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Chapter 1

Project information

1.1 Context and rationale

This project has been developed within the bioassay validation frame, specifically concerning the
Enzyme-Linked Immunosorbent Assays (ELISA) [2] in the context of veterinary pharmaceutical
industry.

Consequently, methodology applied has been subject to the requirements of two of the most influ-
ential regulatory agencies: the United States Department of Agriculture (USDA) and the European
Medicines Agency (EMA)[53, 16]. To adapt the complexity of this endeavour to the available time,
the degree of fulfilment of these guidelines has been lowered and only the most critical aspects have
been considered.

The project and subsequent report have been organized in two parts both concerning to different
aspects of the validation process of an ELISA assay but nevertheless they are closely related. The
first part is centered around the analysis of validation designs intended to quantify the accuracy
and precision of the assays. In this kind of assays, one to several distinct product preparations
are tested at different locations, at different time points and by different laboratory technicians.
Accordingly, resulting data has a longitudinal component but also other grouping structures given
by the different factors considered. Due to this complex design structure the application of linear
mixed effects models [44] has been tested as an alternative to classical statistical procedures with
the final objective to comply with the recommended workflows and information required by the
authorities [61].

The second part is devoted to the use of non-linear mixed effects models [44] to analyse ELISA data
obtained from full dose-response experiments. In these experiments, the objective is to establish
what is known as relative potency (RP) of the test preparation with respect to a pre-specified
reference product of known properties. To calculate the RP, an appropriate model for the observed
dose-response relationship needs to be specified. In this work, the 3-parameter logistic model has
been used to describe this data generating process with the objective to obtain estimates of the
defining curve parameters from whom to establish an RP. Previously though, parallelism between
the test and reference serials dose-response curves should be demonstrated. The core of this part
of the work has been to establish an appropriate workflow to attain this objective following the
available regulatory documentation [61].
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1.2 Objectives

Project global objectives express the main statistical objectives of this project. The type of statis-
tical model used in each case has served as a basis to further divide the work in two different and
independent parts. Each part has then its specific objectives which relate to particular tasks that
have been executed.

1.2.1 Global objectives

• Part I: Analyse and interpret two ELISA validation studies using linear mixed effects models.

• Part II: Analyse and interpret ELISA dose-response data obtained from a single experiment
using 3-parameter logistic non-linear mixed effects models.

1.2.2 Specific objectives

1. Part I:
1.1 Correctly determine the data structure (nesting, crossing…).
1.2 Application of linear mixed effects models to analyse the chosen data.
1.3 Offer a correct interpretation of the results in the validation context.
1.4 Generate an R markdown script to automatically analyse and report from the chosen
study designs.
1.5 Identify weak points in the analysed designs and propose how to improve them.

2. Part II:
2.1 Analysis of ELISA dose-response curves using non-liner mixed effect models.
2.2 Interpret and make inference on the model parameters.
2.3 Calculate the asymptote and scale parameter ratios between a reference and a test serial
based on a NLME model parameter estimates. Write an R script to automate this task.
2.4 Calculate confidence intervals for the previously mentioned ratios using the delta method.
Write an R script to automate this task.

1.3 Applied methodology

Three possible methodologies were identified at the beginning of the project, namely:

1. Start with a learning phase used to search and understand the theory of mixed effects models
followed by a phase for experimenting with the available software packages and finally a phase
where this previous knowledge is used on real data.

2. Start by applying the procedures described in software documentation to analyse sample data
directly to real data and gain knowledge in a parallel way.

3. Start with a learning phase for the theory of mixed models based on a practical approach
using sample data. Finally, apply the gained knowledge to the analysis of real data.
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Figure 1.1: Gantt diagram for temporal planning including task names.

Initially strategies 1 and 3 were considered appropriate as both considered a learning period. Strat-
egy 1 is a more classical approximation with practical learning following the theoretical one whereas
strategy 3 is a learning-by-doing kind of strategy where theory and practice are considered in par-
allel. Strategy 2 was considered too risky from the beginning considering the theoretical challenge
that mixed effects models represent. Following careful analysis and considering the director of
the work recommendation, strategy 1 has been applied. It was considered that enough time was
available to make this classical yet more robust approach.

1.4 Project planning

No special resources have been needed or employed to develop this project. Availability of real
data to analyse during the course of the project has been granted thanks to the collaboration of
Laboratorios Hipra S.A., affiliation of the author at the time of execution of this work.

Initial task planning has been subject to minor modifications in light of several events occurred
during the execution, none of them critical. Justification and detailed explanation was given in
the intermediate reports presented during the project development. The actual executed temporal
planification and the several tasks that have conformed the project are presented in form of a Gantt
diagram (Figure 1.1).
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1.5 Summary of results

Results of this project include:

• This thesis, which includes an extensive bibliography review about mixed-effects models and
demonstrates their implementation in distinct situations relevant to pharmaceutical valida-
tion.

• The R markdown document obtained as result of Part I containing common R syntax and
custom functions to properly analyse validation studies using linear mixed effects models.

• The R script obtained as a result of Part II containing a custom function to calculate ratios
and confidence regions for model parameters of a 3-parameter logistic non-linear mixed effects
model. This is not included as a separate file but instead it can be found in Section 7.2.1.

• Intermediate progress reports obtained as a result of PAC 2 and PAC 3 containing relevant
project follow-ups and updates.

• The final presentation that will be delivered according to the planned schedule.

1.6 Summary of chapters

As mentioned above, the work in this project has been organized in two parts each of them centered
around an important topic in bioassay validation. Chapter 1 contains relevant information about
the project itself as the rationale behind it and the list of global and concrete objectives that have
been accomplished. Also, the real executed task planification is reported accompanied with the
final list of products obtained.

Chapter 2 is an introductory text built through an in-depth bibliography review. Starting from
the basic concepts related with ELISA bioassays the text guides the reader through the most
important regulatory recommendations and obligations and ends with an extensive text covering
the basic concepts related with mixed models. As an statistical centered project, this last part is
extensive and covers the rationale behind the need for mixed models and its mathematical formulae.
Also several important concepts are explained such as the meaning of random effects or nesting
structures in designs. Most importantly, the end of the chapter covers the issue of testing the
statistical significance of the model parameters which is an area of active research far from being
closed or well established.

Chapter 3 covers the analysis of two ELISA validation studies each of them with some particular-
ities, such as different number of random effects or model structure. Appropriate model fitting of
linear mixed effects models with the R lme4 package and model diagnostics is explained followed
by a section on how to practically test statistical significance of both fixed and random effects,
knowing that this is not a closed issue. Finally, a validation section covers the main objective of
the analysis: check the performance of the assay based on accuracy and precision criteria.

Chapter 4 covers the fitting of a 3-parameter logistic mixed effects model for ELISA raw dose-
response curves accounting for the grouping structure. Model fitting with the nlme R package is
covered alongside the basic model diagnostics and inference on the parameters. Once the model is
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obtained, parameter estimates for both a test and a reference serial preparations are used to demon-
strate how to calculate the asymptote and scale factor ratios and their accompanying confidence
intervals to check if curve parallelism can be assumed.

Chapter 5 contain the final thoughts regarding the lessons learned from the project, the degree
of fulfilment of the initial objectives and a critical comment with respect the task planning and
project execution. Also, some comments on future issues to explore are detailed there.

Chapter 7 contain all custom R code used during this work. All functions are properly annotated
explaining possible dependencies, requirements and intended use.



Chapter 2

Introduction

2.1 Principles of ELISA assays

Biologically-based analytical methods to quantify specimens (bioassays) are the group of techniques
that rely on the use of biological reagents, such as antibodies, live cells, etc., to quantify a substance
of interest. This substance of interest is usually called analyte and, in the pharmaceutical vaccine
industry, the analyte is in turn usually an antigen. The antigen is the substance that, when
appropriately formulated, triggers an immune response from the immune system of a given animal
[59]. The term antigen is a wrapper as the chemical structure of antigens is diverse ranging from
purified proteins to lipids or, for example, whole cells of a given bacterium [59]. As diverse as the
nature of the antigen is the type of immune response. Two basic types are antibody-based or cell-
mediated and which type is generated greatly depends on the type of antigen and its accompanying
adjuvants, which substances that are used to stimulate or boost the immune response. Also, immune
responses are complex in that they are usually not exclusively of one type or another [23].

Enzyme-Linked Immunosorbent Assays or ELISA(s) are a type of bioassay in that they are based
on the antigen-antibody recognition. Antibodies are generated such as they are specific against
a given antigen or family of antigens. Thus, as the antigen-antibody interaction is specific, this
property can be used to selectively find a molecule in a mixture of constituents, such as a vaccine.
ELISAs make use of this property to specifically quantify analytes of interest in complex solutions,
even in very low quantities [2].

Several types of ELISA exist that are used preferentially for different purposes as their properties,
also varying, makes each type best suited for a particular task [2]. In the pharmaceutical industry,
all types are used to quantify antigens in vaccines as the type performance is difficult to predict
and selection is usually product dependent made by trial and error. Despite this, here the sandwich
type will be explained as it is favoured by some authorities [52] and it is also widely implemented
due to its outstanding sensivity [2]. This type is based in the use of two antibodies which are added
in a sequential order and trap the antigen in between them to achieve a selective recognition. The
second antibody is pre-labelled with a marker which is able to produce some sort of detectable
signal (colour, light or fluorescence) by itself or when a substrate is added [2].

To gain a better understanding of the explained protocol, Figure 2.1 depicts the fundamental
method to execute a sandwich ELISA. First, a solid support is coated with the capture antibody
(1). After that, the product which contains the analyte to be detected is added (2). This causes the

10
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Figure 2.1: Execution phases for a sandwhich type ELISA.

formation of antigen-antibody complexes throughout the coated surface but, as capture antibody is
used in excess, it is expected that some binding sites remain empty. Then, the detection antibody
is added (3). Before that, this antibody has been chemically bounded to an enzyme which is able to
produce a detectable signal by some type of chemical method. Usually, these enzymes chemically
decompose a colourless substrate into a coloured product. Once the detection antibody-antigen
complexes have formed, the sandwhich is obtained. Finally, the substrate is added (4), allowed
to react during a specified amount of time (5) and the resulting signal is then measured (6) using
an imager or some other detector. It should be noted that the arrows between phases indicate
in-between procedures that are omitted for clarity. These procedures are incubations, usually
conducted at a given temperature for a given period of time, and washes, that are used to remove
unused products at the end of a step before proceeding to the next. As the solid support used is
usually a microtiter plate of at least 96 wells, the black “U” shaped solid lines represent each one
of this wells.

The final result of a usual assay are signal lectures for each well in a plate. The intensity of the signal
of a well is proportional to the amount of analyte present during the assay, thus, by combining this
procedure with dilution techniques, analysts are able to produce saturation to extinction response
curves depending on the concentration of the analyte which finally can be used to quantify it. A
close example of a quantification procedure albeit for other purposes, will be explained in Section
4.
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2.2 Bioassay validation

ELISAs are a crucial tool in the manufacturing and quality control of pharmaceutical products.
The production of pharmaceutical products is strictly regulated under the auspices of the Good
Manufacturing Practices, or GMP, which demand all quantification methods used to characterize a
product to meet certain standardized accuracy and precision criteria [61]. Validation is the process
of demonstrating and documenting that a certain type of assay, which has been designed for a
particular purpose (e.g. determine an analyte concentration), it is in fact suitable for the task and
results in accurate and reliable results which can be appropriately reproduced [61, 16].

Validation process is extensive [20] and it is intended to characterize every aspect of a certain
quantification method. Regulatory agencies, sometimes through child agencies or through pharma-
copeial compendiums, issue their own guidelines on how to conduct the tests and report the results
ensuring, at least, that common standards are meet inside their influence zones. These guidelines
include a mixture of recommendation and unavoidable requirements and constitute the regulatory
framework to which the pharmaceutical industry is bounded [61, 16]. At least 10 parameters need
to be evaluated to complete a full validation protocol [1] but in this work only accuracy, precision
and parallelism will be considered.

2.2.1 Accuracy

Accuracy is defined as the closeness of the value obtained by a certain method to the real value or
a theoretically expected value so, it is a performance measure that quantifies any systematic bias
the assay might have. In this work, formulation provided by the United States Pharmacopoeia
(USP) [62], which is usually more restrictive than the European Pharmacopoeia (Ph.Eur.), is used.
Thus, accuracy is to be reported in the form of a relative bias using percent units, % RB, using the
following expression:

RB(%) = 100
(

Actual value

Expected value
− 1

)
(2.1)

Usually the RB value is reported alongside a confidence interval. As the actual value used in
the calculations is a parameter estimate of a mixed-effects model and the expected value is the
theoretical value used to prepare the product and is a known constant, upper and lower confidence
interval limits for the actual value, which are easily extracted from the model summary, can be
used to calculate approximate confidence intervals by using the same formula.

2.2.2 Precision

Precision is defined as the closeness of repeated individual measures of the analyte and thus it is a
performance value that relates to random variation introduced by potential nuisance factors. Is a
more complex term than accuracy and it is usually evaluated at three distinct levels: repeatability,
reproducibility and intermediate factor precision [45].

Repeatability is the variability observed when the assay is independently conducted several times
under the same conditions within a short period of time. By the “same” conditions it must be
understood to held as many factors as possible at a constant value. On the contrary, reproducibility
is the variability observed when the assay is independently replicated several times but under
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changing conditions and over a longer period of time. In this case, the assay protocol is maintained
but the rest of factors potentially affecting its performance, e.g. laboratory and analyst, are allowed
to change. Finally, intermediate factor precision is the variability observed when all factors except
one are allowed to change. For example, intermediate laboratory precision would be measured by
repeating the assay several times in the same laboratory under normal operating conditions but by
different analysts and using different lot reagents [1, 62, 45].

Estimation of precision values is difficult [1] but the use of mixed-effects models makes it easier
as variance components for a given model are a natural outcome of the analysis. In this way,
estimates of the three types of precision measures considered can be obtained by combining the
different variance component estimates [1, 65]:

• Repeatability (r) is estimated by the residual model variance: σ2
r .

• Intermediate factor precision (ifp) is estimated from the sum of the residual variance and the
variance component estimate for the factor of interest: σ2

r + σ2
factor. Obviously the factor of

interest should have been considered in the model specification.

• Reproducibility (R) is estimated as the overall variance taking into account all variance com-
ponent estimates derived from the model: σ2

r + σ2
factor1

+ σ2
factor2

+ ... + σ2
factorn

.

Usually, variance components are reported in the form of a percent coefficient of variation (CV)
which is basically a way to standardize precision estimates to make them comparable between
assays [1, 16]. A CV is a formally a ratio between a variance estimate and a related expected
value, e.g. the CV for repeatability when a single sample is tested in the assay would be the
residual variance estimated by the model divided by the mean quantification value of the sample
in question. If percent transformed, then the % CV is obtained. Formulation to obtain the CV is:

CV (%) = 100


√

σ2
i

E(analyte)

 (2.2)

where i indexes the type of precision CV to be obtained so, as stated above, i = r, ifp or R and thus
the computation of σ2

i changes accordingly. Note that the expression
√

σ2
i is used to calculate the

variance in standard deviation units thus, if variance components are readily available in standard
deviation units, this expression can be directly substituted by σi. E(analyte) represents an estimate
of the expected value for the analyte used in the assay and it will usually be, for example, the mean
concentration value for a given product preparation.

However, it is not always the case that reporting a CV is appropriate. When data is log-transformed
and response is assumed to follow log-normal distribution the percent geometric standard deviation
(% GSD) is recommended by the USP [62]. In this case formulation to obtain the % GSD is:

GSD(%) = 100(exp
√

σ2
i − 1) (2.3)

where σ2
i has the same interpretation as before. Other formulations are proposed that are demon-

strated to work better in certain circumstances [65] but, as the above formulation is explicitly
stated in the official guidelines, its use is recommended.
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Finally, the above presented point estimates for either CV or GSD are usually reported with a
confidence interval. Confidence intervals for ratios are difficult to calculate and, although several
approximations exist [25], here they are calculated using bootstrap as it will be demonstrated in
Section 3.

2.2.3 Parallelism

Quantification of an analyte using an ELISA is usually based on establishing a relative potency
(RP) of a test product with respect to previously characterized reference product. Thus, RP is
simply a ratio of the estimated potency of the test and reference products and it takes the following
form [18, 60]:

RP =
Potency(test)

Potency(reference)
(2.4)

The terms labelled Potency can be estimated by several means but, in this work, they will be
estimated as the location parameters of a logistic model equation fitted to full dose-response data.
This is extensively explained in Sections 2.3.4.2.1 and 4.

A key aspect for the potency of an unknown product to be established in this way is to ensure
that dose-response curves between products are “equivalent”. This requirement, present in all
regulatory documents [61, 62, 63, 16, 53], is known as parallelism and is an unavoidable requisite
to compute valid RP estimates. Conformance to this requirement is demonstrated by reporting the
ratios between the same model parameters individually estimated for both the reference and the
unknown products. If this ratios are not found to be significantly different from 1, then parallelism
is granted and RP estimates are considered valid. On the contrary, if these ratios fall outside a pre-
defined acceptability zone, parallelism can not be assumed and no RP estimate should be calculated
[53, 63]. For a 3-parameter logistic model (3PL) these parameters are the upper asymptote and
scale factor (see Section 2.3.4.2.1).

As usual, point estimates of validation parameters are to be reported alongside a confidence interval.
The confidence interval can be then used to establish if the parameter is likely to fall within the
acceptability region. However, to calculate confidence intervals for ratios is not easy. For example,
as ratios are the quotient of two quantities, a problem arise if the denominator value is close to
zero as it leads to an undefined situation. Moreover, this in turn causes distributional complexities
and, for example, neither an expected value nor a variance are defined for a ratio [25, 42, 54].
Due to these issues, among others, confidence intervals for ratios are calculated through several
approximations. Two methods will be employed here: the Fieller and delta methods. Whereas
the Fieller method is considered to be the standard solution by the USP [63], the delta method,
based on a Taylor expansion series, it is far simpler if appropriate assumptions are met. Those
assumptions are: 1) denominator significantly different from zero and 2) denominator low standard
error.

Formulas shown below are based on the article by Franz, H.V. (2007) [25]. The USP provides
a different formulation for the Fieller confidence intervals that otherwise is equivalent to the one
described here [63]. For the delta method, mathematical expression of the ratio and its confidence
region is:
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CIupper/lower = ρ̂ ± tq|ρ̂|

√
σ̂2

x

x̂2 +
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ŷ2 − 2 σ̂xy

x̂ŷ
(2.5)

where ρ̂ = ŷ/x̂ is the ratio and ŷ and x̂ are (unbiassed) estimators for the quantities of interest, in
this case, the location parameters for the test and reference serials respectively. σ̂2

x and σ̂2
y are the

estimators for the variance and σ̂xy is the estimated covariance between x̂ and ŷ. Term tq represents
the (1 − α/2) quantile of a t-distribution with degrees of freedom equal to the number of plates
minus 3 according to CVB-USDA [51].
For the Fieller method formulation is expressed as:
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q σ̂xy)2 − (x̂2 − t2

q σ̂2
x)(ŷ2 − t2

q σ̂2
y)

x̂2 − t2
q σ̂2

x

(2.6)

where the all the terms have the same interpretation as in Equation (2.5).
It should be noticed that both formulations are only valid if the denominator term of the ratio is
significantly different from zero at the same significance level used to calculate the term tq. Other
limitations exist but they are out of the scope of this work so the reader is referred to the original
reference for a complete discussion [25].

2.3 Mixed effects models

2.3.1 Rationale behind mixed models

The standard general linear model, also called ordinary least squares (OLS) regression, allows to
describe the relationship between one or more predictor variables (categorical or continuous) and
a response in a linear way. The modelled relationship however depends on the fulfilment of several
assumptions made during the statistical derivation of the regression method. One of the most
critical assumptions is that model residuals (error estimates) are independent and identically
distributed (henceforth iid) with an expected value of zero and constant variance. This can be
mathematically expressed as ϵi ∼ iid(0, σ2) [21]. This condition can be separated in two parts. The
identically distributed errors implies that samples used to build the model were drawn from the same
underlying distribution. Stronger than the former statement is the independent errors assumption.
This states that the correlation among residuals is zero or, alternatively, the probability of a residual
taking some value is independent of the values the other residuals have [56, 21].
However, in biological fields it is common to have highly structured experimental designs with
clustered data or to take several measures on the same experimental unit over time rendering a
repeated measures design [30]. In those situations it is expected that residuals (and hence observa-
tions) will have some degree of correlation and thus the assumption of independence is not held.
For example, in the context of an ELISA assay, if a particular sample is tested at two different
laboratories, replicates within each one location are expected to be more similar than replicates
between different locations. Violations of the iid assumption leads to an increased type I error rates
and standard statistical methods such as ANOVA are not robust against it [56].
A classical method for dealing with correlated observations is the well known repeated measures
ANOVA (rmANOVA). This method is technically simple and is based, like the traditional ANOVA,
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in partitioning the variance of the response through sums of squares obtaining the expected mean
squares (EMS). Then, by algebraic manipulation variance components can be analytically obtained,
at least for the simpler designs [33, 22]. However, this method albeit simple has some major
limitations. It requires a perfectly balanced design for the sum of squares decomposition to be
unique, otherwise the decomposition method affect the variance estimates. It does not tolerate
missing values in the data; usually this situation translates into a complete elimination of the
observation. Finally, it is not expandable to complex designs with complex clustering structures
often found in biological sciences [22, 33, 32].

In this context, mixed effects models arise as a powerful and flexible methodology that can over-
come the limitations of classical methods by accommodating a variety of data structures, balance
situations and is also capable of dealing with missing values. These advantages come at a cost of
a complex methodology which requires more computational power but the latter should not be an
issue nowadays, at least for the vast majority of situations [56, 33].

2.3.2 Fixed and random effects

In statistical modelling, the response is related to a set of measured predictor variables through
several model parameters; one for each variable if they are treated as quantitative or one for each
level if they are qualitative (also known as factors). These parameters are values estimated from
the data and constitute our most plausible guess on how each variable or variable level relates with
the response. These parameters are commonly called effects, but this terminology is more common
when they are associated to levels of a factor rather than for continuous predictors [6].

These effects can then be subdivided into fixed or random. In mixed models framework, it is
necessary to specify in the model structure if the effect of a particular variable is to be considered
fixed, random, or in some cases both. This specification is crucial to correctly interpret model
results and make inferences. A model parameter should be considered to be a fixed effect if it is
associated to an entire population or to specific and reproducible levels of a factor. Put in another
way, if for example the final interest is to make inferences about the specific levels of a factor
without any aim to generalize, then this factor should be considered to have a fixed effect. On the
other way, if considered as a random effect, the parameter is then a random variable which captures
the random variability from known or expected sources of variation (e.g. subject) in the data that
would otherwise be considered residual model variance. Following the same logic as before, if the
levels of a factor can be considered as a random subset of a larger population and we wish to make
inferences about that population then this factor should be considered to have a random effect.
Note that, unlike fixed effects, random effects are always related to qualitative variables and in the
context of mixed models these variables are usually referred to as grouping variables or grouping
factors [56, 6, 22, 44].

2.3.3 Nested and crossed effects

As explained above, one of the key features of mixed models is the capacity to model a response
as a dependency of several variables which can be considered to have fixed or random effects.
In particular, categorical variables are usually considered to have random effects as they serve
as grouping factors. When several grouping factors are present in a design, their relationship
determines the properties of the possible models that can be fitted.
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The effects of two variables can be nested, crossed or partially crossed and this relationship is a
property of the experimental design [30]. Effects are considered to be crossed if one level of one of
the variables is associated with more than one level of the other variable. When there is lack of
balance, probably not every possible level combination among factors will actually be present in
the dataset; this situation is known as partial crossing. Finally, a nested relationship exists if one
level of a variable is uniquely associated to a particular level of the other. The nested variable has
therefore a lower hierarchical position compared to the variable which contains it so these designs
are also called hierarchical [50]. A good way to determine the correct structure of any design is to
cross-tabulate the observations or use level plots but sometimes it is not obvious at all, specially
with complex designs.
One of the main consequences of nesting is that it is no longer possible to calculate an interaction
between factors and this will in turn affect how the variance is partitioned and the interpretation
of variance estimates. This issue is extensive and beyond the scope of this introductory text but
an excellent dissertation can be found in Schielzeth and Nakagawa (2013) [50].

2.3.4 Statistical model formulation

2.3.4.1 Linear mixed effects models

In statistical modelling, a model is called linear when its parameters enter linearly into the model
equation. This means that the parameters appear in the model with a power of 1 and are not
multiplied or divided by any other parameter. The predictors themselves do not need to be entered
in the formula with these constraints for it to be a linear model [21].
Linear mixed effects models are simply linear models statistically formulated to allow both fixed
and random effects to coexist. The most common matrix formulation for a linear mixed effects
model with a single grouping level is, as described by Laird and Ware (1982) [64] and adapted from
Pinheiro and Bates (2002) [44]:

yi = Xiβ + Zibi + ϵi

bi ∼ N(0, Ψ)
ϵi ∼ N(0, σ2I)

(2.7)

where yi is the N x 1 response vector for group i being N the total number of observations, Xi is
an N x p design matrix of p parameters, β is a p x 1 column vector of fixed effects, Zi is an N x
q design matrix of q random effects (the random equivalent of Xi), bi is a q x 1 column vector of
random effects and ϵi is an N x 1 column vector describing the residual error term.
For the model to be complete, the assumed distribution of both random effects and residual error
must be specified. In both cases, a Gaussian distribution with mean zero is assumed. To fully define
a Gaussian distribution the variance-covariance matrix structure in each case must be also specified.
For the residual error, ϵi, its variance-covariance matrix it is defined as σ2I which implies constant
variance and no within-group correlation of the residuals. This assumption is quite restrictive
and can be effectively relaxed using appropriate tools to model heteroscedasticity and correlation
structures such as in the nlme R package [43].
For the random effects, Ψ is the variance-covariance matrix. In its simpler form, e.g. when only a
random intercept is considered, it is just a 1 x 1 matrix containing only the variance of the random
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intercept. On the contrary, if a second random effect is added, e.g. another random intercept term
representing another factor, this variance-covariance matrix is then a 2 x 2 matrix defined by both
individual variances in the diagonal and their respective covariances as off-diagonal elements.

Random effects, bi, and residual errors, ϵi, are assumed to be independent for different groups and
for the same group.

Finally, it should be noticed that, despite the formulation, not all terms in the model should be
estimated from the data. In fact, only the β vector parameters and the variance-covariance matrix
for the random effects, Ψ, are to be estimated. However, the number of variances and covariances
to be estimated grows quickly with the number of random effects and this is the main reason it
could become computationally burdensome to fit these models [7, 56].

This formulation can be easily extended to accommodate more grouping levels as described else-
where (see [44]; [56]; [3] for extensive discussions). It must be noted that, when several grouping
levels exist, there also exist a mathematical expression to model each grouping level. Formulation
presented here and in most texts refers to the lowest (observational) level which is usually the level
of interest.

For example, suppose a simple unreplicated random intercept linear mixed model containing one
fixed effect variable (e.g. sample) and two crossed random effects variables (e.g. analyst and day).
Each variable is a factor with two levels. The matrix formulae describing such a model would be:

yijk = Xiβ + Aja0j + Dkd0k + ϵijk

a0j ∼ N(0, Ψ1)
d0k ∼ N(0, Ψ2)
ϵijk ∼ N(0, σ2I)

(2.8)

where i = 1 or 2 indexes the fixed effects variable, j and k index the grouping factors each of them
taking values 1 or 2, yijk is the N x 1 response vector for the i-th element (sample) of j-th group
of grouping variable analyst and k-th group of grouping variable day being N the total number of
observations. The fixed effects design matrix, Xi, is an N x p matrix of p parameters and β is a p
x 1 column vector of fixed effects. Being q1 the number of random effects associated to grouping
factor analyst and q2 the number of random effects associated to grouping factor day, Aj is an
N x q1 random effects design matrix for analyst grouping factor and a0j is q1 x 1 column vector
of random effects linked to them. Likewise, Dk is an N x q2 design matrix for day variable and
d0k is a q2 x 1 column vector of random effects linked to them. ϵijk is an N x 1 column vector
describing the residual error term. Finally, note also the definition of the assumed distribution for
every random variable included in the fromula.

The common equation formulae for a given observation can be easily obtained by doing algebraic
calculations with the general matrix formulation. For example, if matrix notation for the current
example is fully expanded the model takes the form:
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(2.9)

Then, doing appropriate matrix operations the predicted model response for observation corre-
sponding to sample 2 on day 1 by analyst 1 can be expressed as:

y211 = β0 + β1sample + a01 + d01 + ϵ211

= (β0 + a01 + d01) + β1sample + ϵ211
(2.10)

where it can be seen the global intercept definition for this observation as affected by a fixed
intercept term (β0) modified by a random quantity depending on the analyst doing the assay
(a01) plus another random quantity depending on the day the assay is conducted (d01). The final
response is then determined by a fixed slope (β1) related to which sample is used and finally a
random quantity (ϵijk) is added representing the random error.

2.3.4.2 Non-linear mixed effects models

An excellent dissertation on non-linear mixed effects models can be found in Pinheiro and Bates
(2002) [44] which will be summarized here. Linear mixed effects models presented in Section 2.3.4.1
are useful to describe how a response variable varies with a set of given covariates influenced for
some grouping factors within the observed range of data points available. Thus, LMM (and
all linear models) are empirically derived functions used to approximate the real behaviour of a
complex and usually non-linear response inside a given, usually small, interval. As such, LMM
models parameters do not have a direct physical meaning and they can only be interpreted as the
way variables relate to the response.

By contrast, non-linear (mixed effects) models usually incorporate some kind of knowledge of
the underlying mechanism generating the response. Most notably, non-linear models arise as a
derivation of some physical law describing a phenomenon. In those cases, the model is said to be
mechanistic and model parameters usually have a direct physical meaning relevant to characterize
the phenomenon in question. Other non-linear models are empirically derived; this is, the exact
mechanism producing the response is not theoretically defined but the model takes into account
some theoretical properties that define the response and are of interest, e.g. asymptotes or inflection
points.

Statistical theory behind non-linear mixed models is more complex than for their linear counterparts
and algorithms used to fit the models are slightly more difficult to implement although they are
based on the same tools, such as maximum likelihood procedures. Two clear advantages that
justify the use of NLME models despite the increased complexity are: 1) non-linear models use
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less parameters than linear approximations and 2) they can be valid outside the observed response
range.

Statistical formulation for a simple non-linear mixed effects models with a single level grouping
structure is:

yij = f(ϕij , vij) + ϵij

ϵij ∼ N(0, σ2)
(2.11)

where j indexes an observation pertaining to the i-th group whose value is described by the non-
linear and differentiable function f() of several group specific model parameters ϕij and possibly
the value of some covariate or covariates expressed by the term vij . The residual error term is
specified as being normally distributed with a mean zero, σ2 variance-covariance matrix and are
independent within them. It is not necessary that all model parameters are entered in the model
non-linearly but at least one should be. Each group specific parameter is then modelled as:

ϕij = Aijβ + Bijbi

bi ∼ N(0, Ψ)
(2.12)

where β is a vector of fixed effects, bi is a group dependent vector of random effects which has Gaus-
sian distribution with zero valued mean and Ψ variance-covariance matrix. Terms Aij and Bij are
design matrices containing the grouping structure and covariate dependence of each observation re-
spectively. Observations in different groups are assumed independent and residual error is assumed
independent of the bi component. As seen in Equation (2.11), errors are assumed independent and
homocedastic but both assumptions can be relaxed if needed.

2.3.4.2.1 3 and 4-parameter logistic model
A special case of non-linear model and particularly important in bioassay modelling is the 4 pa-
rameter logistic model (4PL). This model has several formulations, the two most common being
[60, 63]:

• 4PL formulation used by the US Pharmacopoeia and commercial software

yx = ϕ1 + ϕ2 − ϕ1
1 + (x/ϕ3)ϕ4

(2.13)

• 4PL formulation proposed by Pinheiro and Bates [44]

yx = ϕ1 + ϕ2 − ϕ1
1 + exp[(ϕ3 − logx)/ϕ4]

(2.14)

where ϕ1 is the upper asymptote, ϕ2 is the lower asymptote, ϕ3 is the x value at the inflection
point and ϕ4 is the scale parameter determining the slope of the curve. This interpretation is true
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Figure 2.2: Example of a 4 parameter logistic function fitted to real data. The function defining
parameters are shown identified by the greek letter ϕ plus a subindex.

provided the value of ϕ4 is positive which means the response increases when moving to the right
in the x axis. If the sign of this parameter is reversed, then the asymptotes interpretation is also
reversed. The value of ϕ3 is invariant to these changes. This parameter is also known in some
texts and software by the name EC50 and represents the value of x where the response is halfway
between its minimum and maximum asymptotical values. In quantitative immunoassay context,
the quotient of estimated ϕ3 parameters for an unknown and a reference preparation respectively
is known as relative potency or RP. For a better understanding of these equations, a graphical
interpretation of the four parameters using a real fit is shown in Figure 2.2.

The main difference between Equations (2.13) and (2.14) resides in the type of independent variable
needed to fit them. In the context of this work, Equation (2.13) requires the x to be the raw dilution
or concentration whereas Equation (2.14) requires the logarithm of the dilution or concentration
to be used as x variable.

Usually in regulatory documentation the use of a 3 parameter logistic model (3PL) instead of a 4PL
formulation is recommended [51, 60]. A 3PL model is simply a 4PL model with the lower asymptote
constrained to be zero. This assumption is easy to meet in practice as usually the response is the
optical density which is blank corrected by default so it has a naturally occurring zero asymptote.
By using this easy method one less parameter needs to be estimated which usually results in less
algorithmic convergence problems and stronger parameter estimates.

The 3 parameter versions of the previous model formulations can be expressed as:

• 3PL formulation used by the US Pharmacopoeia and commercial software

yx = ϕ1
1 + (x/ϕ2)ϕ3

(2.15)



22 CHAPTER 2. INTRODUCTION

• 3PL formulation proposed by Pinheiro and Bates [44]

yx = ϕ1 + ϕ2 − ϕ1
1 + exp[(ϕ3 − logx)/ϕ4]

(2.16)

2.3.5 Parameter estimation

2.3.5.1 Contrast scheme for categorical variables

To properly estimate model parameters, regression methods require the independent variables to
be numerical [21]. As a consequence, an n-level factor should be properly translated into a set of
numerical-type dummy variables that, when considered together, express the same information. To
this end, each one of the n levels should be converted to an independent column of the model matrix
(also called design matrix); n-1 new numerical variables (columns) are required to fully traduce a
one column factor information [21].
Consider the following example.A 3 level factor with categories A, B and C will require two columns
containing numerical values 0 and 1 to define the same categories. For example, an observation
pertaining to category A can be expressed as having a value of 0 and 0 in both columns. A category
B observation can be represented by having a 0 value on the firs column and a 1 on the second.
Consequently, category C must be 1 and 1. Note that a third column is unnecessary.
The coding scheme used is technically called a contrast and its values determine the interpreta-
tion estimated regression coefficients [21, 41, 44]. In R, several pre-defined contrast schemes exist
(treatment, sum-to-zero, Helmert,…) to fulfil a range of different needs but in specific situations
where special needs may arise, one can specify custom contrasts [46].
The contrast scheme is usually irrelevant to interpret a raw regression output if the user knows
exactly which codification has been used. Nevertheless, some contrasts are more well suited for
particular situations than others like in ANOVA, the contrast scheme choice really matters [56].
As explained in most introductory texts [41] several types of sums of squares exist, at least: types
I or sequential, II or hierarchical and III or marginal, following SAS nomenclature. A detailed
discussion of each type and its particularities is beyond the scope of this text but, in summary,
for balanced designs they all give the same results but for unbalanced designs, particularly when
active factor interactions are present, the results differ as each decomposition is different in nature
and assumptions [31, 35]. Except for type I, which is generally regarded as not appropriate for
analysing experimental designs, the use of type II or III is not generally established but in general
type III seems to be the recommended standard even though type II has shown to be more powerful
under some circumstances [35].
In R, the default contrast scheme is called treatment contrasts (each factor level is coded with a
combination of 0 and 1) and the default sums of squares decomposition is type I. Neither of these
options is well suited to generalize to common analytical situations so it is advisable to change to
more appropriate settings when working with regression models [56]. These changes are:

• Set the default contrast scheme to effects contrasts (contr.sum, each factor level is coded with
a combination of -1 and 1). The code options(contrasts = c(“contr.sum”, “contr.poly”)) is
used to change the default behaviour of R to use effects contrasts for unordered factors and
polynomial contrasts for ordered ones.
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• When performing statistical tests, such as ANOVA, in situations that do not specifically
require to use a sequential decomposition of sums of squares, use type III tests by default.
As the default anova function form R base package do not allow it, to conduct type III tests
one can resort to the Anova function in car package [24], aov_car from afex package [55] or
anova in the lmerTest package [34]. The two later options being specifically developed for
mixed-effects models.

The combination of this coding scheme with the use of type III tests should ensure to get meaningful
and the more correct results in all standard situations.

2.3.5.2 Likelihood estimation

In classical OLS regression parameters are estimated by algebraic procedures involving several
matrix calculations [21]. LME and NLME models however can be mathematically so challenging
that trying to obtain a closed algebraic solution would be a tedious endeavour at best; therefore,
algorithmic fitting is preferred.

Several methods have been historically described to for parameter estimation in mixed effects
models but maximum likelihood (ML) and restricted maximum likelihood (REML) are by far
the two most widely applied by common statistical packages [44]. Statistical understanding and
derivation is complex and far from the objective of this work but a summary of the principal traits
of each procedure is given below.

Maximum likelihood procedures are based on the idea of trying to find parameter values for a given
model that maximize the likelihood of the observed data. A more plain way to describe the process
could be: given a data generating process, some observed data is available. A model that is thought
to appropriately describe the underlying data generating process is then selected to be fit. This
model of course will have some set of defining parameters whose values are initially unknown. So,
a maximum likelihood algorithm will be applied such that some parameter values are found. This
parameter values are called maximum likelihood estimates and if used to generate data through
the selected model it is likely that the observed data could be actually obtained.

Statistically, this is translated in a procedure to maximize the value of what is known as likelihood
function, which is an expression for the probability density or mass function of the parameters
given the data. Usually it is simpler to work with the logarithmic version of the likelihood function
so the term log-likelihood arises but conceptually, as the logarithm is a monotonically increasing
function, the same results will be obtained either way [22, 44].

A disadvantage of the common ML estimation concerning to the mixed effects model framework
is that variance component estimates tend to be biased, concretely they can be be underestimated
[44]. The REML method modifies the form of the likelihood function such as the final variance
component estimates are no longer biased [44]. However a new problem arises as the REML criterion
incorporates a parameter that depends on the fixed effects structure of the model [39, 44]. This
has an impact on model inference as discussed in Section 2.3.6.
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2.3.6 Evaluating significance

2.3.6.1 A note on p-values for mixed effects models

Evaluate the significance of either fixed or random effects through p-values in mixed effects mod-
elling context is a controversial topic among statisticians and an active research area nowadays
[39]. The controversy is of such magnitude that even Douglas Bates, one of the authors of two of
the most used R packages devoted to mixed models, the older nlme and the newer lme4 [43, 8], has
been pushed to give explanations as to why the lme4::lmer function output does not provide any
kind of p-values [4]. The lack of consensus is again demonstrated by the fact that PROC MIXED
routine, SAS alternative to the aforementioned R packages and one of the most important commer-
cial statistical packages in use, do report p-values using several methodologies [48]. Nevertheless
due to the commented concerns those p-values should not be understood as an absolute truth.

Despite this statistical debate, the use of p-values as a method to express the relevance of findings is
nearly unavoidable in the vast majority of scientific fields and this include pharmaceutical reporting.
This is generally accepted and even the lme4 package authors included some guidance on how to
externally obtain the desired p-values; type ?lme4::pvalues in R console [8].

As the significance testing issues are distinct considering if the interest is on fixed or random effects,
each particular situation will be briefly outlined in the respective sections.

2.3.6.2 Significance of fixed effects

In general linear models whose parameters are estimated by OLS, parameter significance can be
tested by a simple ANOVA using F-tests. In this case, the computed F statistics are known to
follow an F distribution requiring the numerator and denominator degrees of freedom to calculate
the critical value [41]. However, in mixed models inference two problems arise which are intercon-
nected. First, the distribution of parameters obtained through ML or REML usually is complex
and unknown and, although they are asymptotically normal this is not the case for common sample
sizes [7, 44]. Second, as a consequence of the distributional problem of the likelihood estimates and
the complex model structure given by the random effects part, there is not an accepted methodol-
ogy to compute the degrees of freedom for t-tests or the denominator degrees of freedom for F-tests
[3, 7, 39]. Nevertheless, several well known methods to calculate p-values for fixed effects are briefly
outlined below.

Markov Chain Monte Carlo sampling

The method that is perceived to be the most reliable is the Markov Chain Monte Carlo (MCMC)
sampling because it avoids the need to calculate any degrees of freedom [3]. The downsides of this
lack of dependence are a huge computational cost and the algorithmic complexity leading to gaps in
its implementation. This method was “briefly” implemented as an option in the lme4 package but
has been removed in the latest releases because of concerns over its wide-spread reliability [8, 39].

Its implementation is difficult but it can be accomplished in R using the MCMCglmm package [28].

Likelihood ratio tests
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Likelihood ratio tests (LRT) are another alternative to conduct hypothesis testing on fixed effects.
These tests are based on the idea of model comparison. Fundamentally, a model including the
parameter of interest is compared against a reduced, less complex model called the null model. In
the case of LRT for fixed effects the null model should be a model with the same parametrization
except for the parameter representing the fixed effect of interest. Thus, LRT aim to determine if,
given the data, the fit of a more complex model which includes a particular parameter is better than
its alternative null model [44]. As in the case of MCMC sampling in this method no calculation
of degrees of freedom is required and they can be used even for complex design structures [39].
However, they also have its downsides. These tests can only be used to compare models fitted
using ML but not with REML. Also they tend to be anti-conservative; this is the calculated p-
value is lower than it should be, so its use is discouraged [44].

LRT are implemented in R using the anova methods. Both nlme and lme4 fitted models have this
method available [8, 43]. Note that in this case the interest is in the sequential decomposition of
the sums of squares so these functions use type I decomposition.

Wald t and F-tests

A third way of obtaining p-values for each fixed effect parameter is simply to use the Wald t-
values reported for example in the lme4 output and contrast them against a the t or z distributions
depending on sample size [39]. Also, ANOVA-like F-tests could be used to make inferences regarding
the whole term [44]. It should be noted that this tests are 1) conditional on the random effects
structure and 2) they require the calculation of degrees of freedom [22].

As explained before, the calculation of degrees of freedom in mixed models framework may be
problematic and several options are available depending on the software used, none of them free
of controversy. For example, R package nlme and SAS use similar “inner-outer”/“within-between”
rules like those used in classical ANOVA [13, 44, 48] but R lmerTest package and newer SAS
procedures allow the calculation to be made by either the Kenward-Roger or the Satterthwaite
method. The Satterthwaite method can be applied to both ML and REML models whereas the
Kenward-Roger method can only be applied to the latter [29, 39].

In R, lmerTest or afex packages implement these methods based on lme4 outputs [34, 55]. Specifi-
cally, F-tests for fixed effects factors can be obtained using the respective ANOVA functions. Those
are also the primary tests implemented in the nlme function outputs [43]. Note that as stated in
section 2.3.5.1, it is required that models were specified using the correct contrast scheme and to
use type III tests in these functions to obtain meaningful and correct statistical tests.

Parametric bootstrap

Previously explained LRT rely on test statistics that asymptotically have a χ2 distribution. The
term asymptotically here means that those tests provide only approximate p-values and rely on
several assumptions and situations arise where these approximations may be poor [22, 44]. Para-
metric bootstrap is a re-sampling technique that allows for the estimation of p-values from LRT
without making any specific assumptions about the test statistic distribution or degrees of freedom
but at a high computational cost[39]. Usually bootstrap is referred to as a non-parametric method
but, since LME models assume some distribution for both residuals and random effects, this means
it effectively becomes a parametric approach [22].
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In R, parametric bootstrap for mixed models is implemented through in the package pbkrtest or afex
[57, 55]. Also, although not a formal hypothesis tests, confidence intervals for parameter estimates
can be obtained through the confint function of the lme4 [8].

Which one to choose?

The work published by S. Luke (2017) [39] provides a good discussion comparing all of this methods
except MCMC sampling. The author found that simple t-tests against the z distribution and the
LRT approach both give anti-conservative p-values being the former alternative marginally worse
than the latter. Also he reports that both methods were sensitive to small sample sizes so their use
is only advised for sample sizes over 40 or 50 subjects or replicates.

The use of F-tests based on the Satterthwaite or Kenward-Rogers methods to approximate the de-
nominator degrees of freedom produced close results when used with a REML fitted model. Those
methods are reported to be slightly anti-conservative but they are somewhat robust against varia-
tions in sample size and thus they are preferred when sample sizes are small. When Satterthwaite
correction was applied to ML fitted models the results showed an increased type I error rate so
the use of REML is again stressed. When the design is complex and sample size is small, the
Satterthwaite approximation might be more robust.

Parametric bootstrap performed well, better than LRT or t-tests but was found to be sensitive to
small sample sizes. Its performance, therefore, was found to be no better than the F-tests using
the Satterthwaite or Kenward-Rogers methods on REML fitted models, at least in the conditions
the comparison was made.

Taking all into account, either Wald t-tests or F-tests using the Satterthwaite or Kenward-Rogers
approximations should be preferred but it is advised to further confirm the results by, for example,
computing parametric bootstrap confidence intervals. Models should be primarily fitted by REML
and the t as z approach and LRT should be avoided when possible.

2.3.6.3 Significance of random effects

The previously commented issues regarding the calculation of degrees of freedom and unknown
exact distributions still apply to random effects. Thus, to test random effects one could theoretically
resort to the same tools already presented for fixed effects. As the tests are briefly explained above,
the description shall not be repeated here; instead it follows a brief discussion on the particular
problems of random effects testing and which methods are more generally accepted.

For random effects the interest usually lies in testing hypothesis of the form Ho : σ2
i = 0. Taking

into account that variance values are strictly positive by definition, this kind hypothesis cause what
is known as boundary problem [6, 14]. This situation arises because many tests, including Wald t
and F-tests and LRT, assume that null values used for hypothesis testing do no take extreme values
in their allowable range. The consequence are erroneous p-values which tend to be too conservative
[30].

Due to the specific statistical derivation of each test related to the number of assumptions they re-
quire, LRT are preferred over Wald t or F-tests [14]. Specifically, Wald tests require the calculation
of standard error for the variance components and assume that the test statistics asymptotically
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converge to a chi-square distribution. Whereas LRT also assume an asymptotic chi-square distri-
bution, they do not require the calculation of standard errors which are known to be extremely
biased in most cases [5, 13, 10].

As previously explained for fixed effects (section 2.3.6.2), LRT work by comparing a full model
including the random effect in question against a null model without it; its estimated value is
supposed to be 0. Despite being the preferred method, some corrections on the p-values might
still be required to address the boundary effect; for example dividing the p-value by 2 to make its
value more close to the “real” one but this it is only a reasonable approach when testing a simple
single random effect [14, 44]. Generally, if the p-value is sufficiently above or below compared to
the decision rule (e.g. α = 0.05), LRT should provide a good idea of the significance of an effect
regardless of any correction [22]. Contrary to the situation for fixed effects, LRT to compare models
differing in the random structure can be used when fitted by ML or REML but the former is not
recommended due to the intrinsic biased nature of its variance estimates [44].

LRT tests for random effects can be implemented with the anova method for lme4 fits [8] or by
using the ranova function in the lmerTest package [34] which is more convenient.

If a more precise estimate of the p-value is needed the best approach are numerical methods,
namely bootstrap. In R, two types of bootstrap procedures to obtain p-values for random effects
are available: fast and slow depending on the computing resources. The slow bootstrap is the same
re-sampling method considered above for fixed effects. As stated it is accurate and requires the
least amount of assumptions but this comes with a high computational cost that translates into
long waiting times, hence the slow adjective [38]. This method is implemented in R in the same way
as for fixed effects: through pbkrtest package for a formal test or, if confidence intervals are desired,
the confint function in the lme4 package [57, 8]. The fast method is also a numerical method partly
relying on bootstrap and uses the method described in Crainicieanu and Ruppert (2004) [17] and
Greven et al. (2008) [26]. Statistical derivation is complex and far from easily understandable but,
in short, the authors describe methods to obtain the exact null distribution of (restricted) LRT
statistics under the boundary conditions explained allowing for fast and precise hypothesis testing
[38]. This method is implemented in the RLRsim package in R [49].



Chapter 3

Part I: Analysis of validation studies

3.1 Validation study 1

3.1.1 Data structure

The first study was performed to validate a sandwich ELISA developed to estimate the relative
potency of vaccine formulations against a reference control. Four different vaccine formulations
differing in their antigen content were analysed by three different analysts at three different time
points. Five replicates of each sample were run each time.

The dataset has the following structure:

It contains a total of 80 observations with no missing data and 7 variables, where:

• sample: A four level factor representing the four vaccine candidates used in the study.

• rp: A continuous variable representing the relative potency of each sample relative to a
common control formulation.

• analyst: A three level factor representing the three distinct analysts enrolled in the study.

• day: A three level factor representing the tree distinct and consecutive time points at which
the experiments were actually performed.

• replicate: This variable codes each replicate of each sample in five levels (1 to 5).

The first step in the design analysis is to determine the correct design structure. It is clear by
variable definitions that rp is the response variable whose behaviour shall be modelled.

The sample variable is a factor representing the four distinct vaccine formulas tested in the study.
Each formulation, from M1 through M4 contain an increasing amount of antigen and thus a different
response is expected for each level. In fact, one of the interests of the analysis is to make inferences
about possible differences between this particular set of levels. For this reason this variable should
be considered a fixed effects factor.

On the other hand factors day and analyst should be considered as random effects factors as neither
the three specific days nor the three specific analysts themselves are of any interest. This factors

28
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Figure 3.1: Boxplot of raw data by grouping factor analyst (A) or day (B).

represent a random selection of all the days and analysts that could have been chosen and the main
research question is weather there is a substantial amount of variation in the response that could
be explained by their inclusion in a model.

The goal of a validation study is to uncover the lack of robustness of an assay by controlling for
known sources of variation that constitute the grouping factors, thus the ideal outcome is to find
out a non substantial contribution of this factors to the overall variance. As it can be seen from
the by-grouping-factor box plots in Figure 3.1, there is not a dramatic variation in the response
attributable to any of the factors, at least that can be easily revealed by simple plotting.

Apart from deciding which variable effects will be specified as fixed or random, the main difficulty
at the beginning of the analysis is to uncover the relationship existing between factors (crossing,
partial crossing or nesting). This property is not defined by the model one would like to fit but
instead is an inherent property to the design itself. The use of level plots, such as the ones displayed
in Figure 3.2, is a helpful tool to uncover the underlying relationship in the data.

Panel A of Figure 3.2 reveals some interesting features. A plot showing only squares in the diagonal
but not in the off-diagonal positions would be an indicative of a nesting relationship between factors,
this is, levels of the nested factor (e.g. analyst) happens exclusively at one level of the parent factor
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Figure 3.2: Levelplots displaying the number of observations at each variable combination.

(e.g. day) so for example at day 1 only analyst 1 was executing the experiments, at day 2 only
analyst 2 and at day 3 only analyst 3. As it can be observed, this is nearly the case but an off-
diagonal element exists as analyst 1 participates both at day 1 and 2. This excludes a nesting
structure so factors must be considered crossed. In this case, however, they are said to be partially
crossed as the design does not include samples at every possible level combination.

Panels B and C show the same plot for the relationship between sample and day and analyst
and sample respectively. In both cases the plot clearly shows that samples at each factor-level
combination are available so this implies a fully crossed structure among each pair.

Another interesting feature of this design uncovered by the level plots is the severe lack of balance.
As can be interpreted through the colour scale there are substantial differences in the number of
observations at each level combination.

3.1.2 Analysis

Once the data set has been inspected and the design structure has been defined it is possible to
start the modelling phase. First a random intercept LME model is fitted to the full dataset by
using the lmer function of the R lme4 package [8].

Statistical formulation of the fitted model is:
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yadsr = β0 + A0a + D0d + β1sample1+
β2sample2 + β3sample3 + ϵadsr

A0a ∼ N(0, σ2
A0)

D0d ∼ N(0, σ2
D0)

ϵadsr ∼ N(0, σ2)

(3.1)

where r = 1,…,5 define the replicate, a = 1, 2 or 3 defining the analyst, d = 1 or 2 defining
the assay day and s = 1, 2, 3 or 4 defining samples M1 through M4 respectively. Vector y is
the responses vector. Terms β0 and β1 to β3 are fixed intercept and slopes terms respectively,
defining the fixed effects part of the model. The β 1 through 3 represent the slopes with respect
to the n-1 dummy variables needed to represent the 4-level sample factor. Terms A0a and D0d are
the random slopes associated with the analyst and assay day respectively defining the departure
from the fixed intercept term depending on the value of each grouping factor. The within-group
error term, ϵadsr, describes the random variation associated to each observation and together with
the random intercept terms they define the random effects part of the model. To completely
specify the model, it is assumed that random effects including the error term follow a zero centered
(multivariate)-normal distribution defined by their respective standard deviations.

The model is fitted with the following command:

data11.mod1 <- lmer(rp ~ sample + (1 | analyst) + (1 | day),
data = data11)

The R output for this first model fit, labelled data11.mod1, is shown below as an example but it
will not be shown by default as it is deemed to complex to be routinely useful. Instead, for routine
and printer friendly use, some functions to extract the most useful parts have been written.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: rp ~ sample + (1 | analyst) + (1 | day)
## Data: data11
##
## REML criterion at convergence: -44.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.4055 -0.4065 0.0385 0.4236 1.9884
##
## Random effects:
## Groups Name Variance Std.Dev.
## analyst (Intercept) 0.000000 0.0000
## day (Intercept) 0.001102 0.0332
## Residual 0.026407 0.1625
## Number of obs: 80, groups: analyst, 3; day, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 13.54450 0.02679 2.20134 505.51 1.28e-06 ***
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## sample1 1.60042 0.03147 74.31244 50.86 < 2e-16 ***
## sample2 0.49947 0.03147 74.31244 15.87 < 2e-16 ***
## sample3 -0.57317 0.03147 74.31244 -18.21 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sampl1 sampl2
## sample1 0.000
## sample2 0.000 -0.333
## sample3 0.000 -0.333 -0.333

The first line gives information about the fitting routine used (REML) and the method used to
calculate the approximate p-values for the effects when required (Satterthwaite’s method) as the
lmerTest package cover for the lmer function is used in this case [8, 34].
The next lines return the call to the lmer function and the RMEL convergence criteria which is an
indicator of model fit and could be regarded as a kind of deviance for those readers familiar with
generalized linear models.
Next, the numerical report of residuals distribution is shown. As in general linear models, in LME
models framework residuals are assumed to have a ϵij ∼ N(0, σ2

ϵ ) distribution so, if this assumption
holds, a mean (estimated by the median) close to zero and a kind-of symmetrical distribution is
expected.
After this preamble, the model output shows the random effects estimates in both variance and
standard deviation units (square root of variance). As this is a random intercept model, there is only
an intercept term for each grouping factor. The function also returns the grouping structure that
was understood by lmer and is extremely important to contrast this with the expected structure
to detect and correct any miss specification.
Finally one can see the section summarizing to fixed effects. Estimates for each level of the factor
sample and the intercept alongside their estimated standard errors and hypothesis tests are reported
first followed by the estimated correlation structure among this fixed effects.
Instead of displaying this output every time a model should be described and in an effort to simplify
model interpretation during this work, functions to extract the fixed effects, random effects and
confidence intervals for the parameters have been written. This are independent from one another
and allow for a more comfortable presentation of the information as shown below for fixed effects:

Table 3.1: Fixed effects for data11.mod1 model.

Effect Estimate Std.error DF t-value p-value
(Intercept) 13.540 0.030 2.200 505.510 <0.001
sample1 1.600 0.030 74.310 50.860 <0.001
sample2 0.500 0.030 74.310 15.870 <0.001
sample3 -0.570 0.030 74.310 -18.210 <0.001

For random effects, apart form displaying the variance estimate and the corresponding value in
standard deviation units, variance estimates for each term are transformed to percent values and
represent the percent variance accounted for by the term in question:
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Table 3.2: Variance component estimates for data11.mod1 model.

Variance component Variance % Variance Std. deviation
analyst 0.000 0.000 0.000
day 0.001 4.007 0.033
Residual 0.026 95.993 0.163

As can be seen in the tables, all parameters for fixed effects of factor sample are clearly significant.
However, when looking at the variance component table it is easy to see that variance accounted
for by factor analyst takes the value 0; this is an indicative of non-significance. The amount of
variance accounted for by day factor is close to 4 %, not a big value either. Variance accounted
for by the residual term in the model is obviously 96 %. This term should be regarded in this case
to be representative of the variance contained in the sample replicates which are not specifically
defined in the model. Doing so, considering the replicates explicitly in the model formulation,
caused a fitting routine error due to have a large number of data groups that consisted of only one
observation and a small amount of observations (not shown).

Before jumping into any conclusion by using this model is necessary to evaluate the model fit
and check whether it meets the LME model assumptions. This is more easily accomplished by
diagnostic plots of the residuals and a check of data points influence on the model through Cook’s
distance as shown in Figure 3.3.

Diagnostic plots clearly show some problems with the model. Panels A and B are both residuals
vs. fitted plots. They are equivalent to the traditional plots obtained from the lm function [46]
and should be interpreted the same way. Thus, panel A clearly shows no lack of linearity but one
can identify an odd point at a fitted value of 13 approximately. Panel B is another way to look at
the same residuals vs. fitted plot but it further transforms the residuals by applying a square root
function which has the effect of magnifying any trend in their magnitude [21]. As can be observed,
homoscedasticity should not be a concern except for the already mentioned observation. The normal
QQplot on panel C also shows a significant deviation from a normal distribution specifically at the
left tail. Finally on panel D the Cook’s distance for each observation is calculated as a measure of
influence on the model. Again, it is possible to distinguish an odd observation whose Cook distance
value greater than the suggested cut-off value of 4/number observations marked by the red line
[19]. This odd and influential observation can be identified as observation 51.

Caution should be exercised and is recommended when assessing influential points in data and even
more caution should be used before considering any point an outlier. Figure 3.4 depicts the response
values (rp) for sample level M3. It is clearly visible that observation 51 constitutes an atypical value
with a behaviour off the general trend probably due to some kind of technical problem. Thus is
reasonable to label it as an outlier and, as such, this point alone has a big potential to affect the
model fit and to obscure important conclusions that could be drawn. It is decided to asses the
model fit using a dataset without observation 51.

This diagnostic procedure has been conducted only on the residual part of the model, namely the
random error term, but nothing has been said of day and analyst, the other random terms. This is
because, albeit similar assumptions must hold in these cases, they are not easily checked with the
extremely low number of levels each factor have so this part is simply omitted and assumed to be
correct.
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Figure 3.3: Diagnostic plots for data11.mod1 model.
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Figure 3.4: Response values (rp) for M3 samples with observation 51 in red.

This model is labelled as data11.mod2 and has exactly the same model specification but observation
51 has been removed.

Tables for both fixed and random effects are shown below:

Table 3.3: Fixed effects for data11.mod2 model adjusted without observation 51.

Effect Estimate Std.error DF t-value p-value
(Intercept) 13.550 0.030 2.120 403.160 <0.001
sample1 1.590 0.020 73.130 66.560 <0.001
sample2 0.490 0.020 73.130 20.430 <0.001
sample3 -0.540 0.020 73.140 -22.140 <0.001

The change in fixed effects estimates resulting from the removal of observation 51 from the dataset
are very small only affecting the decimal part. Estimate values are nearly the same but it is worth
noting that the uncertainty associated to the parameters for sample factor levels (std. error) has
decreased marginally in all cases.

Table 3.4: Variance component estimates for data11.mod2 model adjusted without observation 51.

Variance component Variance % Variance Std. deviation
analyst 0.000 0.000 0.000
day 0.003 15.453 0.053
Residual 0.015 84.547 0.123

The most noteworthy change is in variance components estimates. Despite the estimated variance
for analyst factor remains collapsed to null, indicating the meaningless effect of this factor on the
response, the value for day factor has increased from an accounted variance of 4 % to a value
of approximately 15 %. Consequently the percent variance associated with the residual term has
decreased from nearly 96 % to approximately 85 %. This is rather an important change and shows
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the dramatic effect a single odd observation alone can have on the model fit and the resulting
interpretation.

As usual, before going deeper into any conclusions model assumptions shall be checked. Figure 3.5
shows the diagnostic plot panel for data11.mod2 object.

In this case, with the removal of observation 51, the residuals plots show that the assumption of a
linear relationship is not violated. Moreover homoscedasticity seems reasonable across fitted values
except for values around fitted value 13. This deviation however is small and should not compromise
model interpretation. Normal QQplot now has a much better agreement with the diagonal line
except for a small deviation on the right tail. In this case some kind of response transformations
might help solving the issue. Nevertheless, as transforming variables may be a controversial topic
[27, 37] and the impact of such a small deviation is deemed insignificant, no transformation will be
applied on this occasion. The Cook’s distance plot now shows a more reasonable range of values
and distribution of points. Despite some points falling above the red line, indicating that they
potentially have a high influence on the fit, the magnitude of the statistic is comparable to that of
the cut off value so their influence may not significant. Nevertheless, further investigation of these
points (not shown) indicates that they do not constitute atypical values and there is no documented
evidence of technical errors. As such, removal is not justified and it is decided to maintain them in
the analysis.

Thus, diagnostics now show a model with a good agreement with model assumptions and it is
assumed to be valid for inference.

3.1.3 Inference

3.1.3.1 Tests on fixed effects

As explained in the introduction section 2.3.6, to evaluate significance of fixed and random effects
in the mixed effects context is not trivial. For data11.mod2, it is clear from Table 3.3 that all levels
of factor sample have a significant impact on the model fit as evaluated via Wald t -test using
Satterthwaite method for degrees of freedom. Usually this marginal t-tests are difficult to interpret
by itself so, on the grounds of clarity, an omnibus type III ANOVA test, using the same degrees
of freedom calculation method (lmerTest package), is performed showing the overall significance of
including the sample predictor:

anova(data11.mod2, ddf = "Satterthwaite", type = 3)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## sample 108.06 36.019 3 73.134 2381.6 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.1.3.2 Tests on random effects

Table 3.4 reports the variance component estimates but no formal significance testing. In this
case, testing is done by LRT provided by the lme4 anova method keeping in mind the limitations
explained in the introductory Section 2.3.6.3. Each test requires at least two models to compute the
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Figure 3.5: Diagnostic plots for data11.mod2 model adjusted without observation 51.
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LRT so the first step is to fit what is known as the null model. In this case this is the same model
but lacking the term whose significance is to be evaluated. The option refit=FALSE overrides the
default behaviour of the lme4 anova method to refit the models using ML previously to compute
the LRT. This is crucial when comparing models differing in fixed effects structure but it is not
necessary in this case. The same results can be obtained with the ranova function of the lmerTest
package [34]. The great advantage of using ranova is that it is not necessary to hand-build the null
models as this step is a background task. Also, its output provides the significance for all random
effects at once, requiring only one function call. On the grounds of clarity when reporting results,
the custom function tableanova has been written. This function is dependent on the ranova function
and it further formats output. Note that anova and ranova not necessarily return the same exact
results and in general ranova is to be considered safer as it is less “manual” (type help(ranova,
package=“lmerTest”) in R console for examples).
A second method using parametric bootstrap provided by the pbkrtest::PBmodcomp is used to
validate results.
For the day factor significance testing, several approaches are presented:

LRT using the classical ANOVA

data11.mod2null <- update(data11.mod2, . ~ . - (1 | day))
anova(data11.mod2null, data11.mod2, refit = FALSE)

## Data: data11b
## Models:
## data11.mod2null: rp ~ sample + (1 | analyst)
## data11.mod2: rp ~ sample + (1 | analyst) + (1 | day)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## data11.mod2null 6 -66.088 -51.871 39.044 -78.088
## data11.mod2 7 -69.421 -52.834 41.710 -83.421 5.333 1 0.02093
##
## data11.mod2null
## data11.mod2 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LRT using the lmerTest::ranova function

ranova(data11.mod2)

## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## rp ~ sample + (1 | analyst) + (1 | day)
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 7 41.710 -69.421
## (1 | analyst) 6 41.710 -71.421 0.000 1 1.00000
## (1 | day) 6 39.044 -66.088 5.333 1 0.02093 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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LRT using the custom function tableanova

tableanova(data11.mod2, capt = "LRT for random effects of data11.mod2 object.")

Table 3.5: LRT for random effects of data11.mod2 object.

Effect removed Num. parameters logLik AIC LRT DF p-value
7 41.7103 -69.4206 NA NA NA

(1 | analyst) 6 41.7103 -71.4206 0.000 1 1.0000
(1 | day) 6 39.0438 -66.0876 5.333 1 0.0209

LRT using the PBmodcomp function (parametric bootstrap)

vcdaytest <- PBmodcomp(data11.mod2, data11.mod2null)
summary(vcdaytest)

## Parametric bootstrap test; time: 28.23 sec; samples: 1000 extremes: 3;
## Requested samples: 1000 Used samples: 407 Extremes: 3
## large : rp ~ sample + (1 | analyst) + (1 | day)
## small : rp ~ sample + (1 | analyst)
## stat df ddf p.value
## PBtest 5.0047 0.0098039 **
## Gamma 5.0047 0.0071574 **
## Bartlett 13.3155 1.0000 0.0002632 ***
## F 5.0047 1.0000 -1.2044
## LRT 5.0047 1.0000 0.0252785 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As shown, the inclusion of day effect seems justified as strictly speaking is significant at a 0.05
alpha level. Both the LRT implemented through anova and ranova functions or PBmodcomp
function reach the same qualitative result with different p-values. The output of PBmodcomp
function is slightly complex and the information in the PBtest line should be considered. It is
worth noticing that the p-value obtained by the LRT is, as expected, more conservative than its
parametric bootstrap counterpart. Note that in the parametric bootstrap output the function
specifies that not all samples generated are used for calculations. This issue is related with the
possibility of obtaining negative LRT statistic values which should not be theoretically possible. A
good explanation in the package documentation is available [57] and should not be a problem if
the number of used samples is sufficiently large and the LRT statistic is positive, as it is the case.

As a technical feature, note the concordance between ANOVA results of the three functions exem-
plified and differences between its outputs.

In this case, the use of the RLRsim package returned an error probably related with the small
number of random effects levels [9].
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NOTE:In the previous tests, R code has been shown alongside its output. This code is applied in
the same way in the next sections and will not be displayed again to enforce clarity in text reading.

The same procedure is applied to the analyst factor, first using the classical ANOVA approach:

## Data: data11b
## Models:
## data11.mod2null.2: rp ~ sample + (1 | day)
## data11.mod2: rp ~ sample + (1 | analyst) + (1 | day)
## Df AIC BIC logLik deviance Chisq Chi Df
## data11.mod2null.2 6 -71.421 -57.204 41.71 -83.421
## data11.mod2 7 -69.421 -52.834 41.71 -83.421 0 1
## Pr(>Chisq)
## data11.mod2null.2
## data11.mod2 1

And then results are confirmed using the parametric bootstrap approach:

## Parametric bootstrap test; time: 31.37 sec; samples: 1000 extremes: 243;
## Requested samples: 1000 Used samples: 483 Extremes: 243
## large : rp ~ sample + (1 | analyst) + (1 | day)
## small : rp ~ sample + (1 | day)
## stat df ddf p.value
## PBtest 0 0.5041
## Gamma 0 0.9678
## Bartlett 0 1.0000e+00 0.9998
## F 0 1.0000e+00 -1.6199
## LRT 0 1.0000e+00 0.9999

In this case the effect of factor analyst is clearly not significant. As before, both the bootstrap test
and LRT agree in the qualitative outcome but differ in p-value being the LRT the most conservative
as expected.

A good way to complement the above analysis is to calculate bootstrap confidence intervals for
each parameter included in the model. Table 3.6 summarizes the calculations obtained using a 95
% confidence level with the lme4::confint function in R.

Table 3.6: 95 % parametric bootstrap confidence intervals for
data11.mod2 parameter estimates adjusted without observa-
tion 51.

Parameter Estimate Lower limit Upper limit
.sig01 0.000 0.000 0.061
.sig02 0.053 0.000 0.117
.sigma 0.123 0.102 0.143
(Intercept) 13.549 13.487 13.623
sample1 1.589 1.541 1.634
sample2 0.488 0.441 0.532
sample3 -0.538 -0.590 -0.491
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In the table, parameter names are shown in the standard lmer function notation. For variance
components, .sig01 corresponds to the variance associated to the first random term entered in
the model, in this case analyst. The .sig02 parameter corresponds to the variance component
associated with day factor. The residual variance of the model is always called .sigma. The rest of
terms correspond to fixed effects parameters.

By using the standard knowledge on confidence intervals it can be seen that among variance com-
ponents only the residual variance does not include the value zero so by integrating this information
with the preceding tests the most appropriate results lecture might be that, given the data, the
most relevant source of variation by far is the replication error. A null to moderate contribution
from day-to-day error it is likely but it should not represent a concern. Error due to distinct an-
alysts performing the assay is null to negligible under the evaluated circumstances. Nevertheless,
the issue of variance intervals containing the zero value will be discussed in Section 3.3.

3.1.4 Validation

In section 3.1.3 a complete discussion about statistical significance of fixed and random effects
based on common hypothesis tests was provided accompanied by a final interpretation of model
results in the context of a validation study. Nevertheless, this interpretation might not suffice and,
in light of regulatory requirements, a more specific discussion must be made providing estimates of
bioassay accuracy and precision.

3.1.4.1 Accuracy

As stated in Section 2.2, accuracy is reported by calculating the percent RB which is expressed as
the percent ratio between the estimated and expected potencies of the analyte at each concentration
tested. Formulae to obtain point estimates is provided by the USP in its chapter 1033 [62].

Relative potency expected values for each sample tested in this assay were 15.15, 14.15, 13.15 and
12.15 for samples M1 through M4 respectively. Estimated group means can be obtained from the
data11.mod2 model fit using the lmerTest::lsmeansLT function which provides the least squares
means (LS means, also called marginal means) for each group. It is important not to confound
LS means with observed means; whereas the latter is a raw arithmetic mean for each group, the
former is calculated based on the model fit ant thus it accounts for design characteristics such as
imbalance. Expected relative potency values and model estimated relative potencies can be shown
in Table 3.7:

Table 3.7: Model estimated and expected relative potency
values for each sample.

Sample Estimated Expected
M1 15.14 15.15
M2 14.04 14.15
M3 13.01 13.15
M4 12.01 12.15

Immediately it is obvious that bias is small which indicates a high accuracy should be expected.
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Figure 3.6: Relative bias plot for validation study 1.

Usually, accuracy point estimates are accompanied by a confidence interval as a measure of its
trustworthiness. Several methods exist to calculate approximated confidence intervals but the
lsmeansLT function output automatically returns a t-distribution based confidence interval using
Satterthwaite degrees of freedom for each group mean. This group means can then be converted to
% RB following the same formulation as to obtain the point estimate. An elegant way of reporting
the % RB point estimates alongside its confidence intervals is to use a plot as the one showed in
Figure 3.6.

The plot can then be used to compare the span of each confidence region with some pre-specified
acceptance criteria. Target % RB is defined for each individual assay on the grounds of state of the
art of the technique and prior knowledge [62] but, its derivation is not straightforward and it is out
of the scope of this work. If a 15 % RB limit is assumed as an example, in this case all confidence
intervals for the concentrations tested are far from this value so this assay would pass the test.

3.1.4.2 Precision

As explained in section 2.2, three distinct levels of precision can be reported: repeatability, inter-
mediate factor precision and reproducibility. As stated, precision estimates are obtained directly
by combining variance estimates from the mixed model analysis and reported as a % CV which, as
a reminder, is the ratio between a given standard deviation and a related mean value [62].

The first step is to extract variance estimates from the mixed model analysis and report them
directly in standard deviation units as shown in Table 3.8.

Table 3.8: Variance components for data11.mod2 object in
standard deviations units.

Factor Estimated Standard deviation
analyst 0
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Factor Estimated Standard deviation
day 0.05

Residual 0.12

Once obtained, this standard deviations can be combined to obtain the different precision estimates.
Just as a reminder, repeatability is linked to the residual variance (σ2

r ) of the model. Intermediate
precision for a given factor is calculated from the sum of the residual variance with the factor
variance component estimate (σ2

r + σ2
factor). Likewise, reproducibility is calculated from the total

variance which corresponds to the sum of all variance components (σ2
r + σ2

day + σ2
analyst).

To calculate the % CV for each precision estimate, a mean or expected value of the relative potency
for the substance being analysed is necessary. In a dilutional assay like the one performed in
validation study 1, several dilutions of the same analyte were tested giving place to several samples
(M1 to M4).

Thus, in this case, there is not a single expected value estimate that can be used for calculations but
instead there are four samples each one having its own expected relative potency value. Also, as
a consequence of variance component analysis using mixed models, an overall variance component
is estimated for each factor plus the residual term. Consequently, precision estimates can not be
easily obtained for each sample level (potency level). A way to report an overall precision estimate
in the form of % CV is by using the grand mean as a reference value which, if an appropriate
contrasts setting has been defined, corresponds to the model intercept.

Table 3.9: Precision for validation study 1 assay (object
data11.mod2) as % CV.

Precision % CV
Repeatability 0.91
IP day 1.30
IP analyst 0.91
Reproducibility 1.30

Calculations are reported in Table 3.9. It is easy to see that repeatability and intermediate precision
for analyst factor (IP analyst) have the same value. This is because the variance estimate associated
with the analyst factor is zero, as shown in section 3.1.2. Likewise, reproducibility and intermediate
precision for factor day (IP day) have the same value as reproducibility variance used in calculations
is simply the sum of all variances and analyst factor associated variance is zero.

As explained above, it is customary to report validation statistics point estimates alongside its
confidence intervals. Documentation consulted do not specify the method to be used to calculate
this confidence region. Despite the sampling distribution of the coefficient of variation is known
under some assumptions, the analytical approximation usually requires the calculation of the sample
size [42]. As extensively explained, this is not easy in mixed model analysis as several grouping
levels are present and sample size may have several interpretations depending of the level considered.
For this reason, a confidence region for the coefficient of variation is approximated by the custom
built R function shown below, which makes use of the boot and boot.ci functions of the R boot
package [15]. In this specific example, the function estimates the 95 % confidence interval for IP
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day precision but it can be easily modified to accommodate all the precision estimates.

# Function to calculate the % CV of a sample (see boot
# package examples)
calccv <- function(formula, data, indices) {

dat <- data[indices, ]
m <- lmer(formula, data = dat)
mu <- fixef(m)[1]
# Changing row subsetting indices for VarCorr allows for
# other % CV to be calculated
sigma <- sum(as.data.frame(VarCorr(m))[2:3, 5])
cv <- 100 * sigma/mu
return(cv)

}

# Actual bootstrap function, R specifies the number of
# bootstrap samples. The more samples the best the estimated
# interval. The more samples the higher the computational
# cost. Formula specifies the model to be fitted.
bo <- boot(data = data11b, statistic = calccv, R = 500, formula = rp ~

sample + (1 | analyst) + (1 | day))

# Conficence intervals
boci <- boot.ci(bo, type = "bca")
boci

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 500 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bo, type = "bca")
##
## Intervals :
## Level BCa
## 95% ( 0.993, 1.599 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable

This function adjusts a mixed model using the same specification than the original one for a sub-
sample of the experimental sample of the validation study. Then it extracts the variance components
estimates and the grand mean and calculates the % CV of the sub-sample. With the bootstrapped
statistics, then boot.ci function retrieves the bias corrected percentile confidence interval. The
downside of this function is the high computational cost as it needs to adjust a model for each R
bootstrap samples. The result shows that IP day % CV 95 % confidence region falls between 0.99
and 1.6 approximately. This can then be compared to a pre-specified value to accept or reject the
performance of the assay.

The computational cost of this function is shown in Figure 3.7 as the system computation time
dependent on the number of bootstrap samples, R. From the plot, it can be clearly seen that
computational time linearly increases with increasing values of R and it takes around 40 seconds
to compute the intervals with a reasonable R value of 500. Due to this, no further examples are
provided.
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Figure 3.7: Computational cost for the % CV bootstrap CI calculation.

3.2 Validation study 2

3.2.1 Data structure

The second study was conducted to validate a sandwich ELISA developed to estimate the relative
potency of vaccine formulations against a reference control. In this case, different vaccine formula-
tions (samples) differing in their antigen content were analysed by three different analysts at three
different time points and at two different locations. Five replicates of each sample were run each
time.
The dataset has the following structure:
It contains a total of 125 observations with no missing values and 5 variables, where:

• sample: A five level factor representing the four vaccine candidates used in the study. Sam-
ples V050 through V200 contain an increasing amount of antigen. Thus, an increase in
response should be expected in a dose-response fashion.

• rp: A continuous variable representing the relative potency of each sample relative to a
common control formulation.

• analyst: A three level factor representing the three distinct analysts enrolled in the study.

• day: A three level factor representing the tree distinct and consecutive time points at which
the experiments were actually performed.

• lab: A two level factor representing the two laboratories where the assay validation protocol
was executed.

As in the previous example, first step is to determine the correct data structure to correctly specify
the model. Concerning the variables, this design is exactly the same as before with the exception
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Figure 3.9: Levelplots displaying the number of observations at each variable combination.

of the lab variable. This variable is trickier than day or analyst factors as, contrary to them, it
makes sense to model its effect as both fixed or random. Again, following the definition, if we
were interested in drawing conclusions for the specific levels tested (e.g laboratory 1 and 2) a fixed
effects approach should be used. On the other hand, if both laboratories are only a sample of all
possible locations where the assay could be performed then a random effects approach is needed.
Also, when a variable has a reduced number of levels it can make more sense to model it as a fixed
effects factors (see Section 3.3). In this case however the lab variable will be initially modelled as
a random effects factor.

The analysis starts by looking at the raw box plots of the replicates by grouping factor to get a
general impression on data trends. As it can be observed from Figure 3.8, some variation should
be expected in rp estimates by analyst, day or lab specially for the V150 and V200 presentations.
Also, the box plots clearly show that replicates tend to have more scattered values around the
median as the dose of antigen increases, regardless of the grouping factor considered. This is an
early warning for hetereoscedasticity.

Again, level plots depicting available factor combination observations (Figure 3.9) will be used to
determine the underlying relationship between data factors.

Rules to interpret the plots were clearly stated during study 1 analysis (Section 3.1.1) and shall
not be repeated here but it can be seen that a similar situation arises. This situation is further
complicated by the inclusion of the lab factor. In short, the design is irregular and highly unbal-
anced. Panel A shows the typical partially crossed relationship between day and analyst variables.
The same relationship is observed for the lab and analyst relationship depicted in panel D. Panels
C, E and F show the usual fully crossed structure pattern between its factors.

Interestingly in this case a nesting situation might be found. Panel B shows the underlying rela-
tionship between lab and day factors. As it can be seen, laboratory A only participates during the
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firs two days of the study whereas laboratory B is restricted to day three. Following the nesting
definition factor day is nested within factor laboratory as levels 1 and 2 of day factor happens
exclusively at level A of lab and level 3 of day happens only at level B of lab.

3.2.2 Analysis

The modelling phase starts with the specification of the statistical model which will be used in the
lmer function of the lme4 package [8].

Statistical formulation of the fitted model is:

yadlsr = β0 + A0a + D0d + L0l + β1sample1 + β2sample2+
β3sample3 + β4sample4 + ϵadlsr

A0a ∼ N(0, σ2
A0)

D0d ∼ N(0, σ2
D0)

L0l ∼ N(0, σ2
L0)

ϵadsr ∼ N(0, σ2)

(3.2)

where r = 1,…,5 define the replicate, a = 1, 2 or 3 define the analyst, d = 1 or 2 define the assay
day, l = 1 or 2 define the laboratory and s = 1, 2, 3, 4 or 5 define samples V050 through V200
respectively. Vector y is the responses vector. Terms β0 and β1 to β3 are fixed intercept and
slopes terms respectively, defining the fixed effects part of the model. The β terms, 1 through
4, represent the slopes with respect to the n-1 dummy variables needed to represent the 5-level
sample factor. Terms A0a, D0d and L0l are the random slopes associated with the analyst, assay
day and laboratory respectively defining the departure from the fixed intercept term depending
on the value of each grouping factor. The within-group error term, ϵadlsr, describes the random
variation associated to each observation and together with the random intercept terms they define
the random effects part of the model. To completely specify the model, it is assumed that random
effects including the error term follow a zero centered (multivariate)-normal distribution defined
by their respective standard deviations.

The model is fitted with the following command, where it can be seen that a term defining a random
intercept for the nested factor day within lab has been included as 1|lab/day using the standard
lme4 notation. This notation expands to 1|lab + 1|lab:day which denotes varying intercepts for lab
factor and for day within lab factor.

data12.mod1 <- lmer(rp ~ sample + (1 | analyst) + (1 | lab/day),
data = data12)

Model diagnostics should be conducted to confirm whether the residual part meets the assumptions
made. As explained in the previous example, diagnostics for other random terms apart from the
error are possible but not informative due to the few levels available. For this first attempt to
model the data12 dataset diagnostics are shown in Figure 3.10.

Although the relationship between the response and fixed effects might be linear, it can be observed
that the homoscedasticity assumption does not hold as for larger fitted values the residual dispersion
increases. Also, the residuals distribution has longer tails when compared to a normal distribution.
Usually, a log transform of the response is a good option to re-conduct this situation. The base
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Figure 3.10: Diagnostic plots for data12.mod1 model.
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of the logarithm is irrelevant if consistency is maintained during the analysis so in this case the
same model is adjusted by applying a natural logarithm. The new model is coded as data12.mod2.
Alternatively, other, more complex transformations such as the Box-Cox could be explored [27].

data12.mod2 <- lmer(log(rp) ~ sample + (1 | analyst) + (1 | lab/day),
data = data12)

The new diagnostic plots for the logarithmic model are shown in Figure 3.11. As it can be seen,
now the heteroscedasticity problem has been almost solved by the log transformation. Residuals
QQplot now shows a better agreement with a normal distribution. In the Cook’s distance plot
several observations are detected as possibly influential. Several warnings related to having few
observations for the relatively complex random effects structure arose during influence calculations;
this situation will be latter discussed.
Regardless of the warnings, point 80 appears as the most influential based on the arbitrary cut-off
value used. This particular observation has been studied as described in Section 3.1.2. As recorded
data do not support a technical error as a main cause for this odd response value, the observation
is considered an outlier. Model data12.mod3 is fitted without this particular observation.

data12b <- data12[-c(80), ]
data12.mod3 <- lmer(log(rp) ~ sample + (1 | analyst) + (1 | lab/day),

data = data12b)

Model diagnostics are not shown but again, a handful of warnings appear related to influence
calculations. Moreover, heteroscedasticity and residuals normality do not improve dramatically so
it is not justified to eliminate an observation.
Even though no warnings appear when fitting the model with the lmer routine with the full data,
the recurrent warnings appearing when calculating influence must not be taken lightly. In this case,
calculation algorithm sequentially adjusts models lacking one observation at a time to calculate its
effect on the model fit; the error returned means that the influence displayed for some observations
has been calculated based on low quality model fits and thus it is potentially misleading. Beyond
this lecture, one might interpret that eliminating only one data point causes the fitting routine to
struggle to estimate all model parameters and this situation is observed several times.
This exemplifies that an analytical dead end might have been reached. The usual cause is related
with a too complex random effects structure given the amount of levels available for random effects
factors and/or too few observation to support parameter estimation [11, 13]. If this situation
happens only by dropping one observation, this should be considered a warning and alternative
model specifications should be considered.
A possible alternative specification is to treat the lab factor as a fixed effects factor. This is possible
because although one might not be interested in inferring on the particular laboratories used, the
assay will only be performed at either lab A or B but at no other. Statistical formulation for this
modified model can be expressed as:

yadlsr = β0 + A0a + D0d + L0l + β1sample1 + β2sample2+
β3sample3 + β4sample4 + β5lab1 + ϵadlsr

A0a ∼ N(0, σ2
A0)

D0d ∼ N(0, σ2
D0)

ϵadlsr ∼ N(0, σ2)

(3.3)
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Figure 3.11: Diagnostic plots for data12.mod2 model.
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where sub-indexes and parameters have the same meaning as before and the new β5 represents the
fixed slope with respect to the n-1 dummy variables needed to code for the 2-level factor lab.
The model is fitted with the following command:

data12.mod4 <- lmer(log(rp) ~ sample + lab + (1 | analyst) +
(1 | day), data = data12)

Diagnostic plots for this model are provided in Figure 3.12. It can be observed that homoscedasticity
assumption is approximately satisfied together with normality of residuals. As discussed before, no
observation appears to be sufficiently influential to proceed to its elimination. Finally, no warnings
were issued neither in the lmer fit nor in the influence data calculations. Overall, simplification of
the random effects structure has resulted in a more robust model.
Final model estimates for fixed effects are shown in Table 3.10 where it can be seen that some
factor levels are not significant. This situation will be discussed in the next section.

Table 3.10: Fixed effects for data12.mod4 model after specifying lab as a fixed effects factor.

Effect Estimate Std.error DF t-value p-value
(Intercept) 0.140 0.030 1.880 5.580 0.035
sample1 -0.880 0.010 114.890 -68.600 <0.001
sample2 -0.320 0.010 114.890 -24.960 <0.001
sample3 -0.020 0.010 114.890 -1.740 0.084
sample4 0.450 0.010 114.890 35.320 <0.001
lab1 -0.020 0.010 1.200 -1.840 0.284

Table 3.11 shows the variance component estimates. It should be noticed that analyst factor has a
relatively high contribution to the overall variance.

Table 3.11: Variance component estimates for data12.mod4 model after specifying lab as a fixed
effects factor.

Variance component Variance % Variance Std. deviation
analyst 0.002 21.897 0.039
day 0.000 2.887 0.014
Residual 0.005 75.217 0.072

3.2.3 Inference

3.2.3.1 Tests on fixed effects

After obtaining a working model, inference can be made over parameter estimates. For fixed
effects it can be seen in Table 3.10 that marginal Wald t-tests for sample3 and lab1 parameters are
not significant at an α = 0.05 value. Like for OLS regression, this t-tests are usually difficult to
interpret by itself so for multi-level factors is better to apply an omnibus ANOVA test. As discussed
in Section 2.3.5.1, type III sum-of-squares decomposition is used.
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Figure 3.12: Diagnostic plots for data12.mod4 model.
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## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## sample 42.002 10.5006 4 114.889 2035.7433 <2e-16 ***
## lab 0.017 0.0174 1 1.204 3.3719 0.2838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result show that, as expected, sample factor has a significant impact on the response whereas
lab factor is not significant. Thus, available data do not provide enough evidence to assume a
dependence of the response on the specific laboratory where the assay is executed.

3.2.3.2 Tests on random effects

Significance for the random effects structure can be evaluated by conducting LRT on each individual
random effect factor. In this case parametric bootstrap approach is not used to avoid computational
overloading.

Tests for day and analyst factors:

Table 3.12: LRT for random effects of data12.mod4 object.

Effect removed Num. parameters logLik AIC LRT DF p-value
9.000 130.054 -242.108 NA NA NA

(1 | analyst) 8.000 124.449 -232.898 11.210 1.000 <0.001
(1 | day) 8.000 129.925 -243.851 0.258 1.000 0.612

As in the example, these results are further confirmed by calculating 95 % parametric bootstrap
confidence intervals on each parameter. Results are displayed in Table 3.13 below.

Table 3.13: 95 % parametric bootstrap confidence intervals
for data12.mod4 parameter estimates.

Parameter Estimate Lower limit Upper limit
.sig01 0.039 0.000 0.080
.sig02 0.014 0.000 0.046
.sigma 0.072 0.062 0.080
(Intercept) 0.144 0.094 0.199
sample1 -0.881 -0.906 -0.857
sample2 -0.321 -0.345 -0.297
sample3 -0.022 -0.049 0.004
sample4 0.454 0.428 0.479
lab1 -0.025 -0.056 0.004

For a better understanding of the results, variance estimates for analyst and day factors displayed
in Table 3.11 indicate a moderate contribution of the first and a nearly negligible one for the latter.
As explained in the introduction Section 2.3.6, LRT tend to be too conservative in the reported
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p-values so this must be taken into account when interpreting the results. As expected by the small
amount of variation it accounts for, the day factor is not significant and its p-value is large so,
despite LRT issues, it is not likely an artefact. On the contrary, the analyst factor is a significant
source of variation with a rather small p-value. Considering LRT are conservative, the returned
value might be even smaller so the possibility of an artefact can be also ruled out. However it must
be noted that the confidence intervals calculated in Table 3.13 include the zero for analyst (.sig01)
and day (.sig02) variance estimates.

3.2.4 Validation

Section 3.1.4 contains a complete discussion on how to calculate and report common validation
statistics such as the percent RB, which relates to assay accuracy, or several CV relating to different
precision levels.

Here, the same exercise will be made for validation study 2. It should be noted that in this study a
crucial analytical difference is found: response has been log-transformed during the analysis phase.
As stated in Section 2.2 these changes the way precision and accuracy are calculated.

3.2.4.1 Accuracy

As before, accuracy is reported by calculating the percent RB following formulation provided by
the USP in its chapter 1033 [62].

Relative potency expected values for samples V050 through V200 were 0.47, 0.82, 1.11, 1.78 and
2.45 respectively. LS group means are again obtained using the lmerTest::lsmeansLT function. Due
to the natural logarithm transformation, the returned group means are in log units so they must
be converted back to the original units using the the exponential transformation (exp() function in
R) before calculating the relative biases. Final results are shown in Table 3.14.

Table 3.14: Model estimated and expected relative potency
values for each sample.

Sample Estimated Expected
V050 0.48 0.47
V075 0.84 0.82
V100 1.13 1.11
V150 1.82 1.78
V200 2.5 2.45

Like in validation study 1, this bioassay has a relatively small bias and thus a high accuracy. Figure
3.13 shows a plot of the relative bias and its 95 % confidence region by expected potency level.

From the plot it can bee seen that this assay has a larger confidence region than the ones found in
validation study 1 and this is most likely related to the logarithmic transformation and subsequent
exponential back-transformation; in log scale, differences appear to be smaller. Nevertheless, a
common practice is to set a % RB ⩽ 15 % as the limit of acceptance and this bioassay conforms
with this criteria. Also, it should be noticed that a positive bias is detected at each potency level
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Figure 3.13: Relative bias plot for validation study 2.

so it can be stated that this biossay tends, on average, to overestimate the relative potency.

3.2.4.2 Precision

Again, the three levels of precision (repeatability, intermediate factor precision and reproducibility)
will be estimated from validation study 2 model data12.mod4. Variance estimates reported in
standard deviation units can be found in Table 3.15.

Table 3.15: Variance components for data12.mod4 object in
standard deviations units.

Factor Estimated Standard deviation
analyst 0.04

day 0.01
Residual 0.07

As a reminder of 2.2, variance estimates for each precision level can be obtained from model variance
component estimates using the following formulation: residual variance (σ2

r ) stands for repeatabil-
ity, residual variance plus factor associated variance (σ2

r + σ2
factor) stands for factor intermediate

precision and the overall variance (σ2
r + σ2

day + σ2
analyst) stands for reproducibility.

As before, point estimates of each type of precision are calculated but in this case it is done according
to the formulation provided by the USP chapter 1033 [62] for log-normal data (see Section 2.2).
Thus, a percent GSD value for each estimate is finally reported.
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Table 3.16: Precision for validation study 1 assay (object
data12.mod4) as % CV.

Precision % GSD
Repeatability 7.45
IP day 8.97
IP analyst 11.69
Reproducibility 13.27

From calculations reported in Table 3.16, it can be seen that both IP analyst and reproducibility
values are somewhat high but in general the assay performance is good enough.

Confidence intervals for precision estimates can be calculated by bootstrap using a custom R func-
tion similar to the one used for validation study 1. The example below shows how to calculate
the 95 % confidence interval for IP analyst. Again, due to computational requirements only this
example is shown.

# Function to calculate the % GSD of a sample
calcgsd <- function(formula, data, indices) {

dat <- data[indices, ]
m <- lmer(formula, data = dat)
# Changing row subsetting indices for VarCorr allows for
# other % GSD to be calculated
sigma <- sum(as.data.frame(VarCorr(m))[c(1, 3), 5])
gsd <- round(100 * (exp(sigma) - 1), 2)
return(gsd)

}

# Actual bootstrap function, R specifies the number of
# bootstrap samples. The more samples the best the estimated
# interval. The more samples the higher the computational
# cost. Formula specifies the model to be fitted.
bod12m4 <- boot(data = data12, statistic = calcgsd, R = 200,

formula = log(rp) ~ sample + lab + (1 | analyst) + (1 | day))

# Conficence intervals
bocid12m4 <- boot.ci(bod12m4, type = "bca")
bocid12m4

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 200 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bod12m4, type = "bca")
##
## Intervals :
## Level BCa
## 95% ( 9.72, 14.83 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable
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The result shows that IP analyst % GSD 95 % confidence region falls between 9.72 and 14.83
approximately. This can then be compared to a pre-specified value to accept or reject the perfor-
mance of the assay, for example a 15 % GSD limit. In that case maybe it is worth to take some
corrective action to improve analyst performance and repeat the validation protocol.

3.3 Comments on study designs

Both designs analysed in this work showed practically the same characteristics: 1) they are unbal-
anced and 2) they have few levels of grouping factors. Each of these characteristics causes different
problems that will be briefly discussed below.

Lack of balance

Although balance may have several definitions, a common and simple one is to have the same
number of observations for each combination of factors [58]. Obviously this is not the case for
the designs analysed in the preceding sections and this causes a variety of situations during the
analysis. Most notably, for unbalanced designs the standard mean-squares estimation techniques
used in ANOVA to find the variance components can no longer be used and one must resort to ML
or REML procedures as explained in the introductory Section 2.3.5. This leads to the inference
problem that has already been discussed in Section 2.3.6 [36, 58].

Despite this, using ML or REML estimation procedures is in fact not a problem and instead, the
ability of mixed models to cope with both balanced and unbalanced data is one of the reasons for
its popularity in several scientific disciplines. However, as explained in Section 2.3.6, inference can
be a problem when using ML or REML. As in several disciplines it is nearly a “mantra” to report
statistical significance in the form of a p-value, this problem can not be easily by-passed. As stated
before, this is an active research field and nowadays there is not yet a method where all statisticians
agree so for a near future it is foreseeable that current approximations will still be used despite of
its limitations.

Limited number of levels for groupping factors

Whereas lack of balance is “easy” to overcome by the estimation methods used to fit mixed mod-
els, these same methods struggle to estimate variance components when not enough levels of the
grouping factors are present. When models are too complex given the available amount of data or
there are too few number of levels of a grouping factor to get a credible estimate of its variance,
fitting routines will return convergence problems or variance estimates will collapse to zero [14, 30].
Increase the amount of data or simplify the model, as when analysing validation study 2 in Section
3.2.2, can help solve the problem. Indeed, there is not a written rule on how many levels will
provide good variance estimates but 5-6 levels by grouping factor seem to be a good rule of thumb
[13]. Also, by increasing the number of levels it becomes possible to check for a correct specification
of the random effects part by means of graphical techniques such as a QQplot of the BLUP [44].



Chapter 4

Part II: Analysis of parallelism studies

4.1 Parallelism study 1

4.1.1 Data structure

This parallelism study was performed in accordance with USDA guidelines describing the recom-
mended experimental design to asses the conformance of an assay with respect to parallelism [53].
Two-fold serial dilutions of two different vaccine formulations, henceforth called serials, were assayed
in five different plates in two separate days. Within a plate, each serial was tested in triplicates.
The optical density (OD) of each well in a plate was measured as the response variable. Before
proceeding with the assay, OD readings of the same serial/dilution combination were averaged and
the blank substracted to account for the background OD.
The dataset contains a total of 400 observations, each corresponding to a particular blank-
substracted OD reading, with no missing values and a total of 7 variables, where:

• day: A two level factor representing the two days when the analysis was performed.

• plate: A ten level factor representing the 10 different assay plates used during the study. Five
plates were used each day.

• plate2: A five level factor representing the 10 different assay plates used during the study.
Five plates were used each day, thus, plates within a day are labelled 1 to 5.

• serial: A two level factor identifying the two vaccines tested, the reference (ref ) and the test
(test) products.

• dilution: A continuous variable containing the dilution rate applied to the product.

• logdilution: A continuous variable containing the log2 logarithm of the dilution variable.

• od: A continuous variable containing the raw OD readings of each well in a plate.

• blank: A continuous variable containing the background OD reading for a given plate.

• odcorr: A continuous variable containing the background substracted OD readings for each
well in a plate.

59
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Figure 4.1: Scatter plots of raw data by grouping factor day (A) or plate (B) colored by serial type
and by factor serial type colored by plate (C).
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The first step before any formal analysis is to conduct a visual inspection of the raw data. It is
customary to represent the response variable (odcorr) against the principal covariate (logdilution).
As several grouping factors are available, they can be used to produce several informative plots
depicted in Figure 4.1.
In this figure it can be observed that, regardless of the grouping factor used to plot the OD vs. dilu-
tion relationship, an evident sigmoidal shaped curve appears. Moreover, a possible heteroscedastic
situation can be seen in any of the panels as it is clear that dispersion of response is greater as the
value of logdilution increases.
Apart from the visual inspection, it is necessary to correctly determine the existing relationships
between study factors to avoid incurring in erroneous model specifications. In this case factor plate
is nested within factor day as 5 plates are run each day resulting in a total of 10 plates. This
nesting structure can be made explicit if variable plate (10 levels) is selected or implicit if variable
plate2 (5 levels) is used instead. If plate2 is selected, the nesting structure should be specified in
the groupedData object as will be demonstrated below. Variable serial is crossed with plate and
day.

4.1.2 Analysis

From data inspection it seems clear that serial and plate within day grouping factors can be
considered potential nuisances that one might be interested in controlling for. Thus, a mixed
effects model approach it is suitable.
In this case however, a linear mixed effects model is not reasonable as it is clear from data inspection
that the underlying relationship is not linear. Thus, a non-linear mixed effects model shall be used.
Usually, the sigmoid shaped relationship obtained from these kind of assays is modelled with a
3 or 4 parameter logistic equation as shown in Section 2.3.4.2. As discussed, several possible
parametrizations of this equation exist (see Section 2.3.4.2.1) but the one used in this work was
proposed by Pinheiro and Bates (2002) [44] and constitutes the most natural choice for its use in
conjunction with the nlme R package [43]. The Statistics Section of the CVB-USDA and both the
Ph.Eur. and the USP contemplate these parametrization [51, 60]. Also and as outlined in previous
plots, the principal covariate for this assay will be the log2 of the dilution factor which is referred to
as concentration units by the CVB-USDA Statistics Section [60]. Finally, the Statistics Section of
the CVB-USDA also recommends the use of a blank corrected OD data as response variable such
that a 3 parameter logistic function could be fitted [51].
Statistical formulation of the mixed effects 3 parameter logistic model is as follows:

y(ij)k = Ai + u1j

1 + exp[(Ci + u2j − log(x)(ij)k)/(Bi + u3j)]
+ ϵ(ij)k (4.1)

where i = 1,2 as ref and test serials respectively, j = 1,…,10 is the plate number and k is the dilution
(or logarithm of the dilution). Each individual observation is represented by the y term. The three
parameter logistic model have both a fixed and a random effects component for each of the model
parameters. The upper asymptote is determined by the fixed effect A depending on the serial
and the random effect u1 depending on the plate. Likewise, scale factor and location parameter
are specified by the fixed components B and C depending on the serial and the random effects
components u3 and u2 depending on the plate, respectively. Finally, residual error is represented
by the ϵ, one for each observation.
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The model specification used above however can be misleading, so it should be further explained.
To conduct the study in several days is a recommendation present in the regulatory documentation
[53]. Despite this, the day factor is not explicitly used in the analysis when performed according
to the CVB-USDA procedure [51]. The term (ij) appears to indicate that a nesting relationship
exists between serial and plate and that the higher grouping level is the i indexed; the serial type.
However, by taking a closer look to the formula it is clear that each parameter has a fixed effects
part depending only on the serial and a random effects part depending on the plate. We feel that no
nesting should be specified between serial and plate as this gives place to an erroneous theoretical
grouping structure that is not reflected in the data. Also, it is clear from the design that plate is
nested within day and, as time is a known and potentially important nuisance factor in every assay,
we feel that it must be included in the model. Thus, a plate within day nesting relationship will be
specified. Note that plate2 factor should be used for this nesting to take effect.
To fully specify the model, random effects structure will be modelled as follows:

ϵ(ij)k ∼ N(0, σ2
ϵ ) (4.2)

u1
u2
u3

 ∼ MV N


0

0
0

 ,

σ2
u1 0 0
0 σ2

u2 0
0 0 σ2

u3


 (4.3)

This specification states that the errors will be modelled as having a normal distribution with mean
zero and constant variance σ2

ϵ and the vector of the three random effects will be modelled as having
a multivariate normal distribution with a zero valued vector of means and a diagonal variance-
covariance matrix meaning that the random effects are uncorrelated to each other. This last
assumption is based on the grounds that not enough data is usually available to fit an unstructured
model and computational instability may arise [51].
In previous sections (Chapter 3) models were fitted using the lmer function of the powerful lme4
[8]. Despite this package has the nlmer function to fit non-linear mixed effects models, its im-
plementation has been found to be complex and it lacks the possibility to easily add fixed effects
covariates, which is required in this case [12]. Instead, the nlmer function of the exceptionally well
documented and proven nlme package [43, 44] will be used as it allows the user to specify fixed
effects covariates and also the random effects variance-covariance matrix structure.
First, the nlme function requires the user to construct a groupedData object which essentially is an
R data frame object containing information about design structure. This is done with the following
command:

data21nlme <- groupedData(odcorr ~ logdilution | day/plate2,
data21)

As it can be seen, the odcorr is defined as the response depending on logdilution values with a plate
within day nested grouping structure defined by the syntax day/plate2.
Next, as maximum likelihood algorithms to fit non-linear mixed effects models work iteratively, it
is required to calculate a set of initial values for the fixed effects parameters. The closer the initial
values provided to the optimizer to its optimum value, the better the chances of the algorithm to
converge to the appropriate solution. This initial values, that depend on the chosen parametrization,
can be obtained from the data by following simple rules. These rules and an R code example are
provided below.
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• Asymptote: Simply use the maximum OD value in the dataset.

• Location: By definition, the location parameter is equivalent to the value the covariate takes
when the response is halfway its range. A good starting point is to use the covariate value,
in this case the log2 dilution, whose response value is approximately half of the previously
calculated asymptote value.

• Scale: Scale factor determines the rate of change of the response with respect to the primary
covariate. A good starting value can be calculated by taking the difference between covari-
ate values (logdilution) whose response values (OD) are 75 % and 50 % respectively of the
maximum value.

# Calculate appropriate starting values

## For asymptote
o1 <- max(data21$odcorr)

## For location
ino2 <- which((data21$odcorr > 0.45 * o1) & (data21$odcorr <

0.55 * o1))
o2 <- mean(data21$logdilution[ino2])

## For scale factor
ino1 <- which((data21$odcorr > 0.73 * o1) & (data21$odcorr <

0.77 * o1))
o3 <- mean(data21$logdilution[ino1]) - o2

# Wrap starting values into a list Start values for model
# without intercept
startvals <- list(fixed = c(Asym = rep(o1, 2), xmid = rep(o2,

2), scal = rep(o3, 2)))

Once data has been ordered according to the software needs and the set of starting values has been
calculated, a model can be fitted. As stated before, in this case there is a need to include a fixed
effects covariate in the model apart from the logdilution factor, which is the primary covariate. This
required covariate is the serial factor. As shown in Equation (4.1), each parameter has a fixed and
a random effects component. The fixed effects component is dependent upon the serial type and
this causes the need to include the serial factor in the nlme function call. The call below creates
the data21.mod1 object containing the model fit.

## nlme model without intercept for fixed covariate serial
data21.mod1 <- nlme(odcorr ~ SSlogis(logdilution, Asym, xmid,

scal), data = data21nlme, fixed = Asym + xmid + scal ~ 0 +
serial, random = pdDiag(Asym + xmid + scal ~ 1), start = startvals,
method = "REML")

Examining the call, there are several parts that need to be described:

• odcorr ~ SSlogis(logdilution, Asym, xmid, scal): This line specifies that odcorr is the response
that will be modelled as dependent on the logdilution using an SSlogis function. The SSlogis
function is a pre-coded function specifying the 3PL model depending on three parameters:
Asym (asymptote), xmid (location) and scal(scale) parameters.
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• data = data21nlme: This line specifies that the previously generated groupedData object is
to be used instead of the original dataset.

• fixed = Asym+xmid+scal~0+serial: This line specifies the fixed effects portion of the model.
It tells the software that 3PL parameter estimates are dependent on the value of the serial
factor that acts as a covariate. See below for a detailed explanation on this topic.

• random = pdDiag(Asym+xmid+scal~1): This line specifies the structure of the random part
of the model. It tells the fitting function that all 3PL model parameters must have a random
effects component and that this random effects part must have a diagonal variance-covariance
matrix (pdDiag). The “~1” argument indicates that a single parameter is associated with this
random effects which is the common way to specify random effects in nlme when needed.

• start = startvals: These lines provide the initial values for the 3PL parameters as calculated
before and wrapped inside an R list object. Two values for each parameter must be provided
as the serial covariate has two levels. Values can be the same unless asymptote, location and
scale parameters are largely different between serials or covariate specification is changed (see
below).

• method = “REML”: This line forces the optimizer to rely on restricted maximum likelihood
instead of maximum likelihood to fit the model.

Before looking at the fitted model, the fixed effects part specification must be further explained.
Dependency of model parameters from a covariate is usually modelled as a simple linear relationship.
Taking the Asym parameter as an example, this parameter would be in fact modelled as:

Ai = γ0 + γ1serial (4.4)

where Ai is the asymptote parameter as specified in Equation (4.1). Coefficients γ0 and γ1 are the
intercept and slope respectively for a simple linear formula relating the asymptote parameter with
the serial type (ref or test).

At least two specifications arise depending on the value of γ0. If γ0 ̸= 0, then it is clear that Ai

has a basal value, γ0, which is shifted upwards or downwards depending on the value of γ1 and the
type of serial. If treatment contrasts were used in R (see Section 2.3.5.1), then γ0 would represent
the asymptote value for the reference level of serial which could be ref. This value would be shifted
according to γ1 to obtain the asymptote value for the test serial. If this was the case, the list of
two starting values passed to the nlme function should comprise: 1) the maximum OD reading for
ref serial as an estimate of γ0 and 2) the difference between maximum OD values of ref and test
serials as an estimate of γ1.

On the other hand, if γ0 = 0, as it is the case in the model call used in this work, then Ai depends
only on the value of γ1 and the type of serial. In nlme call, the term “+0” forces the intercept to
be zero. In OLS and other types of regression in R, when the intercept is removed from the model
the coding of categorical factors changes. A 2-level factor like serial would usually be coded by n-1
dummy variables as stated in Section 2.3.5.1 but, when no intercept is present it is automatically
coded by two zero-one variables, one for each level of the factor in a coding scheme called level-
means. Thus, the resulting model fit do not return the value of γ1 as it would be expected but
instead it returns two parameters representing the expected values of the dependent variable for
each level of the categorical variable.
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In this work, the covariate serial is fitted in the model with the expression 0+serial which effectively
suppresses the intercept and changes the serial factor coding scheme to level-means. In this way,
not only separate parameters are returned for each serial type but also the variance-covariance
matrix between these parameters is directly obtained. The variance-covariance matrix is crucial to
obtain confidence intervals for the calculations performed in Section 4.1.4.
The resulting model can be can be explored using the summary command:

## Nonlinear mixed-effects model fit by REML
## Model: odcorr ~ SSlogis(logdilution, Asym, xmid, scal)
## Data: data21nlme
## AIC BIC logLik
## -1454.063 -1402.37 740.0313
##
## Random effects:
## Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
## Level: day
## Structure: Diagonal
## Asym.(Intercept) xmid.(Intercept) scal.(Intercept)
## StdDev: 1.059995e-05 0.2115807 2.737852e-09
##
## Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
## Level: plate2 %in% day
## Structure: Diagonal
## Asym.(Intercept) xmid.(Intercept) scal.(Intercept) Residual
## StdDev: 0.03186162 0.101251 6.814071e-10 0.03507052
##
## Fixed effects: Asym + xmid + scal ~ 0 + serial
## Value Std.Error DF t-value p-value
## Asym.serialref 1.275643 0.01222590 385 104.33943 0
## Asym.serialtest 1.226268 0.01219306 385 100.57101 0
## xmid.serialref -9.583066 0.15886760 385 -60.32109 0
## xmid.serialtest -9.616554 0.15925208 385 -60.38573 0
## scal.serialref 1.930179 0.03417979 385 56.47135 0
## scal.serialtest 1.922531 0.03537134 385 54.35280 0
## Correlation:
## Asym.srlr Asym.srlt xmd.srlr xmd.srlt scl.srlr
## Asym.serialtest 0.682
## xmid.serialref 0.110 0.000
## xmid.serialtest 0.000 0.112 0.925
## scal.serialref 0.365 0.001 0.126 0.000
## scal.serialtest 0.001 0.362 0.000 0.128 0.001
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -5.7313560 -0.5482405 -0.1729319 0.3726201 3.8588987
##
## Number of Observations: 400
## Number of Groups:
## day plate2 %in% day
## 2 10

It can be seen that this model output is far from intuitive but it is relatively similar to the out-
put from lme4::lmer function seen in Section 3.1.2. The first part returns the model call and
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Figure 4.2: Diagnostic plots for the residuals of data21.mod1 object. A) residuals vs. fitted values,
B) QQplot against a normal distribution.

characteristic statistics like AIC, BIC or log-likelihood.

Next the random effects variance estimations are presented ordered from the higher to the lower
level. In this case it can be seen that the variance associated with day factor (in standard deviation
units) is rather low, essentially zero, for the asymptote and scale parameters. In contrast to this,
the plate in day grouping level show a bigger value for the standard deviation of the asymptote
and it is comparable to that of the residual variance. This indicates that there exist some variation
between plates in this parameter which has been captured in the model. Values for the location
parameter are bigger but this is an expected outcome as the preparations used in this study differ
in their antigenic content and thus a location shift is expected.

Following the random effects part, the summary returns the fixed effects estimates for the three
parameters in the model. In this case, six lines appear and this is due to the fact that a different
parameter is fitted for each serial type, as requested by the function call. Wald t-tests are used
to analyse the marginal significance of each parameter. The correlation matrix between these
parameters is also reported.

Finally, a brief residuals descriptive can be found followed by counts on the number of observations
and groups used.

4.1.3 Model check and refit

As customary, before any in-depth analysis it must be checked if the resulting model fulfils the pre-
specified assumptions for the residuals and random effects. The residuals specification is checked in
Figure 4.2. It can be seen that while the QQplot is almost correct, with only some minor deviation
in the right tail and an odd observation in the left one, the true problem lies in the heteroscedasticity
observed in panel A. Clearly, residuals dispersion increases with increasing values of the response
both for the ref and test serials.
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Figure 4.3: Plot of data21.mod1 model residuals against the logarithm of the dilution.

Based on the residuals analysis, it is not worth checking the random effects structure; instead, some
corrective action should be considered. Failure to address problems with the distributional assump-
tions leads to incorrect statistic tests of model parameters and as a consequence, the conclusions
drawn from them can also be wrong.

If this was an LME model, a common first option would be to transform the response variable. This
is a rather complex approach as regulatory documentation clearly specifies what the authorities
expect and it does not include any kind of transformation. In very specific circumstances, protocols
may be modified under strong justification but generally any departure from the guidelines should
be avoided.

A second option is to use the nlme package capabilities to model within-group error heteroscedas-
ticity. Figure 4.3 clearly shows an increasing spread of residuals for higher (less negative) log2
dilution values. Thus, the residual variance could be modelled as a function of this variable.

In nlme function calls, wheigts argument allows the specification of a particular model for the
residual variance. Several residual variance models are readily available in the nlme package through
varFunc class objects. The exact syntax and reasoning behind each variance model is out of the
scope of this text but an excellent explanation can be found in Pinheiro and Bates (2002) [44]. The
key point to model the residual variance is to choose the most appropriate variance model from the
options provided. This can be done according to some informed knowledge about the underlying
cause of the heteroscedasticity but it can also be accomplished through brute force. This strategy
relies on the capacity to refit the model using several candidate residual variance model functions.
The feasibility is influenced by model complexity and size of the dataset; the more complex the
model, more computational power it will take.

R objects with suffix .mod2 and .mod3 were re-fitted using different residual variance functions
based on the power family models in increasing complexity whereas in .mod4 an exponential family
model was used.

Three ANOVA (below) are then used to compare each model against the .mod1 model using LRT.
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Each comparison tests the significance of either adding a variance structure or changing between
different variance structures depending on the pair of models compared.

## Model df AIC BIC logLik Test L.Ratio p-value
## data21.mod1 1 13 -1454.063 -1402.37 740.0313
## data21.mod2 2 14 -1718.049 -1662.38 873.0243 1 vs 2 265.986 <.0001

## Model df AIC BIC logLik Test L.Ratio p-value
## data21.mod1 1 13 -1454.063 -1402.370 740.0313
## data21.mod3 2 15 -1718.829 -1659.184 874.4147 1 vs 2 268.7669 <.0001

## Model df AIC BIC logLik Test L.Ratio p-value
## data21.mod1 1 13 -1454.063 -1402.370 740.0313
## data21.mod4 2 14 -1704.983 -1649.314 866.4915 1 vs 2 252.9205 <.0001

It can be seen that when adding a defined variance structure improves the model, both AIC and
BIC criterion tend to more negative values when compared to the first model and the log-likelihood
increases, thus giving significant test results. However it is not possible to select a final model based
only on p-values and a model selection criterion must be selected. The AIC value will be used here
to select between those models significantly better than the first one. The one with the lower AIC
should be selected but it should be noted that using this method can lead to over-complex models
[30].
Based on this, data21.mod3 is finally selected. A summary of the fit for this model is presented
below where it can be seen a new section is added specifying the variance modelling structure.
Also, parameter estimates have changed, most notably those of random effects.

## Nonlinear mixed-effects model fit by REML
## Model: odcorr ~ SSlogis(logdilution, Asym, xmid, scal)
## Data: data21nlme
## AIC BIC logLik
## -1718.829 -1659.184 874.4147
##
## Random effects:
## Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
## Level: day
## Structure: Diagonal
## Asym.(Intercept) xmid.(Intercept) scal.(Intercept)
## StdDev: 9.487025e-10 0.2049749 1.078595e-05
##
## Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
## Level: plate2 %in% day
## Structure: Diagonal
## Asym.(Intercept) xmid.(Intercept) scal.(Intercept) Residual
## StdDev: 0.034592 0.07010869 0.07725416 0.04285794
##
## Variance function:
## Structure: Constant plus power of variance covariate
## Formula: ~fitted(.)
## Parameter estimates:
## const power
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B) Not corrected
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Figure 4.4: Comparison of the residuals against log-dilution plots from the data21.mod3 variance
corrected model (A) and data21.mod1 non-corrected model (B).

## 0.1037736 0.5566015
## Fixed effects: Asym + xmid + scal ~ 0 + serial
## Value Std.Error DF t-value p-value
## Asym.serialref 1.255150 0.01382200 385 90.80818 0
## Asym.serialtest 1.206712 0.01369179 385 88.13394 0
## xmid.serialref -9.701999 0.15393952 385 -63.02474 0
## xmid.serialtest -9.733995 0.15413171 385 -63.15375 0
## scal.serialref 1.802525 0.03402466 385 52.97700 0
## scal.serialtest 1.793775 0.03433160 385 52.24852 0
## Correlation:
## Asym.srlr Asym.srlt xmd.srlr xmd.srlt scl.srlr
## Asym.serialtest 0.633
## xmid.serialref 0.140 0.000
## xmid.serialtest 0.000 0.139 0.906
## scal.serialref 0.231 0.000 0.147 0.000
## scal.serialtest 0.000 0.228 0.000 0.150 0.511
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.8327801 -0.7597142 -0.2046779 0.4087140 3.9501681
##
## Number of Observations: 400
## Number of Groups:
## day plate2 %in% day
## 2 10

A comparison between the residuals against logdilution plot for the initial model and the corrected
model is shown in Figure 4.4. The effect of the correction is clearly visible in panel A.
Once the problems with the residual variance have been addressed it is recommended to check
the structure of the random effects part of the model which was defined in Equation (4.3) to be
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Figure 4.5: QQplots to check the random effects structure for each model parameter for the
data21.mod3 model.

normally distributed. This is usually done using a QQplot of the estimated random effects for a
given grouping level. The ability to confidently check the fulfilment of this assumption depends on
the number of levels each grouping factor has. If the grouping factor has few levels it is virtually
impossible construct a QQplot.

In this analysis, three equation parameters are estimated, all of them having a random effects part.
Thus, for each grouping level three QQplots will be available. For the higher grouping level, day,
the plots are not meaningful as only one value for each assay day is available; this is, there are too
few levels. On the contrary, the QQplots for the lower level plate in day has enough levels to be
plotted and analysed.

The resulting plots are shown in Figure 4.5. As it can be seen, a diagonal is evident in all panels
indicating close-to-normal distributions. Only a possible outlier point for the scal parameter is
clearly deviating from the overall tendency. Nevertheless, the model is assumed to be approximately
correct.

4.1.4 Parallelism validation

The primary goal of this analysis is not to establish the significance of model parameters but to
estimate fixed effects while controlling the sources of variation. Regulatory documentation clearly
states the form the model should take and that no model selection should be conducted in the sense
of adding, eliminating or interchange random and fixed effects [63, 51].

Once the selected model is demonstrated to be correct in light of its assumptions, it can be used
to calculate parameter ratios to demonstrate parallelism. As described earlier in Section 2.2, two
serials can only be compared in terms of relative potency using a full dose-response assay if the
assay response of products differing in their antigen content is shown to yield “parallel” curves.
Dose-response for two serials are considered parallel only if the asymptote and scale factor ratios
lie within a pre-specified interval, usually 0.9-1.1 [53].

The conformance of the point estimates within this interval is evaluated using 90 % confidence
intervals. As disused earlier (see Section 2.2) to calculate confidence regions for ratios is not trivial
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Figure 4.6: Asymptote and scale parameters ratios 90 % confidence intervals and the 0.9-1.1 ac-
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and two methods are used: the delta method, also called Taylor method, and the Fieller method
[25, 63].

A custom function called calcratios has been written to calculate the ratios for models like the one
analysed in this chapter. The code will be provided in the annex.

Table 4.1 provides a summary of the confidence interval regions calculated by both delta and Fieller
methods and the ratio value for the test/ref parallelism check.

Table 4.1: 90 % confidence intervals for data21.mod4 model
parameters as evaluated using the delta or Fieller methods.

Ratio Value Delta Lo. Delta Up. Fieller Lo. Fieller Up.
Asymptote 0.962 0.943 0.981 0.943 0.981
Scale 0.995 0.962 1.027 0.962 1.028

As it is easier to visually evaluate parallelism compliance, results table is better reported as a plot
(Figure 4.6). It can be observed that both the asymptote and scale ratios confidence intervals
lie well within the acceptability region and thus, this assay has been validated to yield parallel
dose-response curves under the tested experimental conditions.

In this specific case, as both ref serial asymptote and scale parameters are significantly different
from zero (Section 4.1.3) both methods provide accurate enough intervals. In principle, Fieller
method should be the default choice as it is more broadly accurate but the delta method provides
a good alternative in situations analogous to the one presented here and is both mathematically
and computationally easier to handle.



Chapter 5

Conclusions

Bioassay validation is complex due to the myriad of guidelines and requirements that apply. Each
regulatory authority has its own preferences but, in the end, nearly always exists a common baseline
between agencies that can be used to set a minimal common requirement. This approach has been
used in this work due to the complexity it would represent to adapt to each of the requirements
individually. Nevertheless, when no clear common regulation could be found or requirements were
divergent, USDA requirements were prioritized for two reasons: 1) they are usually more restrictive
and 2) they are also usually better well-founded from a statistical point of view.

Development of the statistical part of the project has been a though endeavour. LME and NLME
models have demonstrated to be extremely powerful and versatile tools but they are not trivial
to understand. Apart from the difficulty associated to their mathematical derivation, estimation
methods are also complex and any of those two issues alone has enough entity to give place to
several doctoral theses on their own right. Apart from the theory, software packages have a steep
learning curve. Of the two packages used, lme4, has been found to be the easier to fit LME models.
On the contrary, package nlme has been used to successfully fit NLME models with ease, including
some special features like heteroscedasticity. In fact, flexibility is probably the best argument of
the nlme package when compared against the more computationally efficient lme4. Despite the
package used, both are easily implemented for most simple and common situations but, as the
modelling needs become more demanding, syntax complexity exponentially increases.

Nevertheless, a comprehensive work has emerged that fulfils all the planned objectives. Moreover,
several non-planned improvements are finally included in this thesis and as a result the quality is
deemed superior to the initially expected. These improvements are, for example, several custom
functions to generate reader friendly outputs from R functions or the implementation of the Fieller
method to calculate confidence intervals for ratios during parallelism checks.

As outlined in Section 1.3, project execution has been subject to a three-phase method consisting of:
1) theory review, 2) software usage and 3) real data analysis. This strategy was captured in the task
planning as shown in Section 1.4. The original task planning suffered a light modification that was
reported in the Intermediate Report 1-PAC 2. This modification was due to two factors: not enough
time was allocated for reviewing NLME models theory and new bibliography was available that
suggested a possible improvement in the interpretation of validation studies. Both modifications
demanded a replanification of the project execution planning for PAC 3-Development phase II
period that was adequately implemented and reported. The impact on project execution, however,
was deemed insignificant as enough unallocated time was left in anticipation of such issues. On
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the contrary, the consequences of these modifications are tangible as both have yielded significant
quality improvements over the original work. Overall, both the strategy and its implementation
have allowed to complete the project and their results exceed the initially expected quality in several
areas thus, planning has been adequate.

Finally, every project has some areas where further work would have been required for its com-
pleteness. Here, if time would not have been an issue, more designs could have been analysed
with increasing difficulty. Also, regulatory requirements usually translate in different statistical
interpretations. As shown during this text, several formulations exist for the same statistic and
these formulations are obtained by making several assumptions. Apart from regulatory agencies,
several academic authors have proposed possible improvements that could not be fully reviewed
here. It would be, however, a very interesting work to compile and analyse the currently accepted
methods and the proposed modifications to possibly achieve a common standard.
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Glossary

3PL Three parameter logistic
4PL Four parameter logistic

ANOVA Analysis of Variance
APHIS Animal and Plant Healch Inspection Services
BLUP Best linear unbiased predictions

CV Coefficient of variation
CVB Center for Veterinary Biologics
EC50 Effective concentration 50 percent

ELISA Enzyme-linked immunosorbent assay
EMA European Medicines Agency
EMS Expected Mean Squares
GMP Good manufacturing practices
GSD Geometric standard deviation

iid Independent and identically distributed
LME Linear mixed-effects
LRT Likelihood-ratio test

LS Least squares
MCMC Markov chain Monte Carlo

ML Maximum likelihood
NLME Non-linear mixed-effects

OD Optical density
OLS Ordinary least squares

Ph.Eur. European Pharmacopeia
QQplot Quantile-quantile plot

RB Relative bias
REML Restricted maximum likelihood

RP Relative potency
USDA United States Department of Agriculture

USP United States Pharmacopeia

74



Chapter 7

R code appendix

7.1 Custom functions for the lme4 package

7.1.1 tablefixef function

This function extracts fixed effects estimates from a lmerModLmerTest object generated with the
lmer function of the lmerTest package [34] and returns a pandoc style table.

tablefixef <- function(x, capt=""){
fe <- cbind(row.names(coef(summary(x))), round(coef(summary(x)),2))
df <- kable(fe,

caption = capt,
col.names = c("Effect","Estimate", "Std.error",

"DF", "t-value", "p-value*"),
align=c("l","c","c","c","c","c"),"pandoc", row.names = FALSE)

return(df)
}

7.1.2 tablevarcomp function

This function extracts fixed effects estimates from both lmerMod (lme4 package) and lmer-
ModLmerTest (lmerTest package) objects [8, 34] and returns a pandoc style table. It includes a
new variable which represents the percent variance accounted for by each component.

tablevarcomp <- function(x, capt=""){
vc <- as.data.frame(VarCorr(x),comp="Variance")
sumvc <- sum(vc$vcov)
vcdf <- data.frame("Group"=vc$grp, round(vc$vcov,3), round(vc$vcov/sumvc*100,2),

round(vc$sdcor, 3))
df <- kable(vcdf,

caption=capt,
col.names=c("Variance component", "Variance",

"% Variance", "Std. deviation"),
align=c("l","c","c","c"),"pandoc")
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return(df)
}

7.1.3 tableanova function

This function is a wrapper that returns the output of the lmerTest::ranova [34] function as a pandoc
style table.

tableanova <- function(x, capt=""){

ar1 <- ranova(x)
ar <- cbind(row.names(ar1), round(ar1,4))
df <- kable(ar,

caption = capt,
col.names=c("Effect removed", "Num. parameters",

"logLik", "AIC", "LRT", "DF", "p-value"),
align=c("l","c","c","c","c","c","c"),"pandoc", row.names = FALSE)

return(df)
}

7.1.4 tableconfint function

This function is a wrapper that returns the output of the lme4::confint [8] function as a pandoc
style table.

tableconfint <- function(x, capt=""){
ci1 <- confint(x, method="boot")
ci <- cbind(row.names(ci1), round(ci1,2))
df <- kable(ci,

caption = capt,
col.names=c("Parameter", "Lower bound - 2.5 %", "Upper bound - 97.5 %"),
align=c("l","c","c"),"pandoc", row.names = FALSE)

return(df)
}

7.1.5 diagplots function

This function makes use of different plotting methods for lmerMod objects to return a 2 x 2 plot
layout of diagnostic plots for LME models. This function is dependent of influence.ME [40] and
lattice [47] packages.

#Generate lmer object diagnostic plots
diagplots <- function(x){

inf1 <- influence(x, obs=TRUE)
cd1 <- data.frame(cd=cooks.distance(inf1), index=seq(1,dim(x@frame)[1],1))
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lim <- 4/dim(cd1)[1]
sel <- which(cd1$cd>=lim)
lab <- rep(" ", length(cd1$index))
lab[sel] <- sel

p1 <- plot(x, xlab="Fitted", ylab="Standardized residuals",
main="A) Residuals vs. Fitted", par.settings=my.settings)

p2 <- plot(x,sqrt(abs(resid(., type="pearson")))~fitted(.),type=c("p","smooth"),
xlab="Fitted", ylab="Standardized residuals",
main="B) Scale location", par.settings=my.settings )

p3 <- qqmath(x,id=0.05, main="C) QQnormal plot", par.settings=my.settings)

p4 <- xyplot(cd~index, data=cd1, xlab="Observation", ylab="Cook's distance",
main="D) Cook's distance plot",
par.settings=my.settings, panel=function(...) {
panel.xyplot(...)
panel.abline(h=lim, col="red")
panel.text(cd1$index+0.1,cd1$cd,labels=lab,cex=0.7)
})

return(grid.arrange(p1,p2,p3,p4, ncol=2))
}

7.2 Custom functions for the nlme package

7.2.1 calcratios function

This function is specifically designed for models like the one fitted in Section 4 that makes use of
the SSlogis function of the nlme package [43]. It extracts fixed effects estimates and their variance-
covariance matrix and returns point estimates for the Asym and scal parameter ratios between a
test and a reference serial. Also, it computes confidence intervals for this ratios using the delta and
Fieller methods.

calcratios <- function(mod, plates, signif = 0.1) {
# Extract fixed effects
fefs <- fixef(mod)
# Extract each value
a.ref <- fefs[1]
a.test <- fefs[2]
s.ref <- fefs[5]
s.test <- fefs[6]
# Calculate ratios
a.rat <- a.test/a.ref
s.rat <- s.test/s.ref

# Extract var-cov matrix of fixed effects Extract vars and
# covars
vcmat <- vcov(mod)
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a.ref.var <- vcmat[1, 1]
a.test.var <- vcmat[2, 2]
a.rt.cov <- vcmat[1, 2]

s.ref.var <- vcmat[5, 5]
s.test.var <- vcmat[6, 6]
s.rt.cov <- vcmat[5, 6]

# Calculate DF according to CVB-USDA Calculate t-distr.
# critical value
dfs <- plates - 3
t <- qt(1 - signif/2, df = dfs)

# Delta method
a.d.ci <- t * abs(a.rat) * sqrt((a.ref.var/a.ref^2) + (a.test.var/a.test^2) -

(2 * a.rt.cov/(a.test * a.ref)))

s.d.ci <- t * abs(s.rat) * sqrt((s.ref.var/s.ref^2) + (s.test.var/s.test^2) -
(2 * s.rt.cov/(s.test * s.ref)))

# Fieller method
a.f.ciu <- (1/(a.ref^2 - (t^2 * a.ref.var))) * (((a.ref *

a.test) - (t^2 * a.rt.cov)) + sqrt((((a.ref * a.test) -
(t^2 * a.rt.cov))^2) - (((a.ref^2) - (t^2 * a.ref.var)) *
((a.test^2) - (t^2 * a.test.var)))))

a.f.cil <- (1/(a.ref^2 - (t^2 * a.ref.var))) * (((a.ref *
a.test) - (t^2 * a.rt.cov)) - sqrt((((a.ref * a.test) -
(t^2 * a.rt.cov))^2) - (((a.ref^2) - (t^2 * a.ref.var)) *
((a.test^2) - (t^2 * a.test.var)))))

s.f.ciu <- (1/(s.ref^2 - (t^2 * s.ref.var))) * (((s.ref *
s.test) - (t^2 * s.rt.cov)) + sqrt((((s.ref * s.test) -
(t^2 * s.rt.cov))^2) - (((s.ref^2) - (t^2 * s.ref.var)) *
((s.test^2) - (t^2 * s.test.var)))))

s.f.cil <- (1/(s.ref^2 - (t^2 * s.ref.var))) * (((s.ref *
s.test) - (t^2 * s.rt.cov)) - sqrt((((s.ref * s.test) -
(t^2 * s.rt.cov))^2) - (((s.ref^2) - (t^2 * s.ref.var)) *
((s.test^2) - (t^2 * s.test.var)))))

ratsdf <- data.frame(ratio = c("Asymptote", "Scale"), value = round(c(a.rat,
s.rat), 3), delta.lo = round(c(a.rat - a.d.ci, s.rat -
s.d.ci), 3), delta.up = round(c(a.rat + a.d.ci, s.rat +
s.d.ci), 3), fieller.lo = round(c(a.f.cil, s.f.cil),
3), fieller.up = round(c(a.f.ciu, s.f.ciu), 3))

return(ratsdf)
}
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