphs using q-ary Hamming codes, where q is a prime power. This method per-
formed better than the scheme from [10] when q is not a power of 3. However, the
authors of both methods suggest making a change of magnitude greater than one
in order to avoid having to apply the change xi− 1 and xi+1 to a host sequence of
value xi = 0 and xi = 2B − 1, respectively. Note that this would introduce larger
distortion and therefore make the embedding more detectable. The treatment of
boundary grayscale values in steganography is important and, as far as we know,
not many papers have paid attention to this issue.

In this paper we also consider ±1-steganography. Our new method is based
on Z2Z4-additive perfect codes which, although they are not linear, they have a
representation using a parity check matrix that makes them as computationally
efficient as the Hamming codes. As we will later show, this new method is optimal
and performs better than the method obtained by direct sum of ternary Hamming
codes from [10] and the method based on rainbow colouring of graphs using q-
Hamming codes [4] for the specific case q = 3. Furthermore, the proposed method
also deals better with boundary grayscale values, because the magnitude of embed-
ding changes is under no circumstances greater than one.

To make this paper self-contained, we review in Section 2 a few elementary con-
cepts on Z2Z4-additive perfect codes, relevant for our study. The new steganograph-
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ic method based on these codes is described in Section 3, whereas an improvement
to better deal with the extreme grayscale values problem is given in Section 4. The
paper is concluded in Section 5.

2. Z2Z4-additive perfect codes

Any non-empty subgroup C of Zα
2 ×Z

β
4 is a Z2Z4-additive code, where Zα

2 denotes

the set of all binary vectors of length α and Z
β
4 is the set of all quaternary vectors

of length β. Let Φ : Zα
2 × Z

β
4 → Z

n
2 , where n = α + 2β, be the extended Gray map

given by applying the usual Gray map φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1),
and φ(3) = (1, 0) to the quaternary coordinates.

A Z2Z4-additive code C is isomorphic to an abelian structure like Zγ
2×Z

δ
4. There-

fore, C has |C| = 2γ4δ codewords, where 2γ+δ of them are of order two. We call
such code C a Z2Z4-additive code of type (α, β; γ, δ) and its binary image C is a
Z2Z4-linear code of type (α, β; γ, δ) which may not be linear. Note that the Lee
distance of C coincides with the Hamming distance of C = Φ(C).

The Z2Z4-additive dual code of C, denoted by C⊥, is defined as the set of vectors

in Z
α
2 ×Z

β
4 that are orthogonal to every codeword in C, where the inner product in

Z
α
2 × Z

β
4 is defined by:

(1) 〈u, v〉 = 2

(
α∑

i=1

uivi

)
+

α+β∑
j=α+1

ujvj ∈ Z4,

where u, v ∈ Z
α
2 × Z

β
4 and computations are made considering the zeros and ones

in the α binary coordinates as quaternary zeros and ones, respectively.
The binary code C⊥ = Φ(C⊥), of length n = α+2β, is called the Z2Z4-dual code

of C.
A Z2Z4-additive code C is said to be perfect if code C = Φ(C) is a perfect binary

code, that is a binary code of minimum distance 3, where all vectors in Z
n
2 are

within distance one from a unique codeword.
It is well known [2] that for any m ≥ 2 and each δ ∈ {0, . . . , 	m

2 
} there exists
a perfect Z2Z4-linear code C of binary length n = 2m − 1, such that its Z2Z4-dual
code is of type (α, β; γ, δ), where α = 2m−δ−1, β = 2m−1−2m−δ−1 and γ = m−2δ
(note that the binary length can be computed as n = α + 2β). This allows us
to write the parity check matrix H of any Z2Z4-additive perfect code for a given
value of δ. Matrix H can be represented by taking as columns all possible vectors
in Z

γ
2 × Z

δ
4, up to sign changes. In this representation, there are α columns which

correspond to the binary part of vectors in C, and β columns of order four which
correspond to the quaternary part. We agree on a representation of the α binary
coordinates as coordinates in {0, 2} ∈ Z4. Note that the binary Hamming code is a
particular case of perfect Z2Z4-linear codes, specifically, when β = 0.

3. Steganography based on Z2Z4-additive perfect codes

Let us take a Z2Z4-additive perfect code and consider its additive dual, which is
of type (α, β; γ, δ). As stated in the previous section, this gives us a parity check
matrix H which has γ rows of order two and δ rows of order four.

For instance, for m = 4 and according to [2], there are three different Z2Z4-
additive perfect codes of binary length n = 24 − 1 = 15 which correspond to the
possible values of δ ∈ {0, . . . , 	m

2 
} = {0, 1, 2}. For δ = 0, the corresponding
Z2Z4-additive perfect code is the usual binary Hamming code, while for δ = 2 the
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Z2Z4-additive perfect code has parameters α = 3, β = 6, γ = 0, δ = 2 and the
following parity check matrix:

(2) H =

(
2 0 2 0 1 1 1 1 2
2 2 0 1 0 1 2 3 1

)
.

Let hi, for i ∈ {1, . . . , α+β}, denote the i-th column vector of H. Note that the
all twos vector 2 is always one of the columns in H and, for the sake of simplicity,
it will be written as column h1. We group the remaining first α columns in H
in such a way that, for any 2 ≤ i ≤ (α + 1)/2, vector h2i is paired up with its
complementary vector h̄2i = h2i+1, where h̄2i = h2i + 2.

To use these Z2Z4-additive perfect codes in steganography take N = 2m−1 =
α+1
2 + β and let x = (x1, . . . , xN ) be an N -length source of grayscale symbols

such that xi ∈ ℵ = {0, 1, . . . , 2B − 1}, where, for instance, B = 8 for grayscale
images. We assume each grayscale symbol xi is represented as a binary vector
(v(B−1)i, . . . , v1i, v0i), obtained by first representing xi in base 4 and then applying
the Gray map φ to every quaternary symbol in that representation. For example,
value 239 is represented as the quaternary vector (3233), which then gives rise to
the binary vector (10111010) after applying φ. We will use the two least significant
bits (LSBs), v1i, v0i, of every grayscale symbol xi in the source, for i > 1, as well as
the least significant bit v01 of symbol x1 to embed the secret message.

Each grayscale symbol xi will be associated with one or more columns hi in H:

1. Symbol x1 is associated with h1 by taking its least significant bit, v01.
2. Symbol xi, for 2 ≤ i ≤ (α + 1)/2, is associated with hi and h̄i, by taking,

respectively, the two least significant bits, v1i, v0i, of xi.
3. Symbol xj , for α < j ≤ N , is associated with hj+(α−1)/2 by taking its two

least significant bits v1j , v0j and interpreting them as φ−1(v1j , v0j) in Z4.

In this way, the N -length packet x of symbols is translated into a vector w ∈
Z
α
2 × Z

β
4 . The embedding process we propose is based on the matrix encoding

method. The secret message can be any vector s ∈ Z
γ
2 × Z

δ
4. Vector ε · hi indicates

the changes needed to embed s within x; that is HwT + ε · hi = s, where ε is an
integer whose value will be described bellow, HwT is the syndrome vector of w and
hi is a column vector in H. We may have the following situations, depending on
which column hi needs to be modified:

1. If hi = h1, then the embedder has to change the least significant bit of x1 by
adding or subtracting one unit to/from x1, depending on which operation will
flip its least significant bit, v01.

2. If hi is among the first α column vectors in H and 2 ≤ i ≤ α, then ε can
only be ε = 1. In this case, since hi was paired up with its complementary
column vector h̄i, then this situation is equivalent to make (v1i, 1 + v0i) or
(1 + v1i, v0i), where v1i and v0i are the least significant bits of the symbol xi

which had been associated with those two column vectors. Hence, after the
inverse of Gray map, by changing one or another we are actually adding or
subtracting one unit to/from xi. Note that a problem may crop up at this
point if we need to add 1 to a symbol xi of value 2B − 1 or subtract 1 from a
symbol of value 0.

3. If hi is one of the last β columns in H, then this situation corresponds to add
ε ∈ {0, 1, 2, 3}. Note that because we are using a Z2Z4-additive perfect code,
ε will never be 2. Hence, the embedder should add (ε = 1) or subtract (ε = 3)
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one unit to/from symbol xi−(α−1)/2. Once again, a problem may arise with
boundary values.

Example 1. Let x = (239, 251, 90, 224, 226, 187, 229, 180) be an N -length source of
grayscale symbols, where xi ∈ {0, . . . , 255} and N = 8, and let H be the matrix in
(2). The source x is then translated into the vector w = (010|202310) in the way
specified above. Let s = (02)T be the vector representing the secret message we want
to embed in x. We then compute HwT = (23)T and see, by the matrix encoding
method, that ε = 3 and hi = h9. According to the described method, we should
subtract 1 from x8. In this way, x8 becomes 179, and then w′ = (010|202313),
which has the expected syndrome (02)T .

The problematic cases related to boundary values are also present in methods
from [4] and [10], but their authors assume that the probability of gray value sat-
uration is not too large. We argue that, though rare, this gray saturation can still
occur. However, in order to compare our proposal with these others we will not
consider these problems either until next section. Therefore, we proceed to compute
the values of the average distortion D and the embedding rate E.

Our method is able to hide any secret vector s ∈ Z
γ
2×Z

δ
4 into the givenN symbols.

Hence, the embedding rate is (γ + 2δ) bits per N symbols, E =
γ + 2δ

N
=

m

2m−1
.

Concerning the average distortion D, we are using a perfect code of binary length
2m − 1, which corresponds to N = 2m−1 grayscale symbols. There are N − 1
symbols xi, for 2 ≤ i ≤ N , with a probability 2/2m of being subjected to a change;
a symbol x1 with a probability 1/2m of being the one changed; and, finally, there is
a probability of 1/2m that neither of the symbols will need to be changed to embed

the secret message s. Hence, D =
2N − 1

N2m
=

2m − 1

22m−1
.

The described method has a CI-rate (Dm, Em) =

(
2N − 1

2N2
,
1 + log(N)

N

)
, where

N = 2m−1 and m is any integer m ≥ 2.
It is shown in [10] that the linear ternary perfect codes (Hamming or Golay) are

optimal in the sense that they achieve the smallest possible distortion at a given
embedding rate for a fixed block length. This property is not exclusive of these codes
and we will prove, in the next proposition, that the method we have described using
Z2Z4-additive perfect codes also satisfies it.

Proposition 1. The proposed embedding method based on Z2Z4-additive perfect
codes is optimal.

Proof. Consider a code with length N = α+1
2 +β. Suppose that the source produces

a sequence x and assume that we have a steganographic scheme with embedding rate

Em = 1+log(N)
N = log(2N)

N . Hence, there are 2N composite sequences y, each one
of them representing a different message. There is only one sequence x which does
not need to be distorted, that is y = x. The smallest possible nonzero distortion
is 1/N and it is achieved by 2β sequences y which differ from x in exactly one of
the β quaternary coordinates, after multiplying by 1 or 3, that is |y − x| = 1 or
|y− 3x| = 1, and the same distortion is also achieved by a sequence y which differs
from x in exactly one of the α binary coordinates (i.e. they differ in a bit). So
there are α + 2β = 2N − 1 composite sequences y achieving the smallest possible
nonzero distortion 1/N , and this gives us the smallest possible maximum average
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distortion D =
(2N − 1)(1/N)

2N
=

2N − 1

2N2
, which coincides with the distortion in

our method.

Note that we are only able to generate an embedding scheme for natural values
of m ≥ 2. However, we can use the direct sum of codes [5] to obtain codes whose
CI-rates are convex combinations of CI-rates of boths codes. Thus given any
non-allowable parameter D for the average distortion, we can take two codes with
CI-rates (D1, E1) and (D2, E2), respectively, where D1 < D < D2, and their direct
sum generates a code with a new CI-rate (D,E), with D = λD1 + (1 − λ)D2 and
E = λE1+(1−λ)E2. From a graphic point of view, this is equivalent to draw a line
between two contiguous points (D1, E1) and (D2, E2), as it is shown in Figure 1.

Proposition 2. For m ≥ 4, the CI-rate given by the method based on Z2Z4-additive
perfect codes improves the CI-rate obtained by direct sum of ternary Hamming codes
with the same average distortion.

Proof. Optimal embedding (of course, in the allowable values of D) can be ob-
tained by using ternary codes, as it is shown in [10]. The CI-rate of these codes

is (Dμ, Eμ) =

(
2

3μ
,
2μ log(3)

3μ − 1

)
for any integer μ. Our method, based on Z2Z4-

additive perfect codes, has CI-rate (Dm, Em) =

(
2N − 1

2N2
,
1 + log(N)

N

)
, for N =

2m−1 and any integer m ≥ 2.
Take, for any m ≥ 2, two contiguous values for μ such that Dμ+1 < Dm < Dμ

and write Dm = λDμ+1 + (1− λ)Dμ, where 0 ≤ λ ≤ 1.
We want to prove that, for m ≥ 4, we have Em ≥ λEμ+1 + (1 − λ)Eμ, which

is straightforward. However, since it is neither short nor contributes to the well
understanding of the method, we do not include all computations here.

4. Solving the extreme grayscale values problem

In Section 3 we described a problem which may arise when, according to our
method, the embedder is required to add one unit to a source symbol xi containing
the maximum allowed value (2B − 1), or to subtract one unit from a symbol xi

containing the minimum allowed value, 0. To face this problem, we will use the
complementary column vector h̄i of columns hi in matrix H, where h̄i = 3hi + 2
and hi is among the last β columns in H. Note that hi and h̄i can coincide.

The first α column vectors in H will be paired up as before, and the association
between each xi and each column vector hi inH will be also the same as in Section 3.
However, given an N -length source of grayscale symbols x = (x1, . . . , xN ), a secret
message s ∈ Z

γ
2 × Z

δ
4 and the vector ε · hi, such that HwT + ε · hi = s, indicating

the changes needed to embed s within x, we can now make some variations on the
kinds of changes to be done for the specific problematic cases:

• If hi is among the first α columns in H, for 2 ≤ i ≤ α, and the embedder is
required to add 1 to a symbol xi = 2B − 1, then the embedder should instead
subtract 1 from xi as well as perform the appropriate operation (+1 or −1)
over x1 to have v01 flipped. Likewise, if the embedder is required to subtract
1 from a symbol xi = 0, then (s)he should instead add 1 to xi and also change
x1 to flip v01.
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Figure 1. CI-rate (D,E), for B = 8, of steganographic methods
based on ternary Hamming codes and on Z2Z4-additive perfect
codes, compared with the upper bound H(D) +D, where E is the
embedding rate, D is the average distortion and H(D) is the binary
entropy function.

• If hi is one of the last β columns in H, and the embedder has to add 1 to a
symbol xi = 2B−1, (s)he should instead subtract 1 from the grayscale symbol
associated to h̄i and also change x1 to flip v01. If the method requires sub-
tracting 1 from xi = 0, then we should instead add 1 to the symbol associated
to h̄i and, again, change x1 to flip v01.

Example 2. Let s and x be as in Example 1, except for the value of x8 which is
now x8 = 0. The packet x is translated into vector w = (010|202310). However,
now we are not able to make x8 − 1. Instead of this, we will add one unit to x3,
which is the symbol associated with h̄9 = h4, and subtract one unit from x1 so as to
have its LSB flipped. Therefore, we obtain x′ = (238, 251, 91, 224, 226, 187, 229, 0)
and then w′ = (110|302310)

The method above described has the same embedding rate E =
m

2m−1
as the one

from Section 3 but a slightly worse average distortion. We will take into account
the squared-error distortion defined in [10] for our reasoning.

As before, among the total number of grayscale symbols N = 2m−1, there are
N − 1 symbols xi, for 2 ≤ i ≤ N , with a probability 2/2m of being changed; a
symbol x1 with a probability 1/2m of being the one changed; and, finally, there is
a probability of 1/2m that neither of the symbols will need to be changed.

As one may have noted in this scheme, performing a certain change to a sym-
bol xi, associated with a column hi in H, has the same effect as performing
the opposite change to the grayscale symbol associated with h̄i and also chang-

ing the least significant bit v01 of x1. This means that with probability 2B−2
2B

we will change a symbol xi, for 2 ≤ i ≤ N , a magnitude of 1; and with prob-
ability 2

2B
we will change two other symbols also a magnitude of 1. Therefore,
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Ra = (N − 1)
2

2m

(
2B − 2

2B
+ 2

2

2B

)
+

1

2m
and the average distortion is thus D =

2N − 1 + N−1
2B−2

N2m
. Hence, the described method has CI-rate:

(Dm, Em) =

(
2N − 1 + N−1

2B−2

2N2
,
1 + log(N)

N

)
.

With the aim of providing a possible solution to the boundary grayscale values
problem, the authors of [10] and [4] suggested to perform a change of magnitude
greater than 1. However, the effects of doing this were out of the scope of ±1-
steganography.

5. Conclusions

We have presented a new method for ±1-steganography, based on Z2Z4-additive
perfect codes. These codes correspond, through the Gray map, to binary perfect
codes, which can be nonlinear but they still have a parity check matrix representa-
tion which makes them computationally efficient to work with.

As shown in sections 3 and 4, this new scheme is optimal and performs better
than the one obtained by simple direct sum of ternary Hamming codes from [10]
and the one based on rainbow colouring of graphs using q-ary Hamming codes [4],
for q = 3.

If we consider the special cases in which the technique might require to subtract
one unit from a grayscale symbol containing the minimum allowed value, or to add
one unit to a symbol containing the maximum allowed value, our method performs
even better than those aforementioned schemes. This is so because unlike them,
our method never applies any change of magnitude greater than 1, but two changes
of magnitude 1 instead. This is better in terms of distortion and therefore makes
the embedding less statistically detectable.

As for further research, since the approach based on product Hamming codes
in [7] improved the performance of basic LSB steganography and the basic F5
algorithm, we would also expect a considerable improvement of the CI-rate by
using product Z2Z4-additive perfect codes or subspaces of product Z2Z4-additive
perfect codes in ±1-steganography.
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