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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados i conclusiones del trabajo.

La segmentación semántica es la diferenciación de las partes significativas de
una imagen. Y se ha utilizado en muchos campos distintos, como el tráfico o
campo de la medicina. Uno de estos usos en el campo médico es el examen
de frotis de la sangre. Los glóbulos blancos (WBC, por sus siglas en inglés)
son parte del sistema inmunológico y su conteo y determinación a menudo
los realizan médicos especialistas para el diagnóstico. La forma y el tamaño
del núcleo de los leucocitos pueden determinar el tipo de WBC mediante el
examen visual de un experto. 

La segmentación semátnica de WBC ya se había propuesto antes, pero no se
utilizaron redes neuronales convolucionales. Por lo que, en este proyecto, la
segmentación semántica se realizó en un conjunto de datos de acceso libre,
que está compuesto por imágenes microscópicas e imágenes de la verdad de
fondo segmentadas, de WBC, realizadas por expertos. El conjunto de datos
fue filtrado, transformado y aumentado para ser utilizado en una red neuronal
artificial.  Algunos  modelos  de  segmentación,  como  U-Net,  SegNet  y
DeconvNet,  fueron  elegidos,  adaptados  y  entrenados  para  /  con  esta
información. Después del entrenamiento, se evaluaron los modelos, utilizando
diferentes métricas (precisión,  coeficientes de similaridad de Jaccard y de
Sørensen–Dice), con el mismo conjunto de datos. Tanto para el entrenamiento
como para la evaluación de los modelos se empleó Jupyter notebook de la
plataforma de Google llamada Colaboratory.

Aunque  los  tres  modelos  lograron  puntuaciones  muy  altas  en  distintas
métricas.  La  arquitectura  de  U-Net  resultó  ser  el  mejor  modelo  para  la
segmentación,  así  como  también  el  más  rápido  para  el  proceso  de
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entrenamiento. 

  Abstract (in English, 250 words or less):

Semantic segmentation is the differentiation of  the meaningful  parts on an
image. It  has been used in many distinct  fields,  such as traffic  or  medical
areas. One of these uses in the medical field is the blood smear examination.
White blood cells (WBC) are part of the immune system and their counting
and determination are often performed by medical specialists for diagnosis.
The shape and size of the nucleus of leukocytes can determine the type of
WBC, by visual examination of an expert. 

WBC segmentation had been proposed before, but the convolutional neural
network architectures were not tried for this task. Therefore, in this project,
the semantic segmentation was performed on free access dataset, which is
composed of  microscopic  images and segmented ground truth  images,  of
WBC, made by experts. The dataset was filtered, transformed and augmented
in order to be used in an artificial neural network. Some segmentation models,
such as  U-Net,  SegNet  and DeconvNet,  were chosen,  adapted and trained
to/with this data.  After training,  the models were evaluated,  using different
metrics  (accuracy,  Jaccard  similarity  index  and  Sørensen–Dice  similarity
coefficient),  with the same dataset.  Jupyter notebook from the free Google
platform called Colaboratory was used for the training and evaluation of the
models.

Although all three models achieved very high scores in distinct metrics. U-Net
architecture resulted in being the best model for segmenting, as well as the
fastest one for the training process.

ii



Contents

1. Introduction.......................................................................................................1
1.1 Context and justification for this Project......................................................1
1.2 Project goals................................................................................................1
1.3 Focus and followed method.........................................................................2
1.4 Project plan..................................................................................................2
1.4.1 Tasks........................................................................................................2
1.4.2 Timetable..................................................................................................3
1.4.3 Milestones.................................................................................................4
1.4.4 Risk analysis.............................................................................................4
1.4.5 Costs associated with the project and the final product...........................4
1.4.6 Legal and ethical implications...................................................................4
1.5 Breif summary of the results........................................................................5
1.6 Breif description of next chapters................................................................5

2. Background.......................................................................................................6
2.1 Semantic segmentation...............................................................................6
2.2 Neural networks and specially CNN............................................................6
2.2.1 CNN..........................................................................................................8
2.3 Architectures for this project........................................................................9
2.3.1 U-Net.........................................................................................................9
2.3.2 DeconvNet..............................................................................................10
2.3.3 Segnet.....................................................................................................11

3. Materials and methods...................................................................................12
3.1 Dataset description....................................................................................12
3.2 Cloud computing with Google’s “Colaboratory” platform...........................12
3.3 Models.......................................................................................................13
3.4 Metrics for performance evaluation...........................................................14
3.4.1 Jaccard similarity index...........................................................................14
3.4.2 Dice Similarity Coefficient (DSC)............................................................15

4. Results............................................................................................................16
4.1 Discussion..................................................................................................18

5. Conclusions....................................................................................................19
6. Glossary..........................................................................................................21
7. Bibliography....................................................................................................23
8. Annexes..........................................................................................................27

iii



Figures list

Figure 1. ReLU activation function plot.

Figure 2. U-Net architecture[3]. Each blue box corresponds to a multi-channel

feature map, white box to copied feature map [3]. Input image size is 572x572

and the output segmentation map 388x388.

Figure 3. DeconvNet architecture[5]. The numbers indicates the size of feature

maps, each network is made from 13 convolutional layers and 5 maxpooling or

unpooling.

Figure  4. Example  of  image  data  from Dataset  1.  The  original  microscopy

image is followed by segmented image in black, grey and white. Two examples

of cells are shown.

Figure 5. Evolution of accuracy. The plots show accuracy for both train and

validation/test dataset through 30 epochs. Most of the models start with very

high accuracy, 0.8-0.9,  for training data and even higher for testing data, at

exception of DeconvNet.

Figure 6. Evolution of loss. The loss started with 0.3-0.2 and went down less

than 0.1, in all models. At exception of U-Net, which began with 0.4885 for train

dataset, and DeconvNet testing data, which began with 2.3182 .

Figure  7. Prediction  comparisons.  Each  row  is  different  test  image,  and  it

follows SegNet-Basic  prediction,  DeconvNet  prediction,  U-Net  prediction and

the  segmented  expected  image.  Nucleus  in  blue,  cytoplasm  in  green  and

background in red. X and Y axes represent sizes.
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1. Introduction

1.1 Context and justification for this Project

White blood cells (WBC) are the main components of immune cells and
their  counting  and  identification  are  usually  performed  by  medical
specialists  for  the  purpose  of  diagnosing  infections,  leukaemia,
inflammations, etc. [1]. However, the examination of the blood smear can
be tedious and time-consuming [2], thus automation can help a lot in this
task.

Segmentation  is  an  important  part  of  the  examination  of  cell  digital
morphology  and  several  techniques  that  require  the  use  of  machine
learning algorithms that have already been tested on cell blood images
[1]. It should be noted that the different methods pursued different goals,
so it is difficult to make comparisons between them.

The  current  boom  and  popularity  of  artificial  intelligence  create  an
appropriate  environment  to  find  the  solution  to  the  problem  defined
above.  Several  neural  network  architectures  have  already  been
developed and tested in  order  to  segment  different  images,  obtaining
distinct results. And in this project, it is intended to use some of them with
blood data and compare their results.

The  motivation  for  this  project  comes from the  need  to  automatically
segment the WBC, in order to help in the study of cell morphology and
improve a possible clinical diagnosis. The project itself does not aim to
improve  existing  techniques  but  rather  to  try  new  approaches  with
existing neural network architectures and to observe their segmentation
performance, proposing in this way its possible use in the clinical field.

1.2 Project goals

1. To perform the semantic  segmentation of  the white  blood cell  
images, using some  deep  neural  networks  models.Three  
architectures  will  be  explored:  U-net[3],  Segnet[4]  and  
DeconvNet [5].

For the first general objective, it will be necessary:

i.   Transform and  adapt  the  data  set  to  be  used  within  different  
models,  both  for  training  and  for  validation.  In  addition  to  
increasing this data using image processing methods in order to 
have more  images  to  use  and  to  improve  the  metrics  of  a  
subsequent evaluation.

ii.   Load the models on Google's  Colaboratory platform to run them 
on it, as well as the data set.
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iii.   If required, adjust the hyperparameters of the architectures before 
training.  Besides  the  standardization  of  the  models:  the  same  
batch size, same epochs, etc.

iv.   Train  the  models,  preparing  them  for  future  validation.  Its  
performance will  be measured throughout the process and the  
time it takes to train will be measured.

2. To evaluate the effectiveness of these models. 

In this overall goal, it is only tried to compare the efficiency of the models
used through different metrics.

For this purpose, the specific goals are:

i.    To perform the validation of each model. Determining the accuracy
of the trained model on new data.

ii.    To  use  Jaccard's  index  or  Jaccard  similarity  coefficient  and  
Sørensen-Dice similarity  coefficient,  also known as F-score as  
metrics  to  evaluate  the  performance  of  the  models,  on  the  
validation images; and present these results in a table.

1.3 Focus and followed method

Due to time constraints and the difficulty of adapting the set of data to the
architectures -because of small sized images, there are three kinds of
objects to distinguish and at least two of them are close together and
overlapping: cytoplasm and nucleus the cells-, the approach that will be
followed is to adapt the architectures to the data, trying to preserve the
original  model  structure  as  much  as  possible.  The  code  of  the
architectures  and  their  implementation  will  be  written  in  Python  3  in
Jupyter  Notebook  of  the  free  Google  platform  called  Colaboratory
(Colab), which also offers GPU in the cloud to run the models faster than
if they did use the computer's CPU.

A special strategy will also be used for segmented images or masks: it
consists of passing them from the greyscale to the colour scale -red, blue
and green (RBG)-, that is, from one dimension to three, corresponding
each dimension with the object to be detected by the neural networks.

1.4 Project plan

1.4.1 Tasks

 The  search  for  the  topic  of  the  project:  given  my  particular
circumstances, I must include this task. In order to explain the time
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dedicated and the delay in deliveries of the PECS/reports of the
master's thesis. (52 hours)

 A load of data and models on  Colab platform, and first tests of
these  models.  Free  licensing  models  will  be  searched  on  the
internet (on blogs and platforms such as Github or stack overflow,
mainly) and loaded on Google's  Colab platform. To be executed
later with the intention of testing its effectiveness in the real data.
(20 hours)

 The improvement  of  the  models.  The search for  improving  the
models  by  adapting  them  to  the  data,  modifying  their
hyperparameters  and  looking  for  the  best  possible  data
organization to allow the most optimal adjustment as possible. The
data augmentation is also included, in this point. (12 hours)

 Evaluation of the models. In this task, it will be tried to evaluate the
effectiveness of the models employed and to determine the best of
the three,  based on metrics  such as  Dice  or  Jaccard  similarity
coefficients. (20 hours)

 Report  redaction.  The  explanation  of  the  project,  following  the
protocols and design of the UOC. (22 hours)

1.4.2 Timetable

Due to the particular situation of the author, the performance of tasks  
overlaps many times, which offers the possibility of going back to obtain 
a better result or to rethink certain decisions taken that had incorrect  
assumptions.
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1.4.3 Milestones

All the milestones have squared well within the planning, although it must
be taken into account that the tasks overlap temporarily.

Milestones Date

The search for the theme of the project 6-10-2018

A load of data and models on Colab
platform, and first tests of these models

19-11-2018

The improvement of the models 1-12-2018

Evaluation of the models 20-12-2018

Report redaction 2-01-2019

1.4.4 Risk analysis

 The  situation  of  the  author.  The  author  already  had  a  project
before  starting  the  school  year,  that  project  was  going  to  be
carried out  in a  German company.  But  given the disagreement
between the university and the company, the project was over and
the author was forced to look for a new project at the beginning of
the master's course, which clearly modified the whole organization
of the subject of the final project. 

 A shorter and limiting time a priori. The greatest risk and given the
author's particular situation is time, which has prevented him from
exploring more models and has reduced the range of action. This,
in turn, has also modified the way of working as mentioned in the
previous sections.

 Problems with the data, some of the images do not have the same
size which can cause error when they are supplied to the model.

1.4.5 Costs associated with the project and the final product

Since there is no final product, the costs associated are only related to 
the project. All software and data used in the project will be free and  
open;  it  will  be  carried  out  at  the  author's  address,  with  a  personal  
computer. Thus, all costs are due to the electricity needed.

1.4.6 Legal and ethical implications

The project respects the authorship of the data, the code of the models is
not  copyrighted and free platforms are used for the execution of the  
programs.
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1.5 Breif summary of the results

It is expected to make and deliver: 
 Project plan
 The report
 The available code in Github
 Virtual presentation 
 Self-evaluation of the project

In addition to PECs or required reports, which will be delivered to the  
project tutor.

1.6 Breif description of next chapters

In the following chapters, it is briefly explained the background for this
project: semantic segmentation, neural networks, CNN, U-Net, SegNet
and DeconvNet. 

It is also included, the materials and methods, where it is mentioned the
how the models are written and how is the dataset; and where they will
be  loaded  and  implemented.  Moreover,  the  metrics  which  will  be
employed in evaluation.

Finally the chapters of results obtained after the training and evaluating
the models,  and the  conclusions given from these  results.  Then, the
annexes, bibliography and glossary finalize the report.
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2. Background

2.1 Semantic segmentation

The  semantic  segmentation  of  images  consists  of  clustering  different
groups of the pixels of an image, by tagging each pixel. Thus getting to
frame objects within the background or even to distinguish parts of these
objects. However, this task of detection and highlighting the object within
an image is not an unsupervised process, although some unsupervised
method could  be used in  semantic  segmentation  in  order  to  refine  a
segmentation  [6].  Therefore,  it  is  a  supervised  learning  and  some
algorithm were already performed with different level of success, such
as:  Random  Decision  Forests,  Support  Vector  Machines,  Markov
Random Fields,  Conditional  Random Fields  and Neural  Networks  [6].
Regarding neural  networks:  Convolution Neural  Network (CNN),  Deep
Neural  Network  (DNN) and Fully  Convolutional  Networks  (FCN) have
been proposed [7 - 9] and many architectures were build using them as
layers, such as Segnet, ENet, DeepLab, 2D-LSTM, etc [10].

Different methods of segmentation have been used for distinct purposes
such as: for detecting  road  signs [11], industrial quality inspection [12],
detecting  tumors [13],  detecting  medical  instruments in operations [14],
colon crypts segmentation [15], or land use and land cover classification
[16]. 

2.2 Neural networks and specially CNN

Artificial  neural  networks are circuits of neurons or nodes, inspired by
animal  brains,  and capable  to  learn  tasks  only  by  showing  them the
examples of these tasks. Some neural networks are even called as a
universal function approximation [17]. The basic unit of the network is a
neuron or node, inspired in animal  neurons,  which receives an input
from other neuron or neurons and gives an output to the next neuron, by
performing an operation. This could be defined like:

Output= f (∑ (w i x i )+ b )

Eq. 1

where: 
xi is an input,
wi is a weight,
b is a bias,
and f is an activation function.
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The  weights  and  biases  of  the  neurons  can  be  loaded  from  the
beginning, therefore, loading the already model trained in this way, as
long as the architecture of the network is preserved. However, it usual
that for the first time training, the random weights are assigned following
the uniform distribution. The Xavier initialization, from Xavier Glorot, of
weights  is used nowadays because it brings a faster convergence [18] of
neuronal network models.
The activation function is the mechanism that processes the incoming
information; as a biological analogy it is the firing rate of the neuron. It is
known several   of  these functions,  the first  explored was the sigmoid
function,  but  the most  used nowadays is ReLU [19]  function which is
difined like: 

f (x)=max(0 , x)
Eq. 2

where  x  is  the  input  of  the  function.  Furthermore,  other  activation
functions are being experimented, such as leaky ReLU [20]  or maxout
[21]. 

Figure 1. ReLU activation function plot.

These artificial neurons are organized in layers, which usually comprises
output, input and hidden layers, and all of them form the artificial neural
network.  

In feed-forward networks the computation goes from input layer to output
one, through the hidden layers. However,  with backpropagation it can go
reverse in order to update the weight of neurons [22],  thus the model
can learn. 

The  backpropagation  it  is  a  final  step  after  the  loss  function  and  its
derivative are applied to the outputs of the network. On the other hand,
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the loss function [23] calculates the error of the output data from the input
data, and there are often two types of loss functions: cross entropy for
classification tasks and mean square error (MSE) for regression tasks.
In order to achieve the minimal error, neural networks use an optmization
technique called gradient descent [24].  Although for small data, batch
gradient descent is totally fine and gets to global minimum [24]; for large
dataset,  the  training  is  very  slow  [25],  and  mini-batch  or  stochastic
gradient  descent  is  used  instead.  Nevertheless,  stochastic  gradient
descent is usually not very accurate because the global minimum is not
guaranteed, thus many optimizers have been developed to achieve the
best results -either best local minimum or directly global minimum- in less
time [24] than it would take with batch gradient descent.

The  overfitting  -the  model  learns  the  exact  training  data  without
generalizing- is very often after training a machine learning algorithm, the
same  occurs  with  artificial  neural  networks.  In  order  to  avoid   the
overfitting problem, regularization such as L1 and L2 is usually applied to
the models [26]. However, a simpler way of improve the generalization of
the neural networks model is by doing dropout [27], which is randomly
drop nodes from the network while training.

2.2.1 CNN

There  are  different  types  of  neural  networks  such  as  RNN,  GAN,
Autoencoders,  etc.  Nevertheless,  this  project  focus  is  on  the
convolutional neural networks or CNNs, which are the basic blocks of the
architectures that are explored working with peripheral blood cell image
data [28].

CNN is a special type of multilayer neural network [29], which uses filters
to identify features in an image. These features are always represented
in a feature map generated by the convolution. CNN mainly have four
different layers : convolution, ReLU, pooling and fully connected layers. 

Convolution  is  a  special  mathematical  operation  on  two  function  to
produce  a  third  function.  Thus,  the  convolution  layer  consists  on
scanning  the  image  with  the  filters,  resulting  in  a  feature  maps.  The
process of moving the filters are called strides and it may have different
size, although is usually 1 pixel each time [29]. 

To introduce non linearity in the feature maps, ReLU function is applied,
in the ReLU layer.

In the pooling layer, the size of these feature maps is reduced by pooling
them  [30],  which  is  taking  only  one  value  from  the  pooling  window.
Different  kinds  of  pooling  are  known  such  maximum,  minimum  or
average pooling.
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After usually a several convolution, ReLU and pooling layers, the fully  
connected layer scan the reduced feature maps and convert the data into
a values. In a classification task, flattering the data is often the previous 
step before the fully connected layer.  As a final step after this layer,  
softmax loss classifier :

σ( z)j=
ez j

∑
k=1

K

ezk

¿

Eq. 3

where σ(z) is a K-dimensional  vector of  real  values.  Softmax function
gives an output  of  probabilities.  This last  layer is  also known as loss
layer.

CNN are often use for image classification, however, they can be also
used for speech recognition [31]  or even for music recommendation [32].
There are several  architectures in the field  of  Convolutional  Networks
that have a name, such as LeNet, AlexNet, GoogleNet or VGGNet [29]. 

2.3 Architectures for this project

In this project U-Net, DeconvNet and Segnet architectures are build with
CNNs. Although they are different, the basic idea behind all of them is to
encode and decode the image in such way that the result would be a
segmented image.

2.3.1 U-Net

This  architecture  won  ISBI  (International  Symposium  on  Biomedical
Imaging)  cell  tracking  challenge  2015  for  segmenting  neuronal
structures  in electron  microscopic  stacks. The network does not have
any  fully  connected  layers  and  only  uses  the  valid  part  of  each
convolution,  i.e.,  the  segmentation  map  only  contains  the  pixels,  for
which the full context is available in the input image [3]. It consists of a
contracting path (left  side) and an expansive path (right side)[3],  as it
shown in the Figure 2. The structure is the following: 2 convolution layers
with kernel size of 3ｘ 3 with ReLU activation function , then max-pooling
layers with size of 2ｘ 2 on the left side and up-convolution (up-samling
with convolution) with size of 2 ｘ 2 on the right, then copy and crop of
feature maps for each 4 steps before pooling and one final convolution
with kernel size of 1 ｘ 1. The number of filters goes from 64 to 1024,
multiplying by 2 in each step. Although the input size and output size
differs in the original paper [3]. A more powerful version was proposed as
Unet++ [33].
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Figure 2. U-Net architecture[3]. Each blue box corresponds to a multi-channel feature
map, white box to copied feature map [3]. Input image size is 572x572 and the output
segmentation map 388x388.

U-Net has been tried in 3D images [34], Optic disc and cup [35], for Brain
Tumor Detection [36] or even for singing voice separation [37].

2.3.2 DeconvNet

This  model  achieved  accuracy  of  72.5%  with  PASCAL  VOC  2012
dataset,  when  it  first  appeared  [5].  The  main  idea  of  the  DeconvNet
comes  from  successes  with  image  reconstruction  from  its  feature
representation [5].

As  for  U-Net  the  model  is  composed  of  two  parts:  convolution  and
deconvolution networks (Figure 3). The first one extracts the features and
the second one generates object segmentation [5]. They employ VGG
16-layer  net  with  the  last  classification  layer  removed,  to  make  both
parts,  but for  the deconvolutional  one they reverse the architecture of
VGG 16. Such that the final output of the network is a probability map in
the same size to input image [5]. 

The structure of VGG 16 is the following: 13 convolutional layers with
kernel size of 3ｘ 3 are stacked one after the other with ReLU activation
function,  then max-pooling layers with size of 2 ｘ 2 for encoder or up-
convolution layers with size of 2ｘ 2 for decoder and the number of filters
goes from 64 to 4096, multiplying by 2 in each step.  Besides the 13
convolutional layers there is 1 fully connected layer with size of 1ｘ 1. As
it mentioned before two layers have been removed from the architecture
and  VGG  16  is  reversed  for  the  decoder  with  max-pooling  layers
substituted by up-sampling layers.
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DeconvNet  had  some  success  with  building  extraction  from  remote
sensing images [38]. 

Figure 3. DeconvNet architecture[5]. The numbers indicates the size of feature maps, 
each network is made from 13 convolutional layers and 5 maxpooling or unpooling.

2.3.3 Segnet

The motivation  to  design  SegNet  arises from this need to map low
resolution features to input resolution for pixel-wise classification [4]. It
has the same main idea of encoder and decoder but much more simpler.
The SegNet-Basic , which appears in this project, has 4 convolotional
layers  for  encoder  and  4  for  decoder.  It  has  similar  maxpooling  and
upsample shapes and strides; batch normalization  is  used after  each
convolutional  layer [4], but no biases are used after convolutions and no
ReLU, non-linearity, is  present  in  the  decoder  network. The original
paper  recommends  7 ｘ 7  kernel  size  in  both  encoder  and  decoder
convolutional layers. The filters goes from 64 to 512, for encoder as well
as for decoder layers. 

Segnet seems performing very well in different conditions with traffic data
[39]. 
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3. Materials and methods1

3.1 Dataset description

The  dataset  was  obtained  from  Jiangxi  Tecom  Science  Corporation,
China [28]; and it correspond to Dataset 1. It consist of white blood cell
images with white and yellow background, that also include some red
cells. There is three hundred 120×120 images and their color depth is 24
bits.  This  images   were  taken  by  a  Motic  Moticam Pro  252A optical
microscope  camera  with  a  N800-D motorized  auto-focus  microscope,
and  the  blood  smears  were  processed  with  a  newly-developed
hematology  reagent  for  rapid  cells  staining  [28],  and  saved  in  .bmp
format. 

The Dataset 1, also include ground truth segmentation results or masks,
saved as  .png format, that were manually sketched by domain experts,
where the nuclei, cytoplasms and background including red blood cells
are marked in white, gray and black respectively [28]. Its number and
size is the same as the original microscopy images.

Figure 4. Example of image data from  Dataset 1.  The original  microscopy image is
followed by segmented image in  black,  grey and white.  Two examples of  cells  are
shown.

This data was shrinked because some images have different size from
120x120,  and  this  could  lead  to  problems when  training  the  models.
Thus,  76  images were  not  selected into  final  dataset.  The other  224
images with  their  corresponding masks  were  transformed into  numpy
arrays.

Furthermore,  the  augmentation  was performed. The images and their
masks were flipped and rotated 90º to the left. This new data was added
to the original one, forming the final dataset with size of 448 ｘ 120 ｘ
120 ｘ 3 for “x” as colour images and with 448 ｘ 120 ｘ 120 for “y” as
grey-scale images, which are ground truth results2.

3.2 Cloud computing with Google’s “Colaboratory” platform

1 All the code is available on: https://github.com/dIcarusb/Master_project
2 https://github.com/dIcarusb/Master_project/blob/master/Dataset_creation.py
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Colaboratory (or Colab) is a fee online Jupyter notebook from Google, for
education and research purposes [40]. It allows using GPU or TPU from
the cloud making possible to train and run machine learning algorithms
much faster than it would take in a regular computer.

For the project, GPU and last Python version 3.6 was used for implement
each model.

3.3 Models

For each model, the data loaded was scaled and divided into two groups:
train (93,3% from all data) and validation, called test (6.7% from all data),
data. Besides the previous random shuffle with random seed with value
of 2.

However, in the case of segmented images data, there is also a previous
transformation into RGB image. The explanation behind this leads into
the premise of segmentation of three classes or three different objects
from the original image. Thus, the function called “dummy” makes this
transformation by separating the values of grayscale images and creating
extra  columns  for  each  of  three  values  and  filling  them with  0  or  1
(whenever the value appears). In this way, the “y” data was transformed
from one dimension with three different values into three dimensions with
binary values.

On  the  other  hand,  the  “x”  dataset  is  scaled  from  the  beginning  by
dividing it by 255.

All models are built with Keras with Tensorflow background. All required
packages/libraries are loaded at the beginning.

In  order  to  reduce  the  size  of  the  model,  all  convolution  and
deconvolution layers are defined in blocks (functions) before the model
function. The output layer is added for all models, which consists on 2D
convolution with 1ｘ 1 kernel size and 3 filters, followed by dropout of 0.5
[41] and finally softmax activation function. For model compilation binary
cross-entropy as the loss-function was chosen because the data for each
class/dimension is binary; with Adam optimizer with 1e-4 of learning rate;
and accuracy metrics. 

All  the  initial  convolutional  kernels  have  Xavier  uniform  distribution.
Finally,  all  the  models  are  built  as  they  are  explained  in  background
chapter, at the exception of the last maxpooling layer of the encoder and
the first upsampling layer of the decoder, because of the output shape 15ｘ 15  from  the  last  layer  of  the  encoder.  Therefore,  the  size  of
maxpoolings and upsamplings used is 3 ｘ 3 (reducing the shape of the
output to 5ｘ 5) to avoid the error that could appear by maintaining the
size of 2ｘ 2, which reduces the output shape to 7ｘ 7.
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As a particularity of DeconvNet3 model, because of so many maxpooling
and the restrictive shape of the images, the first maxpooling is 1 ｘ 1,
thus it maintains the same shape; while the last maxpooling is 3 ｘ 3, the
same  modification  as  in  other  models.  The  same  is  reversed  with
upsampling layers. Before this structure (1ｘ 1, 2ｘ 2, 2ｘ 2, 2ｘ 2, 3ｘ
3 pooling) it was tried another version of pooling sizes such as 2 ｘ 2, 2ｘ 2, 2ｘ 2, 3ｘ 3 and 5ｘ 5; but the best accuracy was obtained without
the first and last pooling or with 1ｘ 1 size.

SegNet4 particularity is the structure itself which is SegNet-Basic.

For U-Net5 up-convolutional step is performed by Conv2DTranspose, and
copy  and  crop  step  by   concatenate functions  from  Keras.  U-Net
appears in annexes as the example of the models building.

When fitting/training the model, the batch size was 20 and epochs were
30 for all the arquitectures. Regarding the prediction of the model, after
trained the model,  the result  of  probabilities was rounded to  obtain  a
specific class (0 or 1).

3.4 Metrics for performance evaluation

3.4.1 Jaccard similarity index

This  coefficient  is  an  intersection  over  the  union,  which  is  used  to  
compare the similarity  of  two  sets,  and  was  developed  to  compare  
regional floras [42]. Jaccard index is defined as:

Jaccard=
TP

TP+FP+FN
=

|A∩B|
|A∪B|

Eq. 4

where:
TP is true positive,
FP is false positive,
FN is false negative, and
A and B are two sets.

Regarding  the  project,  the  function   jaccard_similarity_score from
sklearn.metrics is  used  to  perform  a  comparison  between  the
segmented object and the ground truth object [43]. For each validation
image the Jaccard coefficient is calculated for cytoplasm and nucleus.
Then, the mean is obtained for all validation data and for each model.

3 https://github.com/dIcarusb/Master_project/blob/master/DeconvNet.ipynb
4 https://github.com/dIcarusb/Master_project/blob/master/segnet.ipynb
5 https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb
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3.4.2 Dice Similarity Coefficient (DSC)

Dice Similarity  or  Sørensen–Dice[44]  coefficient  is  also known as F1-
score. DSC as well as Jaccard index, is used to compare the similarity of
two sets, and is defined as:

DSC=
2TP

2TP+FP+FN
=

2|A∩B|
|A|+|B|

Eq. 5

where:
TP is true positive,
FP is false positive,
FN is false negative, and
A and B are two sets

In the project, the function  f1_score is implemented using the package
sklearn.metrics which performs the comparison of similarities between
the predicted object and the ground truth one [45]. For each validation
image DSC is calculated for cytoplasm and nucleus. Then, the mean is
obtained for all the validation data and for each model.
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4. Results

After training the models the graphs shown in Figure 5 were obtained.  
The SegNet accuracy for test dataset is the most varied one, probably 
due to the difficulty of generalizing. The other two models look more  
similar,  following  the  same  pattern,  accuracy  on  validation  dataset  is
slightly lower. The final accuracy as it is shown in Table 1, from SegNet 
and DeconvNet is very similar, and both of them are surpassed by U-
Net architecture.

      Table 1. The final accuracy score of the
models, after thirty epochs.

model Train Test

SegNet 0.9861 0.9713

DeconvNet 0.9864 0.9724

U-Net 0.9944 0.9880
                   

Figure  5.  Evolution  of  accuracy.  The  plots  show  accuracy  for  both  train  and  
validation/test  dataset  through 30 epochs.  Most  of  the models  start  with  very  high  
accuracy, 0.8-0.9,  for training data and even higher for testing data, at exception of  
DeconvNet.

With  the  plots  of  the  loss  funtion  occurs  something  similar  to  the  
evolution of the values: SegNet and DeconvNet are very similar and  
U-Net is still the best (Figure 6 and Table 2). As expected the SegNet  
model has also this saw-like  behaviour  with  testing  data  (Figure  6).  
Therefore, it  seems that the SegNet-Basic model starts very well  but  
struggles with generalizing and getting better results. 
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      Table 2. The final loss score of the 
models, after thirty epochs.

model Train Test

SegNet 0.0409 0.0749

DeconvNet 0.0428 0.0861

U-Net 0.0282 0.0441
                   

Figure 6. Evolution of loss. The loss started with 0.3-0.2 and went down less than 0.1, 
in all models. At exception of U-Net, which began with 0.4885 for train dataset, and  
DeconvNet testing data, which began with 2.3182 .

The  accuracy  is  not  the  best  way  to  measure  the  performance  of  
segmentation, thus Jaccard similarity index and  DSC were calculated. 
Once trained, the models, were used to predict the test data. Then, these
predictions were used to calculate the similarity coefficients on cytoplasm
and nucleus segmentation; and to compare the segmented image to the 
ground truth visually. In table 3 the average score appears with  the  
standard error of the mean, calculated as :

SE= σ

√n
Eq. 6

where σ is standard error and “n” is the number of the sample.

Although for DSC the score is lower than for Jaccard index, for both the 
cytoplasm was more difficult to segment than the nucleus. However, all 
models were able to achieve very high score more than 0.9 with a small 
error for both coefficients, besides the small number of images (418 for 
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training and 30 for validation), even after the augmentation. U-Net as well
as with accuracy and loss, have achieved a better score than the rest,  
in all comparisons.

The training runtime was also measured in order to compare  the speed 
training of the models. DeconvNet was the slowest model with 1301.5  
seconds,  probably  due  its  multiple  layers.  The second one was the  
SegNet-Basic with 727.97 seconds. And the fastest training was for U-
Net,  with only 476.17 seconds, in spite of  having more convolutional  
layers than SegNet.

Table 3. Average Jaccard similarity index and DSC on 30 test images.

model
Jaccard index on

cytoplasm
Jaccard index on

nucleus
DSC on

cytoplasm
DSC on
nucleus

SegNet 0.9533 +/- 0.0027 0.9804 +/-0.0019 0.9294 +/-0.004 0.9696 +/- 0.003

DeconvNet 0.9560 +/- 0.0022 0.9823 +/-0.0016 0.9334 +/- 0.0034 0.9725 +/- 0.0025

U-Net 0.9802 +/- 0.0020 0.9924 +/- 0.0008 0.97 +/-0.003 0.9882 +/- 0.0013

Figure 6 shows some of the prediction examples for all three models, and
in most cases, U-Net is slightly better predicting the nuclei  and even  
the cytoplasms. 

4.1 Discussion

In spite of small dataset, all models have shown very good results, by  
achieving high scores in different metrics, that have been employed in  
the evaluation. The data augmentation was not so significant, although it 
was included for this project, because the models had achieved almost 
the  same  or  similar  accuracies  as  well  as  without  the  
augmentation(annexes). This means that the models perform well even  
with smaller dataset. 

The best model was U-Net, though. It shows not only  a higher scores 
but also a better runtime among all models. However, it only became  
better after the addition of Dropout into the output layer. 

The original study[1] had proposed their own model and compared it with
other architectures , such as U-Net; nevertheless, they used different  
methodology  and  metrics  to  evaluate,  wich  makes  their  results  not  
comparable to this project.  Besides the original  study had a different  
purpose. However, the master project opens the possibility to explore  
other architectures with the same dataset.
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Figure 7. Prediction comparisons. Each row is different test image, and it follows SegNet-Basic
prediction,  DeconvNet  prediction,  U-Net  prediction  and  the  segmented  expected  image.
Nucleus in blue, cytoplasm in green and background in red. X and Y axes represent sizes.
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5. Conclusions

-The  semantic  segmentation  of  white  blood  cells  was  successfully
performed, even with such a small amount of data. 

-All of the models got a very high score in accuracy, Jaccard similarity
coefficient and DSC. Although U-Net was the best, even achieving the
best time, which makes this segmentation architecture the most efficient
among the three.

-The segmentation of  the peripheral  blood cells  is  possible  even with
small dataset. 

-However,  this  success doesn’t  mean that  these models will  segment
other blood microscopic images with different pixel size and neither with
other types of cells, after training with the dataset used in this project.
Although, the architectures showed enough competence to be employed
in a semantic segmentation task,  which gives them the confidence in
training and predicting with other data as mentioned before.

-The major problem was with mask data or ground truth segmentation
results. These grey-scale images were totally inadequate to the models,
thus  the  transformation  to  the  RGB  images  was  an  indispensable
solution.

-Finally, this project shows the state of the art of semantic segmentation
using artificial neural networks, for segment peripheral blood cell images,
which  in  turn  could  be  employed  in  in  diagnostic  automation.  It  also
opens the possibility of exploring another segmentation architecture, in
the future, such as Tiramisu, GAN, RNN, etc; which could perform even
better than U-Net. 
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6. Glossary

WBC: white blood cells

Semantic  segmentation:  partition  the  image  into  semantically  
meaningful parts,  and  to  classify  each  part  into  one  of  the  pre-
determined classes.

RGB: red,  green,  blue.  RGB  color  model  is  for  the  sensing,  
representation  and display of  images in  electronic  systems,  such as  
televisions and computers, though it has also been used in conventional 
photography. 

ANN, artificial neural network: is a computational model based on the 
structure and functions of biological neural networks.

ReLU: rectified linear unit.

Adam: adaptive moment estimation, an algorithm for first-order gradient-
based optimization of stochastic  objective  functions.

CNN: convolutional  neural  network  is  a  class  of  deep,  feed-forward  
artificial neural networks, most commonly applied to analyzing visual  
imagery.

RNN: recurrent  neural  network  is  a  class  of  artificial  neural  network  
where  connections  between  nodes  form  a  directed  graph  along  a  
sequence. 

GAN: generative adversarial networks are a class of artificial intelligence 
algorithms used in unsupervised machine learning, implemented by a  
system of two neural networks contesting with each other in a zero-sum 
game framework. 

Autoencoders: is a type of artificial neural network used to learn efficient
data codings in an unsupervised manner; typically for the purpose of  
dimensionality reduction.

U-Net: convolutional neural network that was developed for biomedical 
image  segmentation  at  the  Computer  Science  Department  of  the  
University of Freiburg, Germany.

ISBI challenge: International Symposium on Biomedical Imaging (ISBI) 
is a scientific  conference dedicated to mathematical,  algorithmic, and  
computational aspects of biological and biomedical imaging, across all  
scales of observation. Besides the conferences there is also challenges 
where some researcher groups can participate.
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DeconvNet: Learning  Deconvolution  Network  for  Semantic  
Segmentation  created  by  Hyeonwoo  Noh,  Seunghoon  Hong  and  
Bohyung Han at POSTECH.

PASCAL VOC 2012: dataset. Images with 20 classes. The train/val data 
has 11,530 images containing 27,450 regions of interest (ROI) annotated
objects and 6,929 segmentations. 

VGG 16: Visual Geometry Group, is a deep convolutional neural network
architecture with 16 layers.

SegNet: is a deep encoder-decoder architecture for multi-class pixelwise
segmentation researched and developed by members of the Computer 
Vision and Robotics Group at the University of Cambridge, UK.

Encoder: is  a  device,  circuit,  transducer,  software  program,  
algorithm or person that converts information from one format or code to
another, for the purposes of standardization, speed or compression.

Decoder: makes the reverse of the encoder.

State of the art: highest level of general development, as of a device, 
technique, or scientific field achieved at a particular time.

GPU: graphics  processing  unit,  is  a  specialized  electronic  circuit  
designed  to  rapidly  manipulate  and  alter  memory  to  accelerate  the  
creation of images in a frame buffer intended for output to a display  
device.

CPU: central processing unit, is the electronic circuitry within a computer 
that carries out the instructions of a computer program by performing the 
basic arithmetic, logical, control and input/output operations specified by 
the instructions.

Jaccard  index: is  a  statistic  used  for  comparing  the  similarity  and  
diversity of sample sets.

DSC: dice  similarity  coefficient  is  a  statistic  used  for  comparing  the  
similarity and diversity of sample sets.

Github: is a web-based hosting service for version control using Git.
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8. Annexes

U-Net model example (more details in GitHub link:
 https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb) :
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Input layer shape 
(120,120,3)

2 x Convolution size(3 x 3) , 
64 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) , 
128 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) , 
256 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) , 
512 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 3 x 3

2 x Convolution size(3 x 3) , 
1024 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (3 x 
3), 512 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) , 
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x 
2), 256 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) , 
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x 
2), 128 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) , 
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x 
2), 64 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) , 
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolution (1 x 1), 
3 filters
Dropout 0.5
Softmax activation

Direction of the 
calculations

Direction of feature maps copied and used 
to merge with up-convolutional blocks

https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb


The code of U-Net:
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Models run without data augmentation, accuracy:

model Train Test

SegNet 0.9802 0.9703

DeconvNet 0.9830 0.9673

U-Net 0.9921 0.9830

Loss function:

29

SegNet DeconvNet

U-Net

SegNet DeconvNet



model Train Test

SegNet 0.0573 0.0763

DeconvNet 0.0619 0.1046

U-Net 0.0427 0.0651
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U-Net
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