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Abstract

Purpose: Computed Tomography (CT) imaging is one of the most influen-
tial diagnostic methods. In clinical reconstruction, an effective energy is used
instead of total X-ray spectrum. This approximation causes an accuracy de-
cline. To increase the contrast, single source or dual source dual energy CT
can be used to reach optimal values of tissue differentiation. However, these
infrastructures are still at the laboratory level, and their safeties for patients
are still yet to mature. Therefore, computer modelling of DECT could be
used.
Methods: We propose a novel post-processing approach for converting a to-
tal X-ray spectrum into irregular intervals of quantized energy. We simulate
a phantom in GATE/GEANT4 and irradiate it based on CT configuration.
Inverse Radon transform is applied to the acquired sinogram to construct the
Pixel-based Attenuation Matrix (PAM). To construct images represented by
each interval, water attenuation coefficient of the interval is extracted from
NIST and used in the Hounsfield unit (HU) scale in conjunction with PAM.
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The CT image is modified by using of an associated normalized photon flux
and calculated HU corresponding to the interval.
Results: We demonstrate the proposed method efficiency via complexity
analysis, using absolute and relative complexities, entropy measures, Kol-
mogorov complexity, morphological richness, and quantitative segmentation
criteria associated with standard fuzzy C-means.
Conclusions: The irregularity of the modified CT images decreases over the
simulated ones.

Keywords: Complexity, CT image, FCM, GATE/GEANT4, Hounsfield
Unit, Pixel-based Attenuation Matrix

1. Introduction

Clinical imaging techniques, e.g., radiology, mammography, X-ray com-
puted tomography (CT), magnetic resonance imaging (MRI), single-photon
emission computed tomography (SPECT), are key component of medical
diagnostics. CT is the most widely used technique in which attenuating
properties of different tissues such as fat, bones, and muscles, are used to
visualize of each voxel and the associated Hounsfield Unit (HU). These tis-
sues have known X-ray attenuation coefficients which are used as the basis
of data acquisition [1], [2]. The CT image is affected by a scanner type,
projection systems, and reconstruction algorithms [3]. Due to the costs of
physical development of the scanners and unnecessary rapid patient expo-
sure, a substantial domain of work is implemented in computational models
[4]. Mah et al. [5] investigated a relationship between grey levels of images
and Hounsfield units (HU) in cone beam CT (CBCT) scanners. It was re-
ported that there exist a linear relationship between the grey levels and the
attenuation coefficient of each of the materials at “effective” energy. Linear-
ity was proved by calculating the linear regression of attenuation coefficients
for the reference materials. A negligible difference could be found between
actual Hounsfield units of each phantom material at the selected effective
energy and those calculated from grey levels.

The projection sub-systems of CT scanners has experienced changes in
3 aspects including parallel, fan, and cone beam systems [6]-[7]. Sidky and
Pan [6] proposed a theoretical framework, namely total variation (TV), to
show how accurate circular cone-beam CT image reconstruction can be done
from reduced data sampling. They argued that TV algorithm can resolve
low-contrast structures in the presence of high-contrast objects. Zhihua and
Guang-Hong [7] considered image reconstruction in fan-beam based CT. This
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method is subject to observing full circle scan in data acquisition mode. Ex-
perimental setup demonstrated that when the image object is relatively large,
the fan angle must increase to cover the entire image object, and a parallel-
beam approximation cannot be directly applied to reconstruct images.

Image reconstruction in CT is an inverse problem which can be cate-
gorized into two categories, namely analytical reconstruction and iterative
reconstruction [8]. In the former category, there can be found many algo-
rithms among which filtered back-projection (FBP) [9] is the most acceptable
one. FBP, which is derived by using the Fourier Slice Theorem [10], uses a
1D filter prior to back-projecting data into the image space. This method is
computationally efficient and has numerical stability. In the latter category,
however, statistical, likelihood-based iterative expectation-maximization al-
gorithms [11], [12] are preferred methods. These algorithms estimate the
probability distribution of annihilation events that led to the measured data.
The advantages of the iterative approach are insensitive to noise, the capa-
bility of reconstructing an optimal image in the case of incomplete data, and
resistance to the streak artefacts common with FBP [13]. This category of
methods, which is alternatively known as algebraic methods, has been ap-
plied in emission tomography modalities, e.g., SPECT and PET where the
attenuation along ray paths is significant, and noise statistics are relatively
poor [14].

Majority of computational methods aim at using the attenuation coeffi-
cients in the effective energy of the total X-ray spectrum instead of the real
one to ease the reconstruction CT image. Although some methods could
cover a broader range of energies, they need multi-irradiation in clinical
levels with the associated risks. Besides, using a specific energy, as an alter-
native to the total energy, leads to decreasing of contrast level and, in turn,
the accuracy. Therefore, establishing a trade-off among accuracy, decreasing
irradiation defects, and computational cost is especially considered in this
research. As far as we know, the idea of spanning effective energy was first
proposed in [15]. However, there are two critical technical issues with the
implementation of the idea. First, the inverse HU was applied to the recon-
structed image obtained from back-projecting the HU in the energy level of
70 keV to form the attenuation map. Second, energy quantization was done
without considering the statistical distribution of the source photon flux.
The first issue causes the rest of analysis were done on a back-projected
data where the effect of applying HU were neutralized with the inverse HU.
Moreover, the raw quantization led to increasing nonsense data and reduc-
ing the accuracy of calculations. In this study, we also contribute towards
the role of post-processing in reconstructing of the total X-ray spectrum by
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covering more energy range in the computational level as well as resolving
the mentioned technical issues.

Simulating a phantom, which is irradiated by an X-ray source, is the
primary prerequisite to validate our hypothesis in this study. Constructed
phantom consists of three rectangular cubes made of a skull, rib bone, and
lung tissues surrounded by a water cylinder in GATE/GEANT4 environ-
ment. Two main reasons for considering these tissues are (1) attenuation
coefficients of water are close to the lung, and the same condition exists for
the rib bone and skull, and (2) discrimination among tissues is large enough
which makes the experiments fair. The radiation source is set to the range
of 0-140 keV fan-beam X-ray in a way that could cover double-wedge.

The back-projection method is applied to the irradiated phantom to re-
construct images, so-called pixel-based attenuation matrix (PAM), in which
the inverse radon transform [16] is utilized. Since the attenuation coefficient
of each tissue is different, a specific value should be, then, calculated in each
energy level. To make the image representation as simple as possible, the to-
tal X-ray spectrum is replaced by the effective energy and the corresponding
water attenuation coefficient where the calculated HU could bring a higher
intensity representation (refer to Eq. 1).

HU =
µ− µw
µw

× 1000 (1)

where µ is the attenuation coefficient, µw is the water attenuation co-
efficient, and HU is Hounsfield unit scale. Effective energy is usually set
to 70 keV for the X-ray spectrum with the energy variation of 0-140 keV.
Producing of mono-energetic images in clinical data acquisition are subject
to solving non-linear equations which is not computationally feasible. In
this study, we contribute towards the quantization of the X-ray spectrum by
mapping the acquired data to 13 irregular intervals. In the line of calcula-
tions, those energy values which were lower than 10 keV were considered as
outliers and overlooked accordingly. To calculate the effective energy of each
interval by using Eq. 1, first, the statistical average energy of the interval in
conjunction with the known water attenuation coefficient (refer to Table 1)
are used. Then, the value of HU is weighted by using the calculated PAM
and associated normalized photon flux to that interval. It was observed
in the course of experiments that the proposed method would increase the
contrast of target tissue in a specific energy interval where it is not visible
in another energy. Meanwhile, it can reduce the complexity of CT images
for the further analysis in the segmentation task. It is because the differ-
ent attenuation coefficients of different tissues which force the radiologist to
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irradiate the patient repeatedly if an exact diagnosis is desirable.

Table 1: Values of the mass attenuation coefficient, µ/ρ as a function of photon energy
for water [17].

Energy (keV) µ/ρ (cm2/g)
1.00000 E+01 5.329 E+00
1.50000 E+01 1.673 E+00
2.00000 E+01 8.096 E-01
3.00000 E+01 3.756 E-01
4.00000 E+01 2.683 E-01
5.00000 E+01 2.269 E-01
6.00000 E+01 2.059 E-01
8.00000 E+01 1.837 E-01
1.00000 E+02 1.707 E-01
1.50000 E+02 1.505 E-01

In brief, the proposed method consists of several main steps: (1) back-
projecting acquired data to form pixel-based attenuation matrix (PAM), (2)
finding the statistical average of each interval to use as the effective energies,
(3) calculating HU scale of each interval, (4) computing the associated pho-
ton fluxes based on X-ray spectrum, (5) modifying HU scales by weighting
them with the computed fluxes. The proposed post-processing method is
tested using visual evaluation and complexity analysis. Complexity criteria
applied include various entropy measures and Kolmogorov complexity. Abso-
lute and relative complexities, morphological richness as well as quantitative
segmentation criteria associated with standard fuzzy C-means are also re-
ported demonstrating that irregularity of the modified CT images decreases
over the simulated ones.

The rest of this paper is organized as follows: Section 2 is dedicated to
the proposed method. The experimental setup is described in Section 3.
Finally, this paper concludes in Section 4.

2. Methodology

Multiple irradiating patients is still an issue which we take it in this study
by shifting physical procedures into post-processing. Our contributions is
founded based on GATE/GEANT4 simulations, which its configuration as
well as the details of post-processing approach are described here.
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2.1. Simulating X-ray spectrum in GATE/GEANT4
A phantom is created and then radiated in GATE. We define a coordinate

system as a cube of air with 50 cm:−25 +25 +25 −25 −25 +25 +25 −25
+25 +25 +25 +25 −25 −25 −25 −25
+25 +25 −25 −25 +25 +25 −25 −25

 (2)

CT scanner is made of 30 × 16 detector arrays which are position in
(0, 0, 150.5) mm relatively to the defined subspace. Each cell is also a cube
with the size of 0.5×0.5×1mm and made of LSO, i.e., Lutetium, Silicon, and
Oxygen. The phantom is a cylinder with the radius of 5 mm and the height
of 6 mm includes lung, rib bone, and skull tissues surrounded by water.
The size of each tissue is 1 × 1 × 2 mm. The choice of tissue composition
and parameters is based on the facts that (1) attenuation coefficients of
water are close to the lung, and the same condition exists for the rib bone
and skull, and (2) discrimination among tissues is large enough to make
the experiments realistic. Density of tissues are 0.26, 1.92, and 1.61g/cm3,
respectively. Structure of phantom and positions of tissues are shown in
Fig. 1.

(a) (b)

Figure 1: (a) Constructed phantom in GATE. (b) Coordinates of tissues are (2, 2, 0), (0,
2, 0), and (-2, 2, 0) mm, respectively. Red, white, yellow colors show rib bone, lung, and
skull, respectively.

The source is a rectangle fan-beam with the size of 0.5 × 0.5 mm and
placed in the (0, 0,−150) mm. Its activity is set to 100 MBq. In defining
this source, the following constraints are taken into account.
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1. The fan divergence angle (θ) is set to 6.8 degrees which can cover
a surface area of 77.70 mm in the cross point. The coverage area
is calculated by 2 tan( θ2) × |Dists −

Hp

2 |, where Dists is the distance
between source and phantom and Hp is the height of phantom.

2. The most common activity levels used in laboratories are the millicurie
(mCi) and microcurie (µCi), which is equal to 3.7 × 1010Bq. Here,
Dists and θ are defined in a way that our simulation can conform to
the safety condition of the real imaging setup.

3. The energy level is in the range of 10-140 keV.
4. The phantom is defined in a way that it has no activity, i.e., a cold

material.
5. A 360 degrees rotation is desirable. Therefore, in this study, the phan-

tom is rotated over the z axis by 1 degree per second.

2.2. The proposed post-processing method
Attenuation coefficients of tissues are different and finding the most suit-

able effective energy for each tissue could, in turn, increase the level of con-
trast which finally helps physicians to do a better diagnosis. This idea was
previously investigated in [18] and Fig. 2 can demonstrate it clearly.

Figure 2: Mass attenuation coefficient (α/ρ measured in units of cm2/g) for lead and
water as well as for the bio-tissues bone and soft tissue given versus the incident radiation
energy. [18]

The proposed approach is comprised of steps: (1) back-projecting ac-
quired data to form pixel-based attenuation matrix (PAM); (2) finding the
statistical average of each interval to use as the effective energies; (3) calcu-
lating HU scale of each interval; (4) computing the associated photon fluxes
based on X-ray spectrum; (5) modifying HU scales by weighting them with
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the computed fluxes. Details of this post-processing approach are shown in
Algorithm 1

Algorithm 1: Proposed post-processing algorithm.
Input :

PAX ← projected attenuation X-ray.

W ← water attenuation coefficient.

F ← photon flux value.

Output: wHU ← weighted HU, known as enhanced CT image.
1 PAM = iradon(PAX)
2 Form intervals as:
3 X ← {(12-17), (18-27), (28-37), (38-47), (48-57), (58-67),

(60-72), (68-80), (78-87), (81-95), (88-100), (98-105), (130-150)}
4 Take Kolmogorov-Smirnov test to find the best distribution that fits

X:
5 Fn(x) =

1
n

∑n
i=1 I[∞,x](Xi),

6 Dn = supx |Fn(x)− F (x)|
7 where F (x) is the hypothesis distribution, Fn(x) is the cumulative

distribution function, and I[∞,x](Xi) is the indicator function.
8 Calculate the “effective energy”:
9 µw ← {µwi | µwi = E[x], x ∈ Xi, 1 ≤ i ≤ 13}

10 mF =
∑13

i=1 Fi
11 i = 1
12 while i ≤ 13 do
13 HUi =

PAM−µwi
µwi

× 1000,

qi =
Fi
mF ,

wHU = qi ×HUi
14 end

The X-ray spectrum of the acquired data is mapped into 13 irregular
intervals. Although this sort of quantization roots in the known water at-
tenuation coefficients (WAC) [17], there is no measured WAC for the energy
levels of 70 and 95 keV. Therefore, two overlapped intervals are considered
in this study for energy levels of 70 and 95 keV to make this approximation
as accurate as possible. It should be noted that values with the energy level
lower than 10 keV are considered as outliers and overlooked accordingly. To
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compute the effective energy of each interval, the maximum likelihood esti-
mation (MLE) method is applied to the set of interval’s endpoints, ep, in
order to find the best distribution fits our data. The Kolmogorov-Smirnov
test is used [19] to compare the histogram of data to the probability density
function. The theoretical cumulative density function (CDF) and probabil-
ity density function (PDF) are compared to the empirical ones. Results of
this test are illustrated in Fig. 3

(a) (b)

Figure 3: (a) Cumulative density function, and (b) probability density function of end-
points associated to the defined intervals

As shown in Fig. 2, negative binomial distribution [20] can model the
data presented. A number of failures r and success probability, in each
experiment, p, are calculated to measure the mean of each interval. This
mean is considered to be the effective energy of that interval (see Eq. 3).
HU scale of each effective energy is calculated using Eq. 1. A modified CT
image is constructed by weighting the HU through the normalized photon
flux of the interval.

mean =
p · r
1− p

, (3)

eeV alue = b(ep2 − ep1)×mean× 10c+ ep1. (4)

3. Experimental Setup

Simulating a phantom irradiating by an X-ray source is the necessary
component to validate our hypothesis. The back-projection method is ap-
plied to the irradiated phantom to reconstruct images, so-called pixel-based
attenuation matrix (PAM), in which the inverse radon transform [16] is uti-
lized. The proposed post-processing method is tested in the line of segmen-
tation task as well as complexity measures. The approach is validated using
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a trade-off between accuracy, decreasing irradiation defects, and computa-
tional cost. We also analyse a role of post-processing in reconstruction of
the total X-ray spectrum by considering more energy intervals at the same
computational level.

3.1. Simulated CT Data
Constructed phantom consists of three rectangular cubes representing

skull, rib bone, and lung tissues surrounded by a water cylinder in GATE/GEANT4
environment. Two main reasons for considering these tissues are as follows:
(1) attenuation coefficients of water are close to the lung, and the same con-
dition exists for the rib bone and skull; (2) discrimination among tissues is
large enough which makes the experiments realistic. The radiation source
is set to the range of 10-140 keV fan-beam X-ray in a way that could cover
double-wedge. Figure 4 shows primary CT images calculated by utilizing en-
ergy intervals in conjunction with the reconstructed CT from the spectrum.
Results of enhancing CT images by applying photon flux-oriented weights
are shown in Fig. 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 4: (a) Pixel-based attenuation matrix (PAM), (b) Result of applying HU scale to
PAM where energy level is 70 keV, Conventional CT (CCT). Primary CT images calculated
by utilizing energy intervals where the energy level is (c) 15 keV, (d) 25 keV, (e) 35 keV,
(f) 45 keV, (g) 55 keV, (h) 65 keV, (i) 70 keV, (j) 85 keV, (k) 95 keV, (l) 100 keV, and (m)
135 keV
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5: Enhanced CT images multiplied by normalized photon flux. Utilizing energy
intervals are (a) 15 keV, (b) 25 keV, (c) 35 keV, (d) 45 keV, (e) 55 keV, (f) 65 keV, (g) 70
keV, (h) 85 keV, (i) 95 keV, (j) 100 keV, and (k) 135 keV

3.2. Complexity Analysis
Let the simulated CT image be represented by the histogram of indexed

values in the range of I(u, v) ∈ [−∞,∞]. It contains exactly K entries
which are defined by h(i) = card({(u, v)|I(u, v) = i}). The original dynam-
ics of CT images almost make a quantitative comparison of the associated
histograms impossible. As a result, it is reasonable to combine ranges of
indexed values into histogram columns to compare the absolute complexity
with the relative one. While there is no reference number of bins, grouping
data in different bin sizes can reveal different features of the data, see Fig. 6,
following Scott’s normal reference rule [21] (see Eq. 5).

12



Figure 6: Aligned indexed values (AIV) of all reconstructed CT images from HU scale
with respect to the associated probability density functions (PDF).

k = dmaxx−minx

h
e,

h =
3.5σ

n1/3
,

(5)

where x is a data sample, σ is a standard deviation of x. The data are
obtained as n independent realizations of a bounded probability distribution
with smooth density: the histogram remains equally “rugged” as n tends to
infinity. Let s be a width of the distribution, then the frequency of units in a
bin is of order nhs and the relative standard error is of order

√
s
nh . Comparing

to the next bin, the relative change of the frequency is of order h/s provided
that the derivative of the density is non-zero. These two are of the same
order if h is of order s/n1/3, so that k is of order n1/3.

For the complexity analysis, a series of numbers Cb1 , Cb2 , · · · , Cbi is formed
by Eq. 6 to represent the “temporal” complexity dynamics of the whole im-
age. In terms of complexity, the whole CT spectrum which was calculated
at the energy level of 70 keV is considered as the relative complexity. In
Eq. 6, dependence between two quantities is calculated using the correlation
coefficient [22] between two random variables X and Y with expected values
µX and µY and standard deviations σX and µY .

Cb(CTi, CCT ) =
E[(CTi − µCTi)(CCT − µCCT )]

σCTiσCCT
(6)

where E is the expected value operator. For CT and modified CT images,
we calculate the “degree of non-constructability” D(HUi) and “generative
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complexity” G(wHUi) measures (see Eq. 7 and 8). Figure 7 and 9 show
irregular oscillations in the course of the CT and modified CT images when
a locally weighted scatterplot smoothing (LOWESS regression). These plots
help detect a trend in data that has too much variance resulting in non-
significance p-values. In this study, we are presented with having to analysis
with a smoother regression in which the smoothing factor is set to 0.9. In
these plots, the absolute complexity of the reconstructed CT images versus
the relative complexity are illustrated to get a handle on quantifying the
amount of dispersion. ⋃

i∈AIV

Di := {Di|Di = ρHUi,CCT } (7)

⋃
i∈AIV

Gi := {Gi|Gi = ρwHUi,CCT } (8)

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 7: Absolute complexity versus relative complexity of the whole bins of the CT
images where energy level is (a) 15 keV (µ = −893.95, σ = 69.65), (b) 25 keV (µ =
−845.86, σ = 101.24), (c) 35 keV (µ = −796.07, σ = 133.94), (d) 45 keV (µ = −660.11, σ =
223.24), (e) 55 keV (µ = −621.27, σ = 248.75), (f) 65 keV (µ = −490.17, σ = 334.86), (g)
85 keV (µ = −294.91, σ = 463.10), (h) 95 keV (µ = −238.18, σ = 500.36), (i) 100 keV
(µ = −210.97, σ = 518.23), and (j) 135 keV (µ = −144.80, σ = 561.70)

The idea of measuring D and G were borrowed from cellular automata
theory, where a configuration is called non-constructable if it could not be
reached from any other configuration by applying local rules of cell-state
transitions [23], [24], [25]. In the context of our model, the degree of non-
constructability shows how substantial part of the image cannot be generated
from the whole CT spectrum while it must be described by another energy
level. The generative complexity G, however, shows how difficult it is to
generate any particular modified CT images [26], [27].

Figure 7 might reveal that changes in energy levels and dispersion are
analogous to each other. However, higher standard deviation demonstrates
that the data points are spread out over a wider range of indexed values.
To surpass this diversity, we applied the proposed method to modify CT
images which proves that the higher complexity and dispersion are not always
analogous to each other (see Fig. 8 and 9).
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Figure 8: Aligned indexed values (AIV) of all weighted CT images from HU scale with
respect to their associated probability density functions (PDF).

A complexity of a system is manifested in its dynamics which may lead
to inferring the system as a stochastic one if the structure of the system
cannot be recognized. Estimations to Kolmogorov complexity K are used
to quantify the randomness degree in CT and enhanced CT images, where
they are considered as time series, which are post-processed by different
water attenuation coefficients, representing different energy levels. K(x)
of an object x is the length, in bits, of the smallest program that, when
running on a Universal Turing Machine U , produces the object x. Although
this measure is not computable approximations are possible because K is
upper semi-computable meaning that it can be approximated from above.
For example, a small size of a lossless compressed version of x is a sufficient
test for non-randomness [28].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

Figure 9: Absolute complexity versus relative complexity of the modified CT images where
the energy level is (a) 15 keV (µ = −893.95, σ = 69.65), (b) 25 keV (µ = −845.86, σ =
101.24), (c) 35 keV (µ = −796.07, σ = 133.94), (d) 45 keV (µ = −660.11, σ = 223.24),
(e) 55 keV (µ = −621.27, σ = 248.75), (f) 65 keV (µ = −490.17, σ = 334.86), (g) 85
keV (µ = −294.91, σ = 463.10), (h) 95 keV (µ = −238.18, σ = 500.36), (i) 100 keV
(µ = −210.97, σ = 518.23), and (j) 135 keV (µ = −144.80, σ = 561.70)

Estimations to Kolmogorov complexity of a time series {xi}, i = 1, 2, 3, 4, · · · , N
by the LZW algorithm can be carried out as is in Eq. 9:

s(i) =

{
0, xi < x∗

1, xi ≥ x∗
, (9)

c(N) = O(b(N)), b(N) =
N

log2N
, (10)

Ck =
c(N)

b(N)
= c(N)

log2N

N
. (11)

where x∗ is the mean value of the time series to be the threshold, c(N)
is the minimum number of distinct patterns contained in a given character
sequence, and Ck(N) represents the information quantity of a time series
to demonstrate if it a periodic or random time series. For a nonlinear time
series, Ck(N) varies between 0 and 1, although Hu et al. [29] have demon-
strated that Ck can be larger than 1.

However, popular lossless compression algorithms such as those based
in LZW are closer to entropy than to K [30] and thus alternatives have
been introduced. Methods designed and tested to outperform compression
algorithms have been introduced [31] and are based on approximations to
algorithmic probability as it is deeply connected to K. Algorithmic proba-
bility is the probability of an object x to be produced by a Universal Turing
Machine and according to the algorithmic Coding Theorem it is inversely
proportional to K and can be empirically estimated from e.g. the out-
put frequency of small Turing machines by the so-called Coding Theorem
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Method [32] (CTM) and the aggregation of these values via an algorithm
called the Block Decomposition Method (BDM).

Figure 11a shows the estimations to K for CT and enhanced CT im-
ages using the Layered Block Decomposition Method, a variant of BDM for
grayscale and multichannel images [33, 34]. In Layered BDM, images are
quantized and binarized in q digital levels before aggregating known CTM
values for the blocks in which each layer is decomposed. The coarse graining
of the Kolmogorov complexity estimation is defined by the number of digital
levels in which an image is quantized, e.g. 256 levels (int-8 quantization),
65536 levels (int-16 quantization), 4294967296 levels (int-32 quantization),
etc. In the results shown on Figure 11a q = 256, as the images where quan-
tized and binarized on the range (0, 255).

15 keV 25 keV 35 keV 45 keV 55 keV 65 keV

75 keV 85 keV 90 keV 100 keV 135 keV

Figure 10: Differences between the enhanced and non-enhanced versions of the CT im-
ages at the studied energy levels, lighter areas represent values with smaller pixel-wise
differences.
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Algorithm 2: Layered Block Decomposition Method for grayscale im-
ages
1 // CTMs is a hashtable with binary 2D blocks as keys,
2 // their respective values being estimations of Kolmogorov complexity
3 // obtained through the Coding Theorem Method

4 Function LayeredBDM(grayImage, CTMs, blockSize, blockOffset, q)
is

5 // the image is quantized in q digital levels
6 grayImage ←− quantize(grayImage, q)
7 blocksList ←− {}
8 for i in 1 to q do
9 // the quantized image is binarized in q digital layers

10 binImage ←− binarize(grayImage, q)
11 blocks ← partition (binImage, blockSize, blockOffset)
12 blocksList.append(blocks)
13 end

14 // we count the appearance of all binary blocks through all layers
15 // and store the count of each into a hash table with the blocks as

keys
16 // and the block counts as values
17 blockHT(blocks:blockCount) ←− countBlocks(blockList)

18 // the blocks’ CTM values are retrieved from the CTMs hashtable
19 // these and the log2 of the cardinality of each are added
20 l-BDM ← CTMs(keys(blockHT)) + log2(values(blockHT))

21 return l-BDM
22 end

Figure 11 shows the estimated Kolmogorov complexities (KC) of CT and
enhanced CT images. Fig. 11a shows the estimated Kolmogorov complexity
obtained through the Layered Block Decomposition method1 [33, 34, 31, 32,
35], described in Fig. 2, and Fig. 11b shows the KC estimation obtained by
the lossless compression algorithm Lempel-Ziv-Welch as implemented in the
Wolfram Language’s Compress function [36]. Both Fig. 11a, and Fig. 11b
show an almost monotonic increase increase in Kolmogorov complexity when
the energy level increases. In Fig. 11a we appreciate a small difference in KC

1code and analysis available at: https://github.com/andandandand/
ImageAnalysisWithAlgorithmicInformation

20

https://github.com/andandandand/ImageAnalysisWithAlgorithmicInformation
https://github.com/andandandand/ImageAnalysisWithAlgorithmicInformation


between enhanced and non-enhanced CT when the energy levels are below
65 keV. The KC differences in bits between enhanced and non-enhanced
data increases more when the energy levels goes up in Fig. 11a than in
Fig. 11b. The KC estimations in bits obtained with layered BDM are an
order of magnitude below the ones obtained with lossless compression length.
A Spearman rank correlation test between the KC values obtained with
layered BDM and compression length in CT data gives ρ = 0.96 with p-
value = 1.91 × 10−6. In the enhanced CT data, the Spearman rank test
gives ρ = 0.97 with p-value = 5.32 × 10−7. Visual inspection of the pixel-
wise differences between enhanced and non-enhanced versions of the images,
shown in Fig. 10, indicates that the characterizations obtained by Layered
BDM are more sensitive to morphological changes in the images than the
ones obtained with lossless compression.
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(a) Kolmogorov complexity estimated by the Layered Block Decomposition Method
in CT images and enhanced CT images, Spearman ρ = 0.972, p-value = 5.58×10−7
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(b) Kolmogorov complexity estimated by Lempel-Ziv-Welch (LZW) lossless com-
pression length in CT images and enhanced CT images, Spearman ρ = 0.98,
p-value = 8.4× 10−8

Figure 11: Estimations of Kolmogorov complexity

Entropy quantifies the unpredictability of a state, which shows its average
information content. Because of its crucial dependency on the probabilistic
model, it is not a universal measure of complexity. Indeed, entropy quanti-
fies these considerations when a probability distribution of the source data
is known [37]. The benefit of utilizing entropy in the context of complex-

22



ity is that it only considers the probability of observing a specific event, so
it does not express any interpretation of the meaning of the events them-
selves. In this study, we calculate the following entropies: (1) Approximate
Entropy, (2) Conditional Entropy, (3) Corrected Conditional Entropy, (4)
Sample Entropy, (5) Fuzzy Entropy, and (6) Permutational Entropy, each of
which could reveal a part of associated complexity to the CT data.

Approximate entropy (ApEn) [38] quantifies the amount of regularity
and the unpredictability of fluctuations over time-series data. It modifies
an exact regularity statistic, i.e., Kolmogorov-Sinai entropy, to handle the
system noise when the amounts of data are not vast enough and the study
deals with the experimental data. Results of calculating ApEn for both
CT and enhanced CT images are illustrated in Fig. 12. We stated that
the quantizing energy levels is done by taking Kolmogorov-Smirnov test to
find the best distribution fits the conditional entropy. Therefore, CT images
conditioned on the known energy levels and quantifying the amount of infor-
mation needed to describe the outcome of CT images can be better done by
measuring Conditional Entropy [39] (see Fig. 13). Given discrete random
variables X with image X and Y with image Y, the conditional entropy is
defined by Eq. 12.

H(Y |X) ≡
∑

x∈X ,y∈Y
p(x, y) log

p(x)

p(x, y)
(12)

Figure 12: Approximate entropy of CT and enhanced CT images in different energy levels.

23



Figure 13: Conditional entropy of CT and enhanced CT images in different energy levels.

Limited number of samples leads to the growing percentage of single
points in L-dimensional phase space when L increases which subsequently
increase the probability of the a-priori selection of the embedding dimension.
To handle the mentioned problems, one could use Corrected Conditional
Entropy (CCE) in which the information content can be measured based on
the search for the minimum of the defined function in Eq. 13. This value
is taken as an index in the information domain quantifying the regularity
of the process and experienced an increase when no robust statistic can be
performed as a result of a limited amount of available samples.

CCE(L) = Ê(L/l − 1) + Ec(L)

Ec(L) = perc(L).Ê(1)
(13)

where Ê(L/l − 1) represent the estimate of Shannon entropy (SE) in a
L/L− 1-dimensional phase space, perc(L) is the percentage of single points
in the L-dimensional phase space, and Ê(1) the estimated value of SE for
L = 1. Figure 14 shows CCE with its the energy level components calculated
over CT and enhanced CT images. The entropy change rate of eCT images
is lower than CT images while the energy level increases. It is remarkable
that the CCE values increase in all of CT images while it experiences a lower
change in eCT images.
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Figure 14: Corrected Conditional entropy of CT and enhanced CT images in different
energy levels.

Although the variations rhythm in both Fig. 13 and 14 seems to be
homogeneous, one can see the conditional entropy values of the CT images in
energy levels of 15, 25 and 35 are near zero. Therefore, it is likely to infer that
reconstructed CT images in these energy levels are certainty determinable,
and far from stochastic conditions. This high degree of certainty contradicts
the nature of medical imaging, where three different tissues were considered
within the phantom. Corrected conditional entropy, however, resolves this
issue by considering the mentioned assumptions and covers the associated
problem with the low number of data.

Sample entropy (SampEn) [40], a measure of complexity, is a modifi-
cation of approximate entropy with two advantages over ApEn including
independence of data length and a relatively trouble-free implementation.
As self-matching is not included in SampEn, actual interpretation about the
irregularity of signals is more possible. For a given embedding dimension m,
tolerance r and number of data points N , SampEn is calculated by Eq. 14.

SampEn = − log
A

B
, (14)

where A is a number of template vector, of length m + 1, pairs such as
d[Xm+1(i), Xm+1(j)] < r and B is a number of template vector,of length m,
pairs such as d[Xm(i), Xm(j)] < r. Figure 15 shows the results of calculating
SampEN for both CT and enhanced CT images.
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Figure 15: Sample entropy of CT and enhanced CT images at different energy levels.

Fuzzy entropy (FuzzyEn) can be used in analyzing nonlinear time series
using modified sample entropy. FuzzyEn well estimates the short data where
its validity is not restricted by the parameter value. This measure evaluates
global deviations from the type of ordinary sets. Furthermore, it is resistant
to noise and jamming phenomena. FuzzyEn can be defined for a given time
series by using Eq. 15.

FuzzyEn(m,n, r,N) = lnφm(n, r)− lnφm+1(n, r),

φ(n, r) =
1

N −m

N−m∑
i=1

[
1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij ]

(15)

wherem and r are the dimensions of phase space and similarity tolerance,
respectively, n is the gradient of the exponential function, N is the number
of data, and D is the similarity degree. Figure 16 shows the results of
calculating FuzzyEn for both CT and enhanced CT images.
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Figure 16: Fuzzy entropy of CT and enhanced CT images in different energy levels.

The last entropy measure is Permutation entropy (PE) which can con-
sider neighboring values of data in its measuring. This complexity measure
is most appropriate for chaotic time series, in particular in the presence of
dynamical and observational noise. As a small noise does not essentially
change the complexity of a chaotic signal, PE behaves similarly to Lyapunov
exponents where it is known as a complexity parameter. Considering a time
series {xt}t=1,··· ,T , one could study all n! permutations π of order n and
determine the relative frequency by Eq. 16.

p(π) =
card({t|t ≤ T − n, (xt+1, · · · , xt+n) hastype π})

T − n+ 1
(16)

The permutation entropy of order n ≥ 2 is defined as Eq. 17.

H(n) = −
∑

p(π) log p(π) (17)

where the sum runs over all n! permutations p of order n and n is the
dimension of data. Results of calculating PE for Ct and enhanced CT images
are shown in Fig. 17.
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Figure 17: Permutation entropy of CT and enhanced CT images in different energy levels.

In all the measured entropies, we see that irregularity of CT images raises
with increasing energy levels, whereas enhanced CT images have lower, yet
more tolerant, increasing rates and in some cases, they have a dual behavior.
Therefore, it is likely that analyzing enhanced CT images can produce more
reliable results. This claim is what we will investigate it by performing a
morphological richness analysis [41] as well as Fuzzy C-means (FCM) [42]
based segmentation.

Morphological richness (MR) is calculated as the number of different con-
figurations of 3×3 blocks divided by the number of all possible configurations
(29). Although the results must give us a deep sense about the restructuring
of reconstructed images by different energies, the chaotic nature of each data
leaves us far from the desired inference. Hence, the power spectrum of the
calculated morphological richness is illustrated to make the complexity anal-
ysis sensible. To this end, the Fourier transform is applied to MR to swap the
dimension of time with the dimension of frequency. A very strong and slow
component in the frequency domain implies that there is a high correlation
between the large-scale pieces of the signal in time (macro-structures), while
a very strong and fast oscillation implies correlation in the micro-structures.
Therefore, if our signal f(t) represents values in every single moment of time,
its Fourier transform F (ω) represents the strength of every oscillation in a
holistic way in that chunk of time. These two signals are related to each
other by Eq. 18:

F (ω) =

∫ ∞
−∞

f(t)e−jωtdt, (18)
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Limitation on not always being able to observe a signal from −∞ to
∞ causes defining FT (ω) in period T . In this way, the power spectrum is
calculated by Eq. 19.

Sf (ω) = lim
T→∞

1

T
|FT (ω)|2. (19)

The power spectrum itself is the Fourier transform of the autocorrelation
function. The autocorrelation function represents the relationship of long-
and short-term correlation within the signal itself (refer to Eq. 20).

< f(t), f(t+ τ) >=
1

2π

∫ ∞
0

Sf (ω)f(t)e
−jωtdω (20)

The results of our analysis are illustrated in Fig. 18. Amplitude and
“dominating frequencies” differentiations are evident in enhanced CT images
which imply that analyzing enhanced CT images would bring more informa-
tion.

(a)
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(b)

Figure 18: Power spectrum of the entropy of the calculated morphological richness.(a) CT
images, (b) enhanced CT images.

Image segmentation plays an important role in medical image processing
[43]. Fuzzy c-means (FCM) is one of the popular clustering algorithms [42]
for medical image segmentation. But FCM is highly vulnerable to noise due
to not considering the spatial information in image segmentation. Therefore,
we investigate how much FCM is resistant against artefacts when applies to
the enhanced CT images. FCM minimizes an object function by partitioning
a finite collection of n elements X = {x1, ...,xn} into a collection of c fuzzy
clusters with respect to some given criterion. FCM returns a list of c cluster
centers C = {c1, ..., cc} and a partition matrix W = wi,j ∈ [0, 1], i =
1, ..., n, j = 1, ..., c, where each element, wij , tells the degree to which
element, xi, belongs to cluster cj . The objective function can be defined by
Eq. 21

argmin
C

n∑
i=1

c∑
j=1

wmij ‖xi − cj‖2 ,

wij =
1∑c

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

.
(21)

Peak-value signal-to-noise ratio (PSNR), feature-similarity (FSIM) in-
dex, Structural Similarity (SSIM) index, and Mean Square Error (MSE) are
chosen as the evaluation criteria (refer to Eq. 22).
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PSNR(Iinput, Ireference) = 10 · log10

(
MAX 2

Iinput

MSE

)
, (22)

FSIM(Iinput, Ireference) =

∑
x∈Ω SL(x) · PCm(x)∑

x∈Ω PCm(x)
, (23)

SSIM(Iinput, Ireference) =
(2µIinputµIreference

+ c1)(2σIinput·Ireference
+ c2)

(µ2
Iinput

+ µ2
Ireference

+ c1)(σ2
Iinput

+ σ2
Ireference

+ c2)
,

(24)

MSE(Iinput, Ireference) =
1

mn

m−1∑
i=0

n−1∑
j=0

[Iinput(i, j)− Ireference(i, j)]2. (25)

where Iinput is the image with the size of m × n, PCm is the weighting
factor for SL(x) which is the overall similarity between Iinput and a reference
image Ireference, µ is the average of the image, and σ is the variance of image.
Plots of calculated measures are illustrated in Fig. 19.

(a) (b)

(c) (d)

Figure 19: Evaluation criteria to analysis the FCM applied to both CT and enhanced CT
images.(a) PSNR, (b) FSIM, (c) SSIM, and (d) MSE.

Based on the evidence in Figs. 6-19, our findings confirm the following:

1. Energy levels between 50-90 keV show abnormal changes in entropy
measures for both CT and enhanced CT images. This is because the
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resultant tissues produced in the phantom have the least tissue differ-
entiation than the water has.

2. PSNR plot of enhanced CT images shows that the variation in tol-
erances of the enhanced CT images is less than that of CT images.
Therefore, one can conduct different analyzes at various energy levels
with less concern.

3. In the majority of energy levels, it is obvious that PSNR, FSIM, SSIM,
and MSE report for better values in comparison of enhanced CT im-
ages with the conventional CT image. Therefore, it is reasonable to
conclude that with a lower degree of irradiation and by applying the
proposed post-processing method, one can reach to a better discrim-
ination in analyzing images whereas this less irradiation causes less
tissue damage.

4. It is an accepted fact that reconstructing CT images from the con-
structed Sinogram has to be done in the energy level of 70 keV. Re-
sults of our experiments prove that it is possible to confidently work on
CT images in different energy levels by applying either the proposed
post-processing method or physical modification. In this way, an ex-
pert can reach to a better CT image where the objective tissue is more
discriminative in comparison with the surrounded tissues.

4. Conclusion

We presented a method of modifying reconstructed CT image in GATE/GEANT4
environment using the applying weights of photon flux. This post-processing
method will contribute toward analyzing CT images by easing the computa-
tional inference about different tissues irradiated in different energy levels.
Our evaluations of generative complexity might open several new venues in
medical imaging. These are related to the complexity hierarchies of the CT
images and the relation of the complexity hierarchies to the enhancing of
these images. The morphological richness along with entropy can derive a
one-tone mapping among the evolution of tissues irradiated in different en-
ergy levels with respect to the water attenuation map. This analysis can
then be used as a tool in a predictive technique for forecasting future devel-
opments in the medical imaging task.

The proposed method consists of several main steps including (1) back-
projecting acquired data to form pixel-based attenuation matrix (PAM); (2)
finding the statistical average of each interval to use as the effective energies;
(3) calculating HU scale of each interval (4) computing the associated photon
fluxes based on X-ray spectrum; (5) modifying HU scales by weighting them
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with the computed fluxes. Visual and complexity analysis convince us to
touch on the topic of non-constructability. In cellular automaton theory
[24], [23] a configuration is called nonconstructable or Garden-of-Eden if it
could not be reached from any other configuration by applying local rules
of cell state transitions. When adopting the concept in the reconstructing
of CT images by modification with photon flux, we can talk about a degree
of nonconstructability; the bigger the relative complexity of an image, the
higher the degree of non-constructability. We can hypothesize that the higher
the degree of non-constructibility of a CT image, the most discriminating the
target tissue emerged in the constructed phantom.
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