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Abstract

Person re-identification has received special attention by the human analysis community in the last few years. To address
the challenges in this field, many researchers have proposed different strategies, which basically exploit either cross-view
invariant features or cross-view robust metrics. In this work, we propose to exploit a post-ranking approach and
combine different feature representations through ranking aggregation. Spatial information, which potentially benefits
the person matching, is represented using a 2D body model, from which color and texture information are extracted
and combined. We also consider background/foreground information, automatically extracted via Deep Decompositional
Network, and the usage of Convolutional Neural Network (CNN) features. To describe the matching between images
we use the polynomial feature map, also taking into account local and global information. The Discriminant Context
Information Analysis based post-ranking approach is used to improve initial ranking lists. Finally, the Stuart ranking
aggregation method is employed to combine complementary ranking lists obtained from different feature representations.
Experimental results demonstrated that we improve the state-of-the-art on VIPeR and PRID450s datasets, achieving
67.21% and 75.64% on top-1 rank recognition rate, respectively, as well as obtaining competitive results on CUHK01
dataset.

Keywords: person re-identification, similarity learning, feature fusion, post-ranking, ranking aggregation.

1. Introduction

Person re-identification is the task of assigning the same
identifier to all instances of a particular individual cap-
tured in a series of images or videos, even after the occur-
rence of significant gaps over time or space. It has a wide
range of applications, most of them focused on surveil-
lance and forensic systems. Even though the proposed
models and reported results in this field have considerably
advanced in recent years [1, 2, 3], this task still presents
open challenges, mainly due to the influence of numerous
real-world factors such as illumination problems, occlu-
sions, camera settings, as well as factors associated with
the dynamics of the human being, like the great variety
of appearance features, pose variations and strong visual
similarity between different people. These difficulties are
often compounded by low resolution images or poor quality
video feeds with large amounts of unrelated information,
making re-identification even harder.

As related in [4], given a query person image, in order
to find the correct matches among a large set of candidate
images captured by different cameras, two crucial prob-
lems have to be addressed. First, good image features are
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required to represent both the query and the gallery im-
ages. Second, suitable distance metrics are indispensable
to determine whether a gallery image contains the same
individual as the query image. An ideal measurement is
a matching rule that yields higher matching score for the
image pairs belonging to the same person than the pairs
belonging to different persons, which can be a big challenge
if images are captured by different views/cameras with
different setups and illumination conditions (i.e., a typ-
ical scenario found in person re-identification, usually not
handled by direct distance metric comparison). As high-
lighted in [5], similarity measurements which are learned
(e.g., [6, 7]) from training samples generally enjoy better
accuracy performance than learning free methods [8]. Note
that the goal of metric learning algorithms is to take ad-
vantage of prior information in form of labels over simpler
though more general similarity measures [9]. The achieved
results are then provided in the form of a list of ranked
matching persons. It often happens that the true match
is not ranked first but it is in the first positions. This is
mostly due to the visual ambiguities shared between the
true match and other “similar” persons [10].

In order to address the re-identification problem, ex-
isting methods exploit either feature representation [11,
12, 13] or metric learning [9, 7]. In feature representa-
tion, robust and discriminative features are constructed
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such that they can be used to describe the appearance of
the same individual across different camera views under
various conditions [14], whereas distance metric learning
methods attempt to learn a metric in the space defined by
image features that keep features coming from same class
closer, while, the features from different classes are far-
ther apart [2]. Recently, Convolutional Neural Networks
(CNN) have been adopted in person re-identification [15,
11], providing a powerful and adaptive tool to handle com-
puter vision problems without excessive usage of hand-
crafted image features. However, as mentioned in the work
of Wu et al. [11], hand-crafted concatenation of different
appearance features sometimes would be more distinctive
and reliable, due to significant changes in view angle, light-
ing, background clutter and occlusion.

In this work we exploit the best of different state-of-the-
art models to advance the field of person re-identification.
The proposed model is inspired by the work of Chen et
al. [5], which enforces similarity learning with spatial con-
straints, and achieved (by the time of its publication) the
best score (i.e., top rank recognition rate) on VIPeR [16]
dataset (which is one of the most challenging datasets
employed in person re-identification). In this paper, by
combining new and complementary features within [5],
followed by a post-ranking [10] and a ranking aggrega-
tion strategy [17], we advance the state-of-the-art in per-
son re-identification on two public datasets, VIPeR and
PRID450s [18] (by 2.43% and 2.66%, respectively) as well
as achieve competitive results on CUHK01 [19] dataset.

The new and complementary adopted features can be
briefly enumerated as follows: (i) Salient Color Names
based Color Descriptor (SCNCD) [6] combined with color
histogram (to encode color information), Histogram of Ori-
ented Gradients (HOG) [20] and Scale Invariant Local
Ternary Patterns (SILTP) [21] (to encode texture infor-
mation). Although HOG and SILTP were exploited in [5],
they were not combined with SCNCD; (ii) SCNCD com-
bined with background/foreground information, automati-
cally extracted via Deep Decompositional Network (DDN)
[22]; (iii) Gaussian Of Gaussian (GOG) descriptor [23],
which encodes both color and texture information; (iv)
Convolutional Neural Network (CNN) features constrained
by hand-crafted color histograms [11] and combined with
Local Maximal Occurrence (LOMO) features [24]. A quan-
titative analysis regarding the effectiveness of each comple-
mentary feature is presented on Sec. 4.4. Experimental re-
sults showed that the proposed new features demonstrated
to complement each other, being very powerful when com-
bined with a ranking aggregation strategy.

The rest of the paper is organized as follows: Sec-
tion 2 presents the state-of-the-art concerning person re-
identification. The proposed model is described in Sec-
tion 3, and experimental results are provided in Section 4.
Finally, conclusions are given in Section 5.

2. RELATED WORK

Existing research on person re-identification has con-
centrated either on the development on sophisticated and
robust features to describe the visual appearance of a per-
son under significant visual variabilities or on the devel-
opment of new learning distance metrics. In this section
we present the state-of-the-art on person re-identification,
briefly describing the works that achieved the best recog-
nition rates on three broadly employed public datasets,
VIPeR, PRID450s and CUHK01, without focusing on the
standard taxonomy (i.e., feature representation or metric
learning).

As in the work of Paisitkriangkrai et al. [14], one sim-
ple approach to exploit multiple visual features is to build
an ensemble of distance functions, in which each distance
function is learned using a single feature and the final dis-
tance is calculated from a weighted sum of these distance
functions. However, the usage of predetermined weights is
undesirable as highly discriminative features in one envi-
ronment might become irrelevant in another one. In their
work, a model to learn weights of these distance functions
by optimizing the relative distance or by maximizing the
average rank-k recognition rate is proposed. Mirmahboub
et al. [25] proposed a novel re-ranking method based on a
fusion scheme that reweights an ensemble of distance met-
ric outcomes according to their discriminative capacity.
They particularly show that the fused distance perform
largely better than any of the distances inferred by each
feature separately.

To consider spatial information, a common usage in
person re-identification is to divide the person image into
few regions/stripes and concatenate dense local features to
implicitly encode the spatial layout of the person. Chen et
al. [5] proposed a model for person re-identification that
combines spatial constraints and the polynomial feature
map [7] into a unified framework. They mention that en-
forcing the matching within corresponding regions can ef-
fectively reduce the risk of mismatching and become more
robust to partial occlusions. In addition, their framework
can benefit from the complementarity of global and local
similarities.

The post-ranking method for person re-identification is
a relatively unexplored area [10] which has been attracting
a lot of attention from the research community. Prates and
Schwartz [17] presented a Color-based Ranking Aggrega-
tion (CBRA) method, which explores different feature rep-
resentations to obtain complementary ranking lists, and
combine them in order to improve person re-identification.
In their work, the KISSME [9] metric learning was adopted
and different strategies for ranking aggregation, based on
the Stuart rank aggregation method [26], were proposed.
Garćıa et al. [27, 10] related that inspections on the ranked
matches can be applied to refine the output in such a way
that the correct match will have higher probability to be
found in the first ranks. Hence, their work is founded on
the idea that a ranking, achieved by any algorithm, con-
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tains valuable information which can be further exploited
to improve the rank of the true match. To achieve such
a goal, they propose an unsupervised post-ranking frame-
work. Once the initial ranking is available, content and
context sets are extracted. Then, these are exploited to
remove the visual ambiguities and to obtain discriminant
feature space which is finally exploited to compute the new
ranking.

Bai et al. [28] studied person re-identification with man-
ifold-based affinity learning. In their work, a novel affinity
learning algorithm called Supervised Smoothed Manifold
(SSM) is proposed, which can be plunged into most exist-
ing algorithms, serving as a generic postprocessing proce-
dure to further boost identification accuracy.

In relation to domain adaptation in machine learning,
Chen et al. [12] proposed a schema called Mirror Rep-
resentation to address the view-specific feature distortion
problem in person re-identification. It embeds the view-
specific feature transformation and enables alignment of
the feature distributions across disjoint views for the same
person. Zhang and collaborators [29] argue that most ex-
isting approaches focus on learning a fixed distance metric
for all instance pairs, while ignoring the individuality of
each person. They formulate person re-identification as
an imbalanced classification problem and learn a classi-
fier specifically for each pedestrian such that the matching
model is highly tuned to the individual appearance.

Considering the recently proposed CNN based methods
for person re-identification, in [11] a deep Feature Fusion
Network (FFN) is proposed in order to use hand-crafted
features to regularize CNN process so as to make the con-
volutional neural network extract features complementary
to hand-crafted ones. As mentioned by the authors, dif-
ferent to other deep methods for person re-identification
(e.g., [15, 30]) which are based on pairwise input, they
can directly extract deep features on single images, being
able to be learnt by any conventional classifier. Xiao et
al. [13] presented a pipeline for learning deep feature rep-
resentations from multiple domains with CNN. Authors
argue that when training a CNN with data from all do-
mains, some neurons learn representations shared across
several domains, while some others are effective only for
a specific one. Based on this observation they proposed a
Domain Guided Dropout algorithm (a method of muting
non-related neurons for each domain). Liu et al. [31] pro-
posed a new soft attention-based model, i.e., the end-to-
end Comparative Attention Network (CAN), specifically
tailored for the task of person re-identification, which can
adaptively find multiple local regions with discriminative
information in person images in a recurrent way. Such ap-
proach learns to selectively focus on parts of pairs of person
images after taking a few glimpses of them and adaptively
comparing their appearances.

Although a large number of existing approaches have
exploited state-of-the-art visual features, advanced metric
learning algorithms, post-ranking or ranking aggregation
strategies, domain adaptation based models or even CNN

based ones, state-of-the-art results on commonly evaluated
person re-identification benchmarks is still far from the
accuracy performance needed for most real-world surveil-
lance applications [14].

3. PROPOSED MODEL

In this work, we propose to exploit different feature
representations1 to advance the state-of-the-art in person
re-identification. In the proposed model, each image is rep-
resented in different ways, which include hand-crafted de-
scriptors and deep features. To describe the matching be-
tween a probe image and a gallery set, a similarity learning
metric built on the polynomial feature map [7] is adopted,
also taking into account spatial (local and global) informa-
tion. As each image has different descriptors, different sim-
ilarities are computed, according to each representation.
This way, for each probe image and gallery set, different
rank lists are generated, each one assigned to each feature
representation. Once these initial rankings are available,
content and context information[10] are extracted for each
feature representation and respective probe image. Then,
these are exploited to remove the visual ambiguities and
to obtain discriminant feature space which is finally ex-
ploited to compute new ranking lists. The final rank list
is obtained through ranking aggregation, which combines
these complementary ranking lists. An overview of our
model is illustrated in Fig. 1.

Next, we briefly revisit the polynomial feature map and
the spatially constrained techniques [5]2, as they are the
basis of the proposed model. In a second stage, we de-
scribe the proposed complementary features. Finally, we
describe the adopted post-ranking and ranking aggrega-
tion strategies.

3.1. Polynomial Feature Map

In order to measure the similarity between image de-
scriptors xa,xb ∈ Rd×1, we learn the similarity function
as:

f(xa,xb) = 〈φ(xa,xb),W〉F , (1)

where 〈·, ·〉F is the Frobenius inner product. To take ad-
vantage of both Mahalanobis distance and bilinear simi-
larity metric, we decompose f(xa,xb) as follows:

f(xa,xb) = 〈φM (xa,xb),WM 〉F + 〈φB(xa,xb),WB〉F .
(2)

The part 〈φM (xa,xb),WM 〉F = (xa − xb)
>WM (xa −

xb) is connected to the Mahalanobis distance. The part
〈φB(xa,xb),WB〉F = x>a WBxb + x>b WBxa corresponds
to bilinear similarity. Both parts ensure the effectiveness

1An evaluation about different color spaces and their combina-
tions for person re-identification can be found in [32].

2Code available at https://github.com/dapengchen123/SCSP
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Figure 1: Overview of the proposed model. For each sample image, different visual cues are defined (i.e., {C1, ...,C9}, as detailed in Sec. 3.3).
Then, different feature representations are proposed, taking into account global (cyan regions), local (salmon regions) or both global and
local (pink regions) information. For each probe image and gallery set, different similarity measures are computed using different feature
representations. Each representation produces a initial ranking list based on the adopted similarity function. Then, a post-ranking approach
is used in order to improve the recognition rate obtained by each initial ranking list. The final ranking list is obtained through ranking
aggregation, which combines complementary ranking lists obtained from different feature representations.

of f(xa,xb). The dimensionality of the feature map is re-
duced by means PCA for xa and xb before its generation3.

3.2. Spatially Constrained Similarity Function

3.2.1. Regional feature map

The input image is partitioned into R non-overlap hor-
izontal stripe regions. Each region is divided into a collec-
tion of overlapped patches, from which we extract color
and texture histograms. The extracted histograms be-
longing to a same stripe region are concatenated together.
After that, PCA is applied to reduce the dimensionality
and to obtain the region descriptor xr for the r-th stripe,
where r ∈ {1, ..., R}. A stripe region r can be described
by C visual cues {xr,1, ...,xr,c, ...,xr,C}, thus xa and xb

accordingly form C polynomial feature maps for the r-th
region, i.e., {φr,1(xa,xb), ..., φ

r,c(xa,xb), ..., φ
r,C(xa,xb)},

where φr,c(xa,xb) = φ(xr,c
a ,xr,c

b ).

3.2.2. Local similarity integration

In order to exploit the complementary strengths of mul-
tiple visual cues within a local region, a linear similarity
function is employed to combine them together for the r-th
region:

sr(xa,xb) =

C∑
c=1

〈φr,c(xa,xb),W
r,c〉F , (3)

where Wr,c = [Wr,c
M ,Wr,c

B ] and Wr,c
M , Wr,c

B correspond to
φr,cM (xa,xb) and φr,cB (xa,xb), respectively. The local simi-
larities scores are integrated as:

slocal(xa,xb) =

R∑
r=1

sr(xa,xb). (4)

3A detailed explanation about how WM and WB are learned
using the ADMM optimization algorithm can be found in [5].

3.2.3. Global-local collaboration

In order to describe the matching of large patterns
across the stripes, the polynomial feature map is also used
for the whole image, yielding global similarity:

sglobal(xa,xb) =

C∑
c=1

〈φG,c(xa,xb),W
G,c〉F , (5)

where WG,c = [WG,c
M ,WG,c

B ] and WG,c
M , WG,c

B corre-

spond to φG,c
M (xa,xb) and φG,c

B (xa,xb), respectively. Here,

φG,c(xa,xb) = φ(xG,c
a ,xG,c

b ) and xG,c
a ,xG,c

b are the c-th
type global visual descriptors for image a and b. Finally,
the global similarity and local similarity are linearly com-
bined, and the overall similarity score is given by:

sfinal(xa,xb) = slocal(xa,xb) + γsglobal(xa,xb), (6)

where γ is the hyper-parameter that mediates the local
and global similarities (experimentally set to γ = 1.1).

3.2.4. Visual Cues and Parameter settings

In the original model of [5], four visual cues are used
(i.e., C = 4). First, images are resized to 48×128. Each
region r (from R, experimentally set to R = 4)4 is divided
into a set of local patches (with 8×16 of size and stride of
4×8). For each patch, six types of features are extracted:
HSV1, LAB1 (are 8×8×8 joint histograms), HSV2, LAB2

(are 48 bin concatenated histograms with each channel
having 16 bins), HOG [20] and SILTP [21] (texture de-
scriptors). The four visual cues C1, C2, C3 and C4 con-
catenate both color and texture features, which are or-
ganized as HSV1/HOG, HSV2/SILTP, LAB1/SILTP and
LAB2/HOG, respectively.

4A default R value was adopted from [5].

4



Regarding each visual cue, descriptors generated for
each patch, within a specific region r, are concatenated
to compose the descriptor of such region. Similarly, the
global descriptor is generated through the concatenation
of the descriptors computed for all patches. For each visual
cue, obtained color and texture descriptors are normalized
(to have unit L2 norm) before concatenation. Then, each
visual cue is reduced by PCA. Finally, the resulting de-
scriptor is normalized again in the same way. As men-
tioned in [5], the PCA reduced dimension d depends on
the size of training data. In our experiments we adopted
d to be 120 for all evaluated datasets.

3.3. Complementary features

In order to improve state-of-the-art recognition per-
formance in person re-identification, we propose to in-
clude new and complementary features within the simi-
larity function presented in [5], as described next.

3.3.1. SCNCD [6]

For each color to be named, salient color names indicate
that a color only has a certain probability of being assigned
to several nearest color names, and that the closer the color
name is to the color, the higher probability the color has of
being assigned to this color name. Through this way, we
can assign multiple similar colors to the same index with
the same color descriptor.

Color distributions over color names in different color
spaces are then obtained and fused to generate a feature
representation. In addition, and similarly to [6], color his-
togram is computed for each color channel and fused with
color names distribution (the number of bins is set to 32).
In this work, SCNCD and color histograms are extracted
using the original RGB, normalized rgb, l1l2l3 and HSV
color models. Such procedure is performed locally, re-
garding each region r, as well as globally, regarding the
whole image. To be specific, SCNCD are extracted simi-
larly to [6], except that in our model the image is divided
in 4 regions (R = 4) and a second subdivision at the lo-
cal level is performed. First, the image is divided into
R horizontal stripes, from which features are extracted
and concatenated (global descriptor), as illustrated on the
right side of Figure 2. Then, each region r is subdivided
again into R horizontal stripes, from which features are ex-
tracted and concatenated (local descriptor), as illustrated
on the left side of Figure 2.

Two new visual cues are then proposed, C5 and C6.
Both concatenate color and texture features, which are
organized as SCNCD/HOG and SCNCD/SILTP, respec-
tively. In this case, HOG and SILTP are extracted in
the same way as in [5]. As before, obtained descriptors
that compose each new visual cue are normalized (to have
unit L2 norm) before final concatenation. The resulting
descriptor is then reduced by means of PCA before final
normalization step.

Figure 2: Illustration of the generated global and local descriptors
based on SCNCD (and color histograms).

3.3.2. Background/foreground information

Due to the fact that the background in person re-
identification is not constant and may even include dis-
turbing factors, background feature representation com-
bined directly with the foreground feature representation
may reduce classification accuracy. To address this prob-
lem, [6] proposed an image-foreground feature representa-
tion, which can be seen as that the foreground informa-
tion is employed as the main information while the back-
ground information is treated as a secondary one. Differ-
ently from [6], we propose to extract the foreground mask
with a more powerful segmentation model based on Deep
Decompositional Network (DDN) [22].

The DDN was developed to tackle the problem of
pedestrian parsing, and designed to segment pedestrian
images into semantic regions, such as hair, head, body,
arms, and legs. It directly maps low-level visual features
(HOG) to the label maps of body parts, being able to
accurately estimate complex pose variations while being
robust to occlusions and background clutters. In a nut-
shell, DDN jointly estimates occluded regions and seg-
ments body parts by stacking three types of hidden layers:
occlusion estimation layers, completion layers, and decom-
position layers. The occlusion estimation layers estimate
a binary mask, indicating which part of a pedestrian is
invisible. The completion layers synthesize low-level fea-
tures of the invisible part from the original features and the
occlusion mask. The decomposition layers directly trans-
form the synthesized visual features to label maps. Fig. 3
illustrates some binary masks automatically obtained us-
ing [22]5.

Figure 3: Input images and respective binary masks obtained us-
ing [22].

5Code available at http://mmlab.ie.cuhk.edu.hk/projects/

luoWTiccv2013DDN/
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3.3.3. Gaussian Of Gaussian (GOG)

Matsukawa et al. [23] proposed a region descriptor
based on hierarchical Gaussian distribution of pixel fea-
ture. In their work, local patches inside a region are
densely extracted and the region is regarded as a set of
local patches. The region is modeled as a set of multiple
Gaussian distributions, each of them representing the ap-
pearance of one local patch. The characteristics of the set
of patch Gaussians are again described by another Gaus-
sian distribution (defined as a region Gaussian). The pa-
rameters of the region Gaussian are then used as feature
vector to represent the region. The GOG descriptor pro-
vides a consistent way to generate discriminative and ro-
bust features that describe color and textural (e.g., gra-
dient magnitudes along different directions) information
simultaneously.

In our work, we adopted the GOGF (Fusion) descrip-
tor6, extracted as described in [23], which concatenates
different GOG descriptors generated from different col-
orspaces (RGB, LAB, HSV and normalized rgb). Thus,
a new visual cue is proposed, C7. As before, obtained
descriptor is normalized (to have unit L2 norm). The re-
sulting descriptor is then reduced by means of PCA before
final normalization. Note that, as the final representation
is a concatenation of local features, it will be used in Eq. 6
as a global descriptor (similarly as C8, described next).

3.3.4. Deep feature [11]

Feature Fusion Net (FFN) is used to allow deep feature
representation in the adopted framework, as it demon-
strated to be very effective in person re-identification
tasks. FFN consists of two parts. The first part deals
with traditional convolution, pooling and activation neu-
rons for input images. The second part of the network
processes additional hand-crafted feature representations
of the same image. Both, CNN features and the hand-
crafted features are followed by a fully connected layer
and then linked together in order to produce a full-fledge
image description from the last convolutional layer.

Regarding the hand-crafted features, authors first
modified the Ensemble of Local Features (ELF) [33] by
improving the color space and stripe division (denoted
as ELF16). Input images are equally partitioned into
16 horizontal stripes, and the features are composed of
color features including RGB, HSV, LAB, XYZ, YCbCr
and NTSC, and texture features including Gabor, Schimid
and LBP. A 16D histogram is extracted for each channel
and then normalized by L1 norm. All histograms are con-
catenated together to form a single vector. The FFN was
then trained on the Market-1501 [34] dataset, which is the
largest public person re-identification dataset up to date,
composed of 38195 images from 1501 identities.

The authors of [11] also mention that even though the
proposed CNN-based feature performs better when com-

6Available at http://www.i.kyushu-u.ac.jp/~matsukawa/ReID.

html

pared to LOMO [24] features, the combination of both
kind of features demonstrates to have higher discrimina-
tive power. Thus, the concatenation of both (CNN-based
feat.+LOMO) is defined in their work as the final repre-
sentation (denoted in our work, from now, by just Deep
feature. We also apply PCA (as previously mentioned),
to reduce the dimensionality of the resulting Deep feature,
which is then normalized by L2 norm. This final represen-
tation is used as another complementary cue (C8). Note
that C8 composes a representation for the whole image,
so it will be only used as a global descriptor.

3.3.5. Integrating complementary features

To integrate the new and complementary features, we
compute different similarity measures using different fea-
ture representations (for each pair of images being com-
pared), which are then exploited next by the post-ranking
and ranking aggregation strategies. To be specific, we
compute sfinali (xFi

a ,x
Fi

b ), defined in Eq. 6, where Fi are
different feature representations, described in Table 1. We
refer {F7, ..., F12} as simplified versions of {F1, ..., F6}.

Table 1: Summary of the adopted feature representations Fi (F0 is
the baseline [5]). G, L and GL indicate, respectively, if the visual
cue is applied just on the global, local or both parts of the Eq. 6.

baseline cues scncd gog deep
C1 C2 C3 C4 C5 C6 C7 C8

F0 GL GL GL GL - - - -
F1 GL GL GL GL - - G -
F2 GL GL GL GL - - - G
F3 GL GL GL GL - - G G
F4 - - - - GL GL G -
F5 - - - - GL GL - G
F6 - - - - GL GL G G
F7 L L L L - - G -
F8 L L L L - - - G
F9 L L L L - - G G
F10 - - - - L L G -
F11 - - - - L L - G
F12 - - - - L L G G

3.4. Post-ranking based on DCIA

According to Garcia et al.[27, 10], additional ranking
inspections on the ranked matches can be applied to refine
the output in such a way that the correct match will have
higher probability to be found in the first ranks. To this
end, they proposed the Discriminant context information
Analysis (DCIA) method, which is built under the defini-
tion of content and context information. The content in-
formation is the set of gallery images that have low dissim-
ilarity with respect to the probe. The context information
is the set of gallery images that have low dissimilarity with
both the probe and an image of the content information.
In this subsection we introduce basic concepts related to
their method as well as describe how post-ranking is per-
formed.

6
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3.4.1. Definitions

Let A = {IAp }Np=1 be the set of N probe images and B =

{IBg }Mg=1 be the set of M gallery images. Given a probe

image IAp , its initial ranking is defined as Rp = {IBi }Mi=1,

where the gallery images IBi are sorted depending on the
dissimilarity to the probe. In other words, d(IAp , I

B
i ) <

d(IAp , I
B
i+1), where d(·, ·) is a suitable dissimilarity measure

(i.e., as defined in Eq. 6) and i goes from 1 to M − 1.
R = {RN

p }Np=1 denotes the set of such initial rankings
computed for the N probes.

3.4.2. Content Information

The content information is defined as the set of fea-
tures extracted from the correlated matches, i.e., a sub-
set of gallery images Bcn ⊆ B present in the fist ranks
and which are likely to share visual ambiguities with the
probe. Elements in such a set are selected from the top
m positions in the initial ranking Rp which have match-
ing distance less than a specific threshold Th. The m
value, as well as the adopted threshold, are dynamically
computed for each probe image, based on the shape of
dissimilarities vs rank plots (see [27] for additional de-
tails). Thus, the set of m correlated matches equals
Bcn = {IBi |d(IAp , I

B
i ) ≤ Th}. Therefore, the content set

Ccnp = {xcn
1 , ...,x

cn
m } contains the m feature vectors ex-

tracted from the correlated matches in Bcn. Notice that,
only images in Ccnp are re-ranked.

3.4.3. Context Information

The context information is given by the K-common
nearest neighbors of the probe and a correlated match.
Given IAp , its respective context set is extracted by ex-
ploiting Ccnp . First, the initial rank list Rg is computed for

each correlated matching image IBg ∈ Ccnp by evaluating

its similarity with images in the gallery set B∗ = (B\IBg )
using model parameters (φ and W) and distance d(·, ·),
i.e., as defined in Eq. 6. Then, given Rg, we compute
the top mg positions which have matching distance less
than Thg (being mg and Thg computed in the same way
as m and Th, respectively). These elements represent the
images that have high similarity with both the probe IAp
and the correlated match IBg . The context information is
extracted from the K-common context matches. Feature
vectors extracted from such images form the context in-
formation set Ccxp = {xcx

1 , ...,x
cx
n }, where n = K. Finally,

Ccxp is updated by removing images that are in duplicate
with Ccnp . The hard threshold K was set experimentally
to K = 13 as in [27].

Nevertheless, we observed the respective K-common
context matches are obtained, for some probe images, from
a flat histogram. In this case, the K-common context
matches might be imprecisely obtained, mainly when the
number of images that compose the histogram are greater
than K. Thus, we introduced a new condition to also
consider the similarity from the correlated context match

to the probe image in order get the K-common context
matches most similar to IAp .

3.4.4. Discriminative Information Analysis

Given a probe image IAp , let Dp = {xp, Ccnp , Ccxp } be the
set composed of its feature vector and of feature vectors
obtained in the content and context information. Dp is
redefined as a feature matrix Dp ∈ Rd×l with zero mean,
where l = 1 + m + n is the number of vectors. Let P ∈
Rd×k be the first k components of Dp selected to represent
the common appearance subspace. Thus, the discriminant
information can be obtained as

D∗p = Dp −PPTDp, (7)

where each column of D∗p represents a discriminant feature
vector x∗. Differently from [27], where k principal compo-
nents corresponding to the 55% (k = 0.55) of energy of
the set of feature vectors have been used to represent the
common appearance subspace, in this work we empirically
defined k = 0.35.

3.4.5. Re-ranking Training

The DCIA is first applied to the train set ITr. More
specifically, it is applied to each ranking RTr

p ∈ RTr. As

result, the discriminant feature vectors x∗Ap and x∗Bg ∈
D∗Tr

p are obtained for each probe image p. The resulting

sets x∗ATr and x∗BTr together with the pairwise labels are
used to learn the new model parameters φ∗ and W∗.

3.4.6. Post-ranking Optimization

Given a test rank in R, the DCIA is performed to ob-
tain the discriminative test feature vectors x∗Ap and x∗Bg .

Then, the set of such vectors {x∗A,x∗B} is evaluated by
the new model parameters φ∗ and W∗. The obtained dis-
tances are used to re-rank the correlated matches, hence to
compute the final ranking R̃. Such procedure is performed
for each feature representation.

3.5. Ranking Aggregation Strategy

We propose to explore different feature representations
to obtain complementary ranking lists and combine them
using the Stuart ranking aggregation method [26]. The
Stuart ranking aggregation method, which was originally
designed to define a gene-coexpression network over DNA
microarrays from humans, flies, worms, and yeast, is a
probabilistic method based on order statistics to evaluate
the probability of observing a particular configuration of
ranks across the different organisms, even when there are
irrelevant and noise inputs. The significance of the inter-
actions in the network is verified by means of a variety of
statistical tests 7.

7An optimized solution of [26] is presented in [35].
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Let first denote by ⊕ the aggregation operator, for in-
stance if R̃n = R̃1⊕ R̃2⊕ ...⊕ R̃n−1, then R̃n is a rank-
ing list computed by the aggregation of ranking lists from
R̃1 to R̃n−1. As we use different descriptors to represent
each image, and have adopted a strategy in which we can
measure the similarity sfinali (xa,xb) of image pairs using
different ways (Sec. 3.3.5), we are also able to compute dif-
ferent ranking lists for each probe image and gallery set, as
illustrated in Fig. 1. Moreover, a tunning strategy is per-
formed on the final aggregation in order to improve the
results, as explained next.

Consider the list of complementary features
L ={F1, ..., F12}, sorted based on average top-1 rank
recognition rate (obtained from a validation set), where
Li has better accuracy than Li+1. Thus, we can aggregate
the ranking lists that obtained higher accuracies (i.e., the
best-n feature representations) and ignore “poor” ranking
lists that may push down the final result/aggregation.
Such procedure is performed by the aggregation of the
ranking lists of the best-2 feature representations (i.e.,
{L1,L2}), best-3 ({L1, ...,L3}), and so on, up to the
aggregation of the whole list (i.e., best-12, {L1, ...,L12}).

4. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the pro-
posed model, this section presents experimental results
on three broadly employed public datasets for person
re-identification, i.e., VIPeR [16], PRID450s [18] and
CUHK01 [19]. Five case studies were performed. First,
(i) the proposed model was compared against state-of-
the-art person re-identification models using a well known
evaluation protocol (Sec. 4.2). Then, we decomposed
the proposed complementary features and performed
the following experiments: (ii) influence of the back-
ground/foreground information within SCNCD (Sec. 4.3);
(iii) accuracy performance obtained by each complemen-
tary feature (Sec. 4.4); (iv) improvements obtained by
post-ranking (Sec. 4.5). Finally, (v) the best-n tunning
strategy for rank-aggregation was analyzed (Sec. 4.6).

The adopted datasets are presented in two disjoint
camera views, with significant misalignment, light changes
and body part distortion. Table 2 summarizes the three
datasets. Challenging image samples (due to illumination
problems, pose variation, occlusions or even by high simi-
larity between different people) are illustrated in Fig. 4.

Table 2: Summary of the adopted datasets.

VIPeR PRID450s CUHK01
Images 1264 900 3884

Individuals (ID) 632 450 971
Images per ID (per view) 1 1 2

(a) VIPeR (b) PRID450s (c) CUHK01

Figure 4: Sample images of the adopted datasets. Images on the
same column represent the same person.

4.1. Evaluation Protocol

Our experiments follow the evaluation protocol defined
in [14] for a single-shot scenario, i.e. we randomly parti-
tioned each dataset into two parts, 50% for training and
50% for testing, without overlap on person identities. As
the CUHK01 dataset contains 971 individuals, 485 of them
were randomly sampled for training and the rest for test-
ing, as in [29]. Images from camera A are used as probe
and those from camera B as gallery. For the CUHK01
dataset, in which each individual has two images per cam-
era view, we randomly selected one image of the individual
taken from the camera A as the probe image and one im-
age of the same individual taken from the camera B as
the gallery image. For all evaluated datasets, each probe
image is matched with every image in gallery and the rank
of correct match is obtained. This procedure is repeated
10 times and the average of Cumulative Matching Char-
acteristic (CMC) curves across 10 partitions is reported.

4.2. Case 1: State-of-the-art comparison

This experiment compares the overall accuracy perfor-
mance of the proposed model in relation to the state-of-
the-art. Different feature representations were integrated,
as described in Sec. 3.3.5, followed by the post-ranking
approach (described in Sec.3.4) and ranking aggregation
strategies (described in Sec. 3.5). Table 3 summarizes the
obtained results.

As it can be seen in Table 3, the proposed model
outperforms the state-of-the-art on both VIPeR and
PRID450s datasets, and achieved competitive results on
CUHK01 dataset. Some other works obtained better re-
sults than ours on CUHK01 dataset, however, they were
not included in this comparison as they either use a dif-
ferent evaluation protocol [36] or include additional data
in the train set [37] (i.e., CUHK03 database, which was
captured in the same environment as CUHK01 and could
benefit when CUHK01 is evaluated as both share similar
features).

We can also observe the CAN-VGG16 method [31],
which obtained promising results on CUHK01 dataset,
were outperformed by the proposed model on VIPeR
dataset by a significant margin. The slow performance
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Table 3: State-of-the-art comparison. Top Matching Rank (%) on
the three adopted datasets.

Rank 1 5 10 20

VIPeR

Our best-10 67.21 87.78 93.39 97.82
Our best-12 66.83 87.78 93.41 97.72

DCIA [10] 64.78 76.85 86.88 94.77
Re-ranking [25] 59.46 86.68 93.39 97.63

SSM [28] 53.73 - 91.49 96.08
SCSP [5] 53.54 82.59 91.49 96.65

Deep+LOMO [11] 51.06 81.01 91.39 96.90
CAN-VGG16 [31] 47.20 79.20 89.20 95.80

Mirror [12] 42.97 75.82 87.28 94.84
LSSCDL [29] 42.66 - 84.27 91.93

PRID450s

Our best-3 75.64 93.38 96.44 98.22
Our best-12 73.91 92.58 95.87 97.87

SSM [28] 72.98 - 96.76 99.11
Deep+LOMO [11] 66.62 86.84 92.84 96.89

LSSCDL [29] 60.49 - 88.58 93.60
Mirror [12] 55.42 79.29 87.82 93.87

CUHK01

CAN-VGG16 [31] 67.20 87.30 92.50 97.20
Our best-3 66.91 86.95 92.12 95.7
LSSCDL [29] 65.97 ≈ 88.0 ≈ 92.0 ≈ 96.0
Our best-12 64.28 85.21 90.78 95.00

Deep+LOMO [11] 55.51 78.40 83.68 92.59
Mirror [12] 40.40 64.63 75.34 84.08

related to CAN-VGG16 method on VIPeR database is be-
cause the size of training set of VIPeR is so small.

4.3. Case 2: Background information within SCNCD

This experiment analyzes the accuracy performance of
the background/foreground information within SCNCD
(Sec. 3.3.2), before the employment of the post-ranking
approach (Sec. 3.4). To this end, we set up the adopted
framework to load only the following visual cues, C5 and
C6 (detailed in Sec. 3.3.1, i.e., without deep features),
both without and with background/foreground informa-
tion. Fig. 5 shows the CMC curves obtained for this
experiment (for the first rank values). As it can be
observed, the background/foreground information signif-
icantly improved the overall accuracy on the three eval-
uated datasets, being effective to remove the background
noise. Yang et al. [6] obtained same conclusion when eval-
uating both representations (image-foreground and image-
only) on VIPeR and PRID450s datasets. However, differ-
ently from their work, in which the evaluation was per-
formed using only RGB information combined with the
segmentation model proposed in [38] and the KISSME [9]
metric learning, we adopted a more powerful segmentation
strategy, as well as a different similarity function.

It can also be noticed from Fig. 5 that the proposed
feature representation based on SCNCD outperformed ob-
tained results (for the VIPeR dataset) reported in [5] (see
Table 3).

Figure 5: Accuracy performances based on SCNCD (i.e., using only
C5 and C6), with and without background/foreground information
(solid and dashed lines, respectively). Top-1 rank values for each
case are also provided.

4.4. Case 3: Complementary feature representations

This experiment evaluated the complementary features
individually (before post-ranking). Each proposed feature
representation was integrated as detailed in Sec. 3.3.5, and
sfinali is adopted as the similarity function related to each
representation Fi. Obtained results are shown in Fig. 6 in
terms of top-1 rank recognition rate, from where we can
make the following observations:

• All complementary features outperformed the base-
line feature representation F0.

• The benefits of including GOG feature into the base-
line feature representation can be observed if we
compare overall results obtained for the respective
pair of feature representations 〈F0, F1〉. Similarly,
the benefits of including deep feature can be observed
if we compare results for the pair 〈F0, F2〉.

• The inclusion of both visual cues based on GOG
and deep features, either on the baseline fea-
ture representation or on the proposed comple-
mentary features, can be highlighted if we com-
pare overall obtained results for the respective pairs
〈(F1, F2), F3〉 and 〈(F4, F5), F6〉, as well as in relation
to their respective simplified versions 〈(F7, F8), F9〉
and 〈(F10, F11), F12〉.

• The simplified versions of the complementary fea-
tures F9 and F12 obtained better accuracy than
their respective complete representations (F3 to
F6), indicating that the proposed simplification
still has strong discriminative power for person re-
identification applications, while requiring less com-
putation resources.

• F6 and F12, which exploits SCNCD (with back-
ground/foreground information), GOG and deep fea-
tures, obtained the best overall accuracy perfor-
mance in the three adopted datasets.

The previously mentioned observations indicate that
the proposed complementary feature representations have
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Figure 6: Accuracy performance obtained for each feature representation Fi (before post-ranking), for the VIPeR (blue), PRID450s (red) and
CUHK01 (green) datasets.

strong discriminative power in person re-identification ap-
plications, mainly when combined through ranking aggre-
gation, as shown in Sec. 4.2. As it will be described in
Sec. 4.5, accuracies obtained by such complementary fea-
tures can also be improved by the post-ranking approach.
In addition, different integration strategies (from those de-
scribed in Sec. 3.3.5) were also evaluated in other experi-
ments (e.g., the integration of all features, C1 to C9, using
the simplified and complete representations), however, no
significant accuracy performance improvements were ob-
served.

4.5. Case 4: Post-ranking analysis

In this section we analyze the results obtained by the
DCIA method applied to the proposed framework. Our ex-
periments were performed without visual expansion (em-
ployed in [10]), which synthesizes the probe into the gallery
feature space aiming to reduce feature inconsistency. We
avoided using this procedure because of its high compu-
tational requirements and, as commented by the authors,
obtained accuracies were improved by less than 1%. Fig-
ure 7 shows results (averaged per database) for each com-
plementary feature, before and after post-ranking. As we
can observe, the post-raking approach improved overall
results.

Figure 7: Average accuracy performance obtained for each feature
representation, with (red) and without (blue) post-ranking.

As related in [10], one limitation of the DCIA method
is that sometimes the true match is not included in the
content set. In this case, it will not be re-ranked. In
addition, some images might move to higher rank positions
after post-ranking. However, in general, it improved more

than deteriorated final results. Fig. 8 shows the obtained
improvement by the post-ranking approach (after rank-
aggregation) on the three employed databases.

Figure 8: Average accuracy performance (after rank-aggregation)
without/with post-ranking, respectively. Values obtained using the
best-12 aggregation strategy described in Sec. 4.6.

Table 4 shows statistics related to the post-ranking ap-
proach (before ranking aggregation), considering 10 dif-
ferent runs and all complementary features {F1, ..., F12}.
First, values were averaged in relation to each feature rep-
resentation and number of runs. Then, the average value
per database was computed.

Table 4: Post-ranking statistics: mean average and standard de-
viation (%) of: (i) probe images included in the content set, (ii)
improved results, (iii) from the improved results, the ones that were
moved to top-1 rank position, (iv) unchanged ranks and (v) images
that were moved to higher rank positions (worsen).

VIPeR PRID450s CUHK01
i 76.3 ±2.8 81.2 ±1.7 71.3 ±1.4
ii 11.4 ±2.4 7.0 ±1.8 6.4 ±1.1
iii 78.1 ±6.8 84.0 ±9.1 81.3 ±7.3
iv 80.5 ±2.9 86.3 ±2.5 85.7 ±1.8
v 8.1 ±2.1 6.6 ±1.8 7.9 ±1.5

From Table 4, we can observe that a high percentage of
images which rank position was improved (ii), were moved
to top-1 rank position (iii). On the other hand, few im-
ages were undesired moved to higher rank positions (v).
However, post-ranking improved overall results.

4.6. Case 5: best-n tunning rank-aggregation strategy

In this experiment, the train set of each dataset was di-
vided into 50% train and 50% validation. Fig. 9 shows ob-
tained results on the validation set (averaged per database)
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for each complementary feature (with post-ranking). Ta-
ble 5 shows obtained results, on the test set, from the ag-
gregation of the best-n feature representations, for n = 2
to 12. As we can observe from Table 5, the inclusion of
additional feature representations do not always increase
accuracy performance, as well as there is not an overall
feature representation that fits all databases.

Figure 9: Average accuracy performance obtained for each feature
representation on the validation set.

Table 5: Top-1 rank recognition rate (%) after ranking-aggregation,
using the “best-n” feature representations.

best-n VIPeR PRID450s CUHK01
2 64.75 73.87 64.90
3 66.99 75.64 66.91
4 66.87 75.24 66.75
5 66.83 74.56 66.30
6 66.77 74.31 66.69
7 66.33 74.18 66.34
8 66.83 74.98 65.05
9 67.15 75.07 66.13
10 67.21 74.40 65.49
11 66.77 73.95 65.10
12 66.83 73.91 64.28

4.7. Computational cost

We adapted the MATLAB implementation provided
in [5] to consider the proposed complementary features.
Computational costs shown in Table 6 were obtained us-
ing the VIPeR dataset. The complete representations
{F3, F6}, which explore different visual cues, as well as
their respective simplified versions {F9, F12} were ana-
lyzed8.

Average computational time to run the ranking-
aggregation, using the best-7 strategy (described in
Sec. 4.6) was 3.9m ±0.4.

5. Conclusion

In this work we exploited different feature representa-
tions, combined with a post-ranking and ranking aggrega-
tion strategies, to advance the state-of-the-art in person re-
identification. Our model was built on a framework com-
bining similarity learning metric with spatial constraints.

8Using a 2.30GHz Intel Core i7 CPU and 8Gb of memory, without
considering I/O procedures and image resize operations.

Table 6: Average computational cost obtained from 10 runs, to pro-
cess (train and test) the whole VIPeR database (316 train and 316
test images), taking into account different features representations.

Total Post-rank Test
F3 16.9m ±4.2 6.1m ±0.4 4.17s ±1.5
F6 5.0m ±0.7 3.3m ±0.3 2.19s ±0.6
F9 7.3m ±1.9 4.1m ±0.3 2.93s ±1.1
F12 3.7m ±0.4 2.5m ±0.4 1.91s ±0.5

The proposed complementary features demonstrated to
have strong discriminative power, as well as to comple-
ment each other even when the simplified versions are
employed. Different feature representations were ana-
lyzed individually and incrementally. The post-ranking
approach demonstrated to be a powerful tool in person
re-identification tasks, being able to improve initial re-
sults which could be further enhanced by the ranking-
aggregation strategy. We show that handcrafted and deep
features fusion enhance re-identification performance es-
pecially in domains where there is a reduced amount of
available data. As a result, we improved the top-1 rank
recognition by 2.43% and 2.66% on VIPeR and PRID450s
datasets, respectively, as well as obtained competitive re-
sults on the CUHK01 database.
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[27] J. Garćıa, N. Martinel, C. Micheloni, A. Gardel, Person re-
identification ranking optimisation by discriminant context in-
formation analysis, in: 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1305–1313.

[28] S. Bai, X. Bai, Q. Tian, Scalable person re-identification on
supervised smoothed manifold, in: CVPR, 2017, pp. 2530–2539.

[29] Y. Zhang, B. Li, H. Lu, A. Irie, X. Ruan, Sample-specific svm
learning for person re-identification, in: CVPR, 2016, pp. 1278–
1287.

[30] E. Ahmed, M. Jones, T. K. Marks, An improved deep learning
architecture for person re-identification, in: CVPR, 2015, pp.
3908–3916.

[31] H. Liu, J. Feng, M. Qi, J. Jiang, S. Yan, End-to-end comparative
attention networks for person re-identification, IEEE Transac-
tions on Image Processing 26 (7) (2017) 3492–3506.

[32] Y. Du, H. Ai, S. Lao, Evaluation of color spaces for person
re-identification, in: ICPR, 2012, pp. 1371–1374.

[33] D. Gray, H. Tao, Viewpoint invariant pedestrian recognition
with an ensemble of localized features, in: ECCV, 2008, pp.
262–275.

[34] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable
person re-identification: A benchmark, in: ICCV, 2015.

[35] R. Kolde, S. Laur, P. Adler, J. Vilo, Robust rank aggregation
for gene list integration and meta-analysis, Bioinformatics 28 (4)
(2012) 573.

[36] Y. C. Chen, X. Zhu, W. S. Zheng, J. H. Lai, Person re-
identification by camera correlation aware feature augmenta-
tion, IEEE Transactions on Pattern Analysis and Machine In-
telligence PP (99) (2017) 1–14.

[37] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang,
X. Tang, Spindle net: Person re-identification with human body
region guided feature decomposition and fusion, in: CVPR,
2017, pp. 1077–1085.

[38] N. Jojic, A. Perina, M. Cristani, V. Murino, B. Frey, Stel com-
ponent analysis: Modeling spatial correlations in image class
structure, in: CVPR, 2009, pp. 2044–2051.

12


	Caratula_Article_Preprint_CC_BY-NC-ND_en(12)
	exploitingfeature
	1 Introduction
	2 RELATED WORK
	3 PROPOSED MODEL
	3.1 Polynomial Feature Map
	3.2 Spatially Constrained Similarity Function
	3.2.1 Regional feature map
	3.2.2 Local similarity integration
	3.2.3 Global-local collaboration
	3.2.4 Visual Cues and Parameter settings

	3.3 Complementary features
	3.3.1 SCNCD @tempd *@tempc Yang2014
	3.3.2 Background/foreground information
	3.3.3 Gaussian Of Gaussian (GOG)
	3.3.4 Deep feature @tempd *@tempc Wu:WACV:2016
	3.3.5 Integrating complementary features

	3.4 Post-ranking based on DCIA
	3.4.1 Definitions
	3.4.2 Content Information
	3.4.3 Context Information
	3.4.4 Discriminative Information Analysis
	3.4.5 Re-ranking Training
	3.4.6 Post-ranking Optimization

	3.5 Ranking Aggregation Strategy

	4 EXPERIMENTAL RESULTS
	4.1 Evaluation Protocol
	4.2 Case 1: State-of-the-art comparison
	4.3 Case 2: Background information within SCNCD
	4.4 Case 3: Complementary feature representations
	4.5 Case 4: Post-ranking analysis
	4.6 Case 5: best-n tunning rank-aggregation strategy
	4.7 Computational cost

	5 Conclusion




