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Abstract: In this paper, we propose a solution to the problem of guaranteed time
slot allocation in cluster-tree WSNs. Our design uses the so-called Network Utility
Maximization (NUM) approach as far as we aim to provide a fair distribution of the available
resources. From the point of view of implementation, we extend here the authors’ proposed
Coupled-Decompositions Method (CDM) in order to compute the NUM problem inside
the cluster tree topology and we prove the optimality of this new extended version of the
method. As a result, we obtain a distributed solution that reduces the total amount of
signalling information in the network up to a factor of 500 with respect to the classical
techniques, that is, primal and dual decomposition. This is possible because the CDM finds
the optimal solution with a small number of iterations. Furthermore, when we compare
our solution to the standard-proposed First Come First Serve (FCFS) policy, we realize that
FCFS becomes pretty unfair as the traffic load in the network increases and thus, a fair
allocation of resources can be considered whenever the price to pay in terms of signalling
and computational complexity is controlled.
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1. Introduction

Wireless Sensor Networks (WSN) have attracted the attention of the scientific community in the last
years. This interest is mainly driven by the large amount of industrial applications that have appeared
thanks to the cost reduction of the sensors. In this kind of networks, the standard IEEE 802.15.4 is
usually adopted for the PHY and MAC layers [1,2]. This is because this standard has been specially
designed with the aim of providing low cost devices with long battery life.

The IEEE 802.15.4 standard, in particular, offers two operating modes: the non-beacon mode and
the beacon mode. In the first mode, nodes in the network are not synchronized and access the channel
via unslotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA). In the beacon-enabled
mode, on the other hand, the network is synchronized by means of the beacons transmitted by a node
acting as network coordinator and transmissions are organized in time slots. Apart from allowing the
nodes to access the channel via contention (with slotted CSMA/CA in this case), this mode also provides
guaranteed service to the nodes by allocating Guaranteed Time Slot (GTS) by means of a scheduling
strategy. The adoption of GTS is included in order to assure QoS requirements in situations where
CSMA/CA is less effective (e.g., under high traffic load). In that sense, new versions of the IEEE
802.15.4 standard such as IEEE 802.15.4e [3] or other coming standards such as WirelessHART [4] or
ISA 100.11a [5] evolve with a clear definition of resources in order to manage the Quality of Service
(QoS) of the ongoing connections. For example, IEEE 802.15.4e will be mostly based on GTS.

Concerning GTS management, the IEEE 802.15.4 standard follows a first-come-first-served (FCFS)
strategy. The problem of such strategy is that the bandwidth allocation is not optimized, large delays
can occur and fairness between users is not assured. In order to improve this strategy, several studies
in the literature address the problem of bandwidth allocation and scheduling. The problem, however,
is usually solved for star topologies (e.g., [6]) and further research is needed for the multi-hop case
(mesh and tree-based networks). In [7], for instance, a review of scheduling strategies is presented but
most of the algorithms are suboptimal and/or heuristic. Besides, the allocation problem for multi-hop
networks presented in [7] is not efficiently solved and the studies referred in this work are related to
generic wireless networks (instead of wireless sensor networks). Even in the case of the upcoming
standards (IEEE802.15.4e, WirelessHART and ISA100.11a), where the use of guaranteed resources is
emphasized, their allocation is still an open issue.

The main problem of multi-hop networks in the beacon-enabled mode is that this mode suffers from
beacon collisions between different coordinators in the network. In a tree-deployed WSN, in particular,
each parent in the network acts as a coordinator of its respective children. Therefore, each parent is in
charge of its local synchronization by sending its own beacons and, then, collisions between the different
beacon frames can appear if the system is not organized. In order to solve this issue, IEEE 802.15.4b Task
Group presents several collision avoidance strategies [8]. Among all of them, it is of special relevance
one strategy based on a time division approach as it is adopted by the Zigbee specification [9]. In
particular, this approach consists in dividing time in such a way that the beacon frame of each coordinator
is sent during the inactive periods of the rest of coordinators. It is worth noting, however, that the
proposed techniques are focused on the beacon collision avoidance problem and that the slot allocation
problem is not really solved. Indeed, some works in the literature depart from these strategies to introduce
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beacon frame scheduling techniques (see [10] for instance) but the scheduling of GTS slots inside each
beacon frame is not directly addressed.

In this paper, we propose a resource allocation algorithm for distributing GTS slots in a tree-deployed
wireless sensor network based on the IEEE 802.15.4 standard. Nevertheless, our approach is general
and can be applied to other standards that define resources and provide means to share them among the
sensors. In other words, although our results have considered the current version of the IEEE 802.15.4
standard, the contribution in this paper is not limited to it. More specifically, we derive a distributed
algorithm that provides the optimal slot allocation based on a fair strategy that accounts for both the
demand and the priorities of the different nodes. To do so, the problem is formulated as a Network
Utility Maximization (NUM) problem, where the fairness among the different nodes can be adjusted,
and the optimal solution is derived by means of a novel convex decomposition technique obtained by the
authors [11,12]. In particular, this novel technique, referred to as the Coupled-Decompositions Method
(CDM), has been extended here to the cluster-tree topology with the aim of efficiently addressing the
distributed nature of the network. This extension raised new challenges, such as the computation of the
primal and dual projections in a distributed manner or the convergence proof of the method. The main
characteristics of the proposed approach are the following: (i) it is able to obtain the optimal solution
in a distributed way (i.e., the solution is obtained by distributing the optimization problem through the
different nodes in the network), (ii) it converges with a significantly lower number of iterations than
other state of the art techniques, and (iii) it requires a lower amount of signaling in the network. It is
worth noting that the optimization problem is first formulated in a generic way in order not to restrict the
solution to a given scenario. Indeed, the proposed algorithm can be easily extrapolated to perform the
joint allocation of time and frequency, which is completely aligned with the philosophy of near future
systems (e.g., IEEE 802.15.4e). After that, we focus on the beacon enabled mode of IEEE 802.15.4 with
a cluster-tree topology and solve the GTS slot allocation problem by adapting the proposed strategy to
this scenario. Our method is compared with the first-come-first-served (FCFS) strategy adopted by the
standard, showing that our solution provides a significant improvement in terms of fairness performance
as the traffic in the network grows.

The rest of the paper is distributed as follows. In Section 2, the resource allocation problem is
formulated as a NUM problem and the proposed Coupled-Decompositions Method is described. After
that, in Section 3, the proposed strategy is adapted to a realistic scenario based on IEEE 802.15.4 and
numerical results are provided. Finally, the conclusions of the paper are presented in Section 5.

2. Distributed Fair Rate Allocation Algorithm

Let us assume a large-scale Wireless Sensor Network with N nodes that is monitoring a certain
area. The mission of the network, as usual, is to gather the node measurements at the sink, where
the information is processed. Let us assume that the nodes find their routes to the sink using
best-effort solutions such as the Routing Protocol for Low Power and Lossy Networks (RPL) [13] or
alternatives [14,15]. As a result, the initial graph of the network turns into a minimum spanning tree.
Note that these techniques are very interesting in the context of WSNs since they keep the complexity
of the routing protocol reduced, even given that they are suboptimal according to a certain performance
metric. As important as routing is the Multiple Access Control (MAC) protocol, that is, how the sensors



Sensors 2011, 11 3614

gain access to the wireless channel and how the available rate is finally distributed among the nodes. As
discussed previously, two different families of approaches are being considered: (i) contention-based
(e.g., CSMA/CA) and (ii) demand-based techniques (e.g., GTS allocation). The former is usually
implemented due to its simplicity but it becomes inefficient in terms of throughput as the traffic load
grows. The latter gives us the optimal solution once a global cost function is determined but it suffers
from computational complexity and signalling requirements. In this paper, we propose a distributed
algorithm for the second approach that converges fast to the optimal solution, which implies a reduced
amount of signalling in the network. Furthermore, it is computationally lightweight.

In the following, we assume that all the nodes in the network first make a rate request according to the
amount of information they have to send. After running the distributed allocation algorithm, all of them
get a certain transmission rate. The allocation depends on the rate requests, the priorities of the sensors,
the minimum guaranteed rates and the maximum transmission rate at each level of the tree topology. All
these parameters are known beforehand and the goal is to provide a fair rate distribution so that all the
sensors in the network receive their transmission opportunities. On the contrary, note that a solution that
maximizes the network throughput may prevent users with bad channel condition from transmitting. In
practice, our solution is adequate for Frequency Division Multiple Access (FDMA) or Time Division
Multiple Access (TDMA) since in both cases, it is possible to make an arbitrary division of the available
total transmission rate in terms of bandwidth and time, respectively. Figure 1 provides a general view of
our demand-based solution, where each dashed box represents one multiple-user communication channel
between the parent node and its child nodes. Furthermore, a circle represents a node (sensor) and a line
between two nodes simply indicates that they can communicate (using the corresponding multi-user
channel).

Figure 1. Demand-based multiple access. Rate grants are emitted and depend on the requests
and on the rate capacities {ci} inside each cluster.
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2.1. Problem Formulation under Fairness Considerations

Let us consider the following optimization problem [16]

max
{rj}

∑N
j=1 Uj(rj)

s.t. mj ≤ rj ≤ Mj, j = 1, . . . , N

Ar ≼ c

(1)

with variables rj ∈ R+ that represent the rate allocated to the j-th sensor. The functions Uj : R+ → R
are strictly concave, increasing and differentiable in {rj | mj ≤ rj ≤ Mj}, where Mj > mj, mj ∈ R+.
The vector c = [c1, . . . , cL]

T contains the maximum transmission rate in the L channels of the network
and the matrix A represents the network topology. Note that each wireless channel connects one parent
node to its child nodes and that each entry Ak,j is either 1 if the flow from the j-th sensor crosses the
k-th channel or 0 otherwise. Note also that Problem (1) defines a convex optimization problem [17,18].
Finally, we assume that there exists at least one strictly feasible solution to the problem, i.e., a point that
satisfies Ar ≺ c and mj < rj < Mj ∀j, so that Slater’s constraint qualifications [18] (Section 5.2.3) are
fulfilled and thus strong duality holds.

The optimization framework in Problem (1) is known to provide a fair distribution of resources if
the utility functions Uj are adequately chosen [19,20]. Moreover, we can specify the desired degree
of fairness by fixing the parameter γ in the following family of utility functions [21] (Lemma 2) in
Equation (2). Furthermore, wj ∈ R+ is defined as the priority of the j-th flow and it is used to balance
the flow allocation towards the j-th sensor once the value of γ is fixed (the higher the value of wj , the
larger the allocation).

Uj(rj;wj, γ) =

{
wj log (rj), γ = 1

wj
r
(1−γ)
j

1−γ
, γ ̸= 1

(2)

Roughly speaking, with γ → ∞ we get a max-min fair solution, that is, we do not allow to increase the
rate of the i-th flow in the network if it implies (due to the constraints) decreasing the j-th flow given that
initially rj < ri. That is the most stringent definition of fairness. The opposite situation is for γ = 0

and then the goal is to maximize the weighted network throughput. This solution is totally unfair since,
depending on the network constraints, some sensors would have no transmission opportunities at all. An
intermediate and well-established solution is obtained with γ = 1, a.k.a., proportional fairness. In this
case, a small rate decrease in one flow is accepted if it implies a significant increase in other flows so
that the network throughput is less penalized. For further details on fairness formulations, please refer
to [21] and references therein. Note, however, that except for γ = 0, increasing the rate ∆r produces a
bigger increase in utility when the sensor has a small rate allocation than when it is high.

In our WSN scenario, we assume that the network is built-up so that each sensor knows the route to
the sink inside the cluster tree. Furthermore, each parent node has the information about the maximum
transmission rate of its cluster, which is given by its own superframe configuration, and each sensor
has evaluated its radio link quality, e.g., by means of the Packet Delivery Ratio (PDR). Given all
this information, the goal is to compute a fair distribution of the available rate among the sensors.
In the following, we focus our attention in the resolution of Problem (1) and we leave the practical
implementation issues to Section 3. From the point of view of the optimization mechanism, note that
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one possibility is to gather all the requests at the sink node, compute there the optimal rate allocation
and send it back to the sensors. Although there exist very efficient methods in the literature to solve
generic convex problems, e.g., the so-called interior point methods [18] (Section 11.7), this approach
is impractical in large-scale sensor networks as far as it implies an excess of signalling information.
Therefore, there is a big interest in solving the problem as efficiently as possible, in a distributed manner.
Efficient here means that: (i) the amount of signalling in the network and (ii) the computational load at
the sensors must be kept small.

2.2. Existing Work

The problem we have formulated in Problem (1) is known in the literature as the Network Utility
Maximization (NUM) problem [22] and several authors have employed classical decompositions, i.e.,
primal decomposition [17] (Section 6.4.2) and dual decomposition [17] (Section 6.4.1) to solve it.
Dual decomposition is usually preferred since it naturally provides a full distributed solution [23,24].
Indeed, the Active Queue Management (AQM) policy employed in the Transport Control Protocol
(TCP) can be viewed as a convex optimization problem that is distributedly solved using a dual
decomposition approach. Notwithstanding, optimally solving Problem (1) in a distributed manner is now
time and signalling consuming due to the fact that the algorithms are based in a projected subgradient
approach [17] (Section 2.3). In general, the convergence of the algorithms is slow and furthermore, it
depends on a user-adjusted step-size, which is not necessarily optimally fixed.

In order to overcome these drawbacks, we have proposed the Coupled-Decompositions Method
(CDM) [11,12]. It simultaneously intertwines primal and dual decomposition techniques in a single
approach, converges much faster to the optimal solution and avoids the choice of a user-defined
step-size. Note that there exist other primal-dual convex methods in the literature that are different
to our approach. Some of them do not take into account the separability of the problem and thus are not
true decomposition-based techniques [25,26]. Other works use primal and dual domains as well as the
separability of the problem but they concatenate primal and dual domains in their algorithms instead of
really mixing them [22,27,28], as we do in our CDM. In the following, we briefly review the classical
decomposition methods. Afterwards, we extend the formulation of the CDM to rate allocation problems
that exhibit a tree topology thus obtaining a novel distributed version of the method.

2.3. Review of Primal and Dual Decompositions

Let us consider the following equivalent version of Problem (1), which contains the additional
variables y = [y1, . . . , yN ]

T with y ∈ RN ,

min
{rj}

−
∑N

j=1 Uj(rj)

s.t. mj ≤ rj ≤ Mj, j = 1, . . . , N

rj ≤ yj, j = 1, . . . , N

Ay ≼ c

(3)
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Under this transformation, it is clear that given y, Problem (3) can be separated into N independent
problems, which are referred to as the primal subproblems in the specialized literature. In our particular
case, these primal subproblems are

pj(yj) =


min
rj

−Uj(rj)

s.t. mj ≤ rj ≤ Mj

rj ≤ yj

(4)

Notwithstanding, we still need to find the optimal values in y, that is, y∗. Fortunately, it is known that
the primal subproblems define a convex function on the variables yj and that the Lagrange dual variable
λj associated with the constraint rj ≤ yj is a subgradient [29] of pj at the point yj [17] (Section 5.4.4).

On the other hand, the primal master problem is defined as

min
{yj}

∑N
j=1 pj(yj)

s.t. Ay ≼ c
(5)

and the goal here is to find the optimal values of y. Given that the subgradients of the subproblems
are readily found once they are solved, the primal master problem can be computed using a projected
gradient approach [17] (Section 2.3). In other words, sp = −[λ1(y1), . . . , λN(yN)]

T = −λ(y) is a
subgradient of

∑N
j=1 pj(yj) at y, where λj(yj) is the value of the inner Lagrange multiplier of pj given

the value of yj , and the following recursion converges to y∗,

yk+1 = [yk − αk
ps

k
p]

† = [yk + αk
pλ

k(yk)]† (6)

where k indexes iterations, αk
p is the user-defined step-size in primal decomposition and [·]† is the

projection to the set {y ∈ RN |Ay ≼ c}.
Dual decomposition is the dual-domain version of primal decomposition and, in this occasion, we

focus on the dual problem [18] (Section 5.2). In particular, we relax only the coupling constraint Ay ≼ c

in Problem (3) thus defining the following dual master problem,

max
µ

∑N
j=1 dj(µ)− µTc

s.t. µ ≽ 0
(7)

where dj(µ) are the dual subproblems, defined as

dj(µ) =


min
rj ,ykj

−Uj(rj) + [AT ]j µ yj

s.t. mj ≤ rj ≤ Mj

rj ≤ yj

(8)

where [AT ]j stands for the j-th row of AT . As in primal decomposition, a subgradient of a dual
subproblem is found at no cost once dj(µ) is computed [17] (Section 6.1) and under some non-restrictive
conditions, that subgradient is in fact the gradient (see [17] (Section 6.1.1)). In our case, a subgradient
is obtained as [30] Aδj y

∗
j (µ), where y∗j (µ) is the optimal value of yj given µ. Therefore, a subgradient

of the dual master problem at µ is sd = Ay∗(µ)− c. Finally, the recursion

µk+1 = [µk + αk
d(Ay∗,k(µk)− c)]+, (9)
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where [a]+ = max{0, a} and αk
d is the step-size in dual decomposition, leads to µ∗.

Taking into account that we consider cluster-tree WSNs in this paper, both primal and dual
decompositions can be used to deploy distributed flow optimization solutions. However, these techniques
suffer from convergence speed and the need of adjusting αk

p or αk
d, as discussed before. In the

next subsection, we extend the authors’ proposed Coupled-Decompositions Method (CDM) [11,12] to
provide a fully distributed solution in cluster-tree WSNs. Different to [11], we propose here a single stage
algorithm where each iteration of the technique takes into account all the nodes. In [11], the proposed
solution had several stages and in each stage, the nodes that belonged to the same network level were
optimized thus involving several iterations. Therefore, the total number of iterations grew exponentially
with the number of levels in the network. This drawback is overcome in the enhanced version of the
method that we describe next.

2.4. Proposed Algorithm

Let us consider the problem formulation in Problem (3) and let us define λj as the Lagrange multiplier
(equivalently, dual variable) associated with the constraint rj ≤ yj for all j. As in dual decomposition,
we keep µ = [µ1, . . . , µL]

T as the multipliers associated with the constraints in Ay ≼ c. The technique
we propose here intertwines primal and dual decompositions in a single approach and it is composed
of four building blocks, namely: (i) dual subproblems; (ii) primal projection; (iii) primal subproblems
and (iv) dual projection (see Figure 2). Before going to a more detailed description of the method,
let us sketch out the four steps in the Figure 2, that form a complete iteration of the CDM, using a
resource-price interpretation. From a practical point of view, this overview together with the contents of
Section 2.5 shall suffice to develop our solution in real networks.

Figure 2. Block diagram of the CDM. The primal variables yk, ŷk and the dual variables
λk, λ̂

k
,µk are exchanged among the building boxes of the proposed CDM.

Dual Subproblems Primal Subproblems

PRIMAL 
PROJECTION

DUAL 
PROJECTION

{λk+1
,µ

k+1}

y
k

ŷ
k

λ̂
k

It is usual in convex optimization to think of primal variables as resources and dual variables as the
prices to be paid for them. Let us assume that µk fixes, at time instant k, the cost of transmitting one unit
of rate through each of the available multiple-user channels. Note that the more congested the channel,
the higher the cost is and that the cost for a non-congested channel is 0. Given µk, each sensor obtains
λk+1
j as the sum of the prices in the multiple-user channels it uses. When the sensor computes the dual

subproblem from λk
j , it decides how many resources to buy, i.e., ykj , which essentially depends on its
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own utility function. However, the overall rate acquisition may violate the constraints in the network
and it must be corrected. This is the task of the primal projection, that is, it gathers all the values in ykj
and modifies them to ŷkj in order to satisfy the network constraints. Thereafter, the primal subproblems
estimate the price they will pay for the new allocation, i.e., λ̂k

j . Finally, the dual projection looks at all
the individual prices and tries to find a new consensus price µk+1. The entire process is repeated until
all the sensors agree on the prices of the multiple-access channels.

Next, we describe one iteration of the method that starts with µk and ends up with µk+1. Afterwards,
we prove in Section 2.8 that µk → µ∗. In the following, a star as in y∗ or µ∗ indicates optimal
values and a superindex k as in yk or µk indexes iterations. Furthermore, we make use of some of
the Karush-Kuhn-Tucker optimality conditions [18] (Section 5.5.3) of Problem (3). These are

λj = [AT ]jµ (10)

µj([A]jy − cj) = 0, j = 1, . . . , L (11)

µ ≽ 0 (12)

where [AT ]j is the j-th row of AT . Note that Equation (11) are the slackness conditions [18]
(Section 5.5.2) related to the constraints Ay ≼ c in Problem (3).

2.4.1. Dual Subproblems

From µk, each sensor computes λk
j = [AT ]jµ

k as in Equation (10). Thereafter, the sensor solves the
following optimization problem,

dj(λ
k
j ) =


max
rj ,ykj

Uj(rj)− λk
j y

k
j

s.t. mj ≤ rj ≤ Mj

rj ≤ ykj

(13)

Note that Problem (13) coincides with Problem (8) if we take Equation (10) into account and thus we
keep the nomenclature, that is, we refer to Problem (13) as the dual subproblems of the CDM. As a result
of computing the dual subproblems, the optimal values of the inner optimization variables ykj given λk

j ,
i.e., y∗,kj (λk

j ) are found as well. However, these values are not necessarily primal feasible, i.e., they may
not satisfy Ay ≼ c, and there is no guarantee that they accomplish the necessary slackness conditions
in Equation (11). In the second step of the method, called the primal projection, we modify the resulting
allocation yk in order to satisfy both conditions.

2.4.2. Primal Projection

In primal projection, the following optimization problem is solved,

min
ŷk

||(yk − ŷk)||2

s.t. [A]jŷ
k ≤ cj ∀j |µk

j = 0

[A]jŷ
k = cj ∀j |µk

j > 0

(14)

and we get the modified variables ŷk as the optimal solution of Problem (14). As it is discussed
in Section 2.8, the algorithm guarantees that Problem (14) has at least one feasible point so that
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Problem (14) is well-defined. However, we need a distributed solution of the primal projection in order to
avoid sending all the information to the sink node and computing Problem (14) there. Fortunately, we can
benefit from the tree structure of the network to find the optimal solution of Problem (14) distributedly.
Note that in cluster-tree topologies, the subset of nodes associated with the i-th constraint is always a
subset of the nodes related to the constraint immediately above ci. See this in the small network example
of Figure 3, where [

c1

c2

]
≽

[
1 1 1 1

0 0 1 1

]
ŷ1

ŷ2

ŷ3

ŷ4

 (15)

For the sake of brevity, we describe the distributed computation of Problem (14) using the example
in Figure 3, which can be easily extended to the general case. Let us assume that [A]1ŷ = c1 (this is
usually the case) and [A]2ŷ ≤ c2 [31]. For the sake of simplicity, we omit the index k in this example.
As depicted in Figure 3, the idea is to compute the projection at the parent nodes, that is, first the sink
allocates ŷ1 and ŷ2,ag and thereafter, sensor 2 allocates ŷ2,ag to sensors 3-4 and itself, thus obtaining ŷ2,
ŷ3 and ŷ4. On the other hand, the application of the KKT optimality conditions to our simplified problem
reveals us that the optimal solution must satisfy

ŷj = yj − µ1, j = 1, 2

ŷk = yk − (µ1 + µ2), k = 3, 4
(16)

where µ1 ∈ R forces
∑

i ŷi = c1 and µ2 ∈ R+ ∪ {0} prevents ŷ3 + ŷ4 from exceeding c2. In other
words, µ2 is bigger than 0 only when the constraint ŷ3 + ŷ4 ≤ c2 is violated given µ1. Therefore, there
are only two possible projections, that is, either i) ŷ3 + ŷ4 < c2 or ii) ŷ3 + ŷ4 = c2. Let us consider a
virtual sensor 2ag that groups sensors 2-4 with y2,ag =

∑4
i=2 yi as in Figure 3. In case (i), the projection

is straightforwardly computed [18] (Section 8.1.1) as

ŷag = yag −
(1Tyag − c1)nag

1Tnag

(17)

where ŷag = [ŷ1,ag, ŷ2,ag]
T is the aggregated allocation to the virtual sensors, yag = [y1,ag, y2,ag]

T is their
aggregated demand and nag = [n1,ag, n2,ag]

T is the number of sensors inside each virtual sensor. In our
example, nag = [1, 3]T . However, if (ii) is the case, we allocate c1 − c2 to sensors 1-2 similarly as in
Equation (17), as well as c2 to sensors 3-4. Finally, we need to distinguish between situations (i) and (ii),
which can be done using the following threshold for virtual node 2ag,

ŷth2,ag = y2,ag −
n2,ag

n2,ag − 1
(y2,ag − y2) (18)

This value is the minimum necessary allocation to virtual node 2ag so that the inner rate constraint, i.e.,
ŷ3 + ŷ4 ≤ c2, is satisfied with equality.
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Figure 3. Distributed primal projection. Initially, nodes 2, 3 and 4 are grouped together
into the supernode 2’. The first allocation distributes c1 between 1 and 2’. Then, the second
allocation distributes the rate granted to 2’ among nodes 2, 3 and 4 taking into account the
maximum rate c2.
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In summary, the primal projection is distributedly found as follows. First, we compute the initial
allocation with Equation (17). If ŷ2,ag ≤ ŷth2,ag, then we allocate ŷ2,ag to sensors 2-4 and we are done. If
not, we allocate c1 − c2 to sensors 1-2 and c2 to sensors 3-4. Finally, this approach can be scaled to any
tree-deployed sensor network. In general, a parent node has to signal at most ml 4-tuples, where ml is
the number of network levels below it. Each 4-tuple contains an aggregated rate demand, the number
of nodes involved in that demand, a threshold value and the rate absorbed once the allocation is above
it. Note that this threshold value indicates the maximum possible allocation for a given hypothesis,
that is, which channels are congested and which not. Therefore, the absorbed rate must correspond to
this specific hypothesis. Once this information is available at the sink node, it can make the first-level
allocation and successively, all parent nodes can compute their own allocations.

2.4.3. Primal Subproblems

Once the sensors receive the corrected allocation ŷkj , they solve the following optimization problem,

pj(ŷ
k
j ) =


max
rj

Uj(rj)

s.t. mj ≤ rj ≤ Mj

rj ≤ ŷkj

(19)

As above, note that Problem (19) coincides with the subproblems of a plain primal decomposition [22],
thus we keep the nomenclature. As a result of computing Problem (19), the inner Lagrange multiplier λ̂k

j

associated with the constraint rj ≤ ŷkj is obtained. In the dual projection, we use the values of λ̂k
j from

all the subproblems to update the values of µ, that is, to obtain µk+1.

2.4.4. Dual Projection

The dual projection is the last step of the method and its mission is to update µ having the information
in λ̂

k
. We already know that one of the optimality conditions of our problem is Equation (10). However,

this linear system of equations is in general overdetermined and we can not use it to guess µk+1 from λ̂
k
.

Fortunately, it is possible to choose some of the entries in λ̂
k

to obtain an alternative system of equations,
say λk

D = Bk
Dµ

k+1
D , that determines the non-zero values in µk+1. Note that due to Equation (11), µk+1

j
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is necessarily 0 if the corrected allocation after the primal projection verifies [A]jŷ
k − cj < 0. In the

following, we describe how λk
D and Bk

D are constructed.
First of all, let us define the subsets of nodes Im and Ak

n. The subset Im does not depend on the
iteration number and includes all the nodes using the m-th wireless channel except for the parent node.
On the contrary, Ak

n depends on the subset of active constraints [32] in the network, which evolves on
time. Specifically, if the n-th channel is congested, the subset Ak

n is the union of In with all the subsets
Im that accomplish: (i) the path from any of the nodes in Im to the sink goes through one of the nodes
in In and (ii) none of these paths makes use a congested channel, that is, the channels in the path do not
attain their rate constraints with equality. If the n-th channel is not congested, we do not define Ak

n . A
simple example can be found in Figure 4, where I1 = {1, 2, 3}, I2 = {4, 5, 6} and I3 = {7, 8, 9}. In
this example, we transmit at the maximum possible rate only in channels 1 and 3 whereas channel 2 is
not congested. Therefore, we define Ak

1 = I1 ∪ I2 and Ak
3 = I3 but not A2.

Figure 4. The subsets Im and Ak
n.

1 2 3

7

SINK

8 9

4 5 6

ATTAINS CAPACITY

ATTAINS CAPACITY

I1

I2
I3

Ak
1

Ak
3

Once the subsets {Ak
n} are identified, we select one sensor from each group using the following

selection rules:

(SR1) Choose the node with the value of λ̂j

k
that is closest to λk

j (note that λk
j = λk

i if i, j ∈ Ak
n) and that

verifies (SR2).

(SR1) The corresponding value in ŷkj attains ŷkj ∈ (mj,Mj) (as shown in Proposition 3, there is at least
one value of ŷkj inside the interval).

(SR1) forces the smallest update from λk
j to λk+1

j whereas (SR2) is necessary to have the required linear
dependance between λ and µ; otherwise there exist more dual variables that come into the equation as
shown in Section 2.8. Finally, the linear system of equations λk

D = Bk
Dµ

k+1
D is constructed by gathering

all the selected values of λ̂
k

in λk
D and the corresponding rows of AT in Bk

D. Note that since µk+1
D

does not include the values of µk+1 that are known to be zero beforehand, it is necessary to discard the
corresponding rows of AT when building Bk

D. An example can be found in Figure 5, where we assume
that the selected value from Ak

1 is λ̂k
5 and that the selected value from Ak

3 is λ̂k
8. Therefore, we take into

account only rows 5 and 8 of AT in order to obtain Bk
D. Furthermore, since channel 2 is not congested
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(that’s why we have not defined Ak
2), we already know that µk+1

2 = 0. Consequently, we also discard the
second column of AT . The resulting linear system of equations is determined and allows us to obtain
µk+1
1 = µk+1

1,D and µk+1
3 = µk+1

2,D . However, we want µk+1 to verify Equation (12) and thus, we propose
next a distributed approach to compute µk+1 and λk+1 in a cluster-tree WSN. Our mechanism solves
λk

D = Bk
Dµ

k+1
D if µk+1

D ≽ 0 and finds an alternative positive solution otherwise, which guarantees the
convergence of the method (see Section 2.8). Note that, due to the specific structure of AT and also of
Bk

D, we can apply some sort of Gauss elimination as discussed next.

Figure 5. Dual projection example. The reduced system of equations λk
D = Bk

Dµ
k+1
D is

constructed and used in the dual projection to update the non-zero values in µk+1.
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The proposed solution has two phases. The first phase begins at the lowest levels of the cluster-tree
and each node sends its current value of λ̂k

j to its parent. The parent, in turn, first checks if the channel
with its child nodes is congested. If true, it sends its own value of λ̂k

j . If false, it takes the values from the
child nodes and also its own value and selects one candidate according to (SR1)-(SR2). This is the value
that is sent to the parent in this second case. This process is successively applied until the sink node is
reached. Thereafter, the second phase begins. The sink node checks if it attains its own rate constraint.
If true, it selects one value taking into account (SR1)-(SR2), fixes µ1 to that value and sends it to its child
nodes. If false, it fixes µ1 = 0 and sends it. When the child nodes receive that value, say vi, select one λ̂k

j

among its gathered values using again (SR1)-(SR2) and compute µi (the dual multiplier associated with
its rate constraint) as µi = λ̂k

j − vi. If the resulting µi ≥ 0, the parent node sends λ̂k
j to its child nodes; if

µi < 0 or if the channel between the node and its children is not congested, the parent fixes µi = 0 and
sends the received vi to its child nodes. This process is repeated until all the values in µk+1 are updated.
Note that, as a result of the proposed distributed dual projection, each parent node only knows one value
in µk+1 but each node receives its own λk+1

j so that the next iteration of the method can begin.
Finally, we have to decide when to stop the iterations of the CDM, that is, when the current solution

is close enough to the optimum. One possibility is to monitor the distance between yk and ŷk and to
stop when the relative distance between both quantities drops below a predefined value ϵ, that is, when

||yk − ŷk||2

||ŷk||2
< ϵ (20)
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However, this approach requires some signalling because we do not have all the necessary data available
at a single node. An alternative approach with a very reduced signalling, which is preferred, is to
compute the same relative distance at the sink node taking into account aggregated rate values of the
child nodes. In this case, we use the previous definitions of ykj,ag as the aggregated allocation demand
(before the primal projection) at the j-th node and the k-th iteration and ŷkj,ag as the aggregated allocation,
i.e., after the primal projection. For example, in the small network in Figure 3, we have yk1,ag = yk1
and yk2,ag =

∑4
j=2 y

k
j . Then, we collect at the sink node the values of ykj,ag and ŷkj,ag for all its child nodes

in the vectors yk
ag and ŷk

ag, respectively. Using these vectors, we compute the relative distance between
them as in Inequation (20). Note that using this approach, we do not introduce additional signalling as
far as these quantities are necessary in the primal projection of the method. Furthermore, the decision to
stop or continue with the iterations of the CDM can be piggybacked in the messages that send the values
of ŷjkag from the parent nodes to the child nodes and thus, the impact in the signalling requirements of
the method is very small.

2.5. Algorithmic Form

The CDM can be summarized in algorithmic form as follows:

Algorithm. Coupled-Decompositions Method.

Start with k = 0, µ0 = 0 and repeat:

Dual Subproblems

1 Using λk
j = [AT ]jµ

k, compute

dj(λ
k
j ) =


max
rj ,ykj

Uj(rj)− λk
j y

k
j

s.t. mj ≤ rj ≤ Mj

rj ≤ ykj

and get ykj as the inner maximizer.

Primal Projection

2 Solve
min
ŷk

||(yk − ŷk)||2

s.t. [A]jŷ
k ≤ cj ∀j |µk

j = 0

[A]jŷ
k = cj ∀j |µk

j > 0

distributedly as sketched in Section 2.4 in order to get ŷkj .

Primal Subproblems

3 Solve

pj(ŷ
k
j ) =


max
rj

Uj(rj)

s.t. mj ≤ rj ≤ Mj

rj ≤ ŷkj

and get λ̂k
j as the dual multiplier associated with the constraint rj ≤ ŷkj .



Sensors 2011, 11 3625

Dual Projection

4 Phase I. The lowest level nodes send λ̂k
j to their parents. Then repeat:

(a) Each parent node checks the congestion status of the channel between it and its
children. If it is congested, the parent sends its own value of λ̂k

j to its own parent.
Otherwise, it considers also the values received from its child nodes, selects one
candidate using (SR1)-(SR2) and sends it.

Until the sink node has received one value of λ̂k
j from each of its child nodes.

Phase II. Start at the sink node with v1 = 0 and repeat:

(a) If the channel between the node and its children is congested, use (SR1)-(SR2)
to select one candidate among the values received in Phase I, say λ̂k

j . Otherwise,
λ̂k
j = 0.

(b) Compute µk+1
i = ŷkj − vi (vi is the message received from the parent node in Phase

II, i is the channel index).

(c) If the resulting value µk+1
i satisfies µk+1

i ≥ 0, send λ̂k
j to the child nodes. Otherwise,

fix µk+1
i = 0 and send vi.

(d) Set the next update of λj at the child nodes, i.e., λk+1
j , to the received value, either

λ̂k
j or vi.

Until all the values in µk are determined and all the values in λk are updated to λk+1.

Until convergence.

Furthermore, Figure 6 summarizes in a flowchart all the tasks that a sensor has to execute in order to
obtain its optimal rate allocation.

2.6. Signalling in the Coupled-Decompositions Method

In distributed implementations such as the one proposed in this paper, signalling plays a crucial role.
In the following, we review a complete iteration of the proposed method from the point of view of
signalling and we represent it graphically in Figure 7. Let us assume that at the k-th iteration, all
the nodes know the values of λk

j and use them to compute the dual subproblems. As a result, they
locally obtain the values of ykj involving no signalling. Thereafter, in primal projection, the parent nodes
must send their aggregated request ykj,ag, i.e., the sum of the values ykj that belong to their subtree,
possibly together with a list that includes allocation threshold values and absorbed rates, as discussed in
Equations (17) and (18). Note that the size of the list scales linearly with the number of levels in the
subtree. Once the request reaches the sink node, it allocates resources to the first level of the tree. In turn,
the nodes at the first level allocate their resources to the nodes at the second level and so forth. When all
the nodes have received the corresponding value ŷkj , they locally compute the primal subproblems and
obtain the values λ̂k

j . Finally, in order to compute the dual projection, the nodes send the values λ̂k
j to

their parent nodes. Thereafter, the sink node computes µ1 and broadcasts the value λk+1
j to their child

nodes (note that all the child nodes receive the same value). In turn, the parent nodes compute their own
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value µj and broadcast λk+1
j to their child nodes. This process is successively applied until all the nodes

receive the updated value of the dual variable, which completes one iteration of the proposed CDM.

Figure 6. Flowchart of the tasks performed by the sensor.
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Figure 7. A complete iteration of the CDM from the point of view of signalling.
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2.7. Differences with Classical Decompositions

From the point of view of the algorithm, two of the building blocks in the proposed method are the
same as in the classical decompositions, that is, the definition of the primal and the dual subproblems
has not been modified. On the contrary, the primal and the dual projections differ from the primal and
dual master problems as far as subgradients are no longer used. Notwithstanding, the primal projection
resembles the projection that appears in the primal master problem. The difference is that we force the
constraints in Ay ≼ c to be attained with equality when the corresponding dual variable in µ is not zero.
Finally, the dual projection is completely different from the master dual problem and is indeed the key
block in our proposal.

From the point of view of signalling, one iteration in traditional primal decomposition algorithms is
equivalent to the first two steps in the proposed method. In other words, from ykj the nodes compute
the primal subproblems and calculate yk+1

j = ykj + αk
pλ

k
j , which requires no signalling. Thereafter, the

projection [·]† in traditional primal decomposition algorithms requires the same amount of signalling
as in the worst-case of the primal projection at the CDM, that is, when [A]jy ≼ cj, ∀j. Similarly, one
iteration in the traditional dual decomposition is equivalent to the last two steps of the CDM. That is, from
µk, the nodes implementing the traditional dual decomposition approach obtain ykj , which requires no
signalling, and afterwards send these values to the parent nodes. Using that information the parent nodes
can extract the values of µk+1 and send the required linear combination of the values in µk+1 back to the
child nodes. In this case, the total amount of signalling is exactly the same as in the dual projection of the
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CDM, where the nodes send the current allocation, the parent nodes compute the required subgradient
and send the updates of the values in λ afterwards.

In summary, the key step that allows us to combine traditional primal and dual decompositions in a
single algorithm, the CDM, is the dual projection. Conceptually, the big difference is to interpret the
primal variables yk, ŷk and the dual variables λk, λ̂

k
as candidates to the optimal solution that must

accomplish the well-known KKT optimality conditions. In terms of signalling, one iteration of the CDM
is equivalent to two iterations of the traditional decomposition algorithms.

2.8. Convergence to the Optimal Rate Allocation

Let us start the iterations of the proposed CDM with µ0 = 0. In the following we show that µk −→ µ∗

as k increases. Initially, we assume that at the k-th iteration µk
i > 0 only if µ∗

i > 0, that is, the active
constraints (i.e., attained with equality) at the k-th iteration are exactly the same as in the optimal solution
and we prove that the algorithm converges to µ∗. Afterwards, we describe the mechanism used by the
CDM in order to activate or deactivate constraints until the subset of active constraints in the optimal
solution is found out.

Convergence to the Optimal Solution Given the Subset of Active Constraints at the Optimum

Let us first recall in Proposition 1, a known result that establishes the relationship between primal and
dual variables in the primal and dual subproblems [11,12].

Proposition 1 Let us consider the j-th primal subproblem pj(ŷ
k
j ) in Problem (19) and the j-th dual

subproblem dj(λ
k
j ) in Problem (13) of the CDM. Then, the inner optimization variable λ̂k

j is a decreasing
function of ŷkj in the primal subproblems and the inner optimization variable ykj is a decreasing function
of λk

j in the dual subproblems.

Proof See [12] (Lemma 2).

Note, in particular, that if λ̂k
j ≤ λ∗

j = ATµ∗ as a result of the primal subproblems, then it is true that
ŷkj ≥ y∗j and vice versa. Similarly, if ykj ≤ y∗j as a result of the dual subproblems, then λk

j ≥ λ∗
j = ATµ∗

and vice versa. Note also that given µk, all the values λk
j = [AT ]jµ

k with j ∈ Ii attain either λk
j ≥ λ∗

j

or λk
j ≤ λ∗

j as far as [AT ]j is exactly the same for all j ∈ Ii. That is, if we start an iteration of the CDM
with λk in the dual subproblems, it holds that ykj ≥ y∗j for all j ∈ Ik if λk

j ≤ λ∗
j and vice versa due to

Proposition 1.
Once we obtain the values yk from the dual subproblems, the primal projection in Problem (14) is

computed. Since we assume that Slater’s condition holds, Problem (14) defines a convex program where
strong duality is fulfilled. Therefore, KKT optimality conditions can be applied and the solution to the
primal projection can be expressed as

ŷk = yk −ATγ (21)

where γi ≥ 0 if [A]iŷ ≤ ci and γj ∈ R if [A]jŷ = cj . In the first case, γi = 0 if the corresponding rate
constraint is not exceeded and γi > 0 if the opposite situation occurs in order to satisfy it with equality.
In the second case, γj can take any value in order to satisfy the corresponding constraint. As a result of
the primal projection, it is clear that all the nodes in every subset Ii either increase or decrease the initial
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allocation ykj in order to obtain ŷkj . In other words, if m,n ∈ Ii, then it is impossible, for example, that
ŷkm = ykm− a1 and ŷkn = ykn+ a2 with a1, a2 ≥ 0. Moreover, if µk is close enough to the optimal solution
and assuming that µk

j > 0 only if µ∗
j > 0, the constraints that are attained with equality after the primal

projection correspond only to the values µk
j > 0.

In that situation and given the tree structure of the network, it is verified that∑
j∈Ak

m

ŷkj =
∑
j∈Ak

m

y∗j (22)

For example, in Figure 4 we immediately notice that
∑

j∈Ak
3
ŷkj = c3 and

∑
j∈Ak

1
ŷkj = c1−c3. Therefore,

we can conclude that i) some values of ŷkj with j ∈ Ak
m attain ŷkj ≥ y∗j while the rest accomplish ŷkj ≤ y∗j

and ii) all the values ŷkj with j ∈ Ak
m either increase or decrease after the primal projection. This result

is easily extrapolated to the dual values λ̂k
j obtained from the primal subproblems when ŷkj are the inputs

if we take into account Proposition 1. We write it down in the following proposition.

Proposition 2 The dual values λ̂k
j that result from the computation of the primal subproblems of the

CDM at the k-th iteration accomplish: (i) some values of λ̂k
j with j ∈ Ak

m attain λ̂k
j ≥ λ∗

j while the rest
accomplish λ̂k

j ≤ λ∗
j and (ii) all the values λ̂k

j with j ∈ Ak
m either increase or decrease with respect to

λk
j (note that λk

l = λk
n if l, n ∈ Ak

m).

In the dual projection, we choose one value λ̂k
j from each subset Ak

m. In particular, the selected value
has to accomplish (SR1)-(SR2), that is: (i) the corresponding ŷkj verifies ŷkj ∈ (mj,Mj) and (ii) it is the
closest value in the subset to λk

j for any j ∈ Ak
m. The following proposition guarantees the existence of

the required value.

Proposition 3 Let yk be the result of the dual subproblems of the CDM at the k-th iteration. Then, the
primal projection provides at least one node with ŷkj ∈ (mj,Mj) at each subset Ak

m.

Proof See the Appendix.

Given that Uj(rj) is concave and strictly increasing, it is straightforward to see that yj must equal rj
in Problem (3). Furthermore, some of the KKT optimality conditions of the problem reveal us that

∂Uj

∂rj
− λj + αj − βj = 0 (23)

λj − [AT ]jµ = 0 (24)

αj(mj − rj) = 0 (25)

βj(Mj − rj) = 0 (26)

where αj and βj are the dual variables associated with the constraints rj ≥ mj and rj ≤ Mj , respectively.
Therefore, if we fix yj equal to ŷkj , with ŷkj ∈ (mj,Mj), then αj and βj must be 0 due to the slackness
constraints, i.e, Equations (25–26). Applying this observation and rj = ŷkj to Equation (23), we realize
that λj is uniquely determined. Besides, taking also Equation (24) into account, we can conclude that a
good election of ŷkj provides us useful information about the linear combination [AT ]jµ. In the CDM,
this argumentation justifies our interest in the values of ŷkj that attain ŷkj ∈ (mj,Mj). Otherwise the
values of αj and βj are unknown and we can not use λ̂k

j to determine µk+1.
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Finally, in the dual projection we construct the determined linear system λk
D = Bk

Dµ
k+1
D with the

selected values λ̂k
j , thus computing the values in µk+1 corresponding to the active constraints (the

remaining ones are fixed to zero). Combining the results in Proposition 2 with (SR1)-(SR2), we realize
that each dual candidate λ̂k

j approaches λ∗
j (w.r.t. λk

j ) without overtaking it and that the candidate is
valid to determine some of the variables in µk+1. Since in the dual projection we obtain a determined
linear system using these dual candidates, the new update λk+1 = [A]Tµk+1 necessarily approaches
λk = [A]Tµk. Hence, we can state that µk → µ∗. We summarize this result in the following lemma.

Lemma 1 The iterations of the CDM satisfy µk k→∞−→ µ∗ given the subset of active constraints at the
optimum.

Activation/Deactivation of Constraints

In the following, we use the partial result obtained in Lemma 1 to show that the proposed version of
the CDM converges to the optimal solution. Let us state this in the following theorem.

Theorem 1 The proposed CDM is able to determine the subset of active constraints of Problem (3) at
the optimal solution. Hence, the method converges to the optimal solution.

Proof We have proved in Lemma 1 that, given the subset of active constraints at the optimum, the CDM
converges to µ∗. Therefore, we need to prove that this subset is eventually found out. Let us start with
the activation of a non-active constraint and let us assume that the l-th constraint is active at the optimal
solution but not at the k-th iteration. This implies that, if we remove the constraint [A]ly ≤ cl from
the original problem formulation in Problem (3), then the optimal solution to the modified problem y‡

would satisfy [A]ly
‡ ≥ cl. In other words, the successive updates of the CDM tend to y‡ when the

l-th constraint is not included in the active subset of constraints. However, there will be an iteration q

where [A]ly
q ≥ cl so that the primal projection will detect that constraint violation, correct it and the

l-th constraint will be activated.
The opposite situation arises when the l-th constraint is active at the k-th iteration but not at the optimal

solution. In that case, if the l-th constraint is not deactivated, i.e., the primal projection keeps forcing
Ay = cl, the CDM would converge to a solution µ⋆ with µ⋆

l < 0 (assuming that the dual projection
allows negative values). Note that the allocation to the variables involved in the l-th constraint increases
with respect to the optimum whereas the allocation to the remaining variables is reduced or remains
unchanged in order to satisfy the rate constraints. Looking at the situation from the dual point of view,
that is, taking into account Proposition 1, we notice that the values λ⋆

j involved in the l-th constraint
must converge to a value that is below λ∗

j . Also, the remaining values remain unchanged or above the
corresponding λ∗

j . If we compare those values with λ∗ = ATµ∗ and we know that µ∗
l = 0, then we

realize that µ⋆
l < 0. At this point, let us compute one more iteration of the CDM, thus obtaining λ⋆+1.

In this case, since the values λ⋆+1
j involved in the l-th constraint increase with respect to λ⋆ = ATµ⋆

because µ⋆+1
l is now 0, the corresponding values y⋆+1

j decrease. Therefore the l-th rate constraint will
not be exceeded, preventing its reactivation at the next primal projection.
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3. Application to Cluster-Tree Wireless Sensor Networks

The algorithm developed in the previous section can be applied to cluster-tree WSNs with the aim
of providing global fair resource allocations with a reduced impact in terms of energy consumption due
to signalling. In this work, in particular, we focus on the beacon-enabled mode of IEEE 802.15.4 [1].
This mode divides the transmission through time slots and, besides, two periods are defined depending
on the kind of access used by the nodes in the network: contention access period (CAP), where slotted
CSMA/CA is adopted, and contention-free period (CFP), where GTS slots are distributed to the nodes
(see Figure 8). Since time slots can have different sizes from one cluster to another, we distribute
resources in terms of rate, i.e., rj is the rate allocated to the j-th sensor. Thereafter, we use these rates
to derive the time slot allocation. Note that depending on each specific Superframe (SF) configuration,
the maximum transmission rate in each cluster changes. Furthermore, we will also take into account
the quality of the radio links by means of the Packet Delivery Ratio (PDR), that is, PDRj is the ratio
between correctly received packets and sent packets at the j-th sensor. As previously commented, beacon
collision problems can appear in a cluster-tree WSN based on the beacon enabled mode. For that reason,
we take into account a beacon collision mechanism. In particular, we consider the time-division approach
adopted by the Zigbee specification [9], i.e., time is divided in such a way that the beacon frame of each
coordinator is sent during the inactive periods of the rest of coordinators (see Figure 9).

Figure 8. Beacon frame configuration adopted by the IEEE 802.15.4 standard [1].
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Given the sensor demands in M = [M1, . . . ,MN ]
T and the minimum guaranteed allocation in

m = [m1, . . . ,mN ]
T (both in terms of rate), the optimum allocation is computed by solving the

following optimization problem using the CDM,

max
{rj}

∑N
j=1 Uj(rj · PDRj;wj, γ)

s.t. mj ≤ rj ≤ Mj, j = 1, . . . , N

Ar ≼ c

(27)

where the priority values wj allow us to balance the allocation towards some sensors in the network
and γ fixes the degree of fairness as discussed in Equation (2). Moreover, the radio link qualities are
also considered as far a rj · PDRj is the effective data rate assigned to the j-th user. In particular,
note that when Uj(rj) = wj log(rj · PDRj) the resulting allocation is insensitive to PDRj because
Uj(rj ·PDRj) = wj[log(PDRj)+ log(rj)] and thus, proportional fairness does not benefit sensors with
bad channel condition. If we fix γ > 1 instead, the resulting allocation is balanced towards the bad
sensors. Note that in the limit, i.e., with γ → ∞, max-min fairness does not admit low effective data
rates even if this implies a significant reduction in terms of the network throughput.

Once the optimal allocation is obtained, it has to be mapped onto a time slot assignment. Since the
WSN scenario can be assumed quasi-static in most of the real-life applications, it is reasonable to sustain
an allocation for a given number of Beacon Intervals (BI), say nBI . Therefore, the real-valued number
of time slots assigned to the j-th sensor on the nBI periods is

TSj =
r′j · nBI · TBI

bj
(28)

where r′j is the rate across the j-th sensor, that is, its own rate plus the rate of all the nodes below it.
Furthermore, TBI is the BI duration and bj is the packet size in bits at the j-th sensor. Since TSj in
Equation (28) is real-valued, the cluster head has to round the allocation of its nodes. We propose to
allocate first ⌊TSj⌋ time slots to each node and then successively allocate one extra time slot to the
sensors with the biggest value of TSj − ⌊TSj⌋, where ⌊·⌋ represents the floor function. Note that
the higher the nBI , the higher the optimality of the time slot allocation. However, if the network is
substantially dynamic, we shall fix nBI = 1 and implement other rounding strategies that are out the
scope of this paper. In any case, we need algorithms that converge fast to the optimal solution if we want
to track the changes in the network efficiently. This is achieved with the proposed CDM as shown in the
next simulation results.

4. Numerical Results

Let us consider the network configuration depicted in Figure 10, with 15 sensor nodes, one sink
node and 5 capacity constraints that deploy a three-level cluster tree. Note that the following results
can be extrapolated to WSNs with a larger number of nodes and a larger number of levels and thus,
our simplified example has no loss in generality. Specifically, the Superframe (SF) is configured as
follows: TBI is set to 245.76 ms and is the same at all levels; the SF duration is 61.44 ms at the highest
level, 30.72 ms at the intermediate level and 15.36 ms at the lowest level. According to [33], this
configuration provides 9.38 kbps, 10.94 kbps and 13.02 kbps of data rate, respectively. Furthermore,
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if we consider 15 slots per BI dedicated to the Guaranteed Time Slot (GTS) allocation, the size of the
slots in bits is 9, 21 and 50, respectively. Accordingly, the rate capacities of the clusters are set to
c = [3.0516, 1.2820, 1.2820, 1.2820, 0.5496]T kbps.

Figure 10. Network configuration used in the numerical results.
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In our simulations, we compare our CDM-based approach to the widely-used First Come First Serve
(FCFS) policy. We assume, without loss of generality, that the values of wj and PDRj are set to 1 and
that all the sensors are of the same type and thus, all of them need to transmit n bits per BI. However,
the rate requests are quantized by the time slot duration at each sensor so that each node asks for n̄i/TBI

kbps, where n̄i is the nearest multiple (above) of the packet size in bits at the i-th node. Figure 11
shows an allocation example for n = 20 bits. We notice that the CDM-based policy provides a rate
allocation that is very close to the optimal, whereas the FCFS solution does not guarantee a fair resource
allocation, even when the throughput is not penalized. Note that, in the example under consideration,
there exists no trade-off between fairness and throughput because we have set error-free links. Note
also that our proposed time slot allocation does not provide the optimum fair rate allocation due to the
rounding effects.

Figure 11. Allocation example for n = 20 bits.
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In order to study the fairness degree provided by both solutions, we plot in Figure 12 the Fairness
Index (FI) as a function of the requested bits n. The FI takes values between 0 and 1 and measures
how far is a certain resource allocation with respect to the one that is considered optimal or most fair. If
FI = 0 the allocation is totally unfair and if FI = 1, the resulting allocation is completely fair. A value
that is in-between such as 0.6 may be interpreted as follows: the 60% of allocations are considered fair
in mean. The FI is computed as [34]

FI =

∑
j z

2
j

N(
∑

j zj)
2

(29)

where zj =
xj

r∗j
, being r∗j the optimal fair allocation and xj the allocation under test. Therefore,

xj represents the rate allocation that results from either our CDM-based time slot distribution or the
standard-proposed FCFS approach. Furthermore, r∗j is the real-valued optimal rate allocation, that is,
without rounding. Note in the figure that the CDM-based approach provides a solution that is very close
to the optimal whereas the FCFS allocation tends to be more unfair as the transmission requirements of
the sensors grow until it stabilizes around 0.5, which is pretty unfair. Therefore, FCFS is an acceptable
strategy for small traffic loads, that is, when the network resources suffice to satisfy all the sensor
requirements. However, the allocation is unfair at high loads because the mechanism does not distinguish
sensors that are parents of a sub-cluster tree from sensors that are not. Since the two receive the same
amount of resources in mean, the sensors in the sub-cluster tree (including the parent node) are thus
penalized. In our example, the routing policy of a sensor is to first relay the packets with a lower
time stamp and then send its own packets, which explains the higher allocation of sensors 1 and 2 in
Figure 11.

Figure 12. Fairness comparison.

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1

Sensor request (bits per BI)

F
ai

rn
es

s 
In

de
x

Fairness Index vs sensors demand

 

 

FCFS
Proposed

Finally, signalling is a very important aspect to take into account when considering distributed
optimization techniques. The advantage is clear: the network operates at the desired optimal point
(proportional fairness in our examples). Notwithstanding, as opposite to other policies such as
FCFS, sensors need to exchange information thus draining the sensor batteries. Therefore, distributed
optimization approaches make sense if the amount of signalling information is kept small. In Figure 13
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we compare the proposed CDM against the classical dual decomposition approach in terms of iterations
required to converge to the optimal solution. In this example, requests, maximum transmission rates,
minimum guaranteed rates and sensor priorities are picked at random using uniform distributions. In
particular, di, ci v U [0, 50] kbps, mi v U [0, 0.5] kbps and pi v U [0, 2]. In our simulations, the step-size
in dual decomposition is adjusted to provide good performance in general, fixing it to αk = 0.5√

k
(note

that the CDM has no parameter to configure). See in Figure 13 one numerical example. Note that
although one iteration of the CDM implies twice the amount of signalling required in one iteration of
dual decomposition, the number of iterations in the latter is excessively large and makes the technique
impractical in the WSN context. On the contrary, the CDM finds the optimal solution using 10–30
iterations in general. In other words, the CDM requires about 40N to 120N messages to achieve a fair
distribution of the available rate whereas the so-called dual decomposition solution needs to exchange
up to 5, 000N in our example. If we consider 32-bit messages, our solution requires 56.25 kb in total
whereas the dual decomposition approach needs 2343.75 kb of signalling.

Figure 13. Comparison between the CDM and the dual decomposition.
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5. Conclusions

In this paper, we present a resource allocation technique that is designed to fairly distribute the
available time slots among the sensors of a cluster-tree WSN. Our solution is based in convex
decomposition and, in particular, it combines the so-called primal and dual decompositions in a single
algorithm that provides superior performance in terms of convergence speed. Thanks to the proposed
Network Utility Maximization (NUM) formulation, it is possible to choose the most adequate definition
of fairness in our application, going from max-min fairness to max-sum rate. As shown in the document,
the standard-proposed First Come First Serve policy provides pretty unfair allocations when the traffic
load in the network increases and proportional fairness is considered. Moreover, the NUM formulation
takes into account the different rate capacities in the network, which are due to different superframe
configurations, as well as the radio link qualities by means of the Packet Delivery Ratio.
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Throughout the document, we focus our attention on the practical application of the proposed method.
On one hand, the conversion form rate (required by the algorithm) to time slots is addressed. On the other
hand, the signalling involved in the computation of the global optimal solution is detailed. Specifically,
our method requires the double amount of signalling per iteration when compared to dual decomposition.
Notwithstanding, the number of iterations can be reduced up to a factor of 1,000 so that the total amount
of signalling is reduced about 500 times. Besides, the CDM has no parameter to be adjusted, which is a
true impairment in practice.

In summary, we can conclude that the most remarkable benefits of our solution are:

• The network can be adjusted to operate with several fairness definitions by fixing the value of γ.
• The optimal solution is distributedly computed in the cluster-tree network.
• The price to pay to compute that optimal solution in terms of signalling is minimized with respect

to existing techniques.
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Appendix

Proof of Proposition 3

As it is discussed after Problem (21), the step from yk to ŷk forces all the values in each subset Ak
m

to either increase or decrease their allocation in order to fulfill the corresponding rate constraint. Let us
consider the first case, i.e., all the values of ŷkj with j ∈ Ak

m satisfy ŷkj < ykj . Since ykj ∈ [mj,Mj], it is
straightforward to see that ŷkj < dj . However, it is possible that ŷkj ≤ mj ∀j ∈ Ak

m. Notwithstanding,
this implies that there is no strictly feasible point in the original problem, which contradicts the initial
hypothesis. Note that we need to increase all the values in ŷkj to reach a strictly feasible point but this
violates the rate constraint. Therefore, there is at least one value that accomplishes ŷkj ∈ (mj,Mj).
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Similarly, we can consider the second case, that is, the values of ŷkj with j ∈ Ak
m are increased in the

primal projection. In this occasion, if the resulting point ŷkj verifies ŷkj ≥ dj ∀j ∈ Ak
m, it implies that the

associated constraint is not really necessary. However, this contradicts our hypothesis that the subset of
active constraints at the optimum is known. This concludes the proof of the proposition.
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