Trabajo Final de Grado Inteligencia Artificial

Reducción de la dimensionalidad mediante métodos de selección de características en *microarrays* de ADN

Grado de Ingeniería Informática Maseda Tarin, Miguel

INDICE

1 INTRODUCCIÓN					
2 SELECCIÓN DE CARACTERÍSTICAS					
3 MÉTODOS DE SELECCIÓN DE CARACTERÍSTICAS					
4 CONJUNTO DE DATOS					
5 MÉTODOS DE VALIDACIÓN					
6 MÉTRICAS					
7 f-score					
8 mRMR					
9 Sequential Forward Selection					
10 Método híbrido					
11 Conclusiones					

1. INTRODUCCIÓN

Los datos por si solos no ofrecen toda la información que en ellos se encuentran

Uso de técnicas de DM y ML para obtener un valor añadido a nuestros datos

Hay que tratar previamente los datos para poder hacer uso de las técnicas

Métodos de tratamiento previo de los datos:

- Imputación de valores ausentes
- Filtrado de ruido
- Reducción de la dimensionalidad
- Reducción de instancias
- Discretización
- Aprendizaje no balanceado

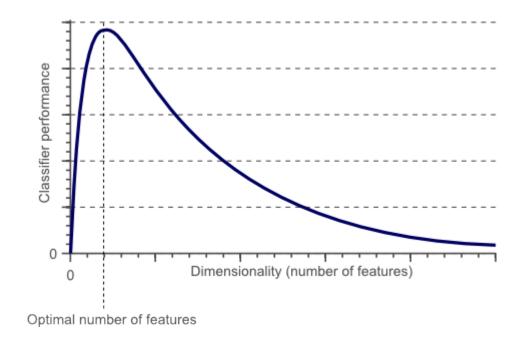
1. INTRODUCCIÓN

Métodos de clasificación supervisada

- Sabemos a qué clase pertenece cada muestra
- ¿a qué clase pertenecerá una nueva muestra?

Maldición de la dimensionalidad

Abordaremos la reducción de la dimensionalidad en los conjuntos de datos



Dimensionalidad del conjunto de datos:

- Número de muestras: $2 = \{2_1, 2_2, ..., 2_n\}$
- Número de características: 🖺 = { 🖺 na, 🖺 na, ..., 🖺 na)

Problema de dimensionalidad:

• m > n

Problema de dimensionalidad grave:

• m >> n

Métodos de reducción de la dimensionalidad:

- Selección de características
- Extracción de características

	X	1	2	3	•••	m
	x_1					
٠	χ_2					
•	χ_3					
٠	:					
	x_n					

Extracción de características:

- Transformación del conjunto original
- Las características originales no son necesarias para la interpretación del modelo
- Interpretabilidad < Exactitud

Selección de características:

- Seleccionan las características relevantes
- Las características originales son necesarias para la interpretación del modelo
- Interpretabilidad = Exactitud

Tipos de características (descripción de Kohavi):

- Fuertes
- Débiles
- Irrelevantes

Hay que tener en cuenta las características redundantes

- 1. Relevantes
- 2. Débiles pero no redundantes
- 3. Débiles redundantes
- 4. Irrelevantes

Características

- 4. Irrelevantes
- 3. Débiles y redundantes
- 2. Débiles y relevantes
- 1. Fuertes y relevantes

Conjunto óptimo

Beneficios de la selección de características:

- Modelos más precisos y rápidos
- Reducción del espacio de almacenamiento y búsqueda
- Mayor comprensión sobre el conjunto de datos
- Modelos más simples, mejorando su visualización
- Pueden reducir los costes a la hora de recopilar nueva información

3. MÉTODOS DE SELECCIÓN DE CARACTERÍSTICAS

Filtro

- La selección es independiente al algoritmo utilizado
- Coste computacional bajo
- Gran capacidad de generalización
- Univariantes y multivariantes

Empotrados

- La selección de características se realiza en el propio algoritmo de ML
- Menor coste computacional que los métodos wrapper

Wrapper

- Utilizan un algoritmo ML que mide la eficacia de las características
- Gran coste computacional
- Se usan cuando el coste computacional no es un problema

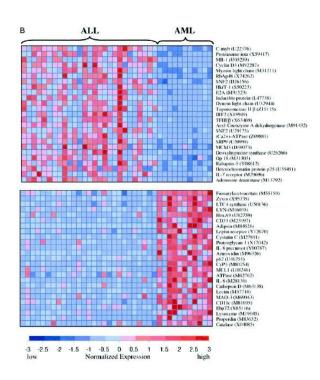
Híbridos

- Combinación de métodos de filtro y wrapper
- Buscan obtener las ventajas de estos métodos

4. CONJUNTO DE DATOS

Microarray de ADN: LEUCEMIA

- Contiene un total de 72 muestras
- Cada muestra tiene 7.129 características (genes)
- Se divide en dos clases:
 - Leucemia mieloide aguda, AML (25 muestras)
 - Leucemia linfoblástica aguda, ALL (47 muestras)



5. METODOS DE VALIDACION

Aplicación de los métodos de selección de características

Stratified k-fold (5 hojas):

- Conjunto de entrenamiento
- Conjunto de test

k-fold (10 hojas) al conjunto de entrenamiento:

- Conjunto de entrenamiento
- Conjunto de validación

Algoritmos de aprendizaje:

- k Neighbours Classifier
- Decision Tree Classifier
- Support Vector Classifier

6. METRICAS

Exactitud (accuracy)

$$\frac{TP + TN}{TP + FP + TN + FN}$$

Precisión (precision)

$$\frac{TP}{TP + FP}$$

 $\frac{TP}{TP + FN}$

TP = true positive

TN = true negative

FP = false positive

FN = false negative

Exhaustividad (recall)

7. *f-score*

Función *f_score* de la biblioteca *scikit- Feature*

Valoración individual de las características

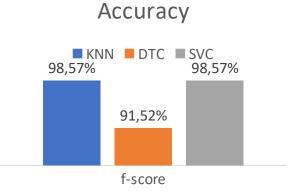
Ordena de mejor a peor

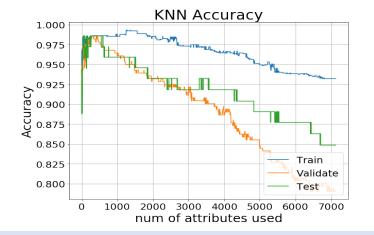
Ventajas:

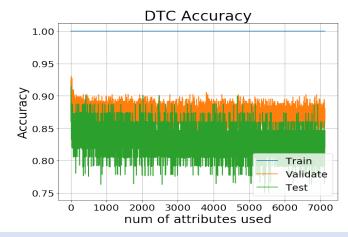
- Tiempo de ejecución casi nulo
- Muy buenos resultados

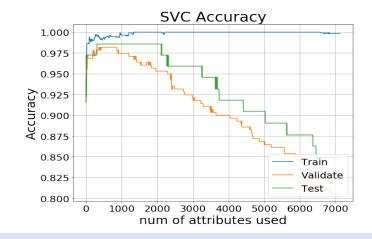
Inconvenientes:

• No elimina redundancia









8. mRMR

Función *mRMR* de la biblioteca *scikit-*<u>Feature</u>

Método multivariante

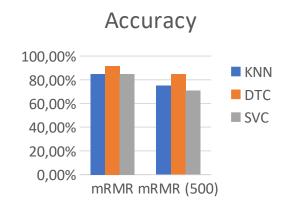
Ordena según relevancia

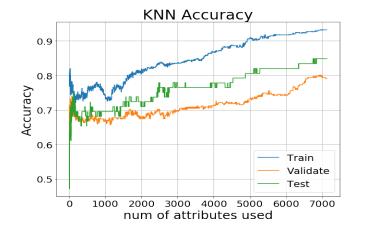
Ventajas:

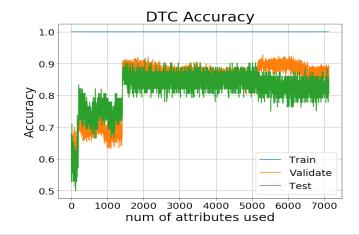
Descarta características redundantes

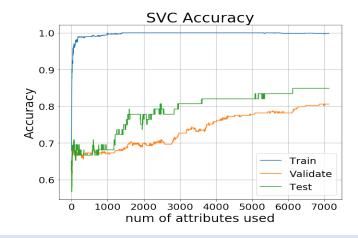
Inconvenientes:

- Tiempos de ejecución elevados
- No tiene tan buenos resultados como fscore









9. Sequential Foward Selection

Función SFS de la biblioteca mlxtend

Algoritmo utilizado para la evaluación: SVC

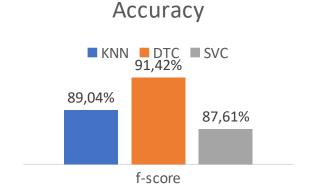
Añade características una a una

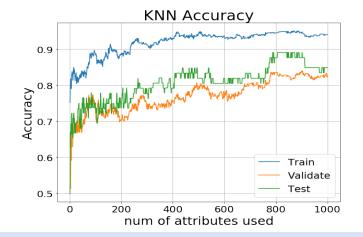
Ventajas:

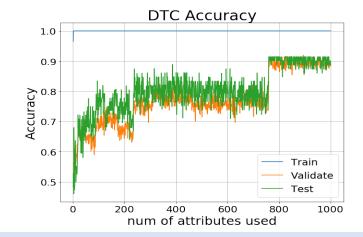
• Niveles de clasificación aceptables

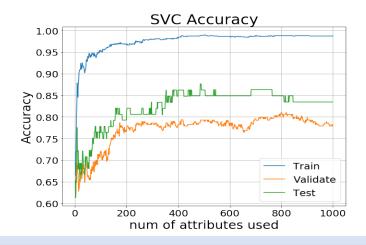
Inconvenientes:

- Tiempos de ejecución muy elevados
- No tiene tan buenos resultados como fscore









10. MÉTODO HÍBRIDO

Combinación de los métodos:

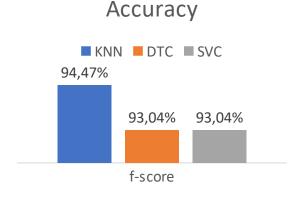
- f-score
- mRMR
- SFS_b
- *SFS_f*

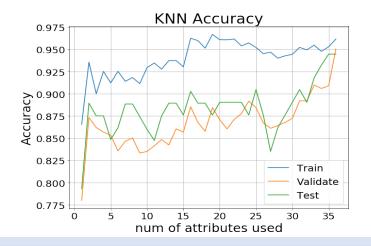
Ventajas:

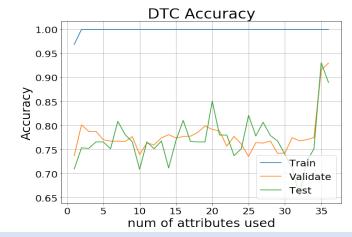
- Buenos niveles de clasificación
- Menor tiempo de ejecución que el método wrapper

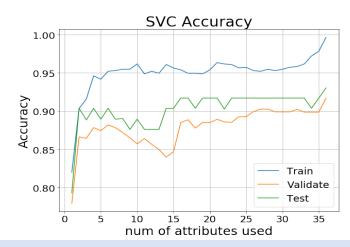
Inconvenientes:

- Tiempos de ejecución no tan rápidos como los de filtro
- No supera los resultados de *f-score*









11. CONCLUSIONES

Los conjuntos de datos *microarray* de ADN proponen un desafío para los algoritmos de aprendizaje

La reducción de la dimensionalidad es un paso previo para obtener los mejores resultados

Los mejores resultados se obtienen con el método f-score

Nuestro método híbrido solo supera al método *f-score* con el algoritmo DTC

Método	Atributos	Algoritmo	Accuracy
Filtro: <i>f-score</i>	45	KNN	98,57%
Híbrido	35	DTC	93,04%
Filtro: <i>f-score</i>	305	SVC	98,57%