
UNIVERSITAT OBERTA DE CATALUNYA

END OF DEGREE PROJECT

Shift Scheduling System for a Full-Time
Healthcare Center

Author:
Ángela LÓPEZ BENÍTEZ

Supervisor:
Oriol MARTÍ GIRONA

A thesis submitted in fulfillment of the requirements
for the degree of Computer Engineering

January 9, 2019

http://www.uoc.edu

iii

UNIVERSITAT OBERTA DE CATALUNYA

Abstract

Computer Engineering - Software Engineering

Shift Scheduling System for a Full-Time Healthcare Center

by Ángela LÓPEZ BENÍTEZ

Staff-scheduling is a complex task nowadays accomplished mostly by hand. There
are several tools available to help managers schedule shifts, but they have limita-
tions, be it price, language or lack of features that make them difficult to use for
organizations with a tight budget and human resource staff with limited technical
experience.

This study is based on the needs of a concrete such organization and its needs in
shift scheduling. It starts with an analysis of the problem resulting in a prioritization
of features to include in a tool to automatize the scheduling of staff and manage
calendar changes. A solution is proposed based on the most important features,
detailing both the design of the interface and user workflow, and the data model and
architecture of the application. Finally, a prototype of the application is included.

Keywords: human resources, shift scheduling

HTTP://WWW.UOC.EDU

v

Contents

Abstract iii

1 Introduction 1
1.1 Justification . 1
1.2 Alternatives . 3
1.3 Scope . 4
1.4 Methodology . 5
1.5 Schedule . 6
1.6 Deliverables . 10

2 Requirements 13
2.1 Stakeholders . 13
2.2 Current System . 14
2.3 Start-Up Interview . 15
2.4 User Stories . 16
2.5 Non-Functional Requirements . 19
2.6 Iteration Plan . 19

3 Iteration 1 21
3.1 User Stories . 21
3.2 Design . 22

3.2.1 Wireframes . 22
3.2.2 Architecture . 23
3.2.3 Class Diagram . 24

3.3 Implementation Decisions . 24
3.4 Retrospective . 25

4 Iteration 2 27
4.1 User Stories . 27

4.1.1 Example Mapping . 28
4.2 Design . 29
4.3 Implementation Decisions . 29
4.4 Retrospective . 30

5 Iteration 3 31
5.1 User Stories . 31

vi

5.2 Design . 31
5.2.1 Domain . 32
5.2.2 Persistence . 33

5.3 Implementation Decisions . 34
5.4 Retrospective . 35

6 Iteration 4 37
6.1 Introduction . 37
6.2 Containers . 37
6.3 Deployment . 37
6.4 Retrospective . 38

7 Conclusions 39
7.1 Conclusions . 39
7.2 Further Work . 39

Bibliography 41

vii

List of Figures

1.1 Worksheet Calendar . 2
1.2 Worksheet Grid . 3
1.3 Gannt Diagram, part 1 . 7
1.4 Gannt Diagram, part 2 . 7
1.5 Gannt Diagram, part 3 . 8

3.1 Generate Calendar Wireframe - Weekday 22
3.2 Generate Calendar Wireframe - Holiday 23
3.3 Staff Calendar Wireframe . 24
3.4 Class Diagram . 25

5.1 Schedule Editing Diagram . 31
5.2 Domain Entities Diagram . 32
5.3 Domain Services Diagram . 33
5.4 Database Diagram . 33
5.5 Data Access Objects Diagram . 34

6.1 AWS RDS . 38
6.2 AWS ECS . 38

ix

List of Tables

1.1 Summary of planned and actual dates for each task of the project . . 8

1

Chapter 1

Introduction

1.1 Justification

Atendis is a non-profit organization that offers several services to people with intel-
lectual disabilities and their families (Fundació Privada Atendis). Some of the main
services it offers are full-time residences and day care centers for people with differ-
ent degrees of autonomy (Fundació Privada Atendis).

One of the challenges in the management of such an organization is the necessity
to have a number of staff present at all times. This means the matter of sorting the
schedule of each staff member, as well as their pay sheets, is much more compli-
cated than assigning a 9 to 5 workday and taking into account some holidays. For
each center the organization managed, they had to take into account several factors
when creating schedules and calendars, including:

• There must be a minimum number of care-taking staff present at all times

• Each staff member should have a yearly period of, at least, the minimal number
of consecutive days agreed on their contract

• No staff member should work more than the number of consecutive days es-
tablished on their contract

• No staff member should work for more than the established hours per year

Historically, this challenge was solved, as many others, manually. Each month, man-
agers would draw schedules repeatedly until all conditions were met, hiring tempo-
rary extra staff if they were necessary for gaps created by holidays or free-days that
were not taken into account in advance.

These needs are not unique to Atendis. Hospitals, nursing homes, day-care cen-
ters, many services such as public transportation, even factories with production
flows that cannot be paused require staff to work on shifts and to always have a
minimum number of operators present. Nowadays, with the rise of computer-aided
management, there are several applications than try to cover different aspects of
these needs. For example, according to Business Management Systems’ website

2 Chapter 1. Introduction

[5], their product (Snap Schedule) is able to manage shifts, overtime, time off and
many of the requirements of a health care center, and even does so in a MS Office
style which might appeal to people transitioning from MS Excel.

However, for a small non-profit, these solutions have too steep a cost, even though
they are significantly cheaper than dedicated systems. The managers at Atendis
used the tools at their disposal – mainly Excel worksheets – to make the solving of
these scheduling puzzles at least more organized, if still manual.

I first saw these calendar worksheets in November 2011. I was volunteering at
Atendis, mostly offering computer help and advice to the technical staff (pedagogues,
psychologists. . .), when the manager in charge of organizing schedules asked if I
could take a look at the worksheets they used and help them automate some tasks.
She showed me a calendar for an employee, where each day (a worksheet cell) was
colored in a specific color that represented how many hours the employee should
work that day. She simply asked if she could automatically calculate how many cells
were painted in each color.

FIGURE 1.1: Screenshot of the calendar of a staff member, with the
count of days scheduled for each shift.

From a computer-savvy point of view, I was awed and horrified at the amount of
manual work they did that could so easily be automated. Over the next few days,
I was able to easily implement the counting of cells according to color (Figure 1.1).

1.2. Alternatives 3

Happy with the results, the next several years we added other features to their semi-
automated worksheet each time she had to work out the schedules, such as an
automated monthly summary of the staff on each shift (Figure 1.2).

FIGURE 1.2: Screenshot of a monthly summary for dawn and morn-
ing shift. You can see a warning for the February 14th morning shift,

as there is only one staff member instead of the requisite two.

This semi-automated approach has numerous problems, though. Excel is a work-
sheet software, not optimized to be used as a scheduling system. The main problem
we have encountered is that the processing of the calendars can be very slow, since
the performance of reading and writing into the worksheets is very low. It also has
a very awkward, stiff user interface, since it is severely limited by the options Excel
offers.

As a software engineering student, I think this project is the perfect opportunity to
take these semi-automated worksheets and create a full scheduling solution that will
solve many of the UX and performance issues of forcing Excel to behave in ways
it was not designed to. Furthermore, this will be an open-source project, enabling
other organizations with limited means to leave clunky worksheets behind.

1.2 Alternatives

Looking at staff management software as a whole, one can distinguish two well sep-
arated types. The first one is software centered on projects, and the features dealing
with staff - or "resources" - are focused on their assignation to certain projects. This
is by far the most popular type, and there are dozens of applications that have fea-
tures dealing with management of staff as resources, from Jira to Monday. These
type of applications are the ones used to manage software projects, and as most
tooling surrounding software development, there are several open source alterna-
tives, such as Redmine [2, 10, 15].

The second type is focused on time or shifts instead of projects or tasks to be done.
Not being used as often by technology teams, this type is a little behind and there
are not as many open source options, although there are several commercial ap-
plications. In one recent article, PCMag compared 10 such applications. Most of

4 Chapter 1. Introduction

these, as well as several others not featured in this comparison, seem to be focused
on smaller teams [14, 1, 11], with several showcasing the restaurant use case.

They have features to handle shifts of different types - waiter or cook, for example
- and enable the manager to visually keep track of each day, making sure all shifts
are covered. However, most of these applications do not offer any feature to semi-
automatically schedule shifts for the whole staff, nor do they use any kind of signaling
of scheduling conflicts, relying strongly on the visual representation for most man-
agement. LaborOfficeFree, which is in Spanish and free, although not open source,
seems to fit into this group [13].

Many, especially the applications geared toward larger organizations, have a strong
focus on keeping track of the time worked by each employee, with features such as
time-clocking. This is the case of Identifica-t, which boasts integration with several
biometric sensors to keep track of clock-ins and clock-outs [9].

Then there are a select few applications, such as SnapSchedule mentioned before,
that have the features necessary to manage shifts in a larger scale [5, 12, 6]. They
offer algorithms to generate schedules based on any number of customizable "rules"
- shift hours, vacation days, rest periods... - and provide different kinds of signaling
of scheduling conflicts. However, these features come at a cost. Snap Schedule,
which has a public pricing page, costs $450 per one-computer, perpetual license or
$450 per scheduler per year, if contracted as a service [4]. I have not been able to
find any free-ware or open source application of this type.

If you take into account the language limitation, the options are fewer. There are
some shift-management tools available in Spanish, but most focus on smaller teams
or time-clocking. Most provide features to manage staff and contracts, such as
Tamigo and EntiGest, but they do not offer the same schedule-management fea-
tures as the larger applications [13, 9, 16, 7].

1.3 Scope

The main objective of this project is to design and implement a working prototype for
a scheduling system that meets the requirements of a nursing home. As the time-
requirements for this project are strict, the project will not include a fully working MVP,
but an application that serves as a proof-of-concept, implementing the main differen-
tiating features, and ignoring other features which would be necessary for a finished
product but do not really provide nothing new to the project, such as authentication
and authorization.

As such, the scope of the project includes:

• Stakeholder identification and requirement collection,

1.4. Methodology 5

• Design via mock-ups of a solution that covers the main requirements discov-
ered.

• Technical design of the application, including the data model to be used and
the communication between different components.

• Implementation of a first version of the application, including the most important
features collected.

On the other hand, it will not include:

• Deployment. Although deployment will be taken into account to make other
decisions such as platform, the deployment itself is not in the scope of this
project.

• User authentication and authorization. Given that the scheduling system
might contain sensitive information, and that it should not be edited by anybody
at an organization, the system should include some form of authentication.
However, there already exist several solutions that manage users, and it will
not influence the workings of the system itself.

• Internationalization. Despite being one of the main problems of the existing
alternatives, internationalization of an application is a time-consuming process
that does not affect the user experience for the immediate audience, so it will
be excluded from this version of the application.

• Automatized end-to-end tests. While automatized tests are key to the main-
tainability of an application, they do not provide anything feature-wise, so they
will be relegated to a second phase of the project.

• Continuous integration and deployment. Like the previous issue, this takes
considerable effort to set-up while delivering no business value, so it will be
excluded from this project.

1.4 Methodology

The analysis of the problem will start with the identification of the stakeholders of the
system. This will be accomplished mostly by talking to my contact at Atendis and
finding out each person who schedule the staff. The manager herself, and the staff
who is being managed are also affected by the system, so they should be consulted
too. These will be the starting points to finding out if there are any other stakeholders
in the system.

For the discovery of requirements, design and implementation, I will use an itera-
tive method using several tools of agile methodology. I have considered starting the
project with a brainstorming session with all the stakeholders, which could reveal

6 Chapter 1. Introduction

hidden requirements that are difficult to see for anyone but a particular person. How-
ever, there are two strong points against it. First, given their schedules, it might be
difficult to find a time all stakeholders are free. Second and most important, taking
into account my previous interactions with most stakeholders, I expect them to be
relatively inexperienced with computer software, so I believe it would be difficult to
them to express their needs of the application without something to start of from.

Instead of brainstorming with all of them, I will jump-start the first iteration by talking
to the manager of the center. She is more knowledgeable about computer software
and has handled the scheduling of shifts several times. During this interview, we
will map out the main user stories of the system. Afterwards, I will start the design
process with several mock-ups of the different features desired. If there is any feature
which requires it, such as some interaction that is difficult to understand in the more
static wire-frames, I will also develop a proof-of-concept prototype to show case the
user story and features involved.

The following iterations will follow a similar pattern. However, with user stories, mock-
ups and possible prototypes in hand, I will talk to the other stakeholders. I expect that
this will offer them a starting point that they might validate or oppose in more specific
ways. During these interviews, I plan to use example mapping to dig into each user
story and find out if there are any questions about each that needs to be answered.
This will also help document each user story better than a vague objective.

In parallel to these iterations of interviews and examples, I will start to design the
more technical part of the application, such as the data model and the component
diagram. Although I will not show the stakeholders the progress in this area, I expect
to further detail each diagram as the interviews progress and the user stories be-
come more stable. Once the user stories start to solidify, I will choose the language,
framework and tools I will use in the development of the application. During the last
few iterations, I will start to develop the application itself, changing the meeting with
the stakeholders to show the different user stories implemented instead of mock-ups.

I do not expect to finish the system as a whole in the duration of this project, how-
ever I plan to end the project with a prototype of the system that covers the main
requirements collected and an idea of how to continue towards a working MVP of
the system. As such, I will end the project with an analysis of further work necessary
to make the application fully functional.

1.5 Schedule

I have used the online tool [17] to visually plan the project in a Gantt diagram cap-
tured in figures 1.3, 1.4 and 1.5. As I described in the methodology, I will use an
iterative approach to the development of the project. I have roughly scheduled the

1.5. Schedule 7

duration of each iteration, taking into account the days I will be able to speak with
the stakeholders and the days I expect to be less busy (holidays from work, week-
ends, etc.). I have also planned for regular reviews of the report, especially before a
partial check-in was due. When there were several tasks that may be accomplished
in parallel, I have tried to plan them in the order I thought most logical. There are
also several tasks that are scheduled in parallel, as I thought they might benefit from
a back-and-forth between them before writing the final version of each part of the
report.

To facilitate the scheduling of each task visually, I have colored purple the meetings
with the stakeholders, blue design and implementation tasks and purple the docu-
mentation and report-oriented tasks.

FIGURE 1.3: Screenshot of the planning of the tasks in the require-
ments and first iteration, including the second PAC.

FIGURE 1.4: Screenshot of the planning of the tasks in the second
and third iterations, including the third PAC.

Table 1.1 offers a summary of the planned and actual dates of each task in the
project.

8 Chapter 1. Introduction

FIGURE 1.5: Screenshot of the planning of the tasks in the final iter-
ation and the finalization of the project, including the final due date.

TABLE 1.1: Summary of planned and actual dates for each task of
the project

Tasks
Planned
Start

Planned
End

Actual
Start

Actual End

Project Plan

Abstract - - 22/9/2018 22/9/2018

Justification - - 18/9/2018 22/9/2018

Alternatives - - 26/9/2018 29/9/2018

Scope - - 29/9/2018 30/9/2018

Methodology - - 22/9/2018 27/9/2018

Schedule - - 29/9/2018 30/9/2018

Requirements

Start-up interview - - 28/9/2018 28/9/2018

Mock-ups 29/9/2018 4/10/2018 1/10/2018 9/10/2018

Requirements interview 5/10/2018 5/10/2018 10/10/2018 10/10/2018

Mock-up fixes and changes 6/10/2018 9/10/2018 11/10/2018 14/10/2018

User Stories 10/10/2018 14/10/2018 2/10/2018 14/10/2018

Iteration Plan 15/10/2018 18/10/2018 16/10/2018 16/10/2018

1.5. Schedule 9

Tasks
Planned
Start

Planned
End

Actual
Start

Actual End

Stakeholders 1/10/2018 2/10/2018 1/10/2018 1/10/2018

Current system review 3/10/2018 5/10/2018 1/10/2018 2/10/2018

Iteration 1

User Story Review and Ex-
ample Mapping

19/10/2018 19/10/2018 19/10/2018 24/10/2018

Data Model 20/10/2018 20/10/2018 19/10/2018 27/10/2018

Architecture 24/10/2018 24/10/2018 19/10/2018 19/10/2018

Implementation Decisions 27/10/2018 2/11/2018 19/10/2018 19/10/2018

Report Review 3/11/2018 4/11/2018 4/11/2018 5/11/2018

Implementation 1/11/2018 11/11/2018 27/10/2018 30/11/2018

Iteration 2

User Story Review and Ex-
ample Mapping

12/11/2018 12/11/2018 30/11/2018 30/11/2018

User Story Updates 13/11/2018 14/11/2018 - -

Data Model and Architec-
ture Updates

15/11/2018 16/11/2018 - -

Implementation 17/11/2018 27/11/2018 1/12/2018 16/12/2018

Report Review 28/11/2018 29/11/2018 20/12/2018 20/12/2018

Iteration 3

User Story Review 30/11/2018 30/11/2018 21/12/2018 21/12/2018

User Story Updates 1/12/2018 1/12/2018 22/12/2018 23/12/2018

Data Model and Architec-
ture Updates

2/12/2018 3/12/2018 24/12/2018 27/12/2018

Implementation 4/12/2018 17/12/2018 27/12/2018 5/1/2019

Report Review 18/12/2018 19/12/2018 5/1/2019 5/1/2019

Iteration 4

User Story Review and Ex-
ample Mapping

21/12/2018 21/12/2018 - -

User Story Updates 22/12/2018 22/12/2018 -

10 Chapter 1. Introduction

Tasks
Planned
Start

Planned
End

Actual
Start

Actual End

- Data Model and Architec-
ture Updates

23/12/2018 23/12/2018 - -

Final Implementation 24/12/2018 2/1/2019 - -

AWS Account Setup - - 5/1/2019 5/1/2019

AWS RDS - - 7/1/2019 7/1/2019

AWS ECR - - 7/1/2019 7/1/2019

AWS ECS - - 8/1/2019 8/1/2019

Report

Description of deliverables 3/1/2019 3/1/2019 9/1/2019 9/1/2019

Further Work 3/1/2019 3/1/2019 9/1/2019 9/1/2019

Conclusions 3/1/2019 3/1/2019 9/1/2019 9/1/2019

Final report review 4/1/2019 5/1/2019 7/1/2019 9/1/2019

Presentation 4/1/2019 8/1/2019 8/1/2019 9/1/2019

1.6 Deliverables

Report: This report, with the different chapters detailing the requirements, design
and implementation comments of the scheduling system.

Mockups: mockups.zip contains several BMPR files which may be viewed with the
Balsamiq Mockup desktop application or Drive plugin (https://balsamiq.com/).

Iteration 3 diagrams: iteration3_diagrams contains several diagrams of the third
iteration in full size.

Monthly Grid Source Code: Iteration2_MonthGrid_POC.zip contains the source
code for the grid demo. Unzip and open index.html to execute.

ScheduleSystem Source Code: ScheduleSystem.zip contains the source code for
the application, including the (uncomplete) implementation of the staff schedule edit-
ing.

Database Creation SQL: table_creation.sql contains the script to create the neces-
sary tables of the database.

Presentation: Presentation.odp contains Impress presentation of the project.

Presentation Video: Presentation.mp4 contains narrated presentation of the project.

1.6. Deliverables 11

Presentation Transcript: Presentation_transcript.txt contains the transcription of
presentation of the project.

13

Chapter 2

Requirements

2.1 Stakeholders

After the first meeting with the manager of the nursing home, we were able to identify
the main stakeholders of the application:

• Manager. She is the person leading the technological advancement of the
organization, and has expressed an interest on using a more modern approach
to managing schedules several times. As the person ultimately responsible for
all staff, she wants to alleviate the scheduling problems the organization has.
Furthermore, she is interested on keeping the time spent on scheduling issues
to a minimum, as this is time the scheduling employees could better spend
doing other tasks.

• Schedulers. These are two or three employees who routinely handle the tasks
of scheduling the shifts of the nursing staff. Most of the tasks related to this
come in bulk at the beginning of each year, when they renew the calendars for
most staff. Besides this, they sometimes have some schedule changes if there
is new staff, somebody takes leave, or asks for a shift reduction.

• Staff. I will refer as staff to most of the employees whose shifts are to be
planned with the application. Although they will not interact directly with the
application, they are affected by it. For example, with an application that makes
schedule changes easier, the schedulers will be most likely to grant a shift
change.

We were also able to identify some special cases that merit special attention, so we
should list them apart:

• Assisted living manager. He is the manager of a separate smaller center
which houses higher-functioning people. Because of this, usually there is only
one person scheduled to work, and puzzling together rest periods, leaves and
reinforcements during peak hours - morning and evening routines - is a bit

14 Chapter 2. Requirements

trickier. His calendars end up looking much more like patchwork that those of
the larger center.

• Activities manager. She is the manager of the activities each group makes.
Besides taking into account the legal requirements of having a one care-taker
for each number of residents, she wants to have an appropriate number of staff
or volunteers for each activity.

2.2 Current System

Given the lack of experience using similar applications, all stakeholders are under-
standably biased towards the current system, and at least at first, all descriptions
of features are expected to be in relation to the current Excel macros. As such, an
explanation of the current application is necessary.

The first worksheet of the calendars workbook contains the configuration for the
other sheets. It enables the schedulers to add or remove shifts and edit the proper-
ties of each shift: the minimum staff, the shift hours and the color used in both the
working and holiday calendars. An extra worksheet has the calendar for the selected
year, where the schedulers can mark the local holidays so the system will take them
into account.

Another worksheet is used to manage the staff in the system. Each staff member
belongs to a center and group. In practise, this is used to determine the number
of staff in each center-group combination. Each staff member also has a main shift.
One of the limitations of the current system is that each person can only be assigned
a single shift from a very limited list, so the schedules are very restrictive from the
onset.

To manage holidays, each "workday" staff member has an assigned partner that
generally covers the same center and group in the days their partner has free. Of
course, this cannot be a hundred percent true, as a workday staff member may have
30 days of holidays in a row, and their partner would not be allowed to have as
many continued days of work. However, this is a technique that schedulers use to
jumpstart the creation of calendars each year.

To start scheduling the shifts for a staff member, the manager can select a "work-
day" person to create their starting calendar. This creates a new worksheet for the
staff member with a starting calendar. This calendar has all workdays colored with
the person’s shift. From there, the schedulers can color in the holidays, weekends
worked, etc. At this time, they are also able to change the shift worked in any given
day. Besides the calendar, each person’s worksheet also is generated with formula-
enabled cells that help the manager calculate the yearly hours a staff member is
scheduled to work and their percentage of full-time.

2.3. Start-Up Interview 15

Once finished the calendar for the workday worker, the managers can create the
mirror calendar for the holiday partner. Besides the pre-filled calendar, this work-
sheet is equal to their workday partner’s worksheet, so the managers will edit them
to meet the scheduling rules. Once they are finished, or at any given time before,
the schedulers can automatically check all calendars, and the system will warn them
if any calendar breaks one of the programmed scheduling rules.

Finally, another worksheet is generated for each center, which contain monthly sum-
mary grids for every shift. These are the final validation the schedulers use to see
who is working each day and if all days have the requisite staff scheduled. Besides
the ability to automatically count the cells marked with each turn in the staff calen-
dars, this worksheet is the main feature in the system. It is also the main reason
behind the discrete nature of the shift concept in the current system. In an effort to
visually represent the staff scheduled in during each day, the managers were forced
to break the day into strict shifts that do not faithfully represent the reality of the staff’s
schedules.

2.3 Start-Up Interview

While I did not have any designs or ideas ready for this first interview, the manager
came prepared with a list of limitations and missing features of the current system.
The most significant issues are:

• There is no feature to easily change a contract or schedule. For example, if an
employee asks for a shift reduction or a part-time employee changes full-time to
cover a sick leave, there is no way to edit their calendars and yearly percentage
of full-time. The system is working fine for puzzling together a yearly calendar,
but in practice, these calendars rarely make it “as is” to the end of the year.

• The system has no continuity from a year to the next. The reality of the variable
schedules and working hours of the employees means that, if they want to have
a stable salary, each employee must keep a “pool of hours”, a number of hours
worked and not paid (or paid and not worked), to cover substitutions or small
differences in contract hours from one year to the next.

• While the current system is based on “shifts” (morning, afternoon, evening. . .),
many employees had varying schedules: one could have a 8 to 14 morning
shift, while another could have a 8 to 12 because they had reduced hours.
This makes features based on turns non-functional. For example, given the
previous scenario, the monthly grid the schedulers use to check the number of
employees at each turn would not tell that they were short one employee from
12 to 14.

16 Chapter 2. Requirements

The first two issues are rather straightforward, but the last merits more thought. To
start, we decided to rethink the concept of "shift", so it is not a fixed range of hours.
So, we’d call shift to any continuous time of work an employee does, acknowledging
that the start and end times of these shifts may be different for each staff member.

The initial proposal, that I tried to explain with mock-ups, was to have an interactive
grid which in it’s main view showed which employee had any shift each day, but that
could be expanded to show the hour-by-hour status of each staff member. For this to
work, though, the main view should somehow show if there was any conflict during
any day.

2.4 User Stories

Between the knowledge of the current system, the start-up interview, and the fol-
lowup refinement of the expected features of the system, we were able to agree
upon the following user stories:

• As a manager, I want to be assured that the requisite number of staff are
scheduled at all times; and if possible, not more.

• As a manager, I want to each employee to be scheduled to work as close as
possible to the hours agreed on their contract without breaking any of their
contract restrictions.

• As a manager, I want to see a historic of the percentage of full-time an em-
ployee has had.

• As a manager, I want to assign a contract to a worker when I add them to my
staff.

• As a manager, I want to remove people from my staff.

• As a manager, I want to automatically rotate contract details of my staff each
year (holiday shift, annual worked hours, etc.)

• As a manager, I want to export the staff’s schedules to a worksheet.

• As a manager, I want to edit the centers my organization manages.

• As a manager, I want to edit the minimum staff necessary at each time at each
of the centers.

• As a scheduler, I want to be able to edit the local holidays for the next year.

• As a scheduler, I want to generate the schedules for all my staff.

• As a scheduler, I want to manually edit the schedules of my staff.

2.4. User Stories 17

• As a scheduler, I want to be able to see who is scheduled to work any given
day at any given time.

• As a scheduler, I want to be advised of any kind of conflict in the schedule of
my employees.

• As a scheduler, I want to automatically recalculate salaries when I have to
make contract changes halfway through a year.

• As a scheduler, I want to create a new schedule (for a new employee) halfway
through a year.

• As a scheduler, I want to liquidate an account halfway through a year (balance
hours paid with hours worked to adjust final payment).

• As a scheduler, I want to see which employees are free to cover a given shift.

• As a scheduler, I want to print the monthly list of shifts of my staff to be able to
post it where my staff can see it.

• As an employee, I want to see a summary of my shifts during the following
weeks.

• As an employee, I want to see a summary of my colleague’s shifts to be able
to ask for trades.

• As an employee, I want to trade shifts with a colleague.

• As an employee, I want to ask to exchange holiday days for free Mondays after
I work on a weekend.

• As an employee, I want to ask for a shift reduction or to return to full-time.

• As an employee, I want to see a preview of the schedule and monthly salary I
would have if I ask for a shift reduction.

• As an employee, I want to have a stable monthly and yearly salary, indepen-
dently of small monthly and yearly hours differences.

However, as the effort required to implement the full set of user stories is greater
than this project’s scope, so we refined the backlog into a smaller set which would
provide a working prototype:

• As a manager, I want to be assured that the requisite number of staff are
scheduled at all times; and if possible, not more.

• As a manager, I want to each employee to be scheduled to work as close as
possible to the hours agreed on their contract without breaking any of their
contract restrictions.

• As a scheduler, I want to generate the schedules for all my staff.

• As a scheduler, I want to manually edit the schedules of my staff.

18 Chapter 2. Requirements

• As a scheduler, I want to be able to see who is scheduled to work any given
day at any given time.

• As a scheduler, I want to be advised of any kind of conflict in the schedule of
my employees.

• As a scheduler, I want to automatically recalculate salaries when I have to
make contract changes halfway through a year.

• As a scheduler, I want to create a new schedule (for a new employee) halfway
through a year.

• As a scheduler, I want to liquidate an account halfway through a year (balance
hours paid with hours worked to adjust final payment).

• As a scheduler, I want to see which employees are free to cover a given shift.

• As an employee, I want to have a stable monthly and yearly salary, indepen-
dently of small monthly and yearly hours differences.

• As an employee, I want to ask to exchange holiday days for free Mondays after
I work on a weekend.

• As an employee, I want to ask for a shift reduction or to return to full-time.

• As an employee, I want to see a preview of the schedule and monthly salary I
would have if I ask for a shift reduction.

There are some stories that seem to be prerequisite to others, such as being able
to edit the minimum staff necessary at each center, but this can easily be "hard-
coded" in the prototype, and treated as something configurable in a later phase of
the development.

Besides the user stories themselves, we were able to determine which were the
contract restrictions that should be taken into account when generating or checking
schedules:

• Annual hours worked

• Maximum number of consecutive work days

• Minimum hours of rest between shifts in different days

• Maximum hours worked in a given interval of time

• Minimum consecutive natural free days in summer, spring and winter holidays

• Number of weekends worked every N weeks

2.5. Non-Functional Requirements 19

2.5 Non-Functional Requirements

As this project is centered in a proof of concept development, most non-functional
requirements will not be at the forefront of the project. Nevertheless, there are some
issues that should be taken into account. I have used a couple of generic non-
functional requirement checklists to help realize the requirements I should take into
account in this early phase of the project [8, 3]. Non-functional requirements in the
areas of auditing, maintainability and other "maintenance" areas are not included as
I consider them out of the scope of this project.

• Security. There will only be one access level, with authorization to use all the
system’s features.

• Performance. Response times for navigation through the screens should be
in the order of seconds, ideally less than 5 seconds. Process time (change a
schedule, find a free staff member to cover a shift, etc. should be in the order
of tens of seconds, ideally less than a minute.

• Capacity. The system should be able to handle at least 10 centers with 100
staff each.

• Compatibility. The schedules should be exportable to Excel worksheets.

• Usability. The system should be usable in screen sizes as small as 1768
pixels wide. The system should be available in Catalan and/or Spanish.

2.6 Iteration Plan

Given the described requirements and the time constraints we agreed to the follow-
ing iteration plan:

• Iteration 1:

– As a scheduler, I want to generate the schedules for all my staff.

– As a scheduler, I want to manually edit the schedules of my staff.

• Iteration 2:

– As a manager, I want to be assured that the requisite number of staff are
scheduled at all times; and if possible, not more.

– As a scheduler, I want to be advised of any kind of conflict in the schedule
of my employees.

– As a scheduler, I want to be able to see who is scheduled to work any
given day at any given time.

20 Chapter 2. Requirements

• Iteration 3:

– As a scheduler, I want to automatically recalculate salaries when I have
to make contract changes halfway through a year.

– As a scheduler, I want to create a new schedule (for a new employee)
halfway through a year.

– As a scheduler, I want to liquidate an account halfway through a year
(balance hours paid with hours worked to adjust final payment).

• Iteration 4:

– As a scheduler, I want to see which employees are free to cover a given
shift.

– As a manager, I want to each employee to be scheduled to work as close
as possible to the hours agreed on their contract without breaking any of
their contract restrictions.

21

Chapter 3

Iteration 1

3.1 User Stories

The first iteration is centered around the generation of schedules for the staff. There
are several user stories from the shortened list that we could cover with this theme:

• As a scheduler, I want to manually edit the schedules of my staff.

• As a scheduler, I want to generate the schedules for all my staff.

• As a manager, I want to each employee to be scheduled to work as close as
possible to the hours agreed on their contract without breaking any of their
contract restrictions.

• As a scheduler, I want to create a new schedule (for a new employee) halfway
through a year.

• As a scheduler, I want to liquidate an account halfway through a year (balance
hours paid with hours worked to adjust final payment).

• As an employee, I want to ask to exchange holiday days for free Mondays after
I work on a weekend.

• As an employee, I want to ask for a shift reduction or to return to full-time.

• As an employee, I want to see a preview of the schedule and monthly salary I
would have if I ask for a shift reduction.

However, in this iteration I will focus on the first two. These two stories should be
enough to start designing the entities of the system and the relations between each.
Unfortunately, I was unable to do an example mapping [18] session with the stake-
holders, but I has able to exchange several emails with them and detail the user
stories planned for the iteration.

The first one should be self-explanatory. Given a staff member, the scheduler should
be able to add, delete or modify shifts (change start and end times). This should be

22 Chapter 3. Iteration 1

done in a manner as visual as possible, for example, selecting a shift and "painting"
the days corresponding to this shift in a calendar.

The second user story requires more explanation. There are basically two types
of schedules: weekday schedules and holiday schedules, and the generation of
schedules for the whole staff is usually based around the first. Weekday staff usually
have the same shift from Monday to Friday and do not work on holidays. There are
two versions of weekday staff: the first one do not work on Saturdays, but the second
work one Saturday every four weeks. Of the latter type, they also have the option of
exchanging holiday days for free Mondays after working on a Saturday. Furthermore,
each worker is assigned a holiday turn. For example, for summer holidays, a staff
member could have the first turn, in July, or the second turn, in August.

So, to meet the acceptance criteria for the second user story, the system should
automatically generate weekday schedules from these conditions. In the case of
the holiday schedules, the acceptance criteria for this story are somewhat simpler.
The holiday schedule should fill all days its weekday schedule partner has free. Of
course, this would result in an impossible schedule given the limitations listed in
section 2.5. However, this is acceptable at this moment, and these schedule conflicts
will be manually resolved.

3.2 Design

3.2.1 Wireframes

To start with, I have ignored the features around configuring the staff requirements
for each center in the system. I have also supposed that the staff available is already
in the system. Given these suppositions, the design I proposed is a simple list of
available staff, where one could search through the staff and click on each one to
see generate or see their calendar.

FIGURE 3.1: Wireframe of the calendar options selection window,
showing the options for a weekday calendar.

3.2. Design 23

Upon clicking a "generate schedule" button, the system will present a form to select
the options for the calendar, including the type of calendar (weekday or holiday).
Once the type of calendar is selected, further options are available, such as their
shift and holidays and Saturday turns in the case of a weekday calendar seen in
figure 3.1, or the partner-calendar in case of a holiday calendar seen in figure 3.2.
In case the is a pre-existing schedule for the previous year, the values should be
selected accordingly (all values should be the same, except for the holidays turns,
which are rotatory).

FIGURE 3.2: Wireframe of the calendar options selection window,
showing the options for a Holiday calendar.

After clicking the "generate" button, the system would automatically fill in a calendar
with the given specifications, navigating to the Staff detail view after it is finished as
seen in figure 3.3. In this screen, the scheduler will be able to see the calendar of
the selected staff member and manually edit it by selecting one of the shifts and
"painting" over the days in the calendar.

3.2.2 Architecture

To start with, the system will use an architecture based on layers. It is specially im-
portant to have a domain layer, where all business logic will be implemented separate
from the presentation and infrastructure layers. This is specially important since one
of the secondary, long-term objectives of this project is to release the source code in
a way that might be adapted to other scheduling systems that might need it. For this
to work, it is important, for example, to decouple the business logic from the interac-
tion with the database, as it might use a different service in other organizations.

In the presentation, I will use a model-view-controller pattern. This is a well-used
pattern that allows the separation of responsibilities in a clear manner.

24 Chapter 3. Iteration 1

FIGURE 3.3: Wireframe of the detail view of a staff member.

3.2.3 Class Diagram

I will use an UML class diagram in figure 3.4 to describe the interaction between the
domain entities. In this iteration, the domain focus is on the Schedule. An StaffMem-
ber can have an indefinite number of schedules, but only one active at any given
time. Each schedule groups together the shifts between its dates. The schedules
are generated from a ScheduleModel. This is an abstract class, and each of its con-
crete implementations has the responsibility to generate an schedule according to
its specific rules.

However, besides creating the shifts themselves, it is also the responsibility of the
domain to check the various schedules constraints each time a change is made.
Because I could not fit this logic into any single entity, I added a SchedulingService.
This is a service that will be called by the application layer when making scheduling
changes, and will handle the logic that does not pertain to a single entity.

3.3 Implementation Decisions

The system will be implemented in C#, specifically using the .NET Core framework.
The main reason for this decision is simply because it is a language and frame-
work that I am familiar in. The .NET framework is also very popular and has a large
community, so help is relatively easy to find on the internet, and there are many

3.4. Retrospective 25

FIGURE 3.4: Class Diagram.

ready-to-use packages available. .NET Core is not as popular, but still has a con-
siderable community behind it. Furthermore, it is able to run on any OS, so this is a
great advantage if I want to make the system reusable by other organizations.

The system will be implemented as a website. While at first glance a desktop ap-
plication might be easier to maintain, however, this is not within the scope of this
project. An important part of this project, however, is the somewhat unconventional
user interface for editing shifts. In my experience, this kind of interface is easier to
implement with HTML, CSS and JS than traditional forms-based desktop interfaces,
so the system will be developed as a ASP Core application. The ASP Core frame-
work also has templates and features to ease the work with the MVC pattern, so it
will be easier to follow the architectural decisions taken in the previous section.

Nevertheless, as I said, I have some concerns about deployment and long-term
maintenance of a web application, so the separation of the presentation layer will
allow me to change this in the future (out of the scope of this project) with minimal
complications if necessary.

3.4 Retrospective

Halfway through the implementation, I was able to have a demo session with the
stakeholders. In this I was able to realize there had been a misunderstanding in the
way the managers scheduled their staff. While they use several "schedule models" to
assign an individual schedule to each staff member, they were not interested in any

26 Chapter 3. Iteration 1

automatic generation of those models according to any set of rules. For this reason,
I abandoned the features related to automatic generation. Instead, I focused on the
manual edition of the calendars. However, I was also unable to meet the expected
results in the planned deadline.

For these reasons, I have readjusted the objectives of the following iterations as well
as their deadlines to work with the time I still have available. For this reason, I will try
to squeeze two one-week iterations at the end of term, since I will have time away
from work:

• Iteration 2: I will focus on a proof-of-concept of a grid that can be used to view
gaps or over-scheduling in a whole month without using fixed-time shifts. This
will advance towards the following user stories:

– As a manager, I want to be assured that the requisite number of staff are
scheduled at all times; and if possible, not more.

– As a scheduler, I want to be advised of any kind of conflict in the schedule
of my employees.

– As a scheduler, I want to be able to see who is scheduled to work any
given day at any given time.

• Iteration 3: I will resume my work on the manual editing of the calendars, as
well as generating a "model calendar" which can be copied to any staff member

– As a scheduler, I want to edit a "model calendar" that I can use as a
starting calendar for any staff member

• Iteration 4:

– As a scheduler, I want to automatically recalculate salaries when I have
to make contract changes halfway through a year.

– As a scheduler, I want to create a new schedule (for a new employee)
halfway through a year.

– As a scheduler, I want to liquidate an account halfway through a year
(balance hours paid with hours worked to adjust final payment).

27

Chapter 4

Iteration 2

4.1 User Stories

This iteration will be centered around creating a proof-of-concept view that can be
used find gaps or over-staffing in a whole month without using fixed-time shifts. This
is important to show to the stakeholders at this time, since we found out I had several
misconceptions of how they worked in my last meeting with them. They are also very
used to the idea of working with fixed-time shifts, such as dividing the day in three
shifts (morning, afternoon and night), plus two extra-staff shifts (morning and evening
support).

I believe, however, that this rigid way of working with shifts is not adequate for their
scheduling system, as it does not follow reality, where they have several people with
slightly different shifts. However, when we talked about this, several stakeholders
expressed their concern about not being able to see all the information they are
used to seeing in a simple monthly grid.

Since my work with the whole system has gone much slower than expected, I de-
cided to work on a simple demo application quickly show how a grid of this type
could work with flexible shifts. This will not directly implement any features in the
final system I am developing, however, it will help me advance towards the following
user stories:

• As a manager, I want to be assured that the requisite number of staff are
scheduled at all times; and if possible, not more.

• As a scheduler, I want to be advised of any kind of conflict in the schedule of
my employees.

• As a scheduler, I want to be able to see who is scheduled to work any given
day at any given

• As a scheduler, I want to see which employees are free to cover a given shift.

28 Chapter 4. Iteration 2

4.1.1 Example Mapping

During the starting meeting of this iteration, I tried to run an example mapping ses-
sion [18]. Since in my previous interactions with the stakeholders they seemed to
respond better to examples than to abstract requirements, I thought it would work
help define the requirements of such a grid

Feature: Monthly grid.

Rules and Examples:

• Given a month and a time range, it will show in a grid all staff who work any
shift in the given month at any time between the given times. Each column
represents a day of the month, and each row a staff member

– A staff member works the weekdays of March 2019, from 9AM to 2PM.
The grid of March 2019, times 8AM to 2PM shows this staff member.

– A staff member works the weekdays of March 2019, from 2PM to 10PM.
The grid of March 2019, times 8AM to 2PM does not show this staff mem-
ber.

– A staff member works the 1st of March 2019 from 9AM to 2PM. The grid
of March 2019, times 1PM to 10PM shows this staff member

• Each cell will mark if the corresponding staff member is assigned to work at
any time during the selected time period on the corresponding day.

– A staff member works the weekdays of March 2019, from 9AM to 2PM.
On the grid of March 2019, times 8AM to 2PM, the cell corresponding to
the 11th and this staff member is marked.

– A staff member works the weekdays of March 2019, from 2PM to 10PM.
On the grid of March 2019, times 8AM to 2PM, the cell corresponding to
the 11th and this staff member is not marked.

– A staff member works the 1st of March 2019 from 9AM to 2PM. On the
grid of March 2019, times 1PM to 10PM, the cell corresponding to the
11th and this staff member is marked.

• There will be one extra row after all the staff member that will indicate the
number of staff in the range of times selected for the grid.

– Two staff members work the weekdays of March 2019, from 9AM to 2PM.
On the grid of March 2019, times 8AM to 2PM, the last row shows "2" for
all weekdays.

– A staff member works the weekdays of March 2019, from 2PM to 10PM.
Another staff member works the weekdays of March 2019, from 9AM to

4.2. Design 29

2PM. On the grid of March 2019, times 8AM to 2PM, the last row shows
"1" for all weekdays.

• If the total number of working staff varies depending on the time, the total staff
row will show the minimum and maximum staff at any time.

– A staff member works the weekdays of March 2019, from 8PM to 1PM.
Another staff member works the weekdays of March 2019, from 9AM to
2PM. On the grid of March 2019, times 8AM to 2PM, the last row shows
"1-2" for all weekdays.

– A staff member works the weekdays of March 2019, from 8AM to 2PM.
Another staff member works the weekdays of March 2019, from 2PM to
10PM. On the grid of March 2019, times 8AM to 10PM, the last row shows
"1" for all weekdays.

• Clicking on a column header will navigate to the detail grid of the clicked day
for the same times shown in the month grid. The rows will still be the staff
members, but the columns will represent each hour in the selected time range.

Questions:

• How can you tell who is free or on holiday at any given day?

• If the total staff on any day varies between understaffed and overstaffed, should
this day be marked (colored) as overstaffed?

4.2 Design

The solution will be based on the idea that each staff member can work any number
of shifts on each day, and that each of those shifts can start and end at any hour. For
visualization purposes, I will suppose that each start/end of shift can be at half-hour
intervals, that is, a shift can start at 8:00 or 8:30, but not 8:15 or 8:20.

4.3 Implementation Decisions

I will implement this proof of concept with a quick static website, using javascript
(with jQuery) for the interaction. I will hard-code some sample staff for the demo.

30 Chapter 4. Iteration 2

4.4 Retrospective

The stakeholders were happy with the implemented solution and understood how
flexible shifts could help them better see when they had small ranges of time over or
under-staffed

However, this approach had several problems compared to their previous grids using
fixed shifts:

• If the grid shows only employees that work any given shift/month, it is difficult
to find an employee that might be free to cover any leaves or personal days

• If the grid shows all available employees, the grid would be unmanageable

• Each day is marked equally for a person who works the full selected time range
or only one hour

For these reasons, we decided a mixed approach would be more appropriate. We
discussed a new feature where each staff member could be assigned one or several
"tags". These tags could correspond, for example, to a fuzzy shift the person is
usually able to cover. Then, when selecting the date range to view in the monthly
grid, the schedulers could choose between labels instead of times. The grid then,
would show all staff that has the selected label, not depending on whether they
worked at the given times or not. Of course, custom time selecting should be still
available to ease the discovery of over and under-staffed gaps.

31

Chapter 5

Iteration 3

5.1 User Stories

This iteration will return the focus to the edition of schedules. This time, I will imple-
ment the user stories of manually editing the schedule of a staff member. To enable
this, I will also implement two features that are not specifically the focus of this itera-
tion but that are necessary to manage staff: a list of all staff members and the option
to create new staff members.

5.2 Design

FIGURE 5.1: Schedule Editing Diagram.

32 Chapter 5. Iteration 3

In figure 5.1, we can see a global representation of the most important classes im-
plemented in this iteration. In the presentation layer, there are three controllers.
StaffController and ModelController are responsible for managing staff and schedule-
models respectively, while the ScheduleController holds the calls necessary for man-
aging the schedules themselves, independently if they belong to a model or to a real
staff member. This way, I can implement the edition of staff schedules and model
schedules without having to repeat duplicate calls.

The SchedulingService class serves as a façade for the domain logic. The domain
layer also has all the interfaces for the necessary functionality of the persistence
layer, which SchedulingService uses. The implementations of these interfaces, how-
ever, are in the persistence layer, so that if a different database was selected - even a
non-relational database - I would only have to create new implementations of these
interfaces in a new project.

5.2.1 Domain

FIGURE 5.2: Domain Entities Diagram.

In the domain layer, as shown in figure 5.2, I have simplified the entities from the first
iteration. I have also decided to work with thin, POCO-like entities, as using entities
with methods was resulting in dependencies between entities that I was not sure
how to resolve.

The center of the entities is the Schedule. Each Schedule can belong then to either
one StaffMember or one Model. Besides having an start and end date, each Sched-
ule is composed of several shifts. All these Shifts must have a date between the start
and end dates of the Schedule, and there can only be one Shift for each date and
schedule.

5.2. Design 33

The Shifts themselves are composed by one or, optionally, two TimeRanges. In the
case of an intensive shift, for example, from 8AM to 3PM, the SecondHalf of the Shift
will be null. In the case of an split shift, such as from 9AM to 1PM and from 2PM to
5PM, FirstHalf will contain the first range, and SecondHalf the second.

FIGURE 5.3: Domain Services Diagram.

Besides the entities and the interfaces for the persistence layer, the domain layer also
contains the two services shown in figure 5.3. SchedulingService is the façade of the
domain layer, and contains all the operations needed to edit schedules. However,
the functionality related to the calendar themselves - which days are holidays, the
default start of a schedule for a given year, etc. are encapsulated in the Calendar
class.

5.2.2 Persistence

FIGURE 5.4: Database Diagram.

34 Chapter 5. Iteration 3

In figure 5.4 I have drawn the tables this iteration needs in the database. In the
persistence layer, I have created DTOs that map one-to-one these tables. Note the
difference between the shifts in the domain and persistence layer. Given that there
are only a limited number of shifts possible, to make comparisons easier, I decided
to persist shifts independently of their schedules.

Each table has its own data access object as shown in figure 5.5. The interface for
each one is slightly different depending on how the data needs to be accessed and
written. These are the classes the implementations of the infrastructure interfaces
use to persist the data.

FIGURE 5.5: Data Access Objects Diagram.

5.3 Implementation Decisions

For the implementation of the data access objects, I have decided to use the library
Dapper, as it is a well-supported, lightweight library that eases the communication

5.4. Retrospective 35

with the database without the overhead of Entity Framework.

For the implementation of the database, I have chosen postreSQL, as it is an open-
source database system which is easy to sue and also supports json columns, which
is often useful to store extra data for each object that does not need to be accessed
in a relational manner.

5.4 Retrospective

In general, this iteration met the stakeholders’ expectations. However, there are
some points that need further work:

• The user interface is still somewhat awkward. At the very least, you should be
able to "paint" several days with the same shift-color by dragging the mouse.

• The system should warn you when editing a shift breaks one of the calendar
restrictions.

37

Chapter 6

Iteration 4

6.1 Introduction

I had not planned to do any kind of deployment, so I had not considered DevOps.
However, after the last check-in, it was clear that some deployment would be neces-
sary, so I changed the focus of the last iteration to be DevOps.

6.2 Containers

One of the advantages of using NET Core over traditional NET is that the applica-
tions can be packaged into containers. For this project, I used docker to containerize
the application. To build the image, you need to execute the following command from
the root of the application:

docker b u i l d − f ScheduleSystem / D o c k e r f i l e − t schedulesystem .

To run it, execute the following command:

docker run −d −p 8080:80 −−name myapp schedulesystem

6.3 Deployment

I decided to use Amazon Web Services to deploy a development version of my ap-
plication, since I am familiar with them and they have a free tier I could use.

First, I created a postgresql database in RDS as shown in figure 6.1.

I edited the connection string in the application settings of my application and launched
the application, checking that everything worked correctly.

Afterwards, I created an image repository in ECR and pushed the image to it with
the following script:

38 Chapter 6. Iteration 4

FIGURE 6.1: AWS RDS.

$ (aws ecr get−l o g i n −−no−inc lude−emai l −−reg ion eu−west−2)
docker tag schedulesystem : l a t e s t ACCOUNT_ID. dkr . ecr . eu−west

−2.amazonaws .com/ schedulesystem : l a t e s t
docker push ACCOUNT_ID. dkr . ecr . eu−west−2.amazonaws .com/

schedulesystem : l a t e s t

Finally, I configured a new container of this image using ECS, as shown in 6.2.

FIGURE 6.2: AWS ECS.

However, I was unable to connect to the database from this container.

6.4 Retrospective

Looking back, this last iteration was very rushed and I could have accomplished
more if I had thought about deployment earlier.

39

Chapter 7

Conclusions

7.1 Conclusions

During this project I was able to reach two main conclusions:

First, the iterative approach used allowed for continuous communication with the
stakeholders. Especially in the first iteration, stopping to check-in allowed to discover
a miscommunication that would have meant dozens of lost hours otherwise.

Second, during the design phases of each iteration, I found it difficult to focus on
the current iteration objectives. I often experienced "feature-creep", meaning I had
double work, as I had to rethink the features not in the iteration anyway.

7.2 Further Work

This project needs further work to even get to a MVP version of the application. First
and foremost, I need to continue working on the features to make a viable product,
especially further work on the manual edition of schedules, the monthly grid, and the
complete implementation of the warnings system.

Another task that is overdue is the implementation of unit tests, especially for the
domain layer where most logic should be located. The models in the presentation
layer also have considerable logic, so unit tests would be beneficial. In the per-
sistence layer, the Schedule and StaffMember classes that are responsible for the
mapping from domain objects to database DTOs and vice-versa would also benefit
from having unit tests.

For the rest of classes and functionalities, integration and automatized end-to-end
tests would be preferable. For example, integration tests for domain and persistence
layers would mean an important increase in the confidence on each change, and
they would still be useful even if the presentation layer changed. On the other hand,
the presentation layer has a lot of interaction with the user, so end-to-end tests would
cover this interaction.

40 Chapter 7. Conclusions

As shown during the last iteration, I am not ready even for manual deployment. A
pipeline for at least semi-automatic deployment and testing would ease the work
further down when I start to have release candidates for the stakeholders to review.

Finally, as the presentation layer has a lot of interaction with the user, I should also
consider using a front-end framework such as React that would help follow best
practices in the front-end.

41

Bibliography

[1] Atlas Business Solutions. Employee Scheduling Software. 2018. URL: https:
//web.archive.org/web/20170630030817/https://www.scheduleanywhere.

com/employee-scheduling-software/employee-scheduling-videos.aspx

(visited on 09/28/2018).
[2] Atlassian. Jira Product Page. 2018. URL: https://web.archive.org/web/

20180930221345/https://www.atlassian.com/software/jira (visited on
09/26/2018).

[3] Daljit Banger. A Basic Non-Functional Requirements Checklist. 2014. URL:
https://dalbanger.wordpress.com/2014/01/08/a-basic-non-functional-

requirements-checklist/ (visited on 10/12/2018).
[4] Business Management Systems. Snap Schedule Pricing. 2018. URL: https:

//web.archive.org/web/20180323192103/http://www.snapschedule.com:

80/home/buy-now/snap-schedule/ (visited on 09/28/2018).
[5] Business Management Systems. Snap Schedule Product Description. 2018.

URL: https : / / web . archive . org / web / 20180627053038 / http : / / www .

bmscentral.com/products/schedule/overview.aspx (visited on 09/22/2018).
[6] Cary Snowden. The Employee Scheduling Solution For Healthcare Managers.

Mar. 20, 2018. URL: https : / / www3 . swipeclock . com / blog / employee -

scheduling-solution-healthcare-managers (visited on 09/29/2018).
[7] Global Media Software. EntiGest Product Page. 2018. URL: https://web.

archive.org/web/20180805210103/http://laborofficefree.com/ (visited
on 09/29/2018).

[8] Mike Griffiths. Non-Functional Requirements - Minimal Checklist. 2009. URL:
http://leadinganswers.typepad.com/leading_answers/2009/03/nonfunctional-

requirements-minimal-checklist.html (visited on 10/12/2018).
[9] Identifica-t. Identifica-t Product Page. 2018. URL: https : / / web . archive .

org / web / 20180828045404 / https : / / www . identifica - t . com / control -

presencia- empleados/software- gestion- horarios- jornada- laboral-

trabajadores (visited on 09/28/2018).
[10] Monday. Monday Product Page. 2018. URL: https://web.archive.org/web/

20180930184002/https://monday.com/ (visited on 09/26/2018).
[11] Out Crowd. FindMyShift Product Page. 2018. URL: https://web.archive.

org / web / 20180925050726 / https : / / www . findmyshift . com/ (visited on
09/29/2018).

https://web.archive.org/web/20170630030817/https://www.scheduleanywhere.com/employee-scheduling-software/employee-scheduling-videos.aspx
https://web.archive.org/web/20170630030817/https://www.scheduleanywhere.com/employee-scheduling-software/employee-scheduling-videos.aspx
https://web.archive.org/web/20170630030817/https://www.scheduleanywhere.com/employee-scheduling-software/employee-scheduling-videos.aspx
https://web.archive.org/web/20180930221345/https://www.atlassian.com/software/jira
https://web.archive.org/web/20180930221345/https://www.atlassian.com/software/jira
https://dalbanger.wordpress.com/2014/01/08/a-basic-non-functional-requirements-checklist/
https://dalbanger.wordpress.com/2014/01/08/a-basic-non-functional-requirements-checklist/
https://web.archive.org/web/20180323192103/http://www.snapschedule.com:80/home/buy-now/snap-schedule/
https://web.archive.org/web/20180323192103/http://www.snapschedule.com:80/home/buy-now/snap-schedule/
https://web.archive.org/web/20180323192103/http://www.snapschedule.com:80/home/buy-now/snap-schedule/
https://web.archive.org/web/20180627053038/http://www.bmscentral.com/products/schedule/overview.aspx
https://web.archive.org/web/20180627053038/http://www.bmscentral.com/products/schedule/overview.aspx
https://www3.swipeclock.com/blog/employee-scheduling-solution-healthcare-managers
https://www3.swipeclock.com/blog/employee-scheduling-solution-healthcare-managers
https://web.archive.org/web/20180805210103/http://laborofficefree.com/
https://web.archive.org/web/20180805210103/http://laborofficefree.com/
http://leadinganswers.typepad.com/leading_answers/2009/03/nonfunctional-requirements-minimal-checklist.html
http://leadinganswers.typepad.com/leading_answers/2009/03/nonfunctional-requirements-minimal-checklist.html
https://web.archive.org/web/20180828045404/https://www.identifica-t.com/control-presencia-empleados/software-gestion-horarios-jornada-laboral-trabajadores
https://web.archive.org/web/20180828045404/https://www.identifica-t.com/control-presencia-empleados/software-gestion-horarios-jornada-laboral-trabajadores
https://web.archive.org/web/20180828045404/https://www.identifica-t.com/control-presencia-empleados/software-gestion-horarios-jornada-laboral-trabajadores
https://web.archive.org/web/20180828045404/https://www.identifica-t.com/control-presencia-empleados/software-gestion-horarios-jornada-laboral-trabajadores
https://web.archive.org/web/20180930184002/https://monday.com/
https://web.archive.org/web/20180930184002/https://monday.com/
https://web.archive.org/web/20180925050726/https://www.findmyshift.com/
https://web.archive.org/web/20180925050726/https://www.findmyshift.com/

42 BIBLIOGRAPHY

[12] PDC. Workforce Management and Staff Scheduling in Hospitals and Elder
Care. 2018. URL: https://web.archive.org/web/20180903013518/https:
//www.pdc.com/staffplan/health.html (visited on 09/29/2018).

[13] Prgtec Corporation. LaborOfficeFree Product Page. 2018. URL: https://web.
archive.org/web/20180805210103/http://laborofficefree.com/ (visited
on 09/29/2018).

[14] Michelle V. Rafter and Juan Martinez. “The Best Employee Scheduling and
Shift Planning Software of 2018”. In: PC Mag (Aug. 2018). URL: https://
www.pcmag.com/roundup/345904/the-best-employee-scheduling-shift-

planning-software.
[15] Redmine. Redmine Product Page. 2018. URL: https://web.archive.org/

web/20180923100256/http://www.redmine.org/ (visited on 09/26/2018).
[16] Tamigo. Tamigo Product Page. 2018. URL: https://web.archive.org/web/

20180906061537/https://www.tamigo.es/ (visited on 09/29/2018).
[17] Team Gannt. Team Gannt Product Description. 2018. URL: https://www.

teamgantt.com/ (visited on 09/29/2018).
[18] Matt Wynne. Introducing Example Mapping. 2015. URL: https://cucumber.

io/blog/2015/12/08/example-mapping-introduction (visited on 10/17/2018).

https://web.archive.org/web/20180903013518/https://www.pdc.com/staffplan/health.html
https://web.archive.org/web/20180903013518/https://www.pdc.com/staffplan/health.html
https://web.archive.org/web/20180805210103/http://laborofficefree.com/
https://web.archive.org/web/20180805210103/http://laborofficefree.com/
https://www.pcmag.com/roundup/345904/the-best-employee-scheduling-shift-planning-software
https://www.pcmag.com/roundup/345904/the-best-employee-scheduling-shift-planning-software
https://www.pcmag.com/roundup/345904/the-best-employee-scheduling-shift-planning-software
https://web.archive.org/web/20180923100256/http://www.redmine.org/
https://web.archive.org/web/20180923100256/http://www.redmine.org/
https://web.archive.org/web/20180906061537/https://www.tamigo.es/
https://web.archive.org/web/20180906061537/https://www.tamigo.es/
https://www.teamgantt.com/
https://www.teamgantt.com/
https://cucumber.io/blog/2015/12/08/example-mapping-introduction
https://cucumber.io/blog/2015/12/08/example-mapping-introduction

	Abstract
	Introduction
	Justification
	Alternatives
	Scope
	Methodology
	Schedule
	Deliverables

	Requirements
	Stakeholders
	Current System
	Start-Up Interview
	User Stories
	Non-Functional Requirements
	Iteration Plan

	Iteration 1
	User Stories
	Design
	Wireframes
	Architecture
	Class Diagram

	Implementation Decisions
	Retrospective

	Iteration 2
	User Stories
	Example Mapping

	Design
	Implementation Decisions
	Retrospective

	Iteration 3
	User Stories
	Design
	Domain
	Persistence

	Implementation Decisions
	Retrospective

	Iteration 4
	Introduction
	Containers
	Deployment
	Retrospective

	Conclusions
	Conclusions
	Further Work

	Bibliography

