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Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during 

the last decades to support complex decision making in a number of fields, such as logistics and 

transportation, telecommunication networks, bioinformatics, finance, etc.  The continuous increase in 

computing power, together with advancements in metaheuristics frameworks and parallelization 

strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-

life combinatorial optimization problems that arise in a number of financial and banking activities.  This 

paper reviews some of the works related to the use of metaheuristics in solving both classical and 

emergent problems in the finance arena.  A non-exhaustive list of examples includes rich portfolio 

optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project 

scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk 

assessment.  The paper also discusses some open opportunities for researchers in the field, and forecast 

the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems 

being considered.  

• Applied computing➝Operational research➝Decision analysis • Applied computing➝Law, social and behavioral 

sciences➝Economics. 
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 INTRODUCTION 

Centered on the wealth creation process, the study of finance and financial 

instruments is considered to be one of the trendiest disciplines in our modern society.  

It is thus not surprising that banking, credit, investments, and financial instruments 

(assets and liabilities) are frequent research topics.  Specifically, financial economics 

has gained an increasing notoriety due to the undeniable impact that micro- and 

macro-economic factors have on financial decisions and their outcomes.  The fast 

development experienced by the finance-related research brings investors and 

practitioners around the world countless opportunities.  At the same time, this is a 

field of interest for the academia, since the financial institutions acknowledge the 

capacity-building and the transfer of knowledge from a plurality of ideas and 

methods. 

Concurrently, as an interdisciplinary area of knowledge, Operational Research 

comprises a range of problem-solving methods and techniques, which aims at 

providing efficient solutions to relevant decision-making processes.  In this context, 

optimization methods are recognized as versatile approaches able to solve 

multifaceted practical problems.  For decades, the implementation of optimization 

methodologies has inspired a broad spectrum of decision-making research that has 

been applied in different areas, including logistics and transportation, manufacturing 

and production, healthcare, telecommunication and computing, business and finance, 

to name just few.  Although most optimization methods are well consolidated as 
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powerful mathematical procedures, much less attention has been devoted to tackle 

tailored problems in applied finance despite the extraordinary development that 

financial systems, markets, institutions, and assets have been experiencing during 

the last decades. 

In practical financial applications, advances in Operational Research and 

Computer Science (OR/CS) have brought new solution opportunities.  Nowadays, 

exact methods –relying mostly on different mathematical and constraint 

programming approaches– are complemented by approximate algorithms –e.g., 

heuristics and metaheuristics– to tackle near-optimal solutions to complex 

combinatorial-optimization problems.  Although the latter approaches have attracted 

less attention in the literature of finance so far, the boundaries of these techniques 

are gaining popularity during the last two decades.  Among others, Talbi [2009], 

Yang [2010], and Gogna and Tayal [2013] provide excellent overviews on these 

approximate methods and their applications in solving difficult optimization 

problems.  Although approximate methods do not warrant a global optimum, they are 

able to provide at least near-optimal solutions in reasonable computing times to 

realistic NP-hard problems, where exact approaches would require an excessive 

amount of computing time.  Gilli et al. [2008] and Gilli and Schumann [2012a] 

promote the use of heuristic-based approaches.  Furthermore, the emergence of 

matheuristics (integration of exact methods and metaheuristics) is mapping a new 

scenario where hybrid strategies aim to exploit the benefits of both methodologies 

[Puchinger and Raidl 2005; Raidl 2006; Jourdan 2009; Blum et al. 2011; Boschetti 

and Maniezzo et al. 2011; Boussaïd et al. 2013; Serani et al. 2015].  Likewise, 

combinations of different metaheuristic frameworks are conceived.  Recently, Juan et 

al. [2015] propose the use of simheuristics –integration of metaheuristics and 

simulation– to solve combinatorial optimization problems with stochastic components.  

Figure 1 shows the time evolution of journal-published scientific articles that are 

related to the application of metaheuristics in finance.  A growing trend can be 

clearly observed in this data.  Therefore, although a vast number of existing 

optimization papers in finance makes use of exact methods, it seems evident that the 

popularity of metaheuristics to support decision making in this area is gaining 

momentum among researchers –which is reasonable due to the complexity of real-life 

financial problems.  Being an interdisciplinary topic of interest for researchers and 

practitioners belonging to different communities, the distribution of published 

articles by knowledge area and journal is depicted in Table I.   

This study provides a review of metaheuristic algorithms that are used to solve 

combinatorial optimization finance-related problems.  By doing so, it contributes to 

the existing literature in different ways.  Firstly, it reviews how metaheuristics have 

been used to deal with classical optimization problems in finance.  Secondly, it 

identifies emerging optimization problems in the field.  Thirdly, the paper also 

discusses how simheuristic algorithms can extend metaheuristics to address financial 

combinatorial optimization problems considering real-life uncertainty.  Overall, our 

research brings to the attention of financial economists and professionals recent 

methodological advances that can help seize the opportunity to improve the quality of 

financial decisions.    

 



  
                                                                                                                                         

 

 

 
Fig. 1. Evolution 

of related articles 

published 

for the period 

2000- 2015. 

 
Table I. 

Distribution of articles by knowledge area and journal 

Knowledge Area Journal Title 
# papers 

(2000 – 2015) 

Operational Research & 

Management Science 

European J. of Operational Research 18 

Expert Systems with Applications 15 

Annals of Operational Research 4 

J. of the Operational Research Society  2 

OR Spectrum 2 

Computers & Operational Research 2 

Applied Mathematics and Computation  2 

J. of Scheduling 1 

J. of Global Optimization 1 

Management 

Management Science 1 

Computational Economics 1 

Int. J. of Project Management 1 

Int. J. of Operational & Production Management 1 

Finance 

J. of Banking & Finance 5 

Quantitative Finance 1 

J. of Financial Economics 1 

J. of Risk 1 

Economics 
Economic Modelling 1 

The J. of Political Economy 1 

Computer Science & 

Artificial Intelligence 

Applied Soft Computing 3 

Information Sciences 2 

Applied Mathematics and Computation 1 

Nonlinear Analysis: Real World Applications 1 

J. of Experimental & Theoretical AI 1 

 

The remainder of this study is structured as follows. Section 2 provides a brief 

overview of key metaheuristic techniques for readers with a background different 

from optimization.  Section 3 reviews research that uses metaheuristics to solve 

classical optimization problems in finance.  Emerging optimization problems in 

finance are discussed in section 4.  A short discussion on computational times is 

provided in Section 5.  Section 6 proposes future trends regarding the intensification 

in the use of some types of metaheuristics, as well as the combination of 

metaheuristics with simulation to solve stochastic combinatorial optimization 



 
 

 

finance-related problems.  Finally, section 7 summarizes the most relevant findings 

of this study. 

 A BRIEF OVERVIEW ON METAHEURISTIC ALGORITHMS 

This section provides a brief overview on metaheuristic algorithms for those readers 

who are not familiar with these optimization methods.  For a more detailed review on 

metaheuristics and their potential applications in different fields, the reader is 

referred to Talbi [2009] and Luke [2013].  Metaheuristics are optimization algorithms 

that describe efficient methods and techniques to search for an optimal or near-

optimal solution inside typically vast solution spaces.  Usually, these searching 

methods use some kind of stochastic but guided behavior in order to explore the 

solution space.  Metaheuristic algorithms have gained popularity during the last 

decades since they can provide near-optimal solutions with reasonable computing 

times to complex (NP-hard) optimization problems.  Metaheuristics are often applied 

to support real-life decision-making, as they are generally faster than exact methods 

when solving realistic and large-size versions of NP-hard combinatorial optimization 

problems [Caceres-Cruz et al. 2014].  Fast computational times of metaheuristics are 

of key importance in practical applications.  Indeed, many managerial and financial 

decisions have to be reached within a very short period of time, often within few 

minutes or even seconds.  

Metaheuristics can be categorized into single-solution and population-based 

algorithms (Figure 2).  On the one hand, single-solution metaheuristics generate a 

single solution and then improve it using an iterative searching process inside the 

solution space.  The Greedy Randomized Adaptive Search Procedure (GRASP), 

Simulated Annealing (SA), Iterated Local Search (ILS), and Tabu Search (TS) are 

typical examples of single-solution based metaheuristics [Schlottmann and Sesse 

2004b].  These algorithms are the ones preferred by researchers with a background 

in Operational Research, since, at least to some extent, they are more “white-box” 

methods –i.e., their internal behavior relies on a search strategy that usually follows 

an easy-to-understand logic.  On the other hand, population-based metaheuristics 

use the information about a complete set of solutions to scan the solution space for 

good results [Boussaid et al. 2013].  Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithms (FA), and 

Evolutionary Algorithms (EAs) –which include Genetic Algorithms (GA), Genetic 

Programming (GP), and Differential Evolution (DE)– are typical examples of 

population-based metaheuristics.  These algorithms are usually developed in 

Computer Science and Artificial Intelligence, since they usually rely on computing 

parallelization strategies and require intensive parameter fine tuning (to some 

extent, they are more “black-box” methods).  Another dimension into which 

metaheuristic algorithms can be classified is local search and constructive procedures.  

A local search algorithm starts by constructing an initially feasible solution, which is 

then progressively improved through local changes in the attempt to find local 

optima close to the initial solution.  Unlike local search algorithms, constructive 

procedures build up a solution iteratively by selecting a promising movement at each 

step.  In practice, both local search and constructive procedures are often combined 

inside the metaheuristic framework to attain more competitive results.   
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Fig. 2. Classification of key metaheuristics. 

 CLASSICAL OPTIMIZATION AND SELECTION PROBLEMS IN FINANCE 

This section reviews scholarly articles on applications of metaheuristics, with a 

particular emphasis on ‘classical’ optimization problems in finance.  These problems 

are classical in the sense that they have been studied for several decades now.  

Examples of classical problems include the Portfolio Optimization and Selection 

Problem, the Index Tracking Problem, the Enhanced Indexation Problem, the Credit-

risk Optimization Problem, the Stock Investment Problem, and the Project 

Scheduling Problem.  Table II summarizes the metaheuristic techniques that have 

been utilized to solve each of these problems.   

 
Table II. Metaheuristic approaches used to solve classical optimization problems in finance 

 Single-solution Population-based 

Optimization Problem SA TS GA DE GP ABC FA ACO PSO 

Portfolio Optimization  X X X X  X X X X 

Index Tracking X  X X      

Enhanced Indexation   X       

Credit-risk Optimization   X      X 

Stock Investment   X  X     

Project Scheduling  X X X   X X   



 
 

 

This summary suggests that (i) the Portfolio Optimization and Selection Problem and 

the Project Scheduling Problem have been widely studied using a plethora of 

metaheuristic algorithms, probably because they are strongly correlated with other 

problems in the field; (ii) Evolutionary Algorithms (including GAs, GPs, and DEs) 

have been employed in solving all of the aforementioned problems, which is probably 

due to their flexibility and their capacity to deal with real-life constraints; and (iii) 

single-solution based metaheuristics, which have shown to be very efficient in other 

fields, have not been employed so far to solve classical optimization problems in 

finance. 

 Portfolio Optimization and Selection Problem 

The mean-variance theory of portfolio optimization and selection of Harry Markowitz 

[Markowitz 1952] posits that investors minimize the risk of investment in a portfolio 

of assets by optimally allocating the weights to those assets subject to: (i) the 

minimum required (or expected) rate of return on the investment portfolio; and (ii) 

the availability of resources for investment.  In the Markowitz’s portfolio 

optimization and selection problem (POSP), the risk of portfolio investment is 

measured by the variance of a portfolio return, which can be thought of as a weighted 

average of returns (with non-negative weights) on individual assets in the portfolio.  

The resulting objective function is a quadratic function that is minimized subject to 

the above constraints.  Thus, the POSP deals with a trade-off between minimizing 

portfolio variance and maximizing expected portfolio return.  An advantage of the 

POSP is that it can be effectively used by the investor to diversify the portfolio risk 

by investing in a set of assets with imperfectly correlated returns.  A disadvantage of 

the POSP is that –while it is parsimonious and algebraically simple– it 

underrepresents real-world scenarios.  As discussed in Beasley [2013], the problem 

becomes NP-hard when some realistic constraints are also considered, among others: 

including bounds on the number of assets allowed in the portfolio, including bounds 

on the level of investment allowed for each individual asset, and forcing some assets 

to be mandatory in any portfolio due to the investor preferences.  However, the 

computational intractability can be alleviated by metaheuristic algorithms that 

provide the decision maker with near-optimal solutions within reasonable 

computational times.   

In this regard, various metaheuristic algorithms have been developed in the 

related literature.  Chang et al. [2000] incorporate the so-called cardinality and 

quantity constraints in the POSP.  The former places a limit on the number of assets 

that can be selected in a portfolio.  The latter sets the ceiling and/or the floor on the 

weights allocated to each asset in the portfolio.  Doering et al. [2016] analyze the role 

of metaheuristic algorithms in solving the POSP with cardinality and quantity 

constraints.  Specifically, Chang et al. [2000] solve the resulting problem with three 

different metaheuristic techniques; GA, TS and SA.  Since none of the algorithms is 

found to clearly outperform the others, their recommendation is to execute the three 

algorithms and combine the results as an efficient way to solve the POSP.  Along 

similar lines, Maringer and Kellerer [2003] analyze the cardinality constrained POSP.  

Unlike Chang et al. [2000], they solve the POSP by means of using a hybrid 

metaheuristic that combines SA with evolutionary strategies.  Maringer and Kellerer 

[2003] argue that such a hybrid algorithm is not only efficient but also can be 

adapted to solve the POSP that features further realistic constraints, including 

transaction costs, taxes, quantity constraints, alternative risk metrics and return 

distributions.  In an attempt to overview the related literature, Di Tollo and Roli 

[2008] propose a classification framework for metaheuristic algorithms.  They further 



  
                                                                                                                                         

 

 

shed light on the potential of hybrid metaheuristics, thus lending support to 

Maringer and Keller [2003].  They argue that “metaheuristics provide flexible and 

powerful solving strategies that can effectively and efficiently tackle the various 

instantiations of the Portfolio Selection Problem, from the basic Markowtz 

formulation, to more elaborated models including also side constraints”.  They also 

recognize the field of financial optimization as an interdisciplinary one, and therefore 

highlight the necessity of cross-fertilization of ideas between the algorithmic and the 

finance communities.  Cura [2009] proposes a PSO approach for a cardinality 

constrained version of the POSP.  The author uses stock market data on some of the 

most important financial indices around the world, i.e.: the Hang Seng (Hong Kong), 

the DAX100 (Germany), the FTSE100 (UK), the S&P100 (USA), and the Nikkei 

(Japan).  According to the obtained results, the PSO algorithm is competitive relative 

to other metaheuristic approaches, such as GA, SA, and TS.  Soleimani et al. [2009] 

analyze the POSP with three additional constraints: cardinality constraints, market 

(sector) value and minimum transaction lots.  Their proposed GA is efficient in 

solving large-size instances of the aforementioned problem. 

More recently, Woodside-Oriakhi et al. [2011] use three different metaheuristic 

algorithms (GA, TS, and SA) to examine the cardinality constrained POSP.  In fact, 

they combine these metaheuristics with exact methods during the solving process, 

thus creating matheuristics.  By comparing with previously published results, the 

authors show the efficiency of the proposed algorithms with regard to computational 

time and solution quality. 

Gorgulho et al. [2011] propose a GA to manage a portfolio of assets by means of 

technical analysis indicators.  The authors compare the proposed trading strategy 

with the market itself and a number of other investment strategies.  In their 

experiments they use data from the 2003–2009 periods, which overlaps with the 

recent global financial crisis.  Their results indicate that their approach 

unambiguously outperforms the other metaheuristics.  Di Gaspero et al. [2011] 

construct a matheuristic algorithm that combines a local search algorithm with 

quadratic programming to solve a realistic variant of the POSP, which includes 

minimum cardinality constraints and pre-assignment of assets to the portfolio.  Their 

algorithm finds the optimum in most instances, and is competitive when compared to 

other novel methods.   Golmakani and Fazel [2011] develop a PSO metaheuristic to 

solve an extended POSP problem with four categories of constraints: cardinality, 

holdings bounds, minimum transaction lots and sector size constraints.  The latter 

constraint conveniently addresses the investor’s belief that investments in more 

capitalized sectors are less risk that investments in less capitalized sectors.  Their 

findings indicate that the PSO metaheuristic is able to outperform –both in solution 

quality and computation times– previously developed approaches, especially in large-

scale problems.  Deng et al. [2012] also construct a PSO algorithm to solve the POSP 

with cardinality constraints.  Their algorithm is able to improve the results attained 

by other existing algorithms, especially for portfolios with low-risk investment.  The 

authors also state their interest in developing new ACO-based metaheuristic 

algorithms for the POSP.  He and Huang [2012] propose an enhanced PSO algorithm 

for solving four portfolio POSPs with the real data from the Hong Kong stock market.  

According to their results, their enhanced particle swarm optimization algorithm 

outperforms other similar approaches.  Metaxiotis and Liagkouras [2012] review the 

existing body of research on POSPs, with a particular emphasis on multi-objective 

evolutionary algorithms.  To this end, they scrutinized 91 scholarly articles in total.  

Over 80% of these have come from a two-dimensional approach consisting in the use 



 
 

 

of portfolio’s expected return and variance as objectives.  Additionally, 

multidimensional objectives using VaR, annual dividends, expected shortfall, and 

skewness have been used only to a limited extent.  This paper also reviews the 

constraints alternatives in the formulation of the models, identifying the two-

constraints model as the most popular one.  Specifically, they found that cardinality 

constraints, in conjunction with lower and upper bounds, are the most widely 

recognized.  The authors also put the emphasis on the emerging opportunities 

derived from the inclusion of additional real-world constraints, which cover more 

realistic POSPs.  Corazza et al. [2013] analyze the POSP considering several 

alternative measures of risk and penalty functions.  They focus on a category of 

metrics that utilizes information contents in the lower and upper tail of the return 

distribution.  A nonlinear POSP, which takes into consideration several realistic 

constraints, makes the problem NP-hard.  For solving the problem, these authors 

propose a PSO algorithm.  Cesarone et al. [2013] analyze a cardinality-constrained 

version of the POSP.  The authors develop an exact algorithm for solving small size 

instances of the problem.  Their approach consists of picking an asset at the start and 

then adding one asset at a time in an optimal fashion.  Additionally, the authors 

exploit some theoretical results on quadratic programming.  However, they also 

propose a metaheuristic algorithm for solving larger instances, and employ an exact 

algorithm for checking the efficiency of the proposed metaheuristic.  Lwin and Qu 

[2013] investigate an enriched version of the POSP including practical trading 

constraints such as the cardinality, floor, and ceiling constraints.  For solving this 

problem, they derive a new hybrid algorithm that integrates a DE algorithm with 

another population based approach.  The extended benchmark datasets stored in the 

OR Library are used to appraise the quality of the new hybrid algorithm.  Mansini et 

al. [2014] comprehensively survey existing models of portfolio optimization.  They 

also review a number of real-world features of POSP problems, such as: transaction 

costs, transaction lots, cardinality constraints, investment threshold constraints, and 

decision-dependency constraints.  These real-world features comprise the 

computational approaches –both of exact and heuristic nature– that are used to solve 

those optimization models.  Therefore, considering real-life features has a direct 

impact in terms of modeling, since some decision variables may be expressed either 

in relative or absolute values.  Furthermore, the authors highlight that the difficulty 

of the problem is increased when integer or binary variables are included in the 

model.  Di Tollo et al. [2014] define a multi-criteria optimization problem in which 

both ‘active’ and ‘passive’ approaches are combined.  An active approach requires the 

investor to estimate future returns, while in a passive approach the investor aims to 

construct a portfolio that replicates the behavior of a stock market index.  The 

authors propose an efficient hybrid matheuristic that combines local search and 

quadratic programming to solve the multi-criteria problem and obtain an 

approximation of the Pareto frontier.  Tuba and Bacanin [2014] present a hybrid 

algorithm combining two population-based metaheuristics to deal with the 

cardinality constrained POSP.  According to their results, their hybrid approach 

improves each of the individual approaches and also outperform the ones obtained 

from GA, SA, TS and PSO.  Adebiyi and Ayo [2015] discuss an extended version of 

the POSP consisting of four categories of constraints: cardinality, expert opinion, 

holdings bounds, and minimum transaction lots.  The authors propose a 

metaheuristic approach based on an extended variant of the DE algorithm.  They 

also advocate the necessity of introducing expert opinion as an additional constraint 

to existing portfolio selection models.  According to their results, their approach 

outperforms other metaheuristics methods, including existing GAs, SA, TS and PSO.   



  
                                                                                                                                         

 

 

 Index Tracking Problem  

Index tracking is a buy-and-hold trading strategy, which seeks to passively mimic the 

behavior of the stock market index with a reduced number of stocks.  The index 

tracker fund is constructed to match the components of a market index.  The 

objective of the index tracker fund’s manager is to obtain the same return as the one 

attained on a market index, such as the S&P 500.  Thus, the index fund strategy 

represents a relatively stable and efficient vehicle of investment.  Indeed, the index 

tracking funds’ popularity lies on their simplicity and readiness to offer a controlled 

risky option to deliver market-driven returns.  The Index Tracking Problem (ITP) 

aspires to reproduce the performance of a stock market index, albeit without 

acquiring all of the constituents of the stock market index.  Although the ITP is well-

known in finance, it has received scarce attention in comparison to a closely related 

POSP.  There are two stages involved in the index tracking construction: firstly, the 

selection of stocks problem; and secondly, the determination of optimal weights for 

the selected stocks.  Therefore, the ITP with a partial replication strategy can be 

solved by applying a metaheuristic approach, and reasonable solutions are obtained 

in a proper runtime.  Also a full replication method is conceived meaning that the 

same weight proportion is held as represented in the benchmark index.  In this case, 

however, the transaction costs associated with the periodically re-weighting process 

(necessary to accurately replicate the objective index) are deducted from the index 

tracker fund performance.  Therefore, partial replication is commonly assumed, 

where minimizing the tracking error (namely the wedge between returns on the 

tracking portfolio and on the underlying index) is usually considered as the objective 

function.   

In the context of this problem, a number of metaheuristic approaches have been 

proposed: Beasley et al. [2003] present a population-based evolutionary algorithm –

specifically, a population heuristic– to solve the ITP.  Their analysis attributes 

central importance to the underlying transaction costs and constraints when 

applying a partial replication.  Reduction tests and results obtained from five data 

sets are encouraged to be used in further studies.  Derigs and Nickel [2003] employ a 

SA algorithm, and they present their analysis considering a case study on tracking 

error minimization for a specific German index.  Limited computational results are 

presented when reproducing the benchmark, but authors highlight the reasonable 

time and quality of the decision support system proposed.  Oh et al. [2005] propose a 

GA to solve an ITP variant.  They carry out several experiments and conclude that 

the proposed GA leads to a notable improvement in the performance of an index, 

mainly in a more volatile market stance.  Rafaely and Bennell [2006] also apply a GA 

and compare its performance with quadratic programming, which is commonly 

proposed as the solution approach.  Both methods use simulations in order to track 

their performance by using data on the FTSE100) index.  It is concluded that the GA 

shows an improved quality when appraising the errors in maximizing returns on the 

index.  Krink et al. [2009] suggest the hybridization of DE and combinatorial search 

to solve the ITP.  The problem consists of minimizing the tracking-error volatility 

with regards to a stock market index.  To this end, they implement an evolved DE 

version, which is able to generate accurate and robust solutions.  To solve the ITP, 

Ruiz-Torrubiano and Suarez [2009] develop a hybrid optimization algorithm that 

combines a GA with quadratic programming.  This hybrid algorithm yields near 

optimal solutions when it is applied to both synthetic and real world problems.  

Although the transactions costs are not considered in their analysis, the authors 

highlight the importance of their inclusion for further research.   



 
 

 

More recently, Guastaroba and Speranza [2012] introduce an advanced heuristic 

algorithm, referred to as Kernel Search, in order to identify a subset of variables 

under mixed-integer lineal programming to deal with two variants of the ITP.  

Transaction costs are included in both optimizations models. Computational results 

show the effectiveness and efficiency of their proposed approach.  Scozzari et al. 

[2013] develop a DE approach.  Their results highlight the appropriateness of 

heuristic performance to deal with large-size problems.  Specifically, the authors 

emphasize the boundaries of merging exact algorithms with heuristics to address the 

ITP.  They propose the hybridization of heuristic with exact solvers in the following 

manner: within a large-size multi-period ITP, they propose to use a heuristic 

algorithm to generate a reasonable good solution for the first period within a short 

computational time.  Then, they use the exact method to determine optimal solutions 

for all succeeding periods.  Chiam et al. [2013] develop a multiple-objective EA to 

address the implementation of various real-world issues regarding the ITP.  They 

formulate a realistic approach with stochastic capital injections, balanced transaction 

costs, and additional constraints.  The authors make use of out-of-sample data sets.  

Their analysis is extended to cover time-varying market conditions that affect the 

index fund during the investment horizon.  To test the performance of this approach 

various rebalancing scenarios are considered and, finally, the multi-objective 

evolutionary index tracking optimizer (MOEITO) is validated.  Finally, Fastrich et al. 

[2014] propose to use a hybrid DE algorithm to solve the ITP under cardinality and 

other realistic constraints.  These authors employ a financial data set to highlight the 

complexity of real-world ITPs. 

 Enhanced Index Tracking Problem 

Closely related to the aforementioned ITP, the Enhanced Index Tracking Problem 

(EITP) is considered a trading strategy that seeks to outperform the returns of the 

benchmark index.  The idea is to mimic the performance of a market index while 

exceeding the return on the underlying index.  Thus, the EITP maximizes the excess 

return while keeping the tracking error bounded and assuming the same level of risk.  

Accordingly, the main discrepancy between the ITP and the EITP lies on the active 

component that the latter approach incorporates: the EITP let the managers and 

investors to employ active strategies in order to offset the proportion of tracking error 

that arises mainly from transaction costs.  Despite the fact that their approach is of 

exact nature (Mixed Integer Programming), it is worthy to underscore the seminal 

work of Canakgoz and Beasley [2009], who consider the traditional ITP but also 

address the EITP.  In particular, their constructed EITP incorporates a semi-active 

and risk-controlled investment strategy.  They carry out an exhaustive literature 

review in which the ITP and the EITP are treated separately.  These authors provide 

a set of data benchmarks, available from the OR-Library, in an attempt to 

standardize the data selection process and to compare among different solving 

approaches.  In their approach, the authors envisage limits on the number of stocks 

and on the total transaction costs as real-world constraints.  The computational times 

are considered to be reasonable, at least for small-size instances.  

More recently, Li et al. [2011] propose an evolutionary multiple-objective 

algorithm, coined as the Artificial Immune System (AIS), to solve the EITP.  These 

authors use the data set proposed by Canakgoz and Beasley [2009].  Although the 

results are somewhat inconclusive, their metaheuristic algorithm shows a seemingly 

superior performance.  Chavez-Bedoya and Birge [2014] propose a parametric 

approach to solve the EITP.  Although non-linear and non-convex objective functions 

are easily incorporated into the proposed approach, the selection of appropriate stock 



  
                                                                                                                                         

 

 

characteristics in the parametric model is difficult to handle.  Authors recommend 

choosing strategies that mix different typologies of assets.  Such strategies aim to 

avoid excessive exposures to a particular sector or a group of stocks.  The advantage 

of facilitating more information to investors about the portfolio holdings is 

highlighted, since the optimization is performed over portfolio strategies.  Finally, Li 

and Bao [2014] present a multi-objective algorithm with one-period investment 

horizon.  Authors leave for further research the multi-stage optimization algorithm 

which characterizes the tracking process control. 

 Credit Risk Management  

Credit Risk Management (CRM) is associated with the constructing and rebalancing 

of a portfolio of credit assets in order to achieve a desired overall risk level.  From a 

strategic point of view, the risk manager should distribute the credit risk among a 

diversified set of products.  In the first step, the optimization algorithm initially aims 

at assigning the optimal weight for each asset in the portfolio. In a second step, the 

optimal risk allocation is determined.  The trade-off in this framework is to optimize 

the credit assets allocation against decreasing the overall risk of investment.  In this 

scenario, the bank acts as an investor, whose goal is to balance the risk and return 

relation within a portfolio of loans.  Mausser and Rosen [2001] discuss the 

disadvantages of CRM.  On the one hand, CRM builds on a large number of scenarios 

required to model credit events.  On the other hand, CRM encounters difficulty in the 

treatment if risk measures.  These authors consider Linear Programming models to 

minimize risk and trade off risk and return.  They also propose a heuristic approach 

that considers different credit risk measures in CRM.  Frey and McNeil [2002] 

propose value-at-risk (VaR) and compare it with other risk measures to estimate the 

loss of credit portfolio.  VaR is a statistical framework used to appraise the level of 

financial risk within a bank, company or portfolio of securities over a specific unit of 

time.  VaR is generally parameterized into the value of loss, the probability of that 

value of loss, and the time span over which the loss takes on that value.  

Schlottmann and Seese [2004a] highlight again the aforementioned difficulty arising 

when modeling the CRM as asymmetric loss distributions appear.  The authors 

propose a hybrid EA to solve the risk-return trade-off of credit portfolios.  Their 

approach considers real-life constraints, such as the level of capital constraint.  The 

results show higher quality solutions in comparison with the non-hybridized 

evolutionary version in terms of speed and convergence.  This notwithstanding, one 

of the weaknesses of the VaR measure is that –while it builds on a sound statistical 

approach– it fails to assess the scale of losses should they transcend the VaR.  In this 

regard, Yamai and Yoshiba [2005] illustrate how the tail risk of VaR can become 

problematic for a concentrated credit portfolio.  In their research, the optimal 

solution of a utility maximization problem with VaR constrains is an investment in 

securities with a non-negligible probability of a large loss that exceeds the VaR level.  

This is the case when the probability density function of losses presents significant 

departures from normality.  Thus, conditional value-at-risk (CVaR) –that 

characterizes the average value that is lost over a specific time frame, should the loss 

surpass the VaR threshold– appears to be a superior measure for risk of any loss 

distributions as also highlighted in Rockafellar and Uryasev [2000, 2002]. 

More recently, Iscoe et al. [2012] present optimization techniques that rely on 

conditional distribution approximations and variance reduction.  The results show a 

reduction in the size of a problem and an improvement in the out-of-sample quality 

solution.  They apply a heuristic algorithm to minimize both VaR and expected 



 
 

 

shortfall while various approximations to the conditional portfolio loss distribution 

are considered.  Lu et al. [2013] propose to solve CRM by applying a novel two-level 

PSO (TLPSO) algorithm.  The objective is to optimize the maximum value of expected 

loss from a credit portfolio with a budget constraint for the consulting cost.  The 

TLPSO shows a superior performance compared to a GA and a simpler PSO.  

Zopounidis [2015] highlight the importance of credit risk modeling since the 2008 

global financial crisis.  Some of the innovations in financial instruments employed by 

the banking supervision authorities, along with a new regulatory environment, aim 

to mitigate and prevent the adverse effects of financial instabilities.  In this scenario, 

credit rating appears to be key element within the CRM problem.  These authors 

employ a multiple-criteria decision approach to construct models that predict credit 

ratings.  Dostál [2013] highlights the growing importance of soft computing methods 

–fuzzy logic, neural computing, evolutionary computation, machine learning, and 

probabilistic reasoning– in risk management, among other areas of finance.   

 Asset Selection and Market Timing 

Selection of stocks and prediction of the stock market pose serious challenges to asset 

managers and investors, who seek to identify and select not only the best performing 

stocks but also the optimal timing to engage in buying or selling those stocks.  The 

stock market also represents an alternative source of funding that companies may 

use, which means that the stock market contains a large variety of stocks, with 

varying levels of volatility.  All in all, the stock market is considered a powerful 

vehicle of wealth creation, which challenges investors to decide on the optimal stocks 

allocation so as a desired trade-off between risk and return is attained.  Crucially, 

this decision must be also encompassed with a sophisticated strategy that aims to 

outperform the market benchmark.  Thus, one of the main concerns related to stock 

market investment consists of determining the most efficient combination of assets 

that is at least as profitable as the market index.  The solution to this Stock Selection 

Problem (SSP) is to build up an optimal portfolio of n assets by considering both the 

expected returns and risk that the portfolio is exposed to.  A closely related problem 

that also has attracted attention since late 80s is the Market Timing Problem (MTP), 

which refers to the determination of the optimal investment timing (when to buy or 

sell stocks) assuming that prices change over time.  A common procedure to deal with 

this problem involves designing automated trading rules that dictate where to invest 

all the available capital (i.e., either in a financial asset or in a risk-free security) 

within a trading day.  Some attempts have been made to develop efficient 

metaheuristic approaches for both problems.  In this regard, Allen and Karjalainen 

[1999] apply a GA to a broad stock market index (S&P 500) using daily prices.  These 

authors discuss the advantages that GAs offer, including solutions for technical 

trading rules.  Although little evidence of economically significant technical rules is 

found, the methodological contribution of this research could be extended to learn or 

extract some trading rules from other variables as the ones included in the GA are 

not necessarily optimal.  Lee and Jo [1999] support the use of GAs as a proper 

method able to solve the complexity inherent to the MTP.  Iba and Sasaki [1999] 

utilize a GA to predict stock returns under a stock-picking strategy.  This strategy 

acts as follows: (i) it picks the best-performing stocks; (ii) it determines the number of 

stocks to buy or sell; and (iii) it determines the timing of buy and sell trades.  Also, 

their paper claims the effectiveness of metaheuristic approaches based on GP.  Kim 

and Shin [2007] study the effectiveness of a hybrid approach that combines the 

adaptive time delay neural networks and the time delay neural networks with GAs 

in detecting temporal patterns for stock market prediction tasks.   



  
                                                                                                                                         

 

 

More recently, Kaucic (2010) proposes a GA to deal with the MTP.  This approach 

scrutinizes a broad body of technical trading rules in conjunction with a learning 

method and for different states of the economy.  As a result, advantages in terms of 

robustness in the outcomes achieved and simplicity of the method are heralded from 

the statistical and economical perspective.  Manahov et al. [2014] seek to forecast the 

equity market behavior for stocks with different capitalization by means of a GP 

learning algorithm.  Their proposed method is shown to outperform a buy-and-hold 

strategy, and it is found that the constructed forecasts predict better the prices of 

small rather than large stocks.  Chen and Wang [2015] combine a GA with a risk 

model that aims at building up portfolios.  The effective risk attitude is computed 

taking into account not only the investor risk aversion but also the fluctuating 

market conditions (bull market vs. bear market).  Stock prices are forecast by 

hybridizing evolutionary computation with CVaR.  Manahov et al. [2015] propose 

another algorithm based on GP to predict stock market returns.  Its performance is 

compared with that of several market indices (S&P 500, among others).  Kaboudan 

[2000] investigates GP forecasts of stock returns and prices.  While stock market 

returns are unpredictable –as dictated by the efficient market hypothesis– this study 

finds evidence of GP-predictability of stock prices.  Hsu [2011] combines self-

organizing map (SOM) with GP to carry out experimental predictions of the finance 

and insurance sub-index of TAIEX (Taiwan stock exchange capitalization weighted 

stock index).  Hsu’s [2011] research findings show that the SOM-GP procedure 

generates accurate forecasts.  Mousavi et al. [2014] develop a multi-tree GP forest 

approach for dynamic portfolio trading with transaction costs in the stock market of 

both developed (e.g., Toronto Stock Exchange) and emerging (e.g., Tehran Stock 

Exchange) countries.  Numerical experiments performed by Mousavi et al. [2014] 

demonstrate that the proposed model significantly outperforms other traditional 

portfolio selection models in terms of portfolio return and risk adjusted return.   

Sheta et al. [2015] build on a multi-gene GP model to derive a prediction model for 

the S&P 500 stock market index.  Using a number of metrics of prediction accuracy, 

they find that the GP model generally performs better than a regression model.  

Berutich et al. [2016] adopt a robust GP approach to develop profitable trading rules 

for a portfolio of stocks from the Spanish market.  Dabhi and Chaudhary [2015] 

propose a hybrid GP algorithm (Postfix-GP) and wavelet for financial time series 

prediction.  Some promising results are obtained for the stock indexes analyzed 

(NASDAQ and NSE). 

Notably, investment in a portfolio of international stocks requires foreign 

exchange to be purchased or sold.  The quest for optimal investment decisions in the 

foreign exchange market has spurred a body of research on the use of metaheuristics 

for currency trading and prediction of exchanges rates.  Neely et al. [1997] propose a 

GP approach to identify an optimal set of currency trading strategies.  They find 

evidence of economically significant out-of-sample returns (net of transaction costs) 

on trades that involve six exchange rates –USD/DEM, USD/JPY, USD/GBP, 

USD/CHF, DEM/JPY, and GBP/CHF– over the period of 1981-1995.  Mendes et al. 

[2012] adopt a GA that aims to optimize a set of technical trading rules using two 

currency pairs: EUR/USD and GBP/USD.  They find limited evidence of positive 

performance in the out-of-sample test series, when transaction costs are taken into 

account.  Along similar lines, Ozturk et al. [2016] optimize a set of technical currency 

trading rules on two exchange rates: EUR/USD and GBP/USD, albeit in three 

different time frames.  In addition to a GA, as in Mendes et al. [2012], Ozturk et al. 

[2016] also use a greedy search heuristic.  In their experiments –that do not consider 



 
 

 

transaction costs– profitable trades average 60%.  Deng et al. [2015] construct 

technical trading rules through a hybrid prediction and learning method that 

combines multiple kernel learning for regression and a GA on three exchange rates, 

USD/JPY, EUR/USD, and GBP/USD from 2008 to 2011.  The proposed method lead 

to consistently good profits and Sharpe ratios.  Dymova et al. [2016] propose a 

currency trading expert system based on a set of new technical analysis indicators 

and a new approach to the rule-base evidential reasoning.  Using four currency pairs, 

EUR/USD, GBP/USD, EUR/CHF, and USD/CHF, the proposed currency trading 

system shows a positive performance.   

 Project Scheduling Problems 

The Financial Project Scheduling Problem (FPSP), also known as the Capital 

Constrained Problem, is an optimization problem considered of crucial importance to 

support financial decisions under the assumption of certainty.  The problem defines a 

number of activities that require scheduling.  It also allows certain interdependences 

to occur among these activities in the form of precedence constraints.  The goal is to 

identify a schedule which optimizes a suitable objective function.  Usually, there are 

three main variants to consider: (i) project scheduling with time-dependent costs; (ii) 

project scheduling with constrained resources; and (iii) project payment scheduling 

with constrained capital.  In the first variant, the total expected cost-time 

minimization is established as the objective function.  In the second variant also the 

capital or resource constraint is required to process an activity.  As resources are 

limited, additional restrictions emerge to schedule the activities.  In this context, 

machine scheduling model seems to be a suitable choice.  Indeed, the objective 

function aspires to determine a schedule that minimizes makespan (time until the 

last activity is completed).  Finally, the last variant’s objective consists of assigning 

modes for activities and payments so that the net present value (NPV) under the of 

capital availability constraint is maximized.  In a review of Icmeli et al. [1993], three 

related project scheduling problems are described: the project scheduling problem 

with constrained resources, the time and cost trade-off problem, and the payment 

scheduling problem.  The use of metaheuristic algorithms allows the inclusion of 

multifactor levels for a number of project characteristics [Smith-Daniels et al. 1996].  

Thus, surveys offered by Hartmann and Kolisch [2000] and Kolisch and Hartmann 

[2006] on the heuristic and metaheuristic applications to the exploration of positive 

and negative cash flows that investment projects generate.   

More recently, Hartmann and Briskorn [2010] provide a comprehensive survey on 

extensions and modifications of the FPSP with constrained resources.  Montoya-

Torres et al. [2010] present a GA that solves the resource-constrained FPSP with 

constrained resources.  In Akbari et al. [2011] an ABC algorithm to solve the same 

problem is proposed.  He et al. [2012] address a project payment scheduling problem 

with capital constraints.  They propose a TS algorithm as well as a SA algorithm.  

Zhou et al. [2013] and Wu et al. [2014] provide an in-depth overview of the recent 

developments that these problems have experienced.  Rahmani et al. [2015] use 

Differential Search to solve the FPSP with constrained resources.  Finally, He et al. 

[2015] propose a TS and a SA as solvers of the multi-modal NPV problem with 

constrained resources (also known as multi-modal project payment scheduling 

problem with capital constraints), which is maximized by optimally assigning activity 

modes. 



  
                                                                                                                                         

 

 

 EMERGING OPTIMIZATION PROBLEMS IN FINANCE 

This section reviews scholarly articles that center on applications of metaheuristics 

to the solving of emerging optimization problems in the financial arena.  These 

problems include the Option Pricing Problem, the Feature Selection Problem, the 

Bankruptcy Prediction and Financial Distress Prediction Problems, and the Credit 

Risk Assessment Problem.  Table III summarizes the metaheuristic solvers of the 

above problems.  From this table, the following conclusions can be derived: (i) these 

emerging problems have been less analyzed than the classical ones, and the 

metaheuristics more frequently employed so far have been ACO, PSO, and GA; and 

(ii) again, with the exception of TS, single-solution based metaheuristics have not 

been employed so far despite the efficiency and relatively simplicity of these 

approaches. 

 
Table III. Metaheuristic approaches used to solve emerging optimization problems in finance 

 Single-solution Population-based 

Optimization Problem SA TS GA DE GP ABC FA ACO PSO 

Option Pricing    X     X X 

Feature Selection  X      X X 

Bankruptcy & Financial 

Distress Prediction 
  X 

 
   X X 

Credit Risk Assessment  X X     X  

 Option Pricing Problem 

Options are derivative instruments of investment that are used for speculative or 

hedging activities in financial markets. An option derives its value according to their 

underlying asset values.  Understanding the future course of the underlying asset’s 

price and a decision to whether or not enter into an option contract are only two of 

the multiple challenges that investors experience.  Due to the large varieties and 

volumes of options traded in increasingly competitive derivatives markets, the 

profitability of option trades to the investors –buyers and sellers of options– can be a 

daunting task.  Option pricing is notoriously difficult to measure due to the high 

volatility of prices and the dynamism of financial markets.  In this context, financial 

modeling has played a crucial role.  Since Option Pricing Theory set the tenets of 

determining how options should be valued, rich spectrums of alternative innovative 

models have emerged to cover this topic.  Extensions to the Black and Scholes [1973], 

and Merton [1973] models have been proposed to address their limitations, as their 

assumptions of a constant volatility and of normally distributed prices neglect reality.  

Indeed, volatility, time, and dynamism of market conditions are considered key 

factors in options pricing.  A solution for the Option Pricing Problem (OPP) comprises 

numerous price nodes.  The goal is to select the optimal node to exercise the option.  

Different metaheuristic solvers have been considered to solve the OPP.  For instance, 

Yin et al. [2007] propose an adaptive version of a GA that modifies its internal 

performance according to the dynamic running of results.  Kumar et al. [2008] 

propose an ACO algorithm for pricing options, and they find that the pricing process 

is enhanced in comparison with the traditional binomial lattice method.   

More recently, Gilli and Schumann [2012b] have studied calibrating option pricing 

models with the aim of finding parameters that gain consistency between the model 

prices and the market prices.  In their experiments, they use both the DE and PSO 



 
 

 

metaheuristics.  Finally, Sharma et al. [2013] and Thulasiram et al. [2014] use PSO 

to price options. 

 Feature Selection Problem 

In many financial applications, it is crucial to refine the data in order to avoid 

redundant features and the perverse effect caused by the curse of dimensionality.  

The Feature Selection Problem (FSP) consists of selecting a small subset of features –

among those available in a data set– that constitutes the ‘optimal’ representative 

features subset.  Thus, the goal of the FSP is to identify a subset of factors that can 

be utilized to perform classification in an optimal fashion.  The feature selection 

seeker is commonly challenged to identify the right method to solve the FSP.  In this 

regard, it is paramount to ensure that only relevant features for classification are 

selected.  Some financial areas in which the FSP has been applied include: credit 

approval, securities trading, product selection, risk estimation, and corporate 

bankruptcy.  The FSP is characterized as a NP-hard problem, which makes the use of 

metaheuristic approaches indispensable whenever the dataset is large.  Accordingly, 

Casado [2009] presents an application of the FSP to the selection of financial ratios.  

He proposes three different metaheuristic strategies: a GRASP algorithm, a TS 

algorithm, and a memetic algorithm.  His experiments demonstrate that both the 

GRASP and the TS outperform other previous approaches based on the use of GAs.   

Similarly, Unler and Murat [2010] discuss how classification has found applications 

in various financial domains, such as credit approval.  They develop a modified 

discrete PSO algorithm for the FSP.  The PSO is then contrasted with other methods.  

The efficiency of the PSO algorithm is asserted using two metrics, the classification 

accuracy and the computational time.  Xue et al. [2014] also propose a PSO algorithm 

for solving the FSP.  Likewise, Elhedhli et al. [2014] analyze the classification of 

models to predict the outcome of early stage ventures, and propose two different 

methods to deal with the aforementioned problem: the Benders decomposition (an 

exact method) and a TS algorithm.  Their results obtained corroborate the efficiency 

of the TS algorithm for solving both the scoring and classification problems.  Finally, 

Moradi and Rostami [2015] provide a novel refined method of selection based on ACO. 

Most of the aforementioned papers also make use of financial datasets in their 

computational experiments. 

 Bankruptcy Prediction and Financial Distress Prediction 

Bankruptcy normally occurs when debtors are unable to pay off their debts.  Certain 

bankruptcy cases are indicative of financial failures that represent symptoms of 

economic downturns.  When bankruptcies become widespread and contagious the 

impact is disastrous and there are both economic and social losses to financial and 

non-financial companies, governments, and the overall economic system.  Since the 

2008’s financial crisis, the vulnerability of companies and governments to economic 

shocks has risen.  It is therefore crucial for expert systems to anticipate any event 

that threatens financial stability.  A large body of empirical research has centered on 

prediction of corporate default, and different methodological approaches have been 

used to solve this problem.  Within these studies, Varetto [1998] highlights the 

effectiveness of GAs for insolvency prediction, wherein a quicker solution from 

discriminant analysis can be obtained.  Along similar lines, Shin and Lee [2002] 

propose the use of GAs to predict the failure of corporations by using past financial 

data.  In a similar fashion, in Kim and Han [2003], bankruptcy decision rules are 

determined with the use of GAs and the input of experts’ qualitative opinions.  They 

conclude that GAs can outperform alternative metaheuristic solvers (e.g.: neural 



  
                                                                                                                                         

 

 

networks and inductive learning methods) and offer closer results to the experts’ 

problem-solving knowledge.  Adnan-Aziz and Dar [2006] present a review of 

literature and a comparison of methods traditionally employed to tackle this problem, 

e.g.: statistical tools, artificial intelligence and expert systems, and theoretical 

approaches.  However, these surveys lack the presence of heuristic methods that 

have been used in several ways already.  Similarly, in Kumar and Ravi [2007], the 

authors present a comprehensive literature review on the Bankruptcy Prediction 

Problem (BPP), which is closely related to banks and firms.  The period analyzed 

runs from 1968 to 2005, and different predictive methods are analyzed.   

More recently, Chen et al. [2011] illustrate the integration of GAs and learning 

vector quantization in bankruptcy forecasting.  By using a real-world data set they 

conclude that their proposed approach increases effectiveness as features are reduced 

without adversely affecting the prediction performance.  Sun et al. [2014] report a 

detailed survey which includes a full summary, analysis, and evaluation of financial 

distress prediction.  References included therein discuss insights and interesting 

applications of GAs, PSO algorithms, and ACO methods as potential alternatives for 

solving the PPP.  Additionally, this study contextualizes the FSP in the existing body 

of research.  Finally, Aruldos et al. [2015] also propose a GA to forecast bankruptcy 

with qualitative variables.   

 Credit Risk Assessment Problem 

Credit risk is a well-recognized topic in the banking industry.  However, the Credit 

Risk Assessment Problem (CRAP) has gained popularity during the last years.  

Indeed, it is considered a milestone not only for financial institutions (credit 

approval), but also for non-financial companies that act as (trade) credit suppliers to 

their customers, as well as for investors.  Credit analysts process large volumes of 

financial data of companies on daily basis.  They are challenged to evaluate the risk 

of credit and eventually make important decisions on the funding of companies.  As 

Marinakis et al. [2008] argue, corporate and financial credit risk assessment consists 

of the evaluation of default probability on a loan, and potential future benefits and 

costs of a loan.  They propose three metaheuristic algorithms, TS, GA, and ACO, to 

solve the feature subset selection problem, which ultimately classifies firms into 

different credit risk categories according to a reduced number of features.  More 

recently, Oreski and Oreski [2014] develop a hybrid GA that consists of selecting 

features within a CRAP.   

 COMPUTATIONAL ISSUES 

When application of these algorithms is considered in a real-world context, 

computational efforts can play a key role.  Unfortunately, not all the reviewed papers 

provided clear information regarding the processing power employed in their 

experiments, the size of the instances being solved, and the required execution times.  

However, several insights and general trends can be grasped from the available data, 

which are summarized in Table IV.  Firstly, improvements in CPU characteristics 

are associated with lower computational times.  In fact, most of the works use 

reasonably low computing times –in the order of seconds or a few minutes–, to solve 

instances of realistic size.  Secondly, Sharma et al. [2013] and Thulasiram et al. 

[2014] already use modern graphical process units (GPUs), which benefit from 

massive multi-thread parallelization of a computational task.  Indeed, these GPUs 

can help achieve significant reductions in the execution times, often to just a few 

seconds even for complex problems, such as option pricing. 



 
 

 

 
Table IV. Summary of computational times reported in the literature 

Problem Article 
Solving 

Approach 
CPU 

Problem 

Sizes 

Execution 

Times (s) 

Portfolio 

Optimization 

Chang et al. (2000) GA  / TS / SA 100 MHz 31 - 225 74 to 1964  

Maringner and Kellerer 

(2003) 

SA + 

Evolutionary 
900 MHz 30 - 96 2 to 45 

Cura [2009]  PSO 2.1 GHz 31 - 225 34 to 919 

Soleimani et al. [2009]  GA 2.8 GHz 500 - 2000 695 (avg.) 

Woodside-Oriakhi et al. 

[2011]  
GA / TS / SA 2.4 GHz 31 - 225 74 to 331 

Di Gaspero et al. [2011]  LS + QP 3.2 GHz 31 - 225 2 to 46 

Golmakani and Fazel 

[2011] 
PSO 3.0 GHz 9 - 150 22 to 40 

Deng et al. [2012]  PSO 1.6 GHz 31 - 225 5 to 76 

Corazza et al. [2013]  PSO 2.2 GHz 50 - 200 54 to 158 

Cesarone et al. [2013]  MIQP 2.2 GHz 31 - 225 7 to 261 

Lwin and Qu [2013] 
Hybrid 

algorithm  
3.2 GHz 31 - 225 109 to 24823 

Tuba and Bacanin 

[2014]  

Hybrid 

algorithm  
4.0 GHz 31 - 225 12 to 329 

Adebiyi and Ayo [2015]  Modified DE 4.3 GHz 31 - 85 1 to 2 

Index Tracking 

Beasley et al. [2003]  
Population 

heuristic 
225 MHz 31 - 225 102 to 942 

Krink et al. [2009]  Hybrid DE 798 MHz 65 - 225 360 to 420 

Ruiz-Torrubiano and 

Suarez [2009]  
GA + QP 2.0 GHz 31 - 225 1 to 47 

Guastaroba and 

Speranza [2012]  

Kernel Search 

heuristic 
2.4 GHz 31 - 2151 < 5400 

Scozzari et al. [2013]  
Hybrid DE + 

MIQP  
2.2 GHz 65 - 225 685 to 1080 

Enhanced 

Index Tracking 

Canakgoz and Beasley 

[2009] 
MIP + EA 3.0 GHz 31 - 497 3.1 (avg.) 

Credit Risk 

Management 

Schlottmann and Seese 

[2004]  

Hybrid 

algorithm 
2.0 GHz 25 - 386 2.2 (avg.) 

Lu et al. [2013]  Two-level PSO n/a 5 - 100 4 to 12 

Project 

Scheduling 

Smith-Daniels et al. 

[1996] 
Heuristic n/a 230 10 

Option Pricing 

Kumar et al. [2008]  ACO n/a 10 - 10000 3 to 9 

Gilli and Schumann 

[2012b]  
DE / PSO 2.5 GHz n/a 10 to 30 

Sharma et al. [2013] PSO GPU 20 - 70 < 2 

Thulasiram et al. [2014]  PSO GPU n/a < 9 

Feature 

Selection 

Unler and Murat [2010]  PSO 2.3 GHz 17108 29 to 155 

Pacheco et al (2009) TS 2.4 GHz 17108 < 1800 

 FUTURE TRENDS REGARDING THE USE OF METAHEURISTICS IN FINANCE 

Our survey sheds light on new emerging issues associated with option pricing, 

feature selection, bankruptcy prediction, and financial distress prediction are 

attracting the attention of researchers and practitioners from different communities.  

Most of these issues have a complex nature and represent rich variants of 



  
                                                                                                                                         

 

 

combinatorial optimization problems.  The complexity of the aforementioned 

financial applications requires an increasing use of modern heuristics if near-optimal 

solutions are needed in reasonable computing times.  So far, population-based 

metaheuristics have been predominantly employed, probably because of their 

flexibility and the fact that they are supported by a strong community of researchers.  

This also means that the use of single-solution metaheuristics has been 

underwhelming, which in our opinion remains an excellent area of research 

opportunity for researchers in the OR/CS communities.  Indeed, these methods tend 

to be not only efficient but also simpler to configure, since they are less costly in 

terms of parameter-configuration than population-based approaches. 

Also, the existing body of research on financial optimization mainly makes use of 

exact methods to solve simplified or small-scale models of real-life financial and 

banking problems.  Nevertheless, continuous advances in existing exact and 

metaheuristic methods, and the fast development of computing techniques and power 

stimulate scholars to delve deeper into state-of-art methodologies.  Indeed, a plethora 

of novel hybrid methods can now be utilized to resolve rich and real-life finance-

related problems.  Prominent examples are matheuristics that arise from integration 

of exact and metaheuristic methods [Doerner and Schmid 2010], or simheuristics 

[Juan et al. 2015] that result from combination of simulation with metaheuristics.  

Different works discuss how metaheuristics can be employed to solve optimization 

problems under uncertainty scenarios [Bianchi et al. 2009, Talbi 2013].  In particular, 

simheuristics allow to integrate real-life uncertainty both as part of the objective 

function and as probabilistic constraints in the optimization problems.  The ensuing 

models represent more accurately real-world financial and banking scenarios.  

Among other strengths, these hybrid methods accommodate elements of: (i) 

uncertainty (stochastic factors); (ii) dynamism; (iii) diversity of agents and 

preferences; and (iv) multi-periodicity in financial activities.  As solution methods 

and techniques grow rapidly in complexity, scale and scope, and they can easier find 

their way in solving more practical instances across a number of fields, a further 

emergence of financial and banking problems considering complex multi-objective 

functions and probabilistic constraints is warranted (Figure 3). 

 

 
Fig. 3. Trends regarding the use of metaheuristics in finance. 

 CONCLUSIONS 

In this research, a literature review on the applications of metaheuristics to solve 

combinatory optimization finance-related problems is presented.  The literature 



 
 

 

review covers both classical optimization problems as well as emerging ones.  From 

the analysis of the existing works, several conclusions can be extracted.  Firstly, the 

use of metaheuristics in finance is becoming increasingly more popular among 

researchers from different communities, as metaheuristics are one of the best 

alternatives –if not the only one– to deal with rich and real-life optimization 

problems in the field.  Secondly, most of the reviewed works are related either to 

variants of the portfolio optimization problem or to variants of the credit-risk 

management problem.  Thirdly, it is worth noting that population based 

metaheuristics have been employed more frequently than single-solution based 

approaches, which in our opinion represents an opportunity to increase the use of the 

latter ones in solving these problems.  Fourthly, as decision-making processes in 

finance and banking are growing both in complexity and scale due to financial 

globalization, there will be an increase in the demand for metaheuristics in order to 

make efficient decisions.  Finally, our research features a section that discusses open 

opportunities for researchers in the field, as well as future trends regarding the 

combination of metaheuristics with simulation as a promising way of incorporating 

real-life uncertainty into the optimization algorithms. 
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