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Abstract. In recent years there has been a significant raise in the use
of graph-formatted data. For instance, social and healthcare networks
present relationships among users, revealing interesting and useful infor-
mation for researches and other third-parties. Notice that when someone
wants to publicly release this information it is necessary to preserve the
privacy of users who appear in these networks. Therefore, it is essential
to implement an anonymization process in the data in order to preserve
users’ privacy. Anonymization of graph-based data is a problem which
has been widely studied last years and several anonymization methods
have been developed. In this chapter we summarize some methods for
privacy-preserving on networks, focusing on methods based on the k-
anonymity model. We also compare the results of some k-degree anony-
mous methods on our experimental set up, by evaluating the data utility
and the information loss on real networks.

Keywords: Privacy, K-Anonymity, Social networks, Graphs, Informa-
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1 Introduction

Nowadays, large amounts of data are being collected on social and other kinds
of networks, which often contain personal and private information of users and
individuals. Although basic processes are performed on data anonymization,
such as removing names or other key identifiers, the remaining information can
still be sensitive and useful for an attacker to re-identify users and individuals.
To solve this problem, methods which introduce noise to the original data have
been developed in order to hinder the subsequent processes of re-identification.
A natural strategy for protecting sensitive information is to replace identifying
attributes with synthetic identifiers. We refer to this procedure as simple or näıve



anonymization. This common practice attempts to protect sensitive information
by breaking the association between the real-world identity and the sensitive
data.
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Fig. 1: Näıve anonymization of a toy network, where G is the original graph, G̃
is the näıve anonymous version and G̃Dan is Dan’s 1-neighbourhood.

Figure 1a shows a toy example of a social network, where each vertex rep-
resents an individual and each edge indicates the friendship relation between
them. Figure 1b presents the same graph after a näıve anonymization process,
where vertex identifiers have been removed and the graph structure remains the
same. One can think users’ privacy is secure, but an attacker can break the pri-
vacy and re-identify a user on the anonymous graph. For instance, if an attacker
knows that Dan has four friends and two of them are friends themselves, then
he can construct the 1-neighbourhood of Dan, depicted in Figure 1c. From this
sub-graph, the attacker can uniquely re-identify user Dan on anonymous graph.
Consequently, user’s privacy has been broken by the attacker.

Two types of attacks have been proposed which show that identity disclosure
would occur when it is possible to identify a sub-graph in the released graph in
which all the vertex identities are known [2]. In the active attack an adversary
creates k accounts and links them randomly, then he creates a particular pattern
of links to a set of m other users that he is interested to monitor. The goal
is to learn whether two of the monitored vertices have links between them.
When the data is released, the adversary can efficiently identify the sub-graph
of vertices corresponding to his k accounts with high probability. With as few a
k = O(log(n)) accounts, an adversary can recover the links between as many as
m = O(log2(n)) vertices in an arbitrary graph of size n. The passive attack works
in a similar manner. It assumes that the exact time point of the released data
snapshot is known, and that there are k colluding users who have a record of what
their links were at that time point. Other attacks on naively anonymized network
data have been developed, which can re-identify vertices, disclose edges between
vertices, or expose properties of vertices (e.g., vertex features). These attacks
include: matching attacks, which use external knowledge of vertex features [26]
[41] [39]; injection attacks, which alter the network prior to publication [2]; and
auxiliary network attacks, which use publicly available networks as an external



information source [28]. To solve these problems, methods which introduce noise
to the original data have been developed in order to hinder the subsequent
processes of re-identification.

In this chapter we will summarize some methods for privacy-preserving on
networks, specifically, we will focus on methods based on the concept of k-
anonymity model. This model is widely used for data privacy, both for relational
and graph-formatted data. We will also compare four k-anonymous methods in
terms of data utility and information loss on undirected and unlabelled real
networks.

This chapter is organized as follows. In Section 2, we review the state of the
art of anonymization on networks, specifically the k-degree anonymous meth-
ods. Section 3 introduces the four tested algorithms for k-degree anonymity on
networks. Then, in Section 4, we compare our tested algorithms among them,
in terms of information loss and data utility, and discuss the results. Lastly, in
Section 5, we present the conclusions.

1.1 Notation

Let G = (V,E) be a simple, undirected and unlabelled graph, where V is the set
of vertices and E the set of edges in G. We define n = |V | to denote the number
of vertices and m = |E| to denote the number of edges. We use d to define the
degree sequence of G, where d is a vector of length n and di is the value of i-th
element, that is, the degree of vertex vi ∈ V . We refer to the ordered degree
sequence as a monotonic non-decreasing sequence of the vertex degrees, that is
di ≤ dj ∀i < j. We denote the set of 1-neighbourhood of vertex vi as Γ (vi), i.e,

Γ (vi) = {vj : (vi, vj) ∈ E}. Finally, we designate G = (V,E) and G̃ = (Ṽ , Ẽ) to
refer the original and the anonymous graphs, respectively.

2 Privacy-preserving on networks

Zhou and Pei [39] noticed that to define the problem of privacy preservation in
publishing social network data, we need to formulate the following issues: Firstly,
we need to identify the privacy information to be preserved. Secondly, we need
to model the background knowledge that an adversary may use to attack the
privacy. Thirdly, we need to specify the usage of the published social network
data so that an anonymization method can try to retain the utility as much as
possible while the privacy information is fully preserved.

Regarding to the privacy information to be preserved, we point out three
main categories of privacy breaches in social networks:

1. Identity disclosure occurs when the identity of an individual who is associ-
ated with a vertex is revealed.

2. Link disclosure occurs when the sensitive relationship between two individ-
uals is disclosed.



3. Attribute disclosure which seeks not necessarily to identify a vertex, but to
reveal sensitive labels of the vertex. The sensitive data associated with each
vertex is compromised.

Identity disclosure and link disclosure apply on all types of networks. How-
ever, attribute disclosure only applies on edge-labelled networks. In addition,
link disclosure can be considered a special type of attribute disclosure, since
edges can be seen as a vertex attributes. In this text, we will focus on identity
disclosure.

From a high level view, there are three general families of methods for achiev-
ing network data privacy. The first family encompasses “graph modification”
methods. These methods first transform the data by edges or vertices modifi-
cations (adding and/or deleting) and then release them. The data is thus made
available for unconstrained analysis. The second family encompasses “gener-
alization” or “clustering-based” approaches. These methods can be essentially
regarded as grouping vertices and edges into partitions called super-vertices and
super-edges. The details about individuals can be hidden properly, but the graph
may be shrunk considerably after anonymization, which may not be desirable for
analysing local structures. The generalized graph, which contains the link struc-
tures among partitions as well as the aggregate description of each partition, can
still be used to study macro-properties of the original graph. Among others, [20]
[5] [29] [14] and [3] are interesting approaches to generalization concept. Finally,
the third family encompasses “privacy-aware computation” methods, which do
not release data, but only the output of an analysis computation. The released
output is such that it is very difficult to infer from it any information about an
individual input datum. For instance, differential privacy [16] is a well-known
privacy-aware computation approach. Differential private methods refer to al-
gorithms which guarantee that individuals are protected under the definition of
differential privacy, which imposes a guarantee on the data release mechanism
rather than on the data itself. The goal is to provide statistical information about
the data while preserving the privacy of users. Interesting works can be found,
among others, in [22], [21] and [15].

2.1 Graph modification approaches

Graph modification approaches anonymize a graph by modifying (adding and/or
deleting) edges or vertices in a graph. These modifications can be made randomly
or in order to fulfil some desired constraints. The first methods are called ran-
domization methods and are based on adding random noise in the original data.
They have been well investigated for relational data. Naturally, edge random-
ization can also be considered as an additive-noise perturbation. Notice that
the randomization approaches protect against re-identification in a probabilis-
tic manner. Hay et al. [19] proposed a method to anonymize unlabelled graphs
based on randomly removing m edges and then randomly adding m fake edges.
Ying and Wu [36] propounded two algorithms specifically designed to preserve
spectral characteristics of the original graph. Ying et al. [35] presented a method



which divides the graph into blocks according to the degree sequence and imple-
ments modifications (by adding and removing edges) on the vertices at high risk
of re-identification, not at random over the entire set of vertices. Boldi et al. [4]
introduced a new anonymization approach that is based on injecting uncertainty
in social graphs (they add or remove edges partially with a certain probability)
and publishing the resulting uncertain graphs. Other approaches consider the
degree sequence of the vertices or other structural graph characteristics (for ex-
ample, transitivity or average distance between pairs of vertices) as important
features which the anonymization process has to keep as equal as possible on
anonymized network [17] [37].

2.2 k-anonymity model

Other ways to anonymize consider graph modification methods to meet desired
privacy constraints. The notion of k-anonymity [32] [30] is included in this group,
though it was introduced for the privacy preservation on relational data. For-
mally, the k-anonymity model is defined as follows. Let RT (A1, . . . , An) be a
table and QIRT be the quasi-identifier associated with it. RT is said to satisfy
k-anonymity if and only if each sequence of values in RT [QIRT ] appears with
at least k occurrences in RT [QIRT ]. The k-anonymity model indicates that an
attacker cannot distinguish between different k records although he manages to
find a group of quasi-identifiers. Therefore, the attacker cannot re-identify an in-
dividual with a probability greater than 1

k . In general, the higher the k value, the
greater the anonymization and also the information loss. Ying et al. [35] demon-
strated that deliberate k-anonymization can preserve structural properties of
networks much better than the randomization techniques.

The k-anonymity model can be applied using different quasi-identifiers when
dealing with networks rather than relational data. A widely used option is to
consider the vertex degree as a quasi-identifier, i.e, this model presumes that
the only possible attack is when the attacker knows the degree of some target
vertices. This corresponds to k-degree anonymity. Therefore, if some vertices
are re-identified using this information, then we have an information leakage.
Liu and Terzi [26] developed a method to create a k-degree anonymous network
G̃ = (V, Ẽ) from the original network G = (V,E) and an integer k, where
Ẽ ∩ E ≈ E. Their method is based on anonymizing the degree sequence by
linear programming techniques. Casas-Roma et al. [8] presented a method based
on evolutionary algorithms, which anonymizes the degree sequence and then
translates the modifications to the edge set. Chester et al. [10] [12] also considered
the k-degree anonymity problem, but they modified the network structure by
adding new edges between fake and real vertices or between fakes vertices. Under
the constraint of minimum vertex additions, they show that on vertex-labelled
networks, the problem is NP-complete. Casas-Roma et al. [6] introduced an
algorithm specifically designed for k-degree anonymity on large networks. The
authors construct a k-degree anonymous network by the minimum number of
edge modifications using univariate micro-aggregation to anonymize the degree



sequence, and then they modify the graph structure using basic operations for
graph modification to meet the k-degree anonymous sequence.

Chester et al. [11] introduced the concept of k-subset-degree anonymity as a
generalization of the notion of k-degree-anonimity. In k-subset-anonymity prob-
lem the goal is to anonymize a given subset of vertices, while adding the fewest
possible number of edges. Formally, k-degree-subset-anonymity problem is de-
fined as given an input graph G = (V,E) and an anonymous subset X ⊆ V ,
produces an output graph G̃ = (V,E ∪ Ẽ) such that X is k-degree-anonymous
and |Ẽ| is minimized. They presented an algorithm to k-subset-degree-anonymity
which is based on using the degree constrained sub-graph satisfaction problem.
For unlabelled networks, they give a near-linear algorithm (O(nk)). The output
of the algorithm is an anonymized version of G where enough edges have been
added to ensure all the vertices in X have the same degree as at least k − 1
others.

Zhou and Pei [39] [40] introduced the 1-neighbourhood sub-graph of the ob-
jective vertices as a quasi-identifier. For a vertex u ∈ V , u is k-anonymous
in G if there are at least k − 1 other vertices v1, . . . , vk−1 ∈ V such that
Γ (u), Γ (v1), . . . , Γ (vk−1) are isomorphic. G is k-anonymous if every vertex is k-
anonymous in G. It is called k-neighbourhood anonymity. Tripathy and Panda
[33] noted that their algorithm cannot handle the situations in which an adver-
sary has knowledge about vertices in the second or higher hops of a vertex, in
addition to its immediate neighbours. To handle this problem, they proposed a
modification to their algorithm to handle such situations. In addition, the time
complexity of their algorithm is less than that of Zhou and Pei. Zou et al. [41]
considered all structural information about a target vertex and propounded a
new model called k-automorphism. Hay et al. [20] go a step further and proposed
a method, named k-candidate anonymity, that uses queries as quasi-identifier.
In this method, a vertex vi is k-candidate anonymous to question Q if there are
at least k− 1 others vertices in the network with the same answer. Cheng et al.
[9], in their work on k-isomorphism, formed k pairwise isomorphic sub-graphs
to achieve protection against two specific classes of attacks. Wu et al. [34] in-
troduced the k-symmetry model, wherein for any vertex v, there exists at least
k − 1 other vertices to which v can be mapped using an automorphism of the
underlying graph. Kapron et al. [23] analysed the problem of anonymizing an
edge-labelled network. They considered the label sequence Sv = (`1, `2, . . . , `m)
of a vertex v as some ordering of the labels of the edges incident on v. Lastly,
Stokes and Torra [31] introduced the concept of n-confusion as a generalization of
k-anonymity and a new definition of (k,`)-anonymous graph, which they proved
to have severe weaknesses. The authors also presented a set of algorithms for
k-anonymization of graphs.

When there is little diversity in the sensitive attributes inside an equivalence
class, it is possible to obtain information from anonymized data. Although there
are k indistinguishable records in each equivalence class, if the information in
sensitive attributes is the same, then it is possible to infer information unless
the attacker does not know exactly which record it is. The `-diversity model



[27] alleviates the problem of sensitive attribute disclosure. It ensures that the
sensitive attribute value in each equivalence class are diverse. But an attacker can
also infer some sensible information from similarity or skewness attack [25]. This
leads to t-closeness [25], which is another privacy definition that considers the
sensitive attribute distribution in each class. There are other privacy definitions
of this flavour, but they are all been criticized for being ad hoc [38].

Chester et al. [13] study the complexity of anonymization on different kinds
of network (labelled, unlabelled and bipartite). For general, edge-labelled graphs,
label sequence subset anonymization (and thus table graph anonymization, k-
neighbourhood anonymity, i-hop anonymity and k-symmetry) are NP-complete
for k ≥ 3. For bipartite, edge-labelled graphs, label sequence subset anonymiza-
tion is in P for k = 2 and is NP-complete for k ≥ 3. For bipartite, unlabelled
graphs, degree-based subset anonymization is in P for all values of k. And
for general, vertex-labelled graphs, they show that vertex label sequence-based
anonymization, and consequently t-closeness, is NP-complete.

3 k-Degree anonymous methods

We have selected four relevant methods for k-degree anonymity on networks. In
subsequent sections, we will analyse these methods and compare the empirical
results on real networks. Firstly, Liu and Terzi defined the concept of k-degree
anonymity and presented their method in [26]. Secondly, Casas-Roma et al. in-
troduced two algorithms, the first one based on evolutionary algorithms [8] and
the second one based on univariate micro-aggregation [6]. Lastly, Chester et al.
propounded an algorithm based on vertex and edge addition [12]. All meth-
ods achieve the same privacy level, since they presuppose the same adversary
knowledge and apply the same concept to preserve the network’s privacy. There-
fore, the evaluation of the results is interesting to compare the data utility and
information loss on anonymous datasets.

3.1 Preliminaries

The degree sequence is an interesting tool since the concept of k-degree anonymity
for a network can be directly mapped to its degree sequence, as Liu and Terzi
showed in [26] and we recall in the following definitions:

Definition 1. A vector of integers V is k-anonymous if every distinct value
vi ∈ V appears at least k times.

Definition 2. A network G = (V,E) is k-degree anonymous if the degree se-
quence of G is k-anonymous.

Accordingly to Definition 2, the degree sequence is a key point when dealing
with k-degree anonymity on networks. Regarding to the degree sequence, notice
that:

– The number of elements is n, which represents the number of vertices.



– Each di ∈ d must be an integer in the range [0, n − 1], since each di is the
degree of vertex vi.

–
∑n
i=1 di = 2m, since each edge is counted twice in the degree sequence.

Therefore,
∑n
i=1 di =

∑n
i=1 d̃i if we want to keep the same number of edges

in the anonymous graph.

The construction of the k-anonymous degree sequence determines the privacy
level. Moreover, the distance between the original and the anonymous degree
sequences is critical in terms of data utility and information loss. An optimal
sequence has to provide the requested k-anonymity level and also has to minimize
the distance from the original degree sequence. Some of our tested methods use
Equation 1 to compute the distance between the original degree sequence and
the anonymous one.

∆ =

n∑
i=1

|d̃i − di| (1)

3.2 A dynamic programming algorithm

Liu and Terzi [26] developed a method based on adding and removing edges from
the original graph G = (V,E) in order to construct a new graph G̃ = (Ṽ , Ẽ),
which fulfil k-degree anonymity model and the vertex set remains the same, i.e,
V = Ṽ . Their approach is two-step based: in the first step the degree anonymiza-
tion problem is considered, and in the second step the graph construction prob-
lem is dealt.

Degree anonymization. Given the degree sequence d of the original input
graph G = (V,E), the algorithm outputs a k-anonymous degree sequence (d̃)
such that the degree-anonymization cost ∆ computed by Equation 1 is mini-
mized. The authors proposed three approximation techniques to solve the de-
gree anonymization problem. They first gave a dynamic-programming algorithm
(DP) that solves the degree anonymization problem optimally in time O(n2).
Then, they showed how to modify it to achieve linear-time complexity. Finally,
they also gave a greedy algorithm that runs in time O(nk).

Graph construction. The authors presented two approaches to resolve the
graph construction problem. The first approach considers the following prob-
lem: Given the original graph G = (V,E) and the desired k-anonymous degree
sequence d̃ (output by the the previous step), they construct a k-degree anony-
mous graph G̃ = (V, Ẽ) with Ẽ ∩E = E and degree sequence equal to d̃. Notice
that the problem definition implies that only edge addition operations are al-
lowed. The algorithm for solving this problem was called SuperGraph. It takes
as inputs the original graph G and the desired k-degree anonymous sequence d̃,
operates on the sequence of additional degrees d̃− d and outputs a super-graph
of the original graph, if such graph exists.



The requirement that Ẽ∩E = E may be too strict to satisfy. Thus, the second
approach considers a relaxed requirement where Ẽ ∩ E ≈ E, which means that
most of the edges of the original graph appear in the degree-anonymous graph
as well, but not necessarily all of them. The authors called this version of the
problem the “Relaxed Graph Construction” problem. The ConstructGraph algo-
rithm with input d̃, outputs a simple graph G̃0 = (V, Ẽ0) with degree sequence
exactly d̃, if such graph exists. Although G̃0 is k-degree anonymous, its struc-
ture may be quite different from the original graph G = (V,E). The GreedySwap
algorithm inputs G̃0 and G, and transforms G̃0 into G̃ = (V, Ẽ) with degree
sequence equal to d̃ and Ẽ ∩ E ≈ E using greedy heuristic techniques. At each
step i, the graph G̃i−1 = (V, Ẽi−1) is transformed into G̃i = (V, Ẽi) such that
the degree sequences are equal and |Ẽi ∩ E| > |Ẽi−1 ∩ E|. The transformation
is made using valid swap operations, which are defined by four vertices vi, vj , vk
and vl of G̃i = (V, Ẽi) such that (vi, vk) and (vj , vl) ∈ Ẽi, and (vi, vj) and

(vk, vl) /∈ Ẽi or (vi, vl) and (vj , vk) /∈ Ẽi. A valid swap operation transforms G̃i
to G̃i+1 by updating the edges Ẽi+1 ← Ẽi \{(vi, vk), (vj , vl)}∪{(vi, vj), (vk, vl)}
or Ẽi+1 ← Ẽi \ {(vi, vk), (vj , vl)} ∪ {(vi, vl), (vj , vk)}, as we depict in Figure 2.

vi vk

vj vl

vi vk

vj vl

Fig. 2: Valid swap operation among vertices vi, vj , vk and vl. Dashed lines repre-
sent deleted edges while solid lines are the added ones.

3.3 An univariate micro-aggregation approach

Univariate Micro-aggregation for Graph Anonymization4 (in short, UMGA) al-
gorithm was proposed in [6] and it was designed to achieve k-degree anonymity
on large networks. The algorithm performs modifications to the original net-
work only on edge set (E). Hence, the vertex set (V ) does not change during
anonymization process. In a similar way to the previous method, it is based on
a two-step approach.

Degree sequence anonymization. It constructs a k-degree anonymous se-
quence d̃ = {d̃1, . . . , d̃n} from the degree sequence d = {d1, . . . , dn} of the original
network G = (V,E) using Definition 1. This method uses the optimal univari-
ate micro-aggregation [18] to achieve the best group distribution and then it

4 Source code available at: http://deic.uab.cat/˜jcasas/



computes the value for each group that minimizes the distance ∆ computed by
Equation 1 from the original degree sequence.

Without loss of generality, the authors assume d to be an ordered degree
sequence of the original network. Otherwise, they apply a permutation f to the
sequence to reorder the elements. Let k be an integer such that 1 ≤ k < n which
is the k-degree anonymity value. In order to apply the optimal univariate micro-
aggregation, and according to Hansen and Mukherjee [18], the authors construct
a new directed network Hk,n and get the optimal partition which is exactly the
set of groups that corresponds to the arcs of the shortest path from vertex 0 to
vertex n on this network. They denote by g the optimal partition, where g has
n
k ≤ p ≤ n

2k−1 groups and each of them (gj) has between k and 2k − 1 items.
Obviously, each di ∈ d belongs to a specific group gj .

Next, the algorithm computes the specific value for each group gj , since the
mean value of all group members di ∈ gj can be a real number and an integer
number is needed in the degree sequence. Using the floor or ceiling functions
to round these values, the total number of edges in each group gj (computed
as the sum of all di ∈ gj) can be the same, higher (which means some new
edges are needed) or smaller (which means some edges have to be deleted).
To optimally resolve this operation two methods are proposed to achieve the
best combination on reasonable time: firstly, the exhaustive method explores all
possible combinations until it finds an optimal solution. Secondly, the greedy
method uses a probability distribution to find a quasi-optimal (in many cases,
the optimal) solution in a faster way.

Graph modification. It builds a new network G̃ = (V, Ẽ) where its degree
sequence is equal to d̃ by using basic edge modification operations. These oper-
ations allow it to modify the network’s structure according to the anonymized
degree sequence (d̃). By Definition 2 the anonymized network G̃ will be k-degree
anonymous.

In order to modify the edge set of a given network, the authors define three
basic operations: edge switch, edge removal and edge addition. The edge switch
between three vertices can be defined as follows: if vi, vj , vk ∈ V , (vi, vk) ∈ E
and (vj , vk) 6∈ E, we can delete (vi, vk) and create (vj , vk), as shown in Figure 3a.
The edge removal is defined as follows: we select four vertices vi, vj , vk, vl ∈ V
where (vi, vk) ∈ E, (vj , vl) ∈ E and (vk, vl) 6∈ E. We delete edges (vi, vk) and
(vj , vl), and create a new edge (vk, vl), as depicted on Figure 3b. Finally, the edge
addition is defined as follows: we select two vertices vi, vj ∈ V where (vi, vj) 6∈ E
and create it. It is presented in Figure 3c.

The selection of the auxiliary edges is an important feature, since adding or
removing important edges is critical for network structure and information flow.
For instance, adding or removing a bridge-like edge may considerably reduce
or increase the average distance and the shortest paths of the entire network.
Two approaches were presented to select the auxiliary edges needed for graph
modification process: the first one is based on random edge selection, which is
the fastest way to select the auxiliary edges. The second approach is based on



vi vj

vk

(a) Edge switch

vi vj

vk vl

(b) Edge removal

vi vj

(c) Edge addition

Fig. 3: Basic operations for network modification with vertex invariability.
Dashed lines represent deleted edges while solid lines are the added ones.

selecting auxiliary edges by considering the relevance of each edge according
to edge neighbourhood centrality (NC) [7], which identifies the most important
edges on a network with low complexity (O(m)). Obviously, this approach leads
the process to a low information loss results.

3.4 Vertex addition method

Chester et al. [12, 10] focused on creating a k-degree-anonymous graph G̃ =
(V ∪ Ṽ , E ∪ Ẽ) from the original one G = (V,E). In G̃, the authors require that
all the original vertices (V ) are k-degree-anonymous. They also require that the
new vertices are concealed as well so that they cannot be readily identified and
removed from the graph in order to recover G, i.e, V ∪ Ṽ is k-degree-anonymous
in G̃. They seek to minimise |Ṽ |, while maintaining the constraint that E ⊆
Ṽ × (V ∪ Ṽ ).

Their method introduces fake vertices into the network and links them to each
other and to real vertices in order to achieve the desired k-anonymity value. The
authors introduced an O(kn) k-degree anonymization algorithm for unlabelled
graphs based on dynamic programming and prove that, on any arbitrary graph,
the minimisation of |Ṽ | is optimal within an additive factor of k. For a special
class of graphs that is likely to include social networks, the algorithm is optimal
within 1 for reasonable values of k.

At a high level, the algorithm proceeds in three stages. First, Chester et
al. designed a recursion to group the vertices of V by target degree (the de-
gree they will have in G̃). The recursion establishes a grouping such that the
max deficiency, a parameter in determining with how many vertices V must be
augmented, is minimised. A dynamic programming with cost O(nk) is used to
evaluate the recursion. The second stage is to determine precisely how many
vertices with which we wish to augment V in order to guarantee that they can
k-anonymize all of G̃. This number is a function of k and max deficiency. Finally,
the algorithm introduces a particular means of adding new edges, each of which
has at least one endpoint in G̃, with the objective of satisfying all the target de-
grees established during the recursion stage and k-anonymizing the new vertices
added during the second stage. A critical property of this approach is that the



edges are added in such a manner as to guarantee tractability of the problem
of k-anonymizing the new vertices, a problem which may be hard in the general
case.

3.5 An evolutionary algorithm approach

Evolutionary Algorithm for Graph Anonymization5 (in short, EAGA) [8] is a
method focused on constructing a k-degree anonymous graph using evolutionary
algorithms. A high-level description of this proposal allows us to structure it in
two steps, in a similar way to the previous approaches.

Obtaining the k-degree anonymous sequence. In the first step, from the
original degree sequence d = {d1, · · · , dn} of G = (V,E), it constructs a new
sequence d̃ which is k-degree anonymous and tries to minimize the distance ∆
from the original sequence computed by Equation 1.

As we have commented, the anonymization of the degree sequence is com-
puted by an evolutionary algorithm. The population is initialised from original
degree sequence and many iterations are performed until a valid solution is
found. The mutation process, which is responsible of the new candidates gener-
ation, applies a basic edge switch at each step (i.e, it adds one to an element
of the sequence and subtracts one to another element of the sequence). This
basic operation represents a change on a vertex of an edge, which is the most
basic edge modification on a graph. For example, if an edge (vi, vk) is modi-
fied by replacing one vertex, one can obtain (vj , vk). This edge modification is
represented on the degree sequence as a subtraction on vertex vi (because it
decreases its degree) and a addition on vertex vj (because it increases its de-
gree). It is important to note that this algorithm does not use crossover since
this operation systematically breach the rule that preserves the number of edges
of the graph, generating invalid candidates. The authors state the performance
of the algorithm would be affected by the inclusion of this type of evolution and
improvements would not occur in time or quality of the solution found. When
candidate generation is done, the algorithm evaluates the candidates in order
to find the best one. The score of each candidate is determined by the fitness
function, which is a two-state function: if the k value of the candidate is lower
than the desired one, the fitness function considers the dispersion in the degree
histogram and the number of vertices which belong to groups between 0 and
k−1 in the degree histogram, i.e, the number of vertices which does not fulfil de
k-degree anonymity. This step is called “expansion” since the candidates tend to
expand on the representation space trying to find a valid solution. On the con-
trary, if the k value of the candidate is equal or greater than the desired one, the
fitness function only considers the distance from the original degree sequence.
This step is called “retraction”, since the candidates tend to move close to the
original degree sequence. The candidate selection uses the steady-state model to
choose the individuals which will survive to the next generation.

5 Source code available at: http://deic.uab.cat/˜jcasas/



Table 1: General properties of tested networks: number of vertices (|V |), number
of edges (|E|), average degree (〈deg〉) and default k-anonymity value (k).

Network |V | |E| 〈deg〉 k

Polbooks 105 441 8.40 1

Polblogs 1,222 16,714 27.31 1

Modifying the original graph. In the second step, the algorithm constructs
a graph G̃ = (Ṽ , Ẽ) where Ṽ = V , Ẽ ∩E ≈ E and the degree sequence is equal
to d̃. The difference between the anonymized and the original degree sequences
d̃ − d points to vertices which have to increase or decrease their degree. Thus,
some edges have to be added or removed from/to these vertices. The algorithm
applies these modifications by edge switch, which consists on removing an edge
(vi, vk) ∈ E, where vi belongs to vertices which have to decrease their degree, and
adding a new edge (vj , vk), where vj belongs to vertices which have to increase
their degree, as we show in Figure 3a.

4 Experimental Results

In this section we will compare the result of anonymizing processes using the four
k-degree anonymous methods presented in Section 3. We apply all algorithms
on the same data with the same parameters and compare the results in terms of
information loss and data utility. We use several structural and spectral measures
in order to quantify the information loss from distinct perspectives or network’s
characteristics. It is important to note that the privacy level is the same for all
algorithms, as we compare results with the same k value. UMGA algorithm is
applied using the neighbourhood centrality edge selection.

4.1 Tested networks

Table 1 shows a summary of the networks’ main features, including number
of vertices, number of edges, average degree and default k-anonymity value.
US politics book data (polbooks) [24] is a network of books about US politics
published around the 2004 presidential election and sold by the on-line bookseller
Amazon. Edges between books represent frequent co-purchasing of books by the
same buyers. Political blogosphere data (polblogs) [1] compiles the data on the
links among US political blogs. Both of them are undirected and unlabelled
networks.

4.2 Measures

In order to compare the algorithms, we use several well-known structural and
spectral measures [36, 35, 4, 12]. The first structural measure is harmonic mean
of the shortest distance (h). It is an evaluation of connectivity, similar to the



average distance or average path length. The inverse of the harmonic mean of
the shortest distance is also known as the global efficiency, and it is computed
by Equation 2, where d(vi, vj) is the length of the shortest path from vi to vj ,
meaning the number of edges along the path.

1

h
=

1

n(n− 1)

n∑
i,j=1
i 6=j

1

d(vi, vj)
(2)

Modularity (Q) indicates the goodness of the community structure. It is de-
fined as the fraction of all edges that lie within communities minus the expected
value of the same quantity in a network in which the vertices have the same
degree, but edges are placed at random without regard for the communities.

Transitivity (T ) is one type of clustering coefficient, which measures and
characterizes the presence of local loops near a vertex. It measures the percentage
of paths of length 2 which are also triangles.

Lastly, sub-graph centrality (SC) is used to quantify the centrality of vertex
vi based on the sub-graphs. Formally:

SC =
1

n

n∑
i=1

SCi =
1

n

n∑
i=1

∞∑
k=0

P ki
k!

(3)

where P ki is the number of paths from vi to vi with length k.
Moreover, two spectral measures which are closely related to many network

characteristics [36] are used. The largest eigenvalue of the adjacency matrix A
(λ1) where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues
of A encode information about the cycles of a network as well as its diameter.
The second smallest eigenvalue of the Laplacian matrix L (µ2) where µi are the
eigenvalues of L and 0 = µ1 ≤ µ2 ≤ . . . ≤ µm ≤ m. The eigenvalues of L encode
information about the tree structure of G. µ2 is an important eigenvalue of the
Laplacian matrix and can be used to show how good the communities separate,
with smaller values corresponding to better community structures.

4.3 Empirical results

Results are disclosed in Table 2. Each row indicates the scored value for the corre-
sponding measure and algorithm, and each column corresponds to an experiment
with a different k-anonymity value. Each characteristic is reported from two to
four times, corresponding to EAGA, UMGA, Liu and Terzi (indicated by L&T)
and Chester et al. (indicated by Chester) algorithms. A bold row indicates the
best algorithm for each measure and network. Values of Liu and Terzi algorithm
are taken from Ying et al. [35] and values of Chester et al. algorithm are taken
from [12]. Unfortunately, values for all measures and algorithms are not avail-
able. Perfect performance in a row would be indicated by achieving exactly the
same score as in the original network (the k = 1 column). Although deviation is
undesirable, it is inevitable due to the edge or vertex modification process.



Table 2: Results for EAGA, UMGA, Liu and Terzi (L&T) and Chester et al.
(Chester) algorithms. For each dataset and algorithm, we vary k from 1 to 10
(k = 1 correspond to original dataset) and compare the results obtained on λ1,
µ2, h, Q, T and SC. The last column correspond to the average error 〈E〉. Bold
rows indicate the algorithm that achieves the best results (i.e, lowest information
loss) for each measure. Values of Liu and Terzi algorithm are taken from Ying
et al. [35] and values of Chester et al. algorithm are taken from [12].

Polbooks k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1

EAGA
11.93

12.04 12.01 12.04 11.95 12.05 12.01 11.72 10.84 11.45 0.230
UMGA 12.09 11.97 11.85 11.85 11.95 12.09 12.08 12.08 11.86 0.090
L&T 12.00 12.05 12.11 12.22 12.30 12.31 12.64 12.72 12.85 0.383

µ2

EAGA
0.324

0.372 0.477 0.496 0.516 0.515 0.600 0.595 0.578 0.321 0.156
UMGA 0.360 0.451 0.453 0.453 0.383 0.599 0.524 0.524 0.640 0.147
L&T 0.430 0.450 0.600 0.600 0.790 0.630 0.650 0.970 0.880 0.312

h
EAGA

2.450
2.378 2.324 2.346 2.297 2.314 2.294 2.282 2.308 2.421 0.109

UMGA 2.416 2.371 2.379 2.379 2.418 2.312 2.350 2.350 2.312 0.077
L&T 2.350 2.320 2.280 2.280 2.230 2.270 2.260 2.200 2.190 0.167

Q
EAGA

0.402
0.399 0.387 0.387 0.383 0.387 0.379 0.379 0.387 0.389 0.014

UMGA 0.400 0.393 0.396 0.396 0.401 0.386 0.386 0.386 0.385 0.009
L&T 0.390 0.390 0.380 0.380 0.360 0.370 0.370 0.340 0.350 0.027

T
EAGA

0.348
0.343 0.330 0.324 0.281 0.300 0.288 0.283 0.245 0.299 0.044

UMGA 0.350 0.342 0.339 0.339 0.347 0.326 0.322 0.322 0.324 0.013
L&T 0.330 0.330 0.320 0.330 0.300 0.310 0.320 0.290 0.300 0.023

SC(×103)
EAGA

2.524
2.624 2.333 2.293 1.751 2.001 1.967 1.415 0.653 1.534 0.634

UMGA 2.774 2.358 2.224 2.224 2.338 2.363 2.389 2.389 2.110 0.204
L&T 2.480 2.560 2.530 2.760 2.440 2.680 3.600 3.580 4.120 0.431

Polblogs k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1

EAGA
74.08

73.13 70.26 55.61 53.09 49.33 46.89 44.44 42.88 44.08 18.703
UMGA 73.93 73.81 73.92 73.95 73.74 73.80 73.75 73.63 73.61 0.256
L&T 74.89 74.50 75.16 75.10 76.32 75.82 76.67 77.42 78.42 1.758

µ2

EAGA
0.168

0.168 0.168 0.692 0.674 0.748 0.754 0.690 0.858 0.757 0.517
UMGA 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000
L&T 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

h

EAGA

2.506

2.677 2.623 2.596 2.592 2.588 2.595 2.565 2.572 2.575 0.071
UMGA 2.501 2.499 2.496 2.496 2.496 2.502 2.498 2.502 2.499 0.006
L&T 2.500 2.484 2.494 2.475 2.469 2.461 2.462 2.486 2.458 0.026
Chester 2.506 2.486 2.476 2.476 2.456 2.456 2.446 2.436 2.426 0.039

Q
EAGA

0.405
0.404 0.404 0.402 0.395 0.399 0.401 0.392 0.400 0.397 0.005

UMGA 0.404 0.403 0.403 0.403 0.403 0.403 0.402 0.403 0.402 0.002
L&T 0.402 0.401 0.401 0.396 0.394 0.395 0.389 0.387 0.385 0.010

T

EAGA

0.226

0.224 0.219 0.148 0.130 0.110 0.104 0.086 0.078 0.082 0.085
UMGA 0.224 0.224 0.224 0.224 0.223 0.225 0.224 0.223 0.224 0.001
L&T 0.225 0.223 0.224 0.221 0.222 0.220 0.219 0.221 0.221 0.004
Chester 0.219 0.215 0.207 0.205 0.200 0.226 0.190 0.185 0.183 0.020

SC(×1029)

EAGA

1.218

0.472 0.027 0.011 0.003 0.001 0.001 0.009 0.001 0.001 1.044
UMGA 1.052 0.932 1.040 1.068 0.871 0.921 0.875 0.776 0.765 0.266
L&T 2.730 1.870 3.610 3.400 1.450 6.940 6.250 4.460 4.040 2.386
Chester 1.300 1.410 2.160 2.880 2.660 5.550 5.370 11.000 8.250 2.969

The first tested network, Polbooks, is a small collaboration network. We
present values for EAGA, UMGA and Liu and Terzi algorithms. As shown in
Table 2, UMGA algorithm introduces less noise on all measures. It outperforms
on all measures, producing half of the average error in some measures, for ex-
ample, λ1 or SC. EAGA algorithm achieves the second best results on λ1, µ2,
h and Q, while Liu and Terzi algorithm carry out on T and SC.



Polblog is the second tested network, which is considerably larger than the
first one. Values for Chester et al. algorithm are presented for h, T and SC
(other values are not available from Chester et al. [12]). Like in the previous
test, UMGA algorithm gets the best values on all measures, except on µ2 where
Liu and Terzi algorithm achieves the same value. For instance, the average error
is 0.006 for UMGA on h, while it rises to 0.026 for Liu and Terzi algorithm,
0.039 for Chester et al. approach, and 0.071 for EAGA. Similar results appear
on λ1, T and SC. Liu and Terzi algorithm obtains the second best results on
λ1, h and T , while EAGA does on Q and SC. Chester et al. approach by vertex
addition gets values close to others algorithms, though the predictable level of
information loss is slightly larger than the ones obtained by UMGA and Liu and
Terzi algorithms. Despite the fact that EAGA gets good results on some metrics,
the average error outbursts in many others. For example, results on λ1 and µ2

are larger than others, pointing out a considerable spectral noise introduced by
the anonymization process.

We note two important factors which can be decisive for the quality of the
anonymous data: The first one is the number of modifications in the edge and
vertex set. Clearly, it is important to minimise these values since keeping them
close to the original ones will preserve the structural and spectral metrics. The
second factor we point out is related to edge relevance. Some edges play an im-
portant role inside the network, and preserving them we will lead the process to a
better data utility and lower information loss. For instance, a bridge-like edge is
critical for the structure of the network and the information flow. Thus, preserv-
ing it will conduct the anonymization process to a low information loss results.
Notice that UMGA is the only algorithm which considers the edge relevance.

5 Conclusions

We have reviewed recent studies on anonymization techniques for privacy-preserving
publishing of graph-formatted data. The research and development of privacy-
preserving social network analysis is still in its early stage compared with much
better studied privacy-preserving data analysis for tabular data. In this chap-
ter we have focused on methods related to k-anonymity model, specifically to
k-degree anonymity methods. These methods consider the vertices degree as
adversary’s knowledge, i.e, the adversary tries to re-identify a user in the anony-
mous data using the degree of some target vertices.

Four relevant methods of k-degree anonymity have been surveyed and com-
pared. They are the algorithm by Liu and Terzi in [26], the approach using
evolutionary algorithms and univariate micro-aggregation by Casas-Roma et al.
in [8, 6], and the method based on vertex addition instead of only changing the
edge set by Chester et al. in [12].

As we have stated before, the best results are achieved by the UMGA algo-
rithm. We point out two important factors in order to reduce the information
loss and preserve the data utility. Firstly, it is important to minimise the number
of modifications in edge and vertex set, and secondly, considering the edge rel-



evance will reduce the noise in the anonymous data and preserve the structural
and spectral properties.
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