
Semantic segmentation of peripheral white
blood cells using neural networks

Pavel Baykalov
Máster Universitario de Bioinformática y Bioestadística
Machine Learning

Advisor:
Edwin Santiago Alférez Baquero

02-01-2019

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

FICHA DEL TRABAJO FINAL

Título del trabajo:
Semantic segmentation of peripheral white blood

cells using neural networks

Nombre del autor: Pavel Baykalov

Nombre del consultor/a: Edwin Santiago Alférez Baquero

Nombre del PRA: Ferran Prados Carrasco

Fecha de entrega (mm/aaaa): 01/2019

Titulación::
Máster Universitario en Bioinformática
y Bioestadística

Área del Trabajo Final: Machine Learning

Idioma del trabajo: English

Palabras clave U-Net, DeconvNet, SegNet

 Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados i conclusiones del trabajo.

La segmentación semántica es la diferenciación de las partes significativas de
una imagen. Y se ha utilizado en muchos campos distintos, como el tráfico o
campo de la medicina. Uno de estos usos en el campo médico es el examen
de frotis de la sangre. Los glóbulos blancos (WBC, por sus siglas en inglés)
son parte del sistema inmunológico y su conteo y determinación a menudo
los realizan médicos especialistas para el diagnóstico. La forma y el tamaño
del núcleo de los leucocitos pueden determinar el tipo de WBC mediante el
examen visual de un experto.

La segmentación semátnica de WBC ya se había propuesto antes, pero no se
utilizaron redes neuronales convolucionales. Por lo que, en este proyecto, la
segmentación semántica se realizó en un conjunto de datos de acceso libre,
que está compuesto por imágenes microscópicas e imágenes de la verdad de
fondo segmentadas, de WBC, realizadas por expertos. El conjunto de datos
fue filtrado, transformado y aumentado para ser utilizado en una red neuronal
artificial. Algunos modelos de segmentación, como U-Net, SegNet y
DeconvNet, fueron elegidos, adaptados y entrenados para / con esta
información. Después del entrenamiento, se evaluaron los modelos, utilizando
diferentes métricas (precisión, coeficientes de similaridad de Jaccard y de
Sørensen–Dice), con el mismo conjunto de datos. Tanto para el entrenamiento
como para la evaluación de los modelos se empleó Jupyter notebook de la
plataforma de Google llamada Colaboratory.

Aunque los tres modelos lograron puntuaciones muy altas en distintas
métricas. La arquitectura de U-Net resultó ser el mejor modelo para la
segmentación, así como también el más rápido para el proceso de

i

entrenamiento.

 Abstract (in English, 250 words or less):

Semantic segmentation is the differentiation of the meaningful parts on an
image. It has been used in many distinct fields, such as traffic or medical
areas. One of these uses in the medical field is the blood smear examination.
White blood cells (WBC) are part of the immune system and their counting
and determination are often performed by medical specialists for diagnosis.
The shape and size of the nucleus of leukocytes can determine the type of
WBC, by visual examination of an expert.

WBC segmentation had been proposed before, but the convolutional neural
network architectures were not tried for this task. Therefore, in this project,
the semantic segmentation was performed on free access dataset, which is
composed of microscopic images and segmented ground truth images, of
WBC, made by experts. The dataset was filtered, transformed and augmented
in order to be used in an artificial neural network. Some segmentation models,
such as U-Net, SegNet and DeconvNet, were chosen, adapted and trained
to/with this data. After training, the models were evaluated, using different
metrics (accuracy, Jaccard similarity index and Sørensen–Dice similarity
coefficient), with the same dataset. Jupyter notebook from the free Google
platform called Colaboratory was used for the training and evaluation of the
models.

Although all three models achieved very high scores in distinct metrics. U-Net
architecture resulted in being the best model for segmenting, as well as the
fastest one for the training process.

ii

Contents

1. Introduction...1
1.1 Context and justification for this Project..1
1.2 Project goals..1
1.3 Focus and followed method...2
1.4 Project plan..2
1.4.1 Tasks..2
1.4.2 Timetable..3
1.4.3 Milestones...4
1.4.4 Risk analysis...4
1.4.5 Costs associated with the project and the final product...........................4
1.4.6 Legal and ethical implications...4
1.5 Breif summary of the results..5
1.6 Breif description of next chapters..5

2. Background...6
2.1 Semantic segmentation...6
2.2 Neural networks and specially CNN..6
2.2.1 CNN..8
2.3 Architectures for this project..9
2.3.1 U-Net...9
2.3.2 DeconvNet..10
2.3.3 Segnet...11

3. Materials and methods...12
3.1 Dataset description..12
3.2 Cloud computing with Google’s “Colaboratory” platform...........................12
3.3 Models...13
3.4 Metrics for performance evaluation...14
3.4.1 Jaccard similarity index...14
3.4.2 Dice Similarity Coefficient (DSC)..15

4. Results..16
4.1 Discussion..18

5. Conclusions..19
6. Glossary..21
7. Bibliography..23
8. Annexes..27

iii

Figures list

Figure 1. ReLU activation function plot.

Figure 2. U-Net architecture[3]. Each blue box corresponds to a multi-channel

feature map, white box to copied feature map [3]. Input image size is 572x572

and the output segmentation map 388x388.

Figure 3. DeconvNet architecture[5]. The numbers indicates the size of feature

maps, each network is made from 13 convolutional layers and 5 maxpooling or

unpooling.

Figure 4. Example of image data from Dataset 1. The original microscopy

image is followed by segmented image in black, grey and white. Two examples

of cells are shown.

Figure 5. Evolution of accuracy. The plots show accuracy for both train and

validation/test dataset through 30 epochs. Most of the models start with very

high accuracy, 0.8-0.9, for training data and even higher for testing data, at

exception of DeconvNet.

Figure 6. Evolution of loss. The loss started with 0.3-0.2 and went down less

than 0.1, in all models. At exception of U-Net, which began with 0.4885 for train

dataset, and DeconvNet testing data, which began with 2.3182 .

Figure 7. Prediction comparisons. Each row is different test image, and it

follows SegNet-Basic prediction, DeconvNet prediction, U-Net prediction and

the segmented expected image. Nucleus in blue, cytoplasm in green and

background in red. X and Y axes represent sizes.

iv

ivv

1. Introduction

1.1 Context and justification for this Project

White blood cells (WBC) are the main components of immune cells and
their counting and identification are usually performed by medical
specialists for the purpose of diagnosing infections, leukaemia,
inflammations, etc. [1]. However, the examination of the blood smear can
be tedious and time-consuming [2], thus automation can help a lot in this
task.

Segmentation is an important part of the examination of cell digital
morphology and several techniques that require the use of machine
learning algorithms that have already been tested on cell blood images
[1]. It should be noted that the different methods pursued different goals,
so it is difficult to make comparisons between them.

The current boom and popularity of artificial intelligence create an
appropriate environment to find the solution to the problem defined
above. Several neural network architectures have already been
developed and tested in order to segment different images, obtaining
distinct results. And in this project, it is intended to use some of them with
blood data and compare their results.

The motivation for this project comes from the need to automatically
segment the WBC, in order to help in the study of cell morphology and
improve a possible clinical diagnosis. The project itself does not aim to
improve existing techniques but rather to try new approaches with
existing neural network architectures and to observe their segmentation
performance, proposing in this way its possible use in the clinical field.

1.2 Project goals

1. To perform the semantic segmentation of the white blood cell
images, using some deep neural networks models.Three
architectures will be explored: U-net[3], Segnet[4] and
DeconvNet [5].

For the first general objective, it will be necessary:

i. Transform and adapt the data set to be used within different
models, both for training and for validation. In addition to
increasing this data using image processing methods in order to
have more images to use and to improve the metrics of a
subsequent evaluation.

ii. Load the models on Google's Colaboratory platform to run them
on it, as well as the data set.

1

iii. If required, adjust the hyperparameters of the architectures before
training. Besides the standardization of the models: the same
batch size, same epochs, etc.

iv. Train the models, preparing them for future validation. Its
performance will be measured throughout the process and the
time it takes to train will be measured.

2. To evaluate the effectiveness of these models.

In this overall goal, it is only tried to compare the efficiency of the models
used through different metrics.

For this purpose, the specific goals are:

i. To perform the validation of each model. Determining the accuracy
of the trained model on new data.

ii. To use Jaccard's index or Jaccard similarity coefficient and
Sørensen-Dice similarity coefficient, also known as F-score as
metrics to evaluate the performance of the models, on the
validation images; and present these results in a table.

1.3 Focus and followed method

Due to time constraints and the difficulty of adapting the set of data to the
architectures -because of small sized images, there are three kinds of
objects to distinguish and at least two of them are close together and
overlapping: cytoplasm and nucleus the cells-, the approach that will be
followed is to adapt the architectures to the data, trying to preserve the
original model structure as much as possible. The code of the
architectures and their implementation will be written in Python 3 in
Jupyter Notebook of the free Google platform called Colaboratory
(Colab), which also offers GPU in the cloud to run the models faster than
if they did use the computer's CPU.

A special strategy will also be used for segmented images or masks: it
consists of passing them from the greyscale to the colour scale -red, blue
and green (RBG)-, that is, from one dimension to three, corresponding
each dimension with the object to be detected by the neural networks.

1.4 Project plan

1.4.1 Tasks

 The search for the topic of the project: given my particular
circumstances, I must include this task. In order to explain the time

2

dedicated and the delay in deliveries of the PECS/reports of the
master's thesis. (52 hours)

 A load of data and models on Colab platform, and first tests of
these models. Free licensing models will be searched on the
internet (on blogs and platforms such as Github or stack overflow,
mainly) and loaded on Google's Colab platform. To be executed
later with the intention of testing its effectiveness in the real data.
(20 hours)

 The improvement of the models. The search for improving the
models by adapting them to the data, modifying their
hyperparameters and looking for the best possible data
organization to allow the most optimal adjustment as possible. The
data augmentation is also included, in this point. (12 hours)

 Evaluation of the models. In this task, it will be tried to evaluate the
effectiveness of the models employed and to determine the best of
the three, based on metrics such as Dice or Jaccard similarity
coefficients. (20 hours)

 Report redaction. The explanation of the project, following the
protocols and design of the UOC. (22 hours)

1.4.2 Timetable

Due to the particular situation of the author, the performance of tasks
overlaps many times, which offers the possibility of going back to obtain
a better result or to rethink certain decisions taken that had incorrect
assumptions.

3

1.4.3 Milestones

All the milestones have squared well within the planning, although it must
be taken into account that the tasks overlap temporarily.

Milestones Date

The search for the theme of the project 6-10-2018

A load of data and models on Colab
platform, and first tests of these models

19-11-2018

The improvement of the models 1-12-2018

Evaluation of the models 20-12-2018

Report redaction 2-01-2019

1.4.4 Risk analysis

 The situation of the author. The author already had a project
before starting the school year, that project was going to be
carried out in a German company. But given the disagreement
between the university and the company, the project was over and
the author was forced to look for a new project at the beginning of
the master's course, which clearly modified the whole organization
of the subject of the final project.

 A shorter and limiting time a priori. The greatest risk and given the
author's particular situation is time, which has prevented him from
exploring more models and has reduced the range of action. This,
in turn, has also modified the way of working as mentioned in the
previous sections.

 Problems with the data, some of the images do not have the same
size which can cause error when they are supplied to the model.

1.4.5 Costs associated with the project and the final product

Since there is no final product, the costs associated are only related to
the project. All software and data used in the project will be free and
open; it will be carried out at the author's address, with a personal
computer. Thus, all costs are due to the electricity needed.

1.4.6 Legal and ethical implications

The project respects the authorship of the data, the code of the models is
not copyrighted and free platforms are used for the execution of the
programs.

4

1.5 Breif summary of the results

It is expected to make and deliver:
 Project plan
 The report
 The available code in Github
 Virtual presentation
 Self-evaluation of the project

In addition to PECs or required reports, which will be delivered to the
project tutor.

1.6 Breif description of next chapters

In the following chapters, it is briefly explained the background for this
project: semantic segmentation, neural networks, CNN, U-Net, SegNet
and DeconvNet.

It is also included, the materials and methods, where it is mentioned the
how the models are written and how is the dataset; and where they will
be loaded and implemented. Moreover, the metrics which will be
employed in evaluation.

Finally the chapters of results obtained after the training and evaluating
the models, and the conclusions given from these results. Then, the
annexes, bibliography and glossary finalize the report.

5

2. Background

2.1 Semantic segmentation

The semantic segmentation of images consists of clustering different
groups of the pixels of an image, by tagging each pixel. Thus getting to
frame objects within the background or even to distinguish parts of these
objects. However, this task of detection and highlighting the object within
an image is not an unsupervised process, although some unsupervised
method could be used in semantic segmentation in order to refine a
segmentation [6]. Therefore, it is a supervised learning and some
algorithm were already performed with different level of success, such
as: Random Decision Forests, Support Vector Machines, Markov
Random Fields, Conditional Random Fields and Neural Networks [6].
Regarding neural networks: Convolution Neural Network (CNN), Deep
Neural Network (DNN) and Fully Convolutional Networks (FCN) have
been proposed [7 - 9] and many architectures were build using them as
layers, such as Segnet, ENet, DeepLab, 2D-LSTM, etc [10].

Different methods of segmentation have been used for distinct purposes
such as: for detecting road signs [11], industrial quality inspection [12],
detecting tumors [13], detecting medical instruments in operations [14],
colon crypts segmentation [15], or land use and land cover classification
[16].

2.2 Neural networks and specially CNN

Artificial neural networks are circuits of neurons or nodes, inspired by
animal brains, and capable to learn tasks only by showing them the
examples of these tasks. Some neural networks are even called as a
universal function approximation [17]. The basic unit of the network is a
neuron or node, inspired in animal neurons, which receives an input
from other neuron or neurons and gives an output to the next neuron, by
performing an operation. This could be defined like:

Output= f (∑ (w i x i)+ b)

Eq. 1

where:
xi is an input,
wi is a weight,
b is a bias,
and f is an activation function.

6

The weights and biases of the neurons can be loaded from the
beginning, therefore, loading the already model trained in this way, as
long as the architecture of the network is preserved. However, it usual
that for the first time training, the random weights are assigned following
the uniform distribution. The Xavier initialization, from Xavier Glorot, of
weights is used nowadays because it brings a faster convergence [18] of
neuronal network models.
The activation function is the mechanism that processes the incoming
information; as a biological analogy it is the firing rate of the neuron. It is
known several of these functions, the first explored was the sigmoid
function, but the most used nowadays is ReLU [19] function which is
difined like:

f (x)=max(0 , x)
Eq. 2

where x is the input of the function. Furthermore, other activation
functions are being experimented, such as leaky ReLU [20] or maxout
[21].

Figure 1. ReLU activation function plot.

These artificial neurons are organized in layers, which usually comprises
output, input and hidden layers, and all of them form the artificial neural
network.

In feed-forward networks the computation goes from input layer to output
one, through the hidden layers. However, with backpropagation it can go
reverse in order to update the weight of neurons [22], thus the model
can learn.

The backpropagation it is a final step after the loss function and its
derivative are applied to the outputs of the network. On the other hand,

7

the loss function [23] calculates the error of the output data from the input
data, and there are often two types of loss functions: cross entropy for
classification tasks and mean square error (MSE) for regression tasks.
In order to achieve the minimal error, neural networks use an optmization
technique called gradient descent [24]. Although for small data, batch
gradient descent is totally fine and gets to global minimum [24]; for large
dataset, the training is very slow [25], and mini-batch or stochastic
gradient descent is used instead. Nevertheless, stochastic gradient
descent is usually not very accurate because the global minimum is not
guaranteed, thus many optimizers have been developed to achieve the
best results -either best local minimum or directly global minimum- in less
time [24] than it would take with batch gradient descent.

The overfitting -the model learns the exact training data without
generalizing- is very often after training a machine learning algorithm, the
same occurs with artificial neural networks. In order to avoid the
overfitting problem, regularization such as L1 and L2 is usually applied to
the models [26]. However, a simpler way of improve the generalization of
the neural networks model is by doing dropout [27], which is randomly
drop nodes from the network while training.

2.2.1 CNN

There are different types of neural networks such as RNN, GAN,
Autoencoders, etc. Nevertheless, this project focus is on the
convolutional neural networks or CNNs, which are the basic blocks of the
architectures that are explored working with peripheral blood cell image
data [28].

CNN is a special type of multilayer neural network [29], which uses filters
to identify features in an image. These features are always represented
in a feature map generated by the convolution. CNN mainly have four
different layers : convolution, ReLU, pooling and fully connected layers.

Convolution is a special mathematical operation on two function to
produce a third function. Thus, the convolution layer consists on
scanning the image with the filters, resulting in a feature maps. The
process of moving the filters are called strides and it may have different
size, although is usually 1 pixel each time [29].

To introduce non linearity in the feature maps, ReLU function is applied,
in the ReLU layer.

In the pooling layer, the size of these feature maps is reduced by pooling
them [30], which is taking only one value from the pooling window.
Different kinds of pooling are known such maximum, minimum or
average pooling.

8

After usually a several convolution, ReLU and pooling layers, the fully
connected layer scan the reduced feature maps and convert the data into
a values. In a classification task, flattering the data is often the previous
step before the fully connected layer. As a final step after this layer,
softmax loss classifier :

σ(z)j=
ez j

∑
k=1

K

ezk

¿

Eq. 3

where σ(z) is a K-dimensional vector of real values. Softmax function
gives an output of probabilities. This last layer is also known as loss
layer.

CNN are often use for image classification, however, they can be also
used for speech recognition [31] or even for music recommendation [32].
There are several architectures in the field of Convolutional Networks
that have a name, such as LeNet, AlexNet, GoogleNet or VGGNet [29].

2.3 Architectures for this project

In this project U-Net, DeconvNet and Segnet architectures are build with
CNNs. Although they are different, the basic idea behind all of them is to
encode and decode the image in such way that the result would be a
segmented image.

2.3.1 U-Net

This architecture won ISBI (International Symposium on Biomedical
Imaging) cell tracking challenge 2015 for segmenting neuronal
structures in electron microscopic stacks. The network does not have
any fully connected layers and only uses the valid part of each
convolution, i.e., the segmentation map only contains the pixels, for
which the full context is available in the input image [3]. It consists of a
contracting path (left side) and an expansive path (right side)[3], as it
shown in the Figure 2. The structure is the following: 2 convolution layers
with kernel size of 3ｘ 3 with ReLU activation function , then max-pooling
layers with size of 2ｘ 2 on the left side and up-convolution (up-samling
with convolution) with size of 2 ｘ 2 on the right, then copy and crop of
feature maps for each 4 steps before pooling and one final convolution
with kernel size of 1 ｘ 1. The number of filters goes from 64 to 1024,
multiplying by 2 in each step. Although the input size and output size
differs in the original paper [3]. A more powerful version was proposed as
Unet++ [33].

9

Figure 2. U-Net architecture[3]. Each blue box corresponds to a multi-channel feature
map, white box to copied feature map [3]. Input image size is 572x572 and the output
segmentation map 388x388.

U-Net has been tried in 3D images [34], Optic disc and cup [35], for Brain
Tumor Detection [36] or even for singing voice separation [37].

2.3.2 DeconvNet

This model achieved accuracy of 72.5% with PASCAL VOC 2012
dataset, when it first appeared [5]. The main idea of the DeconvNet
comes from successes with image reconstruction from its feature
representation [5].

As for U-Net the model is composed of two parts: convolution and
deconvolution networks (Figure 3). The first one extracts the features and
the second one generates object segmentation [5]. They employ VGG
16-layer net with the last classification layer removed, to make both
parts, but for the deconvolutional one they reverse the architecture of
VGG 16. Such that the final output of the network is a probability map in
the same size to input image [5].

The structure of VGG 16 is the following: 13 convolutional layers with
kernel size of 3ｘ 3 are stacked one after the other with ReLU activation
function, then max-pooling layers with size of 2 ｘ 2 for encoder or up-
convolution layers with size of 2ｘ 2 for decoder and the number of filters
goes from 64 to 4096, multiplying by 2 in each step. Besides the 13
convolutional layers there is 1 fully connected layer with size of 1ｘ 1. As
it mentioned before two layers have been removed from the architecture
and VGG 16 is reversed for the decoder with max-pooling layers
substituted by up-sampling layers.

10

DeconvNet had some success with building extraction from remote
sensing images [38].

Figure 3. DeconvNet architecture[5]. The numbers indicates the size of feature maps,
each network is made from 13 convolutional layers and 5 maxpooling or unpooling.

2.3.3 Segnet

The motivation to design SegNet arises from this need to map low
resolution features to input resolution for pixel-wise classification [4]. It
has the same main idea of encoder and decoder but much more simpler.
The SegNet-Basic , which appears in this project, has 4 convolotional
layers for encoder and 4 for decoder. It has similar maxpooling and
upsample shapes and strides; batch normalization is used after each
convolutional layer [4], but no biases are used after convolutions and no
ReLU, non-linearity, is present in the decoder network. The original
paper recommends 7 ｘ 7 kernel size in both encoder and decoder
convolutional layers. The filters goes from 64 to 512, for encoder as well
as for decoder layers.

Segnet seems performing very well in different conditions with traffic data
[39].

11

3. Materials and methods1

3.1 Dataset description

The dataset was obtained from Jiangxi Tecom Science Corporation,
China [28]; and it correspond to Dataset 1. It consist of white blood cell
images with white and yellow background, that also include some red
cells. There is three hundred 120×120 images and their color depth is 24
bits. This images were taken by a Motic Moticam Pro 252A optical
microscope camera with a N800-D motorized auto-focus microscope,
and the blood smears were processed with a newly-developed
hematology reagent for rapid cells staining [28], and saved in .bmp
format.

The Dataset 1, also include ground truth segmentation results or masks,
saved as .png format, that were manually sketched by domain experts,
where the nuclei, cytoplasms and background including red blood cells
are marked in white, gray and black respectively [28]. Its number and
size is the same as the original microscopy images.

Figure 4. Example of image data from Dataset 1. The original microscopy image is
followed by segmented image in black, grey and white. Two examples of cells are
shown.

This data was shrinked because some images have different size from
120x120, and this could lead to problems when training the models.
Thus, 76 images were not selected into final dataset. The other 224
images with their corresponding masks were transformed into numpy
arrays.

Furthermore, the augmentation was performed. The images and their
masks were flipped and rotated 90º to the left. This new data was added
to the original one, forming the final dataset with size of 448 ｘ 120 ｘ
120 ｘ 3 for “x” as colour images and with 448 ｘ 120 ｘ 120 for “y” as
grey-scale images, which are ground truth results2.

3.2 Cloud computing with Google’s “Colaboratory” platform

1 All the code is available on: https://github.com/dIcarusb/Master_project
2 https://github.com/dIcarusb/Master_project/blob/master/Dataset_creation.py

12

Colaboratory (or Colab) is a fee online Jupyter notebook from Google, for
education and research purposes [40]. It allows using GPU or TPU from
the cloud making possible to train and run machine learning algorithms
much faster than it would take in a regular computer.

For the project, GPU and last Python version 3.6 was used for implement
each model.

3.3 Models

For each model, the data loaded was scaled and divided into two groups:
train (93,3% from all data) and validation, called test (6.7% from all data),
data. Besides the previous random shuffle with random seed with value
of 2.

However, in the case of segmented images data, there is also a previous
transformation into RGB image. The explanation behind this leads into
the premise of segmentation of three classes or three different objects
from the original image. Thus, the function called “dummy” makes this
transformation by separating the values of grayscale images and creating
extra columns for each of three values and filling them with 0 or 1
(whenever the value appears). In this way, the “y” data was transformed
from one dimension with three different values into three dimensions with
binary values.

On the other hand, the “x” dataset is scaled from the beginning by
dividing it by 255.

All models are built with Keras with Tensorflow background. All required
packages/libraries are loaded at the beginning.

In order to reduce the size of the model, all convolution and
deconvolution layers are defined in blocks (functions) before the model
function. The output layer is added for all models, which consists on 2D
convolution with 1ｘ 1 kernel size and 3 filters, followed by dropout of 0.5
[41] and finally softmax activation function. For model compilation binary
cross-entropy as the loss-function was chosen because the data for each
class/dimension is binary; with Adam optimizer with 1e-4 of learning rate;
and accuracy metrics.

All the initial convolutional kernels have Xavier uniform distribution.
Finally, all the models are built as they are explained in background
chapter, at the exception of the last maxpooling layer of the encoder and
the first upsampling layer of the decoder, because of the output shape 15ｘ 15 from the last layer of the encoder. Therefore, the size of
maxpoolings and upsamplings used is 3 ｘ 3 (reducing the shape of the
output to 5ｘ 5) to avoid the error that could appear by maintaining the
size of 2ｘ 2, which reduces the output shape to 7ｘ 7.

13

As a particularity of DeconvNet3 model, because of so many maxpooling
and the restrictive shape of the images, the first maxpooling is 1 ｘ 1,
thus it maintains the same shape; while the last maxpooling is 3 ｘ 3, the
same modification as in other models. The same is reversed with
upsampling layers. Before this structure (1ｘ 1, 2ｘ 2, 2ｘ 2, 2ｘ 2, 3ｘ
3 pooling) it was tried another version of pooling sizes such as 2 ｘ 2, 2ｘ 2, 2ｘ 2, 3ｘ 3 and 5ｘ 5; but the best accuracy was obtained without
the first and last pooling or with 1ｘ 1 size.

SegNet4 particularity is the structure itself which is SegNet-Basic.

For U-Net5 up-convolutional step is performed by Conv2DTranspose, and
copy and crop step by concatenate functions from Keras. U-Net
appears in annexes as the example of the models building.

When fitting/training the model, the batch size was 20 and epochs were
30 for all the arquitectures. Regarding the prediction of the model, after
trained the model, the result of probabilities was rounded to obtain a
specific class (0 or 1).

3.4 Metrics for performance evaluation

3.4.1 Jaccard similarity index

This coefficient is an intersection over the union, which is used to
compare the similarity of two sets, and was developed to compare
regional floras [42]. Jaccard index is defined as:

Jaccard=
TP

TP+FP+FN
=

|A∩B|
|A∪B|

Eq. 4

where:
TP is true positive,
FP is false positive,
FN is false negative, and
A and B are two sets.

Regarding the project, the function jaccard_similarity_score from
sklearn.metrics is used to perform a comparison between the
segmented object and the ground truth object [43]. For each validation
image the Jaccard coefficient is calculated for cytoplasm and nucleus.
Then, the mean is obtained for all validation data and for each model.

3 https://github.com/dIcarusb/Master_project/blob/master/DeconvNet.ipynb
4 https://github.com/dIcarusb/Master_project/blob/master/segnet.ipynb
5 https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb

14

3.4.2 Dice Similarity Coefficient (DSC)

Dice Similarity or Sørensen–Dice[44] coefficient is also known as F1-
score. DSC as well as Jaccard index, is used to compare the similarity of
two sets, and is defined as:

DSC=
2TP

2TP+FP+FN
=

2|A∩B|
|A|+|B|

Eq. 5

where:
TP is true positive,
FP is false positive,
FN is false negative, and
A and B are two sets

In the project, the function f1_score is implemented using the package
sklearn.metrics which performs the comparison of similarities between
the predicted object and the ground truth one [45]. For each validation
image DSC is calculated for cytoplasm and nucleus. Then, the mean is
obtained for all the validation data and for each model.

15

4. Results

After training the models the graphs shown in Figure 5 were obtained.
The SegNet accuracy for test dataset is the most varied one, probably
due to the difficulty of generalizing. The other two models look more
similar, following the same pattern, accuracy on validation dataset is
slightly lower. The final accuracy as it is shown in Table 1, from SegNet
and DeconvNet is very similar, and both of them are surpassed by U-
Net architecture.

 Table 1. The final accuracy score of the
models, after thirty epochs.

model Train Test

SegNet 0.9861 0.9713

DeconvNet 0.9864 0.9724

U-Net 0.9944 0.9880

Figure 5. Evolution of accuracy. The plots show accuracy for both train and
validation/test dataset through 30 epochs. Most of the models start with very high
accuracy, 0.8-0.9, for training data and even higher for testing data, at exception of
DeconvNet.

With the plots of the loss funtion occurs something similar to the
evolution of the values: SegNet and DeconvNet are very similar and
U-Net is still the best (Figure 6 and Table 2). As expected the SegNet
model has also this saw-like behaviour with testing data (Figure 6).
Therefore, it seems that the SegNet-Basic model starts very well but
struggles with generalizing and getting better results.

16

SegNet
DeconvNet

U-Net

 Table 2. The final loss score of the
models, after thirty epochs.

model Train Test

SegNet 0.0409 0.0749

DeconvNet 0.0428 0.0861

U-Net 0.0282 0.0441

Figure 6. Evolution of loss. The loss started with 0.3-0.2 and went down less than 0.1,
in all models. At exception of U-Net, which began with 0.4885 for train dataset, and
DeconvNet testing data, which began with 2.3182 .

The accuracy is not the best way to measure the performance of
segmentation, thus Jaccard similarity index and DSC were calculated.
Once trained, the models, were used to predict the test data. Then, these
predictions were used to calculate the similarity coefficients on cytoplasm
and nucleus segmentation; and to compare the segmented image to the
ground truth visually. In table 3 the average score appears with the
standard error of the mean, calculated as :

SE= σ

√n
Eq. 6

where σ is standard error and “n” is the number of the sample.

Although for DSC the score is lower than for Jaccard index, for both the
cytoplasm was more difficult to segment than the nucleus. However, all
models were able to achieve very high score more than 0.9 with a small
error for both coefficients, besides the small number of images (418 for

17

SegNet DeconvNet

U-Net

training and 30 for validation), even after the augmentation. U-Net as well
as with accuracy and loss, have achieved a better score than the rest,
in all comparisons.

The training runtime was also measured in order to compare the speed
training of the models. DeconvNet was the slowest model with 1301.5
seconds, probably due its multiple layers. The second one was the
SegNet-Basic with 727.97 seconds. And the fastest training was for U-
Net, with only 476.17 seconds, in spite of having more convolutional
layers than SegNet.

Table 3. Average Jaccard similarity index and DSC on 30 test images.

model
Jaccard index on

cytoplasm
Jaccard index on

nucleus
DSC on

cytoplasm
DSC on
nucleus

SegNet 0.9533 +/- 0.0027 0.9804 +/-0.0019 0.9294 +/-0.004 0.9696 +/- 0.003

DeconvNet 0.9560 +/- 0.0022 0.9823 +/-0.0016 0.9334 +/- 0.0034 0.9725 +/- 0.0025

U-Net 0.9802 +/- 0.0020 0.9924 +/- 0.0008 0.97 +/-0.003 0.9882 +/- 0.0013

Figure 6 shows some of the prediction examples for all three models, and
in most cases, U-Net is slightly better predicting the nuclei and even
the cytoplasms.

4.1 Discussion

In spite of small dataset, all models have shown very good results, by
achieving high scores in different metrics, that have been employed in
the evaluation. The data augmentation was not so significant, although it
was included for this project, because the models had achieved almost
the same or similar accuracies as well as without the
augmentation(annexes). This means that the models perform well even
with smaller dataset.

The best model was U-Net, though. It shows not only a higher scores
but also a better runtime among all models. However, it only became
better after the addition of Dropout into the output layer.

The original study[1] had proposed their own model and compared it with
other architectures , such as U-Net; nevertheless, they used different
methodology and metrics to evaluate, wich makes their results not
comparable to this project. Besides the original study had a different
purpose. However, the master project opens the possibility to explore
other architectures with the same dataset.

18

Figure 7. Prediction comparisons. Each row is different test image, and it follows SegNet-Basic
prediction, DeconvNet prediction, U-Net prediction and the segmented expected image.
Nucleus in blue, cytoplasm in green and background in red. X and Y axes represent sizes.

19

SegNet DeconvNet U-Net

5. Conclusions

-The semantic segmentation of white blood cells was successfully
performed, even with such a small amount of data.

-All of the models got a very high score in accuracy, Jaccard similarity
coefficient and DSC. Although U-Net was the best, even achieving the
best time, which makes this segmentation architecture the most efficient
among the three.

-The segmentation of the peripheral blood cells is possible even with
small dataset.

-However, this success doesn’t mean that these models will segment
other blood microscopic images with different pixel size and neither with
other types of cells, after training with the dataset used in this project.
Although, the architectures showed enough competence to be employed
in a semantic segmentation task, which gives them the confidence in
training and predicting with other data as mentioned before.

-The major problem was with mask data or ground truth segmentation
results. These grey-scale images were totally inadequate to the models,
thus the transformation to the RGB images was an indispensable
solution.

-Finally, this project shows the state of the art of semantic segmentation
using artificial neural networks, for segment peripheral blood cell images,
which in turn could be employed in in diagnostic automation. It also
opens the possibility of exploring another segmentation architecture, in
the future, such as Tiramisu, GAN, RNN, etc; which could perform even
better than U-Net.

20

6. Glossary

WBC: white blood cells

Semantic segmentation: partition the image into semantically
meaningful parts, and to classify each part into one of the pre-
determined classes.

RGB: red, green, blue. RGB color model is for the sensing,
representation and display of images in electronic systems, such as
televisions and computers, though it has also been used in conventional
photography.

ANN, artificial neural network: is a computational model based on the
structure and functions of biological neural networks.

ReLU: rectified linear unit.

Adam: adaptive moment estimation, an algorithm for first-order gradient-
based optimization of stochastic objective functions.

CNN: convolutional neural network is a class of deep, feed-forward
artificial neural networks, most commonly applied to analyzing visual
imagery.

RNN: recurrent neural network is a class of artificial neural network
where connections between nodes form a directed graph along a
sequence.

GAN: generative adversarial networks are a class of artificial intelligence
algorithms used in unsupervised machine learning, implemented by a
system of two neural networks contesting with each other in a zero-sum
game framework.

Autoencoders: is a type of artificial neural network used to learn efficient
data codings in an unsupervised manner; typically for the purpose of
dimensionality reduction.

U-Net: convolutional neural network that was developed for biomedical
image segmentation at the Computer Science Department of the
University of Freiburg, Germany.

ISBI challenge: International Symposium on Biomedical Imaging (ISBI)
is a scientific conference dedicated to mathematical, algorithmic, and
computational aspects of biological and biomedical imaging, across all
scales of observation. Besides the conferences there is also challenges
where some researcher groups can participate.

21

DeconvNet: Learning Deconvolution Network for Semantic
Segmentation created by Hyeonwoo Noh, Seunghoon Hong and
Bohyung Han at POSTECH.

PASCAL VOC 2012: dataset. Images with 20 classes. The train/val data
has 11,530 images containing 27,450 regions of interest (ROI) annotated
objects and 6,929 segmentations.

VGG 16: Visual Geometry Group, is a deep convolutional neural network
architecture with 16 layers.

SegNet: is a deep encoder-decoder architecture for multi-class pixelwise
segmentation researched and developed by members of the Computer
Vision and Robotics Group at the University of Cambridge, UK.

Encoder: is a device, circuit, transducer, software program,
algorithm or person that converts information from one format or code to
another, for the purposes of standardization, speed or compression.

Decoder: makes the reverse of the encoder.

State of the art: highest level of general development, as of a device,
technique, or scientific field achieved at a particular time.

GPU: graphics processing unit, is a specialized electronic circuit
designed to rapidly manipulate and alter memory to accelerate the
creation of images in a frame buffer intended for output to a display
device.

CPU: central processing unit, is the electronic circuitry within a computer
that carries out the instructions of a computer program by performing the
basic arithmetic, logical, control and input/output operations specified by
the instructions.

Jaccard index: is a statistic used for comparing the similarity and
diversity of sample sets.

DSC: dice similarity coefficient is a statistic used for comparing the
similarity and diversity of sample sets.

Github: is a web-based hosting service for version control using Git.

22

7. Bibliography

[1] Xin Zheng ,Yong Wang, Guoyou Wang, Jianguo Liu (2018), Fast and robust
segmentation of cell images by self-supervised learning. Micron, Volume 107,
April 2018, Pages 55-71

[2] Naugler, Christopher, EmadA Mohammed, MostafaM. A. Mohamed, and
BehrouzH Far. 2014. Peripheralblood smear image analysis: A
comprehensive review. Journal of Pathology Informatics 5 (1):
9.doi:10.4103/2153-3539.129442.Ng, A. 2011. CS294A Lecture notes, 1-19,
doi:10.1371/journal.pone.0006098

[3] Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks
for Biomedical Image Segmentation. In: Navab N., Hornegger J., Wells W.,
Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351.
Springer, Cham

[4] Badrinarayanan, Vijay & Kendall, Alex & Cipolla, Roberto. (2015). SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 10.1109/
TPAMI.2016.2644615.

[5] Hyeonwoo Noh, Seunghoon Hong, Bohyung Han, (2015). Learning
Deconvolution Network for Semantic Segmentation, Proceedings of the IEEE
International Conference on Computer Vision.

[6] Thoma, Martin. (2016). A Survey of Semantic Segmentation.

[7] Long, Jonathan & Shelhamer, Evan & Darrell, Trevor. (2015). Fully
convolutional networks for semantic segmentation. 3431-3440.
10.1109/CVPR.2015.7298965.

[8] Alexandre Briot, Prashanth Viswanath, Senthil Yogamani; The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
2018, pp. 663-672

[9] Hong, Seunghoon Noh, Hyeonwoo Han, Bohyung, Decoupled Deep Neural
Network for Semi-supervised Semantic Segmentation,Advances in Neural
Information Processing Systems 28, 2015, pp.1495-1503

[10] Garcia-Garcia, Alberto et al. “A Review on Deep Learning Techniques
Applied to Semantic Segmentation.” CoRR abs/1704.06857 (2017): n. pag.

[11] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-
Moreno and F. Lopez-Ferreras, "Road-Sign Detection and Recognition Based
on Support Vector Machines," in IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 2, pp. 264-278, June 2007.
doi: 10.1109/TITS.2007.895311

23

[12] Gh AMZA, Catalin & Amza, Catalin Gheorghe & Popescu, Diana. (2012).
IMAGE SEGMENTATION FOR INDUSTRIAL QUALITY INSPECTION. Fiability
& Durability/Fiabilitate si Durabilitate. 1 supliment.

[13] N. Moon, E. Bullitt, K. Van Leemput, and G. Gerig, Automatic brain and
tumor segmentation, in Medical Image Computing and Computer-Assisted
Intervention—MICCAI 2002.Springer, 2002, pp.372–379

[14] Wei GQ., Arbter K., Hirzinger G. (1997) Automatic tracking of laparoscopic
instruments by color coding. In: Troccaz J., Grimson E., Mösges R. (eds)
CVRMed-MRCAS'97. CVRMed 1997, MRCAS 1997. Lecture Notes in
Computer Science, vol 1205. Springer, Berlin, Heidelberg

[15] Cohen, Assaf & Rivlin, Ehud & Shimshoni, Ilan & Sabo, Edmond. (2015).
Memory Based Active Contour Algorithm using Pixel-level Classified Images for
Colon Crypt Segmentation. Computerized Medical Imaging and Graphics. 43.
10.1016/j.compmedimag.2014.12.006.

[16] C. Huang, L. Davis, and J. Townshend, “An assessment of
support vector machines for land cover classification,”International Journal of
remote sensing, vol. 23, no. 4, pp. 725–749, 2002

[17] Cybenko, G., Approximation by Superposition of a Sigmoidal Function,
Mathematics Control Signals Systems, Vol. 2, 1989, pg 303-314.] [Hornik, K.,
M. Stinchcombe & H. White, Multilayer Feedforward Networks are
Universal Approximator, Neural Networks, Vol. 2, 1989, pg 359-3661

[18] Glorot, Xavier & Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. Journal of Machine Learning Research -
Proceedings Track. 9. 249-256.

[19] Nair, Vinod & E. Hinton, Geoffrey. (2010). Rectified Linear Units Improve
Restricted Boltzmann Machines Vinod Nair. Proceedings of ICML. 27. 807-814.

[20] Xu, Bing & Wang, Naiyan & Chen, Tianqi & Li, Mu. (2015). Empirical
Evaluation of Rectified Activations in Convolutional Network.

[21] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
Yoshua Bengio, Maxout Networks, JMLR WCP 28 (3): 1319-1327, 2013

[22] Beyond regression: new tools for prediction and analysis in the behavioural
sciences. Werbos PJ. 1975.

[23] Bischoff, W. (2011). Loss Function. In International Encyclopedia of
Statistical Science, M. Lovric, ed. (Springer), pp. 762–763.

[24] Ruder, S. (2016), An overview of gradient descent optimization algorithms,

arXiv:1609.04747.

[25] Wilson, D & Martinez, Tony. (2004). The general inefficiency of batch
training for gradient descent learning. Neural networks : the official journal of the
International Neural Network Society. 16. 1429-51. 10.1016/S0893-
6080(03)00138-2.

24

[26] Andrew Ng, Feature selection, L1 vs L2 regularization, and rotational
invariance, in: ICML '04 Proceedings of the twenty-first international conference
on Machine learning, Stanford, 2004.

[27] Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex & Sutskever, Ilya
& Salakhutdinov, Ruslan. (2014). Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research. 15. 1929-
1958.

[28] Zheng, Xin (2018), Data for: Fast and robust segmentation of cell images
by self-supervised learning, Mendeley Data, v1
http://dx.doi.org/10.17632/w7cvnmn4c5.1

[29] http://cs231n.github.io/convolutional-networks/ 29-12-2018.

[30] A theoretical analysis of feature pooling in visual recognition. Boureau Y,
Ponce J, LeCun Y. Proceedings of the International Conference on Machine
Learning. 2010, 111-118.

[31] Huang, Jui-Ting & Li, Jinyu & Gong, Yifan. (2015). An analysis of
convolutional neural networks for speech recognition. 4989-4993.
10.1109/ICASSP.2015.7178920.

[32] Van Den Oord, A & Dieleman, S & Schrauwen, B. (2013). Deep content-
based music recommendation. Advances in Neural Information Processing
Systems.

[33] Zhou Z., Rahman Siddiquee M.M., Tajbakhsh N., Liang J. (2018) UNet++:
A Nested U-Net Architecture for Medical Image Segmentation. In: Stoyanov D.
et al. (eds) Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support. DLMIA 2018, ML-CDS 2018. Lecture Notes in
Computer Science, vol 11045. Springer, Cham

[34] Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016)
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.
In: Ourselin S., Joskowicz L., Sabuncu M., Unal G., Wells W. (eds) Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI
2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham

[35] Sevastopolsky, A. Pattern Recognit. Image Anal. (2017) 27: 618.
https://doi.org/10.1134/S1054661817030269

[36] Dong H., Yang G., Liu F., Mo Y., Guo Y. (2017) Automatic Brain Tumor
Detection and Segmentation Using U-Net Based Fully Convolutional Networks.
In: Valdés Hernández M., González-Castro V. (eds) Medical Image
Understanding and Analysis. MIUA 2017. Communications in Computer and
Information Science, vol 723. Springer, Cham

[37] Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A. and
Weyde, T. (2017). Singing voice separation with deep U-Net convolutional
networks. Paper presented at the 18th International Society for Music
Information Retrieval Conference, 23-27 Oct 2017, Suzhou, China.

25

http://cs231n.github.io/convolutional-networks/
http://dx.doi.org/10.17632/w7cvnmn4c5.1

[38] Z. Huang, G. Cheng, H. Wang, H. Li, L. Shi and C. Pan, "Building extraction
from multi-source remote sensing images via deep deconvolution neural
networks," 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Beijing, 2016, pp. 1835-1838.

[39] KM Lye, KC Chua, CC Ko,Performance of Segnet — a simulation study,
Computer Communications,Volume 10, Issue 6,1987, pp.297-303

[40] https://colab.research.google.com/notebooks/welcome.ipynb , 24-12-2018;
FAQ: https://research.google.com/colaboratory/faq.html , 24-12-2018.

[41] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov,
R.R. (2012), Improving neural networks by preventing co-adaptation of feature
detectors, arXiv:1207.0580.

[42] e.g., Jaccard 1912, The distribution of the flora of the alpine zone, New
Phytologist 11:37-50

[43]
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similar
ity_score.html , 24-12-2018.

[44] Sørensen, T. (1948). "A method of establishing groups of equal amplitude
in plant sociology based on similarity of species and its application to analyses
of the vegetation on Danish commons". Kongelige Danske Videnskabernes
Selskab. 5 (4): 1–34. & Dice, Lee R. (1945). "Measures of the Amount of
Ecologic Association Between Species". Ecology. 26 (3): 297–302.

[45]
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html ,
24-12-2018.

26

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html
https://research.google.com/colaboratory/faq.html
https://colab.research.google.com/notebooks/welcome.ipynb

8. Annexes

U-Net model example (more details in GitHub link:
 https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb) :

27

Input layer shape
(120,120,3)

2 x Convolution size(3 x 3) ,
64 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) ,
128 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) ,
256 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 2 x 2

2 x Convolution size(3 x 3) ,
512 filters
2 x Batch Normalization
2 x ReLU activation

Maxpooling 3 x 3

2 x Convolution size(3 x 3) ,
1024 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (3 x
3), 512 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) ,
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x
2), 256 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) ,
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x
2), 128 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) ,
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolutional Transpose (2 x
2), 64 filters
Concatenate on axis 3
2 x Convolution size(3 x 3) ,
64 filters
2 x Batch Normalization
2 x ReLU activation

Convolution (1 x 1),
3 filters
Dropout 0.5
Softmax activation

Direction of the
calculations

Direction of feature maps copied and used
to merge with up-convolutional blocks

https://github.com/dIcarusb/Master_project/blob/master/UNET.ipynb

The code of U-Net:

28

Models run without data augmentation, accuracy:

model Train Test

SegNet 0.9802 0.9703

DeconvNet 0.9830 0.9673

U-Net 0.9921 0.9830

Loss function:

29

SegNet DeconvNet

U-Net

SegNet DeconvNet

model Train Test

SegNet 0.0573 0.0763

DeconvNet 0.0619 0.1046

U-Net 0.0427 0.0651

30

U-Net

	1. Introduction
	1.1 Context and justification for this Project
	1.2 Project goals
	1.3 Focus and followed method
	1.4 Project plan
	1.4.1 Tasks
	1.4.2 Timetable
	1.4.3 Milestones
	1.4.4 Risk analysis
	1.4.5 Costs associated with the project and the final product
	1.4.6 Legal and ethical implications
	1.5 Breif summary of the results
	1.6 Breif description of next chapters

	2. Background
	2.1 Semantic segmentation
	2.2 Neural networks and specially CNN
	2.2.1 CNN
	2.3 Architectures for this project
	2.3.1 U-Net
	2.3.2 DeconvNet
	2.3.3 Segnet

	3. Materials and methods
	3.1 Dataset description
	3.2 Cloud computing with Google’s “Colaboratory” platform
	3.3 Models
	3.4 Metrics for performance evaluation
	3.4.1 Jaccard similarity index
	3.4.2 Dice Similarity Coefficient (DSC)

	4. Results
	4.1 Discussion

	5. Conclusions
	6. Glossary
	7. Bibliography
	8. Annexes

