

c© Florian Merges

This work is licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivs 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en

Abstract

This thesis covers the design and development of a general purpose astronomical data
archive. In astronomy, instruments attached to telescopes, are the main data producers.
Astronomical data archives as used to provide access to this vast amount of data, which
keeps increasing day by day. These archives are usually developed as part of a sponsored
collaborative project between institutions, or as an in-house development. As such, they
tend to be tailor made for an institution, a telescope, or its instruments. But, not all
of them have an archive that enables astronomers to search, inspect and download data.
Therefore, a new software was created, by following an agile software development method-
ology, in order to fill this gap. The result obtained is a fully functional general purpose
astronomical data archive. One that can be used for public data, private data, or both,
supporting raw as well as reduced data, and easy to integrate with existing infrastructure.

iv

To my parents

Acknowledgments

I am particularly grateful for the assistance given by my thesis supervisor Oriol Mart́ı
Girona by solving all my questions along the way. To Prof. Dr. Santi Caballé Llobet for
his clarification that tilted the balance towards a thesis in software engineering. And to
all the people of the UOC community that I had the pleasure to interact with.

I would also like to offer my thanks to my work colleagues, present and past, specially
to Saskia Prins for sharing her knowledge in astronomy, and to Prof. Dr. Hans Van Winckel
for giving me the opportunity to work for the Mercator Telescope project.

Last but not the least, I would like to thank my family, for always believing in me, for
their love, support, and understanding.

vi

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Procedure Statement . 2

1.4 Time Management . 3

1.5 Results . 6

1.6 Chapter Summaries . 7

2 Requirements 8

2.1 Stakeholders . 8

2.2 Product Backlog . 8

2.3 Product Constraints . 9

2.4 User Story Template . 9

3 Sprint Zero 13

3.1 User Stories . 13

3.2 Architecture . 14

3.3 Technology . 16

3.4 Project Layout . 17

3.5 Domain Model . 19

3.6 Data Import . 20

3.7 Retrospective . 22

4 Sprint One 25

4.1 User Stories . 25

4.2 User Interface Design . 26

4.3 Permissions and Security . 30

4.4 User Management . 31

vii

CONTENTS viii

4.5 Domain Model . 31

4.6 Data Import . 31

4.7 Retrospective . 32

5 Sprint Two 35

5.1 User Stories . 35

5.2 Data Search . 36

5.3 Raw File Details . 40

5.4 Retrospective . 41

6 Sprint Three 44

6.1 User Stories . 44

6.2 Program Details . 45

6.3 Data Download . 51

6.4 User Management . 56

6.5 Domain Model . 56

6.6 Retrospective . 56

7 Sprint Four 58

7.1 User Stories . 58

7.2 Notifications . 59

7.3 Domain Model . 63

7.4 Retrospective . 63

8 Conclusions 64

Bibliography 66

A Source Code 69

A.1 Data Import Tool . 69

A.2 Controller Permission Checks . 70

B Deployment Instructions 71

B.1 Production Environment . 71

B.2 Development Environment . 74

List of Figures

2.1 Requirements: User story template . 9

3.1 Sprint Zero: System diagram . 15

3.2 Sprint Zero: Layered architecture . 16

3.3 Sprint Zero: Project layout . 18

3.4 Sprint Zero: Domain model class diagram 19

3.5 Sprint Zero: Data model relational diagram 20

3.6 Sprint Zero: Data import activity diagram 21

3.7 Sprint Zero: Data import tool screenshot 22

3.8 Sprint Zero: FITS Header example (one) . 23

3.9 Sprint Zero: FITS Header example (two) 23

3.10 Sprint Zero: FITS Header example (three) 24

3.11 Sprint Zero: FITS Header example (four) 24

4.1 Sprint One: Sitemap . 27

4.2 Sprint One: User interface design elements (one) 28

4.3 Sprint One: User interface design elements (two) 29

4.4 Sprint One: User login screenshot . 31

4.5 Sprint One: Domain model, user and roles class diagram 32

4.6 Sprint One: Data import class diagram . 33

4.7 Sprint One: Data import sequence diagram 34

5.1 Sprint Two: Data search use case . 37

5.2 Sprint Two: Search form screenshot . 38

5.3 Sprint Two: Search results screenshot . 38

5.4 Sprint Two: Search activity diagram . 39

5.5 Sprint Two: Raw file view use case . 40

5.6 Sprint Two: Raw file view screenshot (one) 42

5.7 Sprint Two: Raw file view screenshot (two) 43

6.1 Sprint Three: Program use case diagram . 46

6.2 Sprint Three: Update program details use case 47

ix

LIST OF FIGURES x

6.3 Sprint Three: Add program permission use case 48

6.4 Sprint Three: Update program details screenshot 49

6.5 Sprint Three: Program details screenshot 50

6.6 Sprint Three: Download use case diagram 51

6.7 Sprint Three: Data download design elements 52

6.8 Sprint Three: Add file to tarball use case 53

6.9 Sprint Three: Tarball status . 53

6.10 Sprint Three: Tarball creation sequence diagram 54

6.11 Sprint Three: Tarball detail view screenshot 55

6.12 Sprint Three: Domain model, tarball and attachment class diagram 57

7.1 Sprint Four: Notifications use case diagram 59

7.2 Sprint Four: Manage notification subscriptions use case 60

7.3 Sprint Four: Notifications display screenshot 60

7.4 Sprint Four: Notifications settings screenshot 61

7.5 Sprint Four: Notifications service class diagram 61

7.6 Sprint Four: Program data notification handler sequence diagram 62

7.7 Sprint Four: Domain model, notifications class diagram 63

List of Tables

2.1 Requirements: Product Constraints . 9

2.2 Requirements: Product Backlog . 11

4.1 Sprint One: Permission Levels . 30

6.3 Sprint Three: Download Modes . 51

Listings

A.1 Source Code: Data import tool source code 69
A.2 Source Code: Controller function permissions check 70

xi

Chapter 1

Introduction

1.1 Background

Instruments, attached to telescopes, are the main scientific data producers in the astro-
nomical field. Most of these instruments use Charge-Coupled Device (CCD)1 detectors to
capture the light-energy from the objects in the sky, and after an analog to digital conver-
sion, store this pixel data to a file along with some metadata. This metadata may consist
of: sky coordinates, date and time, instrument settings, and meteorological information,
among others. The sum of both, pixel data and metadata, is known as raw data, and in
consequence a file with raw data is called a raw file2.

This raw data by itself is not of much use to an astronomer, it needs to be reduced
first. Data reduction is very much instrument specific. Custom made software pipelines
create reduced data by processing raw and calibration data together. At least three steps
are necessary to reduce raw data: bad pixel removal, bias and dark current subtraction,
and flat fielding.[2]

The standard file format to store this data is the Flexible Image Transport System
(FITS)[3] format. Regardless of being a dated format, and attempts to use others like
HDF3, the majority still rely on FITS. The metadata is stored in what is known as
Header Data Units (HDU) consisting of keyword/value pairs. The FITS format requires
at least one HDU, from now on simply called header, with some mandatory keywords.
The remaining keywords, and the nature of their values, are very much unregulated and
up to its creator.

Due to this liberty, headers from two instruments, even from the same telescope, might
be significantly different. Moreover, the format of the header for a given instrument might
change as well with time, for instance, new keywords are added, a data unit of a keyword is
modified, etc. Thus, without a special keyword in the header that identifies the version of
its format, the heuristics as to how to extract and normalize them may become somewhat
tricky.

The vast amount of data produced by sky surveys and observations need to be cataloged
and made accessible to astronomers, and here is where astronomical data archives come
into play.

1“A semiconductor device that is used especially as an optical sensor and that stores charge and transfers
it sequentially to an amplifier and detector.”[1]

2A simple analogy could be a raw photo from a consumer digital camera.
3“HDF5 is a data model, library, and file format for storing and managing data. It supports an unlimited

variety of datatypes, and is designed for flexible and efficient I/O and for high volume and complex data.”[4]

1

CHAPTER 1. INTRODUCTION 2

Although there exists historical data archives dating back to earlier centuries made up
of drawings and notes, and more recently of photographic plates, our concern is about the
data archives of the digital era.

Astronomical data archives are usually developed as part of a sponsored collaborative
project between institutions, or as an in-house development. One way or the other, these
archives tend to be tailor made for an institution, a telescope, or its instruments—but not
really with a general purpose in mind.

Althought there is an alliance, the International Virtual Observatory Alliance (IVOA)[5]
founded in 2002, with the mission to facilitate the interconnection and interoperability be-
tween data archives and tools—through the definitions of standards. (Archives supporting
these standards can be queried by third parties in a transparent way, by means of a com-
mon language, supported by a growing list of tools.) However, they do not provide a data
archive solution, one, ready to be used by a telescope or astrophysical observatory.

1.2 Objectives

The aim of this project is to design and develop a general purpose astronomical data
archive. In short, a system that enables users to search, access, and download astronomical
data. In addition, enabling them to manage the access to the data, hence rendering it
suitable for collaborative environments with multiple research groups.

This archive can be a solution for small to medium sized telescopes, professional as-
tronomers, and amateurs willing to offer access to their data but, due to resource limita-
tions are unable to develop a custom solution.

1.3 Procedure Statement

The output of an initial research4 suggest that there are no off-the-shelf astronomical
archive solutions available. As mentioned before, see Section 1.1, archives are tailor made
for a given institution or telescope. This means there may be a demand for a product like
this, accordingly, a new product is developed.

Furthermore, the research brought to light several similarities—taken into account
during design—among the reviewed astronomical archives:

• most of them only provide access to public data.

• have a search facility.

• display a subset of the metadata stored in a raw header5.

• allow inspection of the raw header.

• link the files with their respective observing program.

• provide a means to retrieve data, some directly, others per request.

Next, the development method or approach in order to create the product is selected.
In software development there are basically two big methodology families. On one side

4An initial research is always important in order to prevent reinventing the wheel.
5The raw header as it is enclosed in the FITS file.

CHAPTER 1. INTRODUCTION 3

we have those that follow the classical waterfall method, and on the other we have the so
called agile methods.

Agile methods follow an iterative process in which the classical steps of a waterfall
method (business requirements → technical design → coding & testing → launch) are
repeated in iterations for the duration of the project; and by continuous inspection and
adaptation, avoid loosing track of the project’s objective. Thus, contrary to those following
the classical method, agile methods embrace change. The initial idea is to have a product
at the end of the project, therefore the choice is to use an agile method, otherwise, too
much precious time is invested in the analysis and design of it.

The Scrum framework is used for the development of this project. “Scrum is a frame-
work for organizing and managing work. The Scrum framework is based on a set of values,
principles, and practices that provide the foundation to which your organization will add
its unique implementation of relevant engineering practices and your specific approaches
for realizing the Scrum practices. The result will be a version of Scrum that is uniquely
yours.”[6, page 13]

As this project is the bachelor thesis of the author, and because it is not a team effort,
the framework was adapted based on time constraints and personal preferences in order
to meet the allotted time frame. The adaptations are:

• keep low ceremony.

• fusing the three roles: Product Owner, ScrumMaster, and the Development Team.

• no meetings, nor daily scrum sessions.

• simplified sprint6 actions: planning, inspections, scrum, and retrospectives.

• simplified sprint backlog.

In addition, due to the time constraints mentioned earlier, an entirely Test Driven De-
velopment (TDD)7—even less a Behavior Driven Development (BDD)8—seem unfeasible.
In consequence, only unit tests for essential components are implemented. Nonetheless,
the author strives to follow most of agile’s best principles and practices, making it a con-
stant to remind himself of: “Do the Simplest Thing That Could Possibly Work”, “You
Aren’t Gonna Need It”, and “Don’t repeat yourself (DRY)”.

1.4 Time Management

The following Gantt chart covers the period between the start of the first sprint until the
thesis’s defence day. It displays the month, the days, the weeks, the day of the week (zero
for Monday), and also highlights some important dates. After each sprint there are two
slack days, used to recover and gain perspective. Notice also that only the first sprint is
shown ungrouped—the first sprint is always somehow special.

6“Scrum organizes work in iterations or cycles of up to a calendar month called sprints. [...] They are
timeboxed, have a short and consistent duration, have a goal that shouldn’t be altered once started, and
must reach the end state specified by the team’s definition of done.”[6]

7TDD is an approach in which tests are written first, followed by just enough code to pass those tests.
8BDD is an approach, emerged from TDD, in which technical and non-technical people can work

together using a domain specific language in order to express the behavior of a system, and consequently
test it.

C
H
A
P
T
E
R

1.
IN

T
R
O
D
U
C
T
IO

N
4

03 04

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Week 10 Week 11 Week 12 Week 13 Week 14 Week 15

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4

Sprint 0

Research spikes

Prototyping spikes

Project layout

Domain model

Data import

Sprint 1

Sprint 2

PEC2

C
H
A
P
T
E
R

1.
IN

T
R
O
D
U
C
T
IO

N
5

04 05

18 19 20 21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Sprint 2

Sprint 3

Sprint 4

Thesis & Presentation

05 06

20 21 22 23 24 25 26 27 28 29 30 31 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Week 20 Week 21 Week 22 Week 23 Week 24 Week 25

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3

Thesis & Presentation

PEC3 Delivery Defence

CHAPTER 1. INTRODUCTION 6

1.5 Results

The result obtained is a fully functional general purpose 9 astronomical data archive. An
archive suitable for all environments, public or private or both. It supports raw as well
as reduced data. Data is kept safe as it only requires read access to it. Further, standard
command line tools are provided for an easy integration with existing infrastructure.

In addition, a simple but powerful web application is provided, enabling users to:

• search data by different criteria, including cone search.

• export search results into different output formats.

• access the data’s most relevant information.

• inspect raw data headers.

• access to observing night reports, and thus understand the observing conditions of
the data.

• directly plot and inspect reduced data.

• link to the most popular astronomical objects catalog and its finding charts.

• select and download data.

• access the download history.

• see the details of a program and its data.

• change the details of a program

• upload attachments to a program.

• modify the user permissions for a program.

• track the progress of a program, for instance, see when data was taken and how
many.

• subscribe to different notifications.

• receive e-mail notifications.

• sign up in the system.

9General purpose because it is not tied to any given telescope or instruments.

CHAPTER 1. INTRODUCTION 7

1.6 Chapter Summaries

This document covers the design and development of a general purpose astronomical data
archive, using an agile methodology. As such, it tries to engage the reader into the iterative
process followed from inception to conclusion.

Booch et al. in [7, page 494] write: “Sadly, there is no commonly agreed-upon way to
quantitatively represent an arbitrary architecture.” But, this is not necessarily something
bad. After all, there is a component of art in engineering, and akin to real life a lot of
times there is more than one path leading to the same destination.

The remaining chapters are:

Chapter 2 focuses on the product requirements. Gives an overview of the main stake-
holders of the system, introduces the product backlog—which is a prioritized list of
requirements or desired functionality—, the product constraints, and the template
used for the user stories—a user story is a format to express product backlog items.

Chapter 3 is about the architecture and technology of the system. Explains the project
layout (or skeleton), introduces the core domain model entities, and the intricacies
of the data import.

Chapter 4 details the general user interface design, digs into the security and permission
strategy implemented in the system, and how user management is done.

Chapter 5 delves into data search, and how raw and reduced data are displayed. It also
covers briefly some external services.

Chapter 6 examines the features related to observing programs and how program’s data
access is handled. In addition, this chapter unfolds the details of data download.

Chapter 7 is all about user notifications, the different options available, and how users
can manage their notification subscriptions.

Chapter 8 exposes the conclusions and future visions of the project.

Appendix A contains source code snippets referenced in the document.

Appendix B goes step by step through the installation process for a production server
and a development environment.

Chapters 3–7 correspond to the sprints layed out in Chapter 2. They all follow a
similar structure: first the user stories of the sprint are introduced; followed by a more
detailed exposition of them and how they were implemented in the system; and finally, a
short retrospective, a review, or both.

Chapter 2

Requirements

2.1 Stakeholders

One of the first steps in any project consists in identifying the main stakeholders:

Principal Investigator (PI), and co-investigator (Co-I): Commonly, astronomical
research is grouped into programs or proposals; each program has at least a PI1, and
most of the times one or more collaborators—also known as Co-Is.

Administrator: The actor in charge of the application, the data, and its storage.

User: Any actor, besides an administrator who wants access to the archive to search,
inspect, and download data.

2.2 Product Backlog

The project development uses the Scrum framework, its tools and strategies. In Scrum, the
central artifact around everything evolves is the product backlog. “The product backlog
is a prioritized list of desired product functionality. It provides a centralized and shared
understanding of what to build and the order in which to build it. It is a highly visible ar-
tifact at the heart of the Scrum framework that is accessible to all project participants.”[6,
pages 99–100]

“As with XP2, in Scrum it is not important for the product owner to identify all of
the requirements up front. However, there is often a benefit to jotting down as many of
them as possible at the outset. Scrum has no prescribed, or even recommended, approach
to initially stocking the product backlog.”[9]

Table 2.2 illustrates the initial product backlog with the user stories identified. The
table format is inspired by Cohn’s Spreadsheet-Based Product Backlog[10]. The unique
ID is omitted because it doesn’t add any relevant information for the case statement—and
it is generated by the Source Configuration Management (SCM) system anyways.

1A PI is “the scientist in charge of an experiment or research project.”[8]
2Extreme Programming (XP), another agile software development method.

8

CHAPTER 2. REQUIREMENTS 9

2.3 Product Constraints

Product constraints are the limitations and restrictions that apply to a product. Non-
functional requirements are requirements that address a variety of system needs, and thus
can be considered to be product constraints as well.

Therefore, the non-functional requirements of the system are grouped into product
constraints expressed by user stories. It might seem unusual at first, but the strong point
of using stories for non-functional requirements is that they allow to keep track of who
raised the requirement3.

As a/an I want to...

Product Owner support multiple instruments and data products
Product Owner be easy to use
Product Owner not impose special software requirements
Product Owner be compatible with mobile devices and tablets
Product Owner be extensible by third parties
Product Owner make it easy to internationalize the software if needed

Table 2.1: Requirements: Product Constraints

2.4 User Story Template

“User stories are a convenient format for expressing the desired business value for many
types of product backlog items, especially features. User stories are crafted in a way
that makes them understandable to both business people and technical people. They are
structurally simple and provide a great placeholder for a conversation. Additionally, they
can be written at various levels of granularity and are easy to progressively refine.”[6, page
83]

Figure 2.1 shows the user stories template used in this document. The template ad-
heres to the recommendations made by Cohn[9], Rubin[6], and others. Each story has a
title, a flag indicating if the story is a constraint, a short description, and eventually a
confirmation—also known as conditions of satisfaction. Furthermore the user stories are
not numbered, as: “[...] numbering story cards adds pointless overhead to the process and
leads us into abstract discussions about features that need to be tangible.”[9]

Name C

Description

Confirmation

Figure 2.1: Requirements: User story template

3For a longer discussion about non-functional requirements and user stories see [11]

CHAPTER 2. REQUIREMENTS 10

The user stories in this document do not include story points. Story points are useful
in a team environment in order to prioritize the work to be done. Due to the lack of
a team, gut feeling and delivering something of value with each sprint—and not just a
potentially shippable product increment—are used instead. Related to this, Kniberg[12]
writes:

“Once we have a preliminary list of stories to be included in the sprint I
do a “gut feeling” check. I ask the team to ignore the numbers for a moment
and just think about if this feels like a realistic chunk to bite off for a sprint.
If it feels like too much, we remove a story or two. And vice versa. At the end
of the day, the goal is simply to decide which stories to include in the sprint.
Focus factor, resource availability, and estimated velocity are just a means to
achieve that end.”

C
H
A
P
T
E
R

2.
R
E
Q
U
IR

E
M
E
N
T
S

11

Table 2.2: Requirements: Product Backlog

As a/an I want to... so that... Priority Sprint

Admin import new data into the system users can access it High 0

Admin register new users they can use the system High 1

Admin enable or disable users I can deactivate unused accounts High 1

User to register myself into the system I don’t need to contact an administrator Medium 1

System provide security measures for data access I can be used for private, and public data High 1

User search existing data I can see what is available High 2

User see the detail of a raw file High 2

User have access to the end of night report for a file I can see the conditions of the observation Low 2

User have access to the finding chart for any given raw
file

Low 2

User have access to the header of a raw file High 2

User analyze the reduced spectrum Low 2

PI/Co-I define details of my programs Medium 3

PI/Co-I manage user access to my programs I choose who can see my data Medium 3

PI/Co-I upload the proposal to my programs users can download it Low 3

Continued on next page

C
H
A
P
T
E
R

2.
R
E
Q
U
IR

E
M
E
N
T
S

12

Table 2.2: (continued)

As a/an I want to... so that... Priority Sprint

PI/Co-I see the progress of my programs I can see the health of it Low 3

Admin administrate user access I can give rights to certain users Medium 3

User select data to download High 3

User download data as a tarball I don’t have to download individual files High 3

User receive notification when new data is available I don’t have to check every so often Low 4

User receive a notification when a tarball is ready Low 4

User I want to choose the user interface language Low 4

Chapter 3

Sprint Zero

3.1 User Stories

Data support C

The system should support multiple instruments, and data products

Design takes into account different instruments

Design takes into account different data products

No special software requirements C

The system should not impose special software requirements to the final user

The user doesn’t need to install any specialized software to use the application

Responsive design C

The system should be compatible with mobile and tablet devices

With a desktop computer

With a tablet

With a smartphone

Extensibility C

The system should be extensible and customizable by third parties

The system can be easily adapted to a given telescope, its instruments, and its data
products

13

CHAPTER 3. SPRINT ZERO 14

Architecture and technology

Define the architecture and technology to be used for this project

Architecture is scalable

Follows current best practices

Project layout

Create the general project layout

Follows recommendations of the technology used

Initial domain model

Should only focus on the data import

Only data import domain objects are considered

Data import

As an Administrator, I want to be able to import new data into the system

The system supports data produced by different instruments

The system supports raw and reduced data

The system supports different header versions

3.2 Architecture

After an initial analysis of the requirements laid out in Section 2.2, it seems logical, to opt
for a web application.

“One of the biggest changes to enterprise applications in the last few years has
been the rise of Web-browser-based user interfaces. They bring with them a
lot of advantages: no client software to install, a common UI approach, and
easy universal access. Also, many environments make it easy to build a Web
app.”[13, Ch. 4]

Accordingly, the system is composed of: a web application for the user interaction,
some tools for the astronomical data import, a database, and a task queue for asyn-
chronous processes (like tarball1 generation, e-mails, and notifications). Figure 3.1 shows
a simplified diagram of the system.

The system is developed following an object oriented approach, which allows for a
higher degree of abstraction, modularity, and easier maintenance. Additionally, the system
follows a layered architecture [15, page 1]; to be precise a 3-tier architecture (not counting
the service layer) as it combines the business layer with the persistence layer.

1“Tarball is a frequently used jargon term for an archive that has been created with the tar com-
mand.”[14]

CHAPTER 3. SPRINT ZERO 15

Figure 3.1: Sprint Zero: System diagram

A framework is used for the web application, it follows the Model-View-Controller
(MVC) or Model-Template-View (MTV) design pattern2. A short digression: although
the pattern runs under the same name as the classical MVC pattern [13, Ch. 14], there are
some small but important differences. They are equal in sense that both call for separation
of concerns, which we could say is the most important aspect of them. (Separation of
concerns is the ability to change one of the component of the pattern without affecting
another.) But, while the classical MVC pattern—specially suited for GUIs, and dating
back the times of Smalltalk—is located at the presentation layer in a tiered architecture
and only communicating with the layer(s) below, the Controller part of the new MVC
pattern is located outside and communicates with both layers: presentation layer and
business layer. The web frameworks available in Python’s ecosystem follow this new MVC
pattern3. Figure 3.2 shows a diagram of how the layered architecture looks like.

The web application uses the traditional stateless page-redraw model despite recent
trends towards single page applications (SPA). Single page applications perform well when-
ever a desktop application experience is to be simulated in a browser, or for highly in-
teractive web applications, but this is not necessarily the case for an online data archive.
Besides, little is gained by adding more complexity to the presentation layer.

In general terms, the data import consists of: reading in raw or reduced data files,
extraction and normalization of the information retrieved from the metadata located in
the headers, and its storage into a database for query and retrieval. As the system is not
responsible for the storage of the imported data files, and only requires access to them, the
data can be located anywhere, on the same server, a shared resource, or even the cloud4.

The extracted information from the data files is persisted into a relational database.
This type of database uses the relational model—consisting of tuples and relations—to
implement our Entity-Relation (E-R) domain model5. A relational database in combina-

2A “[...] pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.”[16]

3See [17] and [18] for a longer discussion.
4“This metaphor represents the intangible, yet universal nature of the Internet.”[19]
5See [20, Ch. 2–3]

CHAPTER 3. SPRINT ZERO 16

Figure 3.2: Sprint Zero: Layered architecture

tion with a Relational Database Management System (RDBMS) offers many benefits: the
Structured Query Language (SQL)6, the ACID7 properties, scalability, and compatibility
with many programming languages and tools.

Furthermore, a job queue is used to carry out asynchronous tasks, those not fitting the
standard stateless request-response pattern of a web application, or those exceeding the
maximum response timeout of a HTTP8 request, like for instance: generating a tarball or
sending an e-mail notification.

3.3 Technology

The main programming language of choice is Python. It is object oriented, dynamic,
multiparadigm, multiplatform, with an easy learning curve, and with wide acceptance
in academia, specially in astronomy. “Python is, as of this writing, poised to become
the dominant language used in software systems for astronomy, for pre-post observing,
and for during-observing software at the middle and higher layers, and for lower level
prototypes.”[22]. Thanks to the latter, there exists a significant number of scientific,
numeric, and graphical libraries available.

The MVC framework Flask, along with several extensions, is used for the development
of the web application. The framework extensions provide common features like database
management, security, forms, mail, and internationalization among others. Although being
a microframework, it is robust and scalable enough to manage an application of this size.

The domain model makes use of the Object Relational Mapper (ORM)[13, Ch. 10]
provided by SQLAlchemy [23]. SQAlchemy is heavily inspired by the patterns mentioned in
[13], among them, one is crucial to understand how an ORM functions: the Unit Of Work
(UOW). By using an ORM we avoid most of the risks associated with SQL injections9

6See [20, Ch. 4]
7Stands for Atomicity, Consistency, Isolation, Durability. See [13, Ch. 5]
8“Stands for Hypertext Transfer Protocol. HTTP is the protocol used to transfer data over the web. It

is part of the Internet protocol suite and defines commands and services used for transmitting webpage
data.”[21]

9“A SQL injection attack consists of insertion or injection of a SQL query via the input data from the
client to the application.”[24]

CHAPTER 3. SPRINT ZERO 17

as the library handles the escaping for us—using placeholders otherwise when raw SQL
queries are demanded. Moreover, Alembic, a lightweight database migration tool, is used
to version the changes to the domain model, thus translating in easier software upgrades.
SQLAlchemy and Alembic are well integrated with Flask.

In addition to the aforementioned, many Python libraries are used, some standing out
by themselves like: astropy for processing data files and coordinates calculations, numpy
for manipulating data matrices, astroquery and requests to communicate with external
services, py.test for units tests, and Sphinx for documentation.

The relational database management system PostgreSQL with Q3C [25] extension is
used. Q3C provides spatial indexing on a sphere, and several functions for different types
of coordinate search.

For the asynchronous tasks the system relies on Celery and Redis. The former is a
distributed task queue, while the latter is an in-memory data structure storage which can
be used for caching purposes as well. Redis is used as the message broker for Celery.

The user interface client side code is written in HTML5, CSS3, and JavaScript. JQuery,
a widely used cross-platform JavaScript library, is used for the client side scripting. The
responsive design and the homogeneous look’and’feel are achieved through Twitter Boot-
strap.

The web application is deployed to a WSGI10 application server called uWSGI, which
in turn communicates with the chosen web server: NGINX. To finish it all of, NGINX,
and all the other servers and services are deployed on a Linux platform.

3.4 Project Layout

The project layout follows Flask’s recommendations for large applications[27].

The root folder contains the open astro archive package. All the modules required by
the application are part of it: constants, domain model, application factory, importer, con-
figuration, and blueprints11. Further, the application is split into the following blueprints:
main, program, admin, and api. The static folder contains the images, stylesheet, and
JavaScript code; the template folder, all the templates used by the presentation layer.
Blueprints may have their private static and templates folders.

Returning to the root folder of the application, there is a migrations folder containing
files for the migration tool, another for unit tests, and two special files: Pipfile with
the list of software requirements of the application, and wsgi.py, which provides the
application instance and extends flask script with the command line tools for data import,
database creation, etc.

The project layout described can be seen in Figure 3.3.

10“The Web Server Gateway Interface (or WSGI for short) is a standard interface between web servers
and Python web application frameworks.”[26]

11“Flask uses a concept of blueprints for making application components and supporting common pat-
terns within an application or across applications. Blueprints can greatly simplify how large applications
work and provide a central means for Flask extensions to register operations on applications.”[28]

CHAPTER 3. SPRINT ZERO 18

/
migrations
open astro archive

admin/
api/
constants.py
database.py
extensions.py
factory.py
importer

core.py
filters.py
init .py

mercator.py
init .py

main/
models.py
notifications.py
permissions.py
program/
settings.py
static/
tasks.py
templates/
uploads.py

Pipfile
tests
wsgi.py

Figure 3.3: Sprint Zero: Project layout

CHAPTER 3. SPRINT ZERO 19

3.5 Domain Model

The domain model is quite simple, as this sprint focuses only on the initial project layout
and data import.

Figure 3.4: Sprint Zero: Domain model class diagram

The File class is the parent class of RawFile and ReducedFile, they represent raw
and reduced data respectively. The reasoning behind the File class is not only due to
the fact that both data types are files, but because by doing so they can be handled the
same way from the model’s point of view—something handy when dealing with files and
downloads.

The Program class represents an observing program. An observing program, from now
on just program, can be defined as a study which is composed of astronomical objects
or targets to be observed under certain conditions12. Once an observing program is ap-
proved by a time allocation committee, actual observing time on a telescope is granted
and scheduled. As such, most of the time, data product of an observation, be it raw or
reduced, is associated with a program13.

12The requested observing conditions is part of what is called Phase II information. It is not relevant
for archiving, but for scheduling observations.

13Particular cases can be dealt by each specific telescope’s importer module.

CHAPTER 3. SPRINT ZERO 20

Figure 3.5: Sprint Zero: Data model relational diagram

The HDU class, an acronym that stands for Header Data Units, models the FITS file
headers. The model is designed in such a way that any File object can have many
associated HDU objects. In practice however, only raw file headers are saved14; reduced
file headers are mostly a copy of each respective raw header. The string representation of
headers are stored entirely along with its position and name. Figure 3.5 shows the initial
relational diagram displaying the entities related to the data import with its corresponding
data types.

3.6 Data Import

Data import is the action of bringing into the system new data in order to make it avail-
able to users. Some of the requirements of the data import are: to accept different sources
or instruments, support raw and reduced data, and be compatible with different header
versions. The header information between instruments or even institutions, specially the
latter, can be significantly different. On top of that, the data acquisition system of any
given instrument might suffer modifications during its lifetime, thus the information con-
tained in the data headers possibly changes as well, for example: addition of new fields,
or modification of a data unit.

As depicted in Figure 3.6, the data import process consists of a loop that processes

14In case this requirement may change, the data model won’t be affected.

CHAPTER 3. SPRINT ZERO 21

Figure 3.6: Sprint Zero: Data import activity diagram

CHAPTER 3. SPRINT ZERO 22

each input file found in a source folder. Based on the type of data, raw or reduced, it will
select the appropriate importer. Once the file has been processed and the objects created,
they are stored in the database.

From the FITS format specification it is obvious that the data import component has
to be flexible enough to accommodate the most diverse scenarios: incomplete headers,
missing keyword entry, wrong data unit, different header versions, no header version, etc.
One solution is to have a dictionary to lookup based on the data source or telescope, the
instrument, and the header version, how a certain attribute (that will be stored in the
database) needs to be processed. Further, a general template or default configuration can
be defined per telescope or instrument or both. By means of filters, special cases can
be dealt with. Figures 3.8, 3.9, 3.10, 3.11 show the problematic in action, four different
keyword naming convention for the same information, and on top, the coordinates of
Figure 3.11 use B1950 instead of J2000.

A filter can be used to normalize data, ensure a certain measurement unit, or to
generate an attribute value for a missing header keyword. All filters share a common
interface, and each filter has access to the full data header, in case an attribute has to be
derived from other keywords.

Generally, software originates from a concrete problem, and through an abstraction
process, evolves into a generic solution. This case, by no means is any different, and in
consequence, the first version of the import tool is written for a given data set. The
data set contains raw and reduced data for different instruments including imaging and
spectroscopy; with single and multiple headers. It has been anonymized, object names
and coordinates changed, and several other steps, all to avoid disclosing any private data.
This data set is used for testing purposes as well.

As already mentioned in Section 3.4, the import tool is made available through the
flask script. While a command line tool might seem a bit simplistic at first, it is a good
choice over a daemon15 as it offers a lot of integration flexibility. (This approach is in
line with Raymond’s[30] Rule of Composition.) Section A.1 shows the source code of the
import tool, and Figure 3.7 shows the tool in action.

Figure 3.7: Sprint Zero: Data import tool screenshot

3.7 Retrospective

The general architecture, technology, project layout, and initial domain model are defined.

The data import works and passes all the unit tests produced for the test-dataset. Yet,
as mentioned in Section 3.6, the data import is closely related to the test-dataset available;
this should change an become a generic solution, in result, a new story was added to the
backlog.

15“[...] a computer daemon is a constantly running program that triggers actions when it receives certain
input.”[29]

CHAPTER 3. SPRINT ZERO 23

Figure 3.8: Sprint Zero: FITS Header example (one)

Figure 3.9: Sprint Zero: FITS Header example (two)

CHAPTER 3. SPRINT ZERO 24

Figure 3.10: Sprint Zero: FITS Header example (three)

Figure 3.11: Sprint Zero: FITS Header example (four)

Chapter 4

Sprint One

4.1 User Stories

Easy to use system C

The system should be easy to use

User interface design patterns are used

The User Interface (UI) is simple and intuitive

Responsive design C

The system should be compatible with mobile and tablet devices

With a desktop browser

With a tablet

With a smartphone

Provide security measures for data access

Several levels of security should be implemented

User needs to sign in to access the archive

Roles support

Administrator role

Program permissions: user and admin

Register new users

As an Administrator, I want to be able to register new users

Administrator user can register new users

25

CHAPTER 4. SPRINT ONE 26

Enable or disable users

As an Administrator, I want to be able to enable or disable a user

Administrator can enable an account

Administrator can disable an account

Self registration

As a User, I want to be able to register myself

A user can register through the web application

Only e-mail and password are required

Refactor importing component

Generic, and pluggable

It is easy to add support for new telescopes

Simple mapping between attributes, header keywords and filters

It can be adapted to the needs of any given telescope

4.2 User Interface Design

Although Kernighan and Pike are right when they say: “First, graphical user interfaces
are hard to create and make ‘right’ since their suitability and success depend strongly on
human behavior and expectations. Second, as a practical matter, if a system has a user
interface, there is usually more code to handle user interaction than there is in whatever
algorithms do the work.”[31, page 114]. Still, in the end, the success of a web application
depends in no small measure on the user satisfaction by means of its interface.

Therefore, a clean and simple design is followed. Agreement with some of the Gestalt[32]
laws can be identified, for instance, the law of good Gestalt, similarity, proximity, con-
tinuity or simplicity. To increase the chances of a satisfactory user experience, only the
most relevant information is shown—in contrast with a cluttered user interface with an
excessive use of widgets.

In addition, the design strives to be consistent and to follow standard conventions. In
words of Don Norman[33, page 149]: “Consistency in design is virtuous. It means that
lessons learned with one system transfer readily to others. On the whole, consistency is to
be followed. If a new way of doing things is only slightly better than the old, it is better
to be consistent. But if there is to be a change, everybody has to change. Mixed systems
are confusing to everyone.” And: “People invariably object and complain whenever a new
approach is introduced into an existing array of products and systems. Conventions are
violated: new learning is required. The merits of the new system are irrelevant: it is the
change that is upsetting.”

For this reason, several user interface design patterns are used: navigation menu with
highlighted active section, notification area, user profile and logout actions, modal dialogs,
and special widgets for text editing, passwords, calendar, and so on. Furthermore, other
patterns are used to communicate with the user, from using colors and hiding information

CHAPTER 4. SPRINT ONE 27

Figure 4.1: Sprint One: Sitemap

to changing the states of widgets. Figures 4.2 and 4.3 displays some of these patterns in
use.

A sitemap provides the navigability through a website or web application; and a rough
estimation of the number of pages or templates in use. Figure 4.1 shows the web application
sitemap.

C
H
A
P
T
E
R

4.
S
P
R
IN

T
O
N
E

28

Top navigation bar Shopping cart Notifications

Logged in user

Breadcrumbs Button colors, and icons to aid the user Clean arrangement of elements

Figure 4.2: Sprint One: User interface design elements (one)

C
H
A
P
T
E
R

4.
S
P
R
IN

T
O
N
E

29

Notifications with different colors to indicate the status of the action

Show or hide elements based on user permissions

Navigation bar with active section

Usage of icons, colors, and dynamic elements

Figure 4.3: Sprint One: User interface design elements (two)

CHAPTER 4. SPRINT ONE 30

4.3 Permissions and Security

Permissions and security are better defined early on, otherwise it can be more difficult to
get it right. The system’s requirements are to support public and private data, and to
allow PIs to manage their programs permission. Table 4.1 summarizes the access levels
identified.

Level Permission Description

4 Admin All of the levels below, plus user management.

3 Program Admin Given a program, can manage its permissions and set-
tings.

2 Program User Given a program, can access its details and data.

1 User User can login and search public data.

Table 4.1: Sprint One: Permission Levels

In order to accommodate the different needs identified, the system follows the Party-
Role[34] pattern. The Role archetype[35] is justified by the web application (even do
it doesn’t have any behavior associated) to restricts the user interface, data access, and
actions.

The web application uses an extension, Flask-Security [36], to handle authentication
and authorization—also user registration, a topic for another section. This extension
builds on top of several others much like a façade[37] in order to provide:

“ 1. Session based authentication

2. Role management

3. Password hashing

4. Basic HTTP authentication

5. Token based authentication

6. Token based account activation (optional)

7. Token based password recovery / resetting (optional)

8. User registration (optional)

9. Login tracking (optional)

10. JSON/Ajax Support ”[36]

Flask-Security imposes some constraints on the domain model. To begin with, it re-
quires the model to have two classes, one representing users and another representing roles.
In addition, these two classes need to include some behavior via mixin1. And finally, the
users class needs to have two attributes for the login procedure: email and password.

The basic role support provided by Flask-Principal, the extension used by Flask-
Security, is suitable for the Admin role but not for the other two. In order to provide
support for these, Program User and Program Admin, two new classes are required by
Flask-Principal, one defines the need that can be requested for, and a second one for the
permission itself. Furthermore, a new class is required in order to express and persist this
new user permission between users and programs.

See Section A.2 for a detailed explanation on how the permissions can be checked at
the controller level.

1Mixin “[c]lasses [...] are designed to provide concrete methods to other classes via multiple inheri-
tance.”[38]

CHAPTER 4. SPRINT ONE 31

Figure 4.4: Sprint One: User login screenshot

4.4 User Management

User management is handled through the Flask-Security extension. Two user registration
options are available. First option is self registration via the web application. Second,
using the command line flask script. The later can be used for enabling and disabling
users as well.

Flask-Security ships with a basic set of templates that were overridden in order to fit
the overall web application design. Figure 4.4 shows the customized login screen.

4.5 Domain Model

Three classes were added:

• User

• Role

• UserProgramPermission

Figure 4.5 shows an excerpt of the domain model class diagram with the user, and role
classes required to support the different user access levels defined in Section 4.3.

4.6 Data Import

After some refactoring, a new data import component is available. Previously, it was
closely tied to the test-dataset, now, it consist of a minimalistic framework.

CHAPTER 4. SPRINT ONE 32

Figure 4.5: Sprint One: Domain model, user and roles class diagram

The framework orchestrates the overall data import leaving some margin for each
telescope2 module to suit its particular needs. By means of inheritance, and the use of the
template method[37] pattern, it provides several hooks to tailor the data import process
for each telescope, and its instruments. Figures 4.6, and 4.7 illustrate this new design by
showing the most relevant aspects of it.

Adding support for a given telescope is straightforward. First, an abstract class needs
to be implemented for the particular data type—raw or reduced. Second, the class needs
to be registered into the system via the plugin registry. (The benefit of using a plugin
registry is that the core of the importing system doesn’t need to be changed when a new
telescope module is added to the system.) The module registry can be done in two ways,
either by decorating[39] the class, or by calling the registry directly.

In conclusion, thanks to this new design and the flexibility it offers, even the most
tricky scenarios shall be supported.

4.7 Retrospective

The general user interface, navigation, and sitemap are defined. Users can register them-
selves through the web user interface; only a valid e-mail address and password are re-
quired. Administrators can register new users and activate them using the command line
tool. The same tool can be used to disable an existing user. The data import component
was completely refactored, althought its external interface was kept, thus the importing
tool did not require any changes.

2The term telescope is used although in reality it should be seen as a data source.

CHAPTER 4. SPRINT ONE 33

Figure 4.6: Sprint One: Data import class diagram

C
H
A
P
T
E
R

4.
S
P
R
IN

T
O
N
E

34

Figure 4.7: Sprint One: Data import sequence diagram

Chapter 5

Sprint Two

5.1 User Stories

Data search

As a User, I want to be able to search for data by object name, coordinates, instrument,
and program

User can search through public data

The list of programs only include those for which the user has permissions

The results can be ordered by different attributes

The results can be exported to different formats

Cone search

As a User, I want to be able to make a cone search

Cone search returns only objects inside the coordinates radius

Raw file view

As a User, I want to see the detail of a raw file

All the attributes are displayed

End of Night Report

As a User, I want to have access to the end of night report for a raw file

Handles correctly if an end of night is not available

35

CHAPTER 5. SPRINT TWO 36

Finding Chart

As a User, I want to have access to the finding chart for a given raw file

The finding chart matches the astronomical object

A link to Simbad is provided

Raw header display

As a User, I want to be able to see the raw header for a raw file

Multi-header support

Analyze Reduced Spectrum

As a User, I want to be able to analyze the reduced spectrum, if available, for a given
raw file
The speed is acceptable

Gzip and deflate is used

Zoom, pan and reset options are available

5.2 Data Search

Searching the archive is the most relevant action a user wants to do, downloading data
being second. Hence, it is very important to provide a user friendly search interface.

Users want to search data by object name1, coordinates, date range, instrument, pro-
gram, or by all of them. Searching by date range, instrument, or program is straightfor-
ward. But, it turns out that the object name is not a reliable search criteria because:

1. an object can have several names. It may have been cataloged more than once, and
each catalog has its own naming conventions.

2. the object name in a FITS header is assigned by the observer during the observation,
or by the PI as part of the submitted observing proposal. Meaning, it can be literally
anything.

A solution is to rely on the object’s coordinates2. The coordinate system most widely
used in astronomy to identify objects is the equatorial system, it uses two angles to locate
the astronomical object on the celestial sphere: right ascension (RA), and declination
(DEC).

However, providing only coordinate search is a bit cumbersome because it forces the
user to look up the coordinates of the object. In order to make the search experience more
pleasant, a service was added to lookup in Simbad3 by object name. The service returns a
list of possible object names, and as soon as the user confirms one, the coordinates fields
of the search form are populated—thus avoiding the tedious task just mentioned.

1The name of a star or stellar object
2The system assumes the object coordinates are in Epoch J2000.
3A database containing information for several million astronomical objects. See [40]

CHAPTER 5. SPRINT TWO 37

Data Search

Goal Level: Sea Level

Primary Actor: User

Preconditions: User is logged in

Main Success Scenario:

1. The system provides a search form to the user.

2. The user submits the search.

3. The system searches the archive taking the user’s permission into account.

4. The system returns the results of the search.

Extensions:
1.a User enters an object name:

1. The system queries Simbad catalog.

2. The system returns the astronomical objects options.

3. The user selects the astronomical object from the list.

4. The browser fills the object coordinates of the search form.

Figure 5.1: Sprint Two: Data search use case

“A cone search extracts all the objects within a user specified radius around a single
point in the sky”[41]. The search form has already fields to introduce the coordinates,
thus by extending it, both type of searches can be combined into one; provided a small
initial radius is set. Figure 5.1 shows a summary of the data search use case.

The search form is made up of the following fields: a name field for object coordinates
lookup; RA, DEC, and radius for coordinates search, and cone search; from and through
dates to restrict the time interval; and some multi fields for instruments and programs.
The list of available programs to search upon depend on the user’s role and permissions.
See Figure 5.2.

Once the search request is received on the backend, and the form data is validated,
an archive search is carried out. The search takes into account: user roles, program per-
missions, and the public flag of files. In case the form data includes RA and DEC coor-
dinates, the database query uses a function provided by the Q3C extension to perform a
cone search. A cone search requires some spherical trigonometry to calculate the distance
between the user provided coordinates and the coordinates of all the available files in the
archive; doing this as part of a database query is not so efficient. Q3C uses indexes to
speed things up, and at the same time it hides the mathematics required for the search.
Figure 5.3 shows the results of a search. Figure 5.4 shows an activity diagram of the search
process.

CHAPTER 5. SPRINT TWO 38

Figure 5.2: Sprint Two: Search form screenshot

Figure 5.3: Sprint Two: Search results screenshot

CHAPTER 5. SPRINT TWO 39

Figure 5.4: Sprint Two: Search activity diagram

CHAPTER 5. SPRINT TWO 40

Raw File View

Goal Level: Sea Level

Primary Actor: User

Preconditions: User is logged in

Main Success Scenario:

1. The user selects a raw file to view from the search results.

2. The system lookups the given raw file.

3. The system checks if the user can view file.

4. The system returns the results.

Extensions:
2.a Raw file does not exists:

1. The system sends back the error to the client.

3.a No permissions:

1. The system sends back the error to the client.

Figure 5.5: Sprint Two: Raw file view use case

5.3 Raw File Details

Typically after a data search, a user is interested in knowing the details of a raw file. See
if there is reduced data available, inspect the FITS header, read the observer’s comments,
check the finding chart to confirm it’s the right object, or have access to the end of night
report submitted by the observer in order to have a better idea of the observing conditions
when the data was taken. Figure 5.5 shows a summary of the raw file view use case.

CHAPTER 5. SPRINT TWO 41

From an User Experience (UX) point of view, all relevant information and actions were
combined in a single view, from which the user can4:

• see the extracted metadata of a raw file.

• see the finding chart with a link to Simbad.

• access to the observing program.

• inspect the reduced spectrum.

• see the raw FITS header.

• see the list of reduced files.

• access the end of night report.

Figure 5.6 and Figure 5.7 shows a screenshot of the raw file view.

The spectrum plot uses a widget allowing the user to pan and zoom. All the data
points of the spectrum are send, meaning the data is not averaged. Several different
plotting libraries were tested until one was found with an acceptable performance, as a
typical spectrum contains many datapoints. By enabling compression on the webserver,
with the current internet access speeds, the download time required to visualize a plot is
acceptable. The data itself for the plot is downloaded on demand using AJAX5. For the
time being, only the reduced spectrum plot is available. In future, the idea is to move
the plotting responsibility to the data source or telescope module, this way each module
controls how its data is plotted.

Having access to the full header allows a user to find a value that might not be captured
already as part of the extracted metadata. In case the header has several header units,
they are made available to the user through tabs.

5.4 Retrospective

General search, coordinate, and cone search are implemented. Raw file view is imple-
mented, including finding chart, plot, headers, reduced files and the end of night report.

The end of night report and the reduced spectrum plot are tied to the telescope or
data source of the test-dataset. In future, by means of the strategy[37] pattern, each data
source will have it own logic.

The velocity at the end of this sprint suffered a little due to public holidays. The initial
time planning contemplated already two slack days between this sprint and the upcoming
one, but at the end they turned into four.

4Not all of the options are available for every raw file, for instance, an imaging raw file is not a spectrum,
or there might not be reduced data for a given raw file.

5“AJAX stands for Asynchrnonous JavaScript And XML [...]. The basic idea behind AJAX is that your
application can send and receive information to other computers without reloading the web page.”[42]

CHAPTER 5. SPRINT TWO 42

Figure 5.6: Sprint Two: Raw file view screenshot (one)

CHAPTER 5. SPRINT TWO 43

Figure 5.7: Sprint Two: Raw file view screenshot (two)

Chapter 6

Sprint Three

6.1 User Stories

Program Settings

As a PI/Co-I, I want to define details of my programs

All the programs attributes are updated

Text editor works correctly Program permissions are checked

Program Permissions

As a PI/Co-I, I want to manage the user access to my programs

Verify the user can search and select an user

The list of users should not include:

• users with administrator role

• the current user

• users already with any of both program permissions

Program permissions are checked for changing permissions

Program Progress

As a PI/Co-I, I want to see the progress of my programs

The sum aggregate for the days and data observed is correct

The calculation is fast enough or if caching is needed

Program permission are checked

44

CHAPTER 6. SPRINT THREE 45

Program Attachments

As a PI/Co-I, I want to be able to attach files to a program

The user can upload and delete attachments

The user can upload a file with the same name

Permissions are checked when uploading or downloading attachments

Select data to download

As a User, I want to select the data to download

The download data set can be chosen

Files can be added and removed from a cart

The cart can be emptied

Permissions are checked when adding data

Data Tarball

As a User, I want to download the data as a tarball

The tarball is created correctly

The tarball is send as an attachment

Permissions are checked for downloading the tarball

6.2 Program Details

One of the epics of the project besides being able to search and retrieve data is, to provide
a facility for a PI (and Co-Is) of a program to manage the access to their program and its
data. Part of the epic includes as well to be able to: define details of a program, and keep
track of its progress. In addition, an authorized user should be able to add attachments
to a program.

From an UX point of view, similar to the raw file details view, see Section 5.3, all
relevant information and actions were combined in a single view.

A PI can engage with the users by uploading attachments and create content for
the program page, e.g, uploading some publication data, plots, news, etc. There is no
limitation on the number of attachments possible, only the size of each to avoid misuse.

By keeping track of a program is meant, to be able to see when data has been taken
for the program in an intuitive an simple way. This is accomplished by a simple heatmap
widget. It uses colors and labels to indicate the sum aggregate of the data available for a
given program for a certain time period.

Figure 6.1 shows the use case diagram for a program. The authorized user corresponds
to a user that satisfies the Program User role. See Section 4.3.

Figures 6.2, and 6.3 give a short summary of the written specification for the Update
Program Details, and Add Program Permission use cases.

CHAPTER 6. SPRINT THREE 46

Figure 6.1: Sprint Three: Program use case diagram

CHAPTER 6. SPRINT THREE 47

Update Program Details

Goal Level: Sea Level

Primary Actor: PI, Co-I, or Admin

Preconditions: User is logged in

Main Success Scenario:

1. The user follows the link from the program details view.

2. The system looks up the given program.

3. The system checks the user can update the program.

4. The system provides an edit form with the relevant content.

5. The user makes the changes and submits the edit.

6. The system looks up the given program.

7. The system checks the user can update the program.

8. The system updates the program details based on the user submitted
data.

9. The system notifies the user about the changes.

Extensions:
2.a Program does not exists:

1. The system sends back the error to the client.

3.a No permissions:

1. The system sends back the error to the client.

6.a Program does not exists:

1. The system sends back the error to the client.

7.a No permissions:

1. The system sends back the error to the client.

8.a Form validation fails:

1. The system provides an edit form with the relevant content, and
errors.

Figure 6.2: Sprint Three: Update program details use case

CHAPTER 6. SPRINT THREE 48

Add Program Permission

Goal Level: Sea Level

Primary Actor: PI, Co-I, or Admin

Preconditions: User is logged in

Main Success Scenario:

1. The user follows the link from the program details view.

2. The system looks up the given program.

3. The system checks the user can update the program.

4. The system provides an select form with a list of users, excluding the user
itself, and the users that have already any permission on the program.

5. The user select the user and the permission, and submits the edit.

6. The system looks up the given program.

7. The system checks the user can update the program.

8. The system updates the program permissions based on the user submitted
data.

9. The system notifies the user about the changes.

Extensions:
2.a Program does not exists:

1. The system sends back the error to the client.

3.a No permissions:

1. The system sends back the error to the client.

6.a Program does not exists:

1. The system sends back the error to the client.

7.a No permissions:

1. The system sends back the error to the client.

8.a Form validation fails:

1. The system provides a select form with the relevant content, and
errors.

Figure 6.3: Sprint Three: Add program permission use case

CHAPTER 6. SPRINT THREE 49

Figure 6.4: Sprint Three: Update program details screenshot

CHAPTER 6. SPRINT THREE 50

Figure 6.5: Sprint Three: Program details screenshot

CHAPTER 6. SPRINT THREE 51

Figure 6.6: Sprint Three: Download use case diagram

6.3 Data Download

Being able to download data is one of the key aspects of any archive. Astronomical data
tends to be of considerable size, thus the user requirement to be able to download the
selected files packed into a tarball. Files are added in sets to a tarball.

The file sets are determined by the download mode. Table 6.3 reflects the possible
download modes for a given raw file. The size of a tarball is determined by the number of
files it contains, and indirectly by the characteristics of the instrument(s) that produced
the data. Figure 6.6 shows a use case diagram related to data download.

Mode Flag Tarball Action

Raw file F Raw file is added

Reduced files R Reduced files are added

Raw and reduced files F+R Raw and reduced files are added

Remove or reset Raw and reduced files are removed

Table 6.3: Sprint Three: Download Modes

The data download feature uses the Shopping Cart[43] design pattern in an attempt
to follow Krug’s first law of usability: “Don’t make me think!”[44]. Shopping Cart is a
pattern everybody is used to, hence it is the perfect match for this purpose. A user simply
adds file sets to the cart, afterwards creates the tarball, and in the end downloads it. See
Figure 6.7

Figure 6.8 gives a short summary of the written specification for the Add File to Tarball
use case. The other use cases are quite similar, all of them ensure the user is logged in,
the user is the owner of the tarball, and in case of adding files to a tarball it filters the
files based on the user’s permissions.

Generating a tarball takes some time, it doesn’t fit the request-response pattern of web
applications, hence they are generated asynchronously by means of a task queue. When
a user confirms a tarball, a new task is enqueued, and as soon as a worker is available

CHAPTER 6. SPRINT THREE 52

Search results

Navigation bar

Raw file details

Figure 6.7: Sprint Three: Data download design elements

the task is processed. The task queue identifies each task with an unique identifier. The
identifier can be used to query the status of the task, show its progress, and relaunch in
case of problems. Figure 6.10 despicts the tarball creation.

The stored tarballs may take up some considerable space. The development of a tool
is planned to control the disk quota, wich can be run periodically using cron.

A tarball goes through several states as seen in Figure 6.9. Each of these states are
recorded with the time the state transitioned. And, a user can have many closed tarballs
but only one open at a time. Figure 6.11 shows the tarball page, in which the contents of
the tarball are shown with the download mode, the status of the tarball, the total number of
files it contains and the sum of the files. It shows 6 files in the tarball because each reduced
set, for the given test-dataset, is made up of two files: 2Raw + 2Reduced · 2 = 6Files

CHAPTER 6. SPRINT THREE 53

Add File to Tarball

Goal Level: Sea Level

Primary Actor: User

Preconditions: User is logged in

Main Success Scenario:

1. The user selects the raw file(s), and mode that identifies the set, to down-
load.

2. The system get the files taking the user’s permissions into account.

3. The system adds to the user’s active tarball the resulting files from the
previous step with the given mode.

4. The system notifies the user about the changes.

Figure 6.8: Sprint Three: Add file to tarball use case

Open Processing Closed

Figure 6.9: Sprint Three: Tarball status

C
H
A
P
T
E
R

6.
S
P
R
IN

T
T
H
R
E
E

54

Figure 6.10: Sprint Three: Tarball creation sequence diagram

CHAPTER 6. SPRINT THREE 55

Figure 6.11: Sprint Three: Tarball detail view screenshot

CHAPTER 6. SPRINT THREE 56

6.4 User Management

The Flask-Security extension provides a datastore that abstracts users management. But,
it only knows about users and roles, not tarballs. Consequently, since the introduction
of the tarball epic, the user management stopped working. To fix it, a new datastore
was created which relies on the application model instead, thus handling correctly all the
tarball intricacies.

6.5 Domain Model

Several changes to the domain model were required:

• a new Attachment class is associated to Program class

• three new classes were added for the data download and tarball generation: Tarball,
TarballFile, and TarballStatus. Both Tarball and TarballStatus implement
the Historic Mapping association pattern.[45, Ch. 15]

• new relationships are created with the existing User class

Figure 6.12 shows an excerpt of the domain model class diagram.

6.6 Retrospective

Program and download stories are implemented. Pending for a future sprint: add tar-
ball compression option to the tarball view; at this moment it is part of the application
settings.

CHAPTER 6. SPRINT THREE 57

Figure 6.12: Sprint Three: Domain model, tarball and attachment class diagram

Chapter 7

Sprint Four

7.1 User Stories

Tarball notification

As a User, I want to receive a notification when a tarball is ready for download

Only receive notification if subscribed

New data notification

As a User, I want to receive a notification when new data is available for a program

Only receive notification for subscribed programs

Manage tarball notification subscription

As a User, I want to be able to manage my tarball notification subscription

Only receive notification if subscribed

Manage data notification subscriptions

As a User, I want to be able to manage my notification subscriptions

Should only allow to programs for which the user has permissions Can only select
between internal, or internal and e-mail

Internationalization C

As a User, I want to choose the user interface language

User can change profile settings interface language changes

58

CHAPTER 7. SPRINT FOUR 59

Figure 7.1: Sprint Four: Notifications use case diagram

7.2 Notifications

Early on, it was already apparent that a general notification system for the application
was certainly very convenient. Initially, two cases were identified: a notification when a
tarball is ready, and a notification when new data for a program is available. Soon after,
new notification types were identified, like for instance, a notification when program’s
permissions were modified. Figure 7.1 shows a use case diagram with the actions a user
can do.

Notification saves the user from waiting that a certain event happens, or even checking
if it did so. Notifications are handy for long running actions and asynchronous ones.
Checking every day if there is new data available for a program is certainly not appealing.
By using a notification system, the user only needs to wait for the notification to arrive.

The notification system does not rely on any external service, e.g., Google Cloud
Messaging (GCM). Furthermore, users can manage their own subscriptions, by selecting
for each notification type between internal notifications only, or both internal and e-mail.
Figure 7.2 gives a short summary of the written specification for the Manage Notification
use case. Figure 7.3 and 7.4 show details of the user interface of the notification system.

In essence, a notification consists of a message that is addressed to a user. By and
large, a notification is rarely personalized to the extend to be only of use to a single user.
As such, a notification may consist of a template that is filled on demand. Thus, the only
thing required to be tracked is if the user opened the notification or not, and when. In
consequence the notifications in the system are shared among users, thus avoiding a lot of
redundant data.

There may be several strategies to trigger a notification. In the case of a new tarball
one, the natural choice is to assign the responsibility to the worker that creates the tarball.
However, in the case of a program notification, the responsibility might be assigned to the
importing tool, or to a utility that checks if there is new data since the last time it was
executed—as it turns out, the later solution is the more robust one, specially when several
observing nights are imported at once, otherwise duplicate notifications can be triggered.

A service module was created, following the Pure Fabrication[46] or Service pattern,
to handle all the notification actions. The service is used by the controller, the workers,
and the utility tools. Figure 7.5 shows a class diagram of it. Figure 7.6 shows a sequence
diagram of the actions done by the program data notification handler, triggered by the
command line utility.

CHAPTER 7. SPRINT FOUR 60

Manage Notification

Goal Level: Sea Level

Primary Actor: User

Preconditions: User is logged in

Main Success Scenario:

1. The user accesses the notification subscription.

2. The system returns a form prefilled with the notification subscriptions.

3. The user changes the subscription settings and submits.

4. The system updates the notification subscriptions.

5. The system notifies the user about the changes.

Figure 7.2: Sprint Four: Manage notification subscriptions use case

Figure 7.3: Sprint Four: Notifications display screenshot

CHAPTER 7. SPRINT FOUR 61

Figure 7.4: Sprint Four: Notifications settings screenshot

Figure 7.5: Sprint Four: Notifications service class diagram

C
H
A
P
T
E
R

7.
S
P
R
IN

T
F
O
U
R

62

Figure 7.6: Sprint Four: Program data notification handler sequence diagram

CHAPTER 7. SPRINT FOUR 63

7.3 Domain Model

Once more, new classes were added to the domain model:

• Notification

• NotificationSubscription

• UserNotification

• ProgramDataNotificationConfig

Figure 7.7 shows an excerpt of the domain model class diagram.

Figure 7.7: Sprint Four: Domain model, notifications class diagram

7.4 Retrospective

Notification user stories were implemented. The user can subscribe to different types of
notifications and choose between internal delivery, or e-mail and internal delivery.

Due to time constraints, the user story regarding internationalization could not be
completed. Albeit, the foundation is in place for an upcoming sprint.

Chapter 8

Conclusions

Software engineering demands continuous learning and practice, lots of practice indeed.
Learning the theory is not enough, it is the practice that makes the skill. And one of the
most important ones—may the author be granted the right to introduce an opinion—is our
ability to recognize patterns. Not patterns in a purely software sense, but in a greater one.
The “Gang of Four”[37], inspired by the magnificent book A Pattern Language. Towns.
Buildings. Construction[16], made the term pattern popular in software.

But somehow, the essential idea got lost: recognizing patterns and the use of a language
to describe them. People at first, including the author, started blindly to apply these so
called software patterns having the wrong idea that, by doing so, the end product would
be better or in business terms, more enterprise. But with practice, you come to realize
that the essential aspect is to recognize them, and moreover to discern when it is a good
idea to apply the proposed solution or not.

When confronted to a problem that demands a software solution, the first step is to
gain context, analyze and understand the problem in hands, and be able to name it.
Gaining context in many fields provide perspective. And it is through perspective that
our abilities to recognize patterns are enhanced. The lessons learned from this project
strengthen this idea, as well as the recognition of the vast amount of knowledge waiting
ahead.

The main objectives proposed for this project were accomplished. There is a fully
working software that complies with the requirements initially laid out, see Section 1.5.
(With one exception, a low priority requirement, half way implemented, that had to be
postponed for later: internationalization.)

The methodology used, although not in its full extend, is the reason that this final
product is available. The classic waterfall approach would have certainly provided more
formal documentation, but given the time frame, little or no software at all would have been
available. In addition, it is the author’s believe, that if a standard project management
approach for software development would have been strictly followed, even an agile one,
it would have had a detrimental effect, given the time frame, on the final outcome.

64

CHAPTER 8. CONCLUSIONS 65

There has been many stories and topics that were not covered during this project. It
is a work in progress, and it is the author’s plan to continue its development—embracing
whatever it brings along. Following is a short list of some of those stories:

• add more unit tests.

• add more command line tools.

• add support for more telescopes and instruments.

• finish internationalization.

• create an administration web user interface.

• package the application.

• abstract the telescope support further. Importer, plot, and other services as exten-
sions of the framework.

• use Docker to containerize the application, thus allowing easier deployment.

• make use of marshmallow, a simplified object serialization, and share a common
service for the web view and the REST-API.

• develop a REST-API, and a module for astroquery, thus allowing third parties to
access the system.

• create a dashboard for users and administrators.

• use cookiecutter. Once setup, the system can be easily customized.

• provide support for different user interface themes. Add branding features.

• add Virtual Observatory (VO) support.

• add support for Jupyter Notebooks.

• consider to add a functionality to support a Phase II process.

• eventually add S3 support.

In the end, this project was a very enriching experience. It is with surprise just how
much knowledge was acquired for the production of this document.

Bibliography

[1] Merrian Webster. Definition of Charged-Coupled-Device. 2019. url: https://www.
merriam-webster.com/dictionary/charge-coupled%5C%20device (visited on 06/10/2019).

[2] D. Scott Birney, Guillermo Gonzalez, and David Oesper. Observational Astronomy.
Second Edition. Cambridge University Press, 2006.

[3] FITS Working Group. Definition of the Flexible Image Transport System. 2016. url:
https://fits.gsfc.nasa.gov/standard40/fits standard40aa-le.pdf.

[4] The HDF Group. HDF5. 2019. url: https://portal.hdfgroup.org/display/HDF5/
HDF5 (visited on 06/10/2019).

[5] International Virtual Observatory Alliance. IVOA.net. 2002. url: http://ivoa.net/
(visited on 06/10/2019).

[6] Kenneth S. Rubin. Essential Scrum. Pearson Education, Inc., 2013.

[7] G. Booch et al. Object-Oriented Analysis and Design with Applications. Addison-
Wesley, 2007.

[8] Princeton University ”About WordNet.” WordNet. url: https://wordnet.princeton.
edu/ (visited on 06/10/2019).

[9] Mike Cohn. User Stories Applied: For Agile Software Development. Addison-Wesley,
2004.

[10] Mike Cohn. A Sample Format for a Spreadsheet-Based Product Backlog. 2011. url:
https://www.mountaingoatsoftware.com/blog/a-sample-format-for-a-spreadsheet-
based-product-backlog (visited on 06/10/2019).

[11] Mike Cohn. Non-functional Requirements as User Stories. 2008. url: https://www.
mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories (vis-
ited on 06/10/2019).

[12] Henrik Kniberg. Scrum and XP from the Trenches: How we do Scrum. C4Media
Inc, 2007.

[13] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[14] The Linux Information Project. Tarball Definition. 2005. url: http://www.linfo.
org/tarball.html (visited on 06/10/2019).

[15] Mark Richards. Software Architecture Patterns. O’Reilly, 2015.

[16] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language.
Towns. Buildings. Construction. Oxford Univeristy Press, 1977.

[17] WardCunningham et al. Whatsa Controller Anyway. 2013. url: http://wiki .c2 .
com/?WhatsaControllerAnyway (visited on 06/10/2019).

66

https://www.merriam-webster.com/dictionary/charge-coupled%5C%20device
https://www.merriam-webster.com/dictionary/charge-coupled%5C%20device
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
http://ivoa.net/
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
https://www.mountaingoatsoftware.com/blog/a-sample-format-for-a-spreadsheet-based-product-backlog
https://www.mountaingoatsoftware.com/blog/a-sample-format-for-a-spreadsheet-based-product-backlog
https://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
https://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
http://www.linfo.org/tarball.html
http://www.linfo.org/tarball.html
http://wiki.c2.com/?WhatsaControllerAnyway
http://wiki.c2.com/?WhatsaControllerAnyway

CHAPTER 8. CONCLUSIONS 67

[18] Django Software Foundation. FAQ: General. 2013. url: https://docs.djangoproject.
com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-
the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-
standard-names (visited on 06/10/2019).

[19] P. Christensson. Cloud Computing Definition. 2009. url: https://techterms.com/
definition/cloud computing (visited on 06/10/2019).

[20] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts. McGraw-Hill College, 1997.

[21] P. Christensson. HTTP Definition. 2015. url: https://techterms.com/definition/
http (visited on 06/10/2019).

[22] Albert R. Conrad. Software Systems for Astronomy. Springer, 2014.

[23] Michael Bayer. “SQLAlchemy”. In: The Architecture of Open Source Applications
Volume II: Structure, Scale, and a Few More Fearless Hacks. Ed. by Amy Brown and
Greg Wilson. aosabook.org, 2012. url: http://aosabook.org/en/sqlalchemy.html.

[24] Open Web Application Security Project. SQL Injection. 2016. url: https://www.
owasp.org/index.php?title=SQL Injection&oldid=212863 (visited on 06/10/2019).

[25] S. Koposov and O. Bartunov. “Q3C, Quad Tree Cube – The new Sky-indexing
Concept for Huge Astronomical Catalogues and its Realization for Main Astronom-
ical Queries (Cone Search and Xmatch) in Open Source Database PostgreSQL”.
In: Astronomical Data Analysis Software and Systems XV. Ed. by C. Gabriel et al.
Vol. 351. Astronomical Society of the Pacific Conference Series. July 2006, p. 735.

[26] Kenneth Reitz and Tanya Schlusser. The Hitchhiker’s Guide to Python. O’Reilly,
2016.

[27] Pallets Team. Larger Applications. 2010. url: http://flask.pocoo.org/docs/1.0/
patterns/packages/ (visited on 06/10/2019).

[28] Pallets Team. Modular Applications with Blueprints. 2010. url: http://flask.pocoo.
org / docs / 1 . 0 / blueprints / #modular - applications - with - blueprints (visited on
06/10/2019).

[29] P. Christensson. Daemon Definition. 2006. url: https://techterms.com/definition/
daemon (visited on 06/10/2019).

[30] Eric S. Raymond. The Art of Unix Programming. 2003.

[31] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley,
1999.

[32] Jenifer Tidwell. Designing Interfaces. O’Reilly, 2005.

[33] Don Norman. The Design of Everyday Things. Basic Books, 2013.

[34] Len Silverston and Paul Agnew. The Data Model Resource Book. Volume 3. Wiley,
2009.

[35] Peter Coad, Jeff de Luca, and Eric Lefebvre. Java Modeling in Color With UML.
Prentice Hall, 1999.

[36] Matt Wright. Flask-Security. 2012. url: https://pythonhosted.org/Flask-Security/
(visited on 06/10/2019).

[37] E. Gamma et al. Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[38] Luciano Ramalho. Fluent Python: Clear, Concise, and Effective Programming. O’Reilly,
2015.

https://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://techterms.com/definition/cloud_computing
https://techterms.com/definition/cloud_computing
https://techterms.com/definition/http
https://techterms.com/definition/http
http://aosabook.org/en/sqlalchemy.html
https://www.owasp.org/index.php?title=SQL_Injection&oldid=212863
https://www.owasp.org/index.php?title=SQL_Injection&oldid=212863
http://flask.pocoo.org/docs/1.0/patterns/packages/
http://flask.pocoo.org/docs/1.0/patterns/packages/
http://flask.pocoo.org/docs/1.0/blueprints/#modular-applications-with-blueprints
http://flask.pocoo.org/docs/1.0/blueprints/#modular-applications-with-blueprints
https://techterms.com/definition/daemon
https://techterms.com/definition/daemon
https://pythonhosted.org/Flask-Security/

CHAPTER 8. CONCLUSIONS 68

[39] Mark Summerfield. Python in Practice. Addison-Wesley, 2014.

[40] M. Wenger et al. “The SIMBAD astronomical database. The CDS reference database
for astronomical objects”. In: Astronomy and Astrophysics, Supplement 143 (Apr.
2000), pp. 9–22. doi: 10.1051/aas:2000332. eprint: astro-ph/0002110.

[41] Naval Meteorology and Oceanography Command. Catalog Cone Search. 2008. url:
https ://www.usno .navy.mil/USNO/astrometry/optical - IR- prod/ icas/vo nofs
(visited on 06/10/2019).

[42] Semmy Purewal. Learning Web App Development. O’Reilly, 2014.

[43] Anders Toxboe. UI-Patterns. 2007. url: http : / / ui - patterns . com/ (visited on
06/10/2019).

[44] Steve Krug. Don’t make me think, Revisited, 3rd Edition. New Riders, 2014.

[45] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996.

[46] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, Third Edition. Addison-Wesley,
2004.

[47] Martin Fowler. UML Distilled. 3rd Edition. Addison-Wesley, 2004.

[48] Alistair Cockburn. Agile Software Development. Pearson Education, Inc., 2002.

[49] Leslie Lamport. Latex. A Document Preparation System. Addison-Wesley, 1994.

[50] William Strunk Jr. and E. B. White. The Elements of Style. Pearson Education,
Inc., 2000.

[51] Douglas Crockford. JavaScript: The Good Parts. O’Reilly, 2008.

[52] Heather Silyn-Roberts. Writing for Science and Engineering. 2nd Edition. Elsevier,
2013.

[53] chromatic. Extreme Programming Pocket Guide. O’Reilly, 2003.

[54] Miguel Grinberg. Flask Web Development. O’Reilly, 2014.

[55] Scott Chacon. Pro Git. Apress, 2009.

[56] Jeff Sutherland. The Art of Doing Twice the Work in Half the Time. Crown Business,
2014.

[57] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-
tice Hall, 2008.

[58] Astropy Collaboration et al. “Astropy: A community Python package for astron-
omy”. In: Astronomy and Astrophysics 558, A33 (Oct. 2013), A33. doi: 10.1051/
0004-6361/201322068. arXiv: 1307.6212 [astro-ph.IM].

[59] A. M. Price-Whelan et al. “The Astropy Project: Building an Open-science Project
and Status of the v2.0 Core Package”. In: Astronomical Journal 156, 123 (Sept.
2018), p. 123. doi: 10.3847/1538-3881/aabc4f.

[60] F. Merges et al. “MESA: Mercator scheduler and archive system”. In: Software and
Cyberinfrastructure for Astronomy II. Vol. 8451. Proceedings of the SPIE. Sept.
2012, p. 84512C. doi: 10.1117/12.926623.

https://doi.org/10.1051/aas:2000332
astro-ph/0002110
https://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/icas/vo_nofs
http://ui-patterns.com/
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
http://arxiv.org/abs/1307.6212
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1117/12.926623

Appendix A

Source Code

A.1 Data Import Tool

The data import tool is called from the command line. Calling it with the option -h
displays the help for the command.

Listing A.1: Source Code: Data import tool source code

@app . c l i . command()
@c l i ck . argument (’ d i r s ’ , nargs=−1, type=c l i c k . Path (d i r okay=True))
@c l i ck . opt ion (’−−t e l e s c op e ’ , d e f au l t=’ mercator ’ ,

help=’ Source o f the images . Defau l t mercator ’)
@c l i ck . opt ion (’−−reduced ’ , i s f l a g=True , d e f au l t=False ,

help=’Raw or reduced f i l e s . De fau l t raw ’)
def i m p o r t f i l e s (d i r s , t e l e s cope , reduced) :
””” Import f i l e s in to the arch i ve ”””
imp type = ’ reduced ’ i f reduced else ’ raw ’
c l i c k . echo (c l i c k . s t y l e (

” Importing %s %s data” % (t e l e s cope , imp type) , f g=’ green ’))
imp = importer . g e t c l s (t e l e s cope , imp type) ()

for d in d i r s :
c l i c k . echo (” Proce s s ing d i r e c t o r y %s : ” % d)
f i l e s = glob . g lob (os . path . j o i n (d , ” ∗ . f i t s ”))
with c l i c k . p rog re s sbar (f i l e s) as bar :

for f in bar :
try :

imp . run (f)
db . s e s s i o n . commit ()

except :
c l i c k . echo (c l i c k . s t y l e (”\nProblem proc e s s i ng f i l e %s ” %

c l i c k . f o rmat f i l ename (f) , f g=’ red ’))
raise

69

APPENDIX A. SOURCE CODE 70

A.2 Controller Permission Checks

Permission requirements for a controller function can be ensured by several ways: one by
decorating[37] the function, another, by checking the permissions from inside the function
itself. The later is used for an unknown compile time argument, e.g., a program related
action. Listing A.2 shows how both can be combined in code, in this case, checking the
user is logged in and at least satisfying the Program User role for the given program.

Listing A.2: Source Code: Controller function permissions check

@bp . route (’/< i n t : id>/ ’)
@ log in r equ i r ed # check user i s l ogged in
def program (id) :

program = Program . query . f i l t e r b y (id=id) . f i r s t o r 4 0 4 ()

check permiss ions
can v iew program or abort (program . id)

i s admin = is program admin (program . id)

return r ender template (’ program/view . html ’ , program=program ,
i s admin=is admin)

Appendix B

Deployment Instructions

B.1 Production Environment

INTRODUCTION

============

The following instructions cover the deployment of the open astro archive

system to a server.

PREREQUISITES

=============

Make sure you have installed the following software on your server:

* python > 3

* postgresql >= 9.1

* redis > 2.2

* pip >= 1.0

DEBIAN/UBUNTU PREREQUISITES INSTALLATION

==

Install required packages:

$ sudo su

apt-get install build-essential python3

apt-get install ngix git ssh

apt-get install redis-server postgresql

apt-get install libssl-dev python3-dev postgresql-server-dev-all

INSTALLATION

============

Install virtualenv:

pip install --upgrade pip

pip install virtualenv

Make sure postgresql accepts local connection using password.

The pg_hba.conf file should have a line like:

host all all 127.0.0.1/32 md5

Create database users:

$ su - postgres

$ createuser -P oaa

$ createdb -O oaa open_astro_archive

71

APPENDIX B. DEPLOYMENT INSTRUCTIONS 72

Install q3c extension:

$ git clone https://github.com/segasai/q3c

$ cd q3c

$ make

$ make install

$ psql -c "create extension q3c" open_astro_archive oaa

$ exit

Create system user:

$ sudo adduser --gid 100 oaa

$ sudo mkdir -p /srv/www

$ sudo chown oaa.users /srv/www

Create a bare repository to which you are going to sync to:

$ su - oaa

$ cd /srv/www

$ git clone git@github.com:fmerges/open-astro-archive.git

$ cd open-astro-archive

$ virtualenv venv

$ source venv/bin/activate

$ pip install -r requirements.txt

Create instance folder including uploads and logs subfolder:

$ cd /srv/www/open_astro_archive

$ mkdir -p instance/log

$ mkdir -p instance/uploads

$ cd instance

Optionally, create instance settings to override default ones:

$ cat > settings.cfg

Create supervisord configuration file.

Hit CTRL-D for finishing input and to save the file:

$ cat > supervisord.conf

[supervisorctl]

serverurl=unix:///tmp/supervisor.sock ; use a unix:// URL for a unix socket

[program:uwsgi]

directory=/srv/www/open_astro_archive

environment=TZ="UTC"

command=/srv/www/open_astro_archive/venv/bin/uwsgi %(here)s/uwsgi-open_astro_archive.ini

autostart=true

autorestart=true

stdout_logfile=%(here)s/log/%(program_name)s.log

redirect_stderr=true

exitcodes=0

And uwsgi configuration file:

$ cat > uwsgi-open_astro_archive.ini

[uwsgi]

master = 1

processes = 2

threads = 2

;socket = /tmp/%n.sock

socket = 127.0.0.1:3031

wsgi-file = /srv/www/open_astro_archive/wsgi.py

callable = application

logdate = true

;virtualenv = /srv/www/open_astro_archive/venv

pidfile = /srv/www/open_astro_archive/instance/web.pid

stats = 127.0.0.1:9191

APPENDIX B. DEPLOYMENT INSTRUCTIONS 73

Create database tables:

$ cd /srv/www/open_astro_archive

$ flask createdb

Start the application:

$ cd /srv/www/open_astro_archive

$ supervisord

Setup nginx webserver:

cat > /etc/nginx/sites-available/open_astro_archive

server {

listen 80;

listen 443 ssl;

server_name 161.72.58.13;

keepalive_timeout 70;

ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;

ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_ciphers HIGH:!aNULL:!MD5;

charset utf-8;

client_max_body_size 75M;

location / { try_files $uri @open_astro_archive; }

location @open_astro_archive {

include uwsgi_params;

uwsgi_pass 127.0.0.1:3031;

}

location /static {

root /srv/www/open_astro_archive/open_astro_archive/;

}

}

ln -s /etc/nginx/sites-available/open_astro_archive \

/etc/nginx/sites-enabled/open_astro_archive

Restart nginx webserver:

systemctl restart nginx.service

APPENDIX B. DEPLOYMENT INSTRUCTIONS 74

B.2 Development Environment

INTRODUCTION

============

The following instructions cover the deployment of the archive

system to a development environment.

The idea is to have a local copy of the source code that can be pushed

to the server. Therefore, clone the repository to a local folder on your

system:

$ git clone git@github.com:fmerges/open-astro-archive.git

PREREQUISITES

=============

Make sure you have installed the following software on your server:

* python > 3

* postgresql >= 9.1

* redis > 2.2

* pip >= 1.0

DEBIAN/UBUNTU PREREQUISITES INSTALLATION

==

Install required packages:

$ sudo su

apt-get install build-essential python3

apt-get install ngix git ssh

apt-get install redis-server postgresql

apt-get install libssl-dev python3-dev postgresql-server-dev-all

INSTALLATION

============

Install virtualenv:

pip install --upgrade pip

pip install virtualenv

Create database users:

$ su - postgres

$ createuser -P oaa

$ createdb -O oaa open_astro_archive

Install q3c extension:

$ git clone https://github.com/segasai/q3c

$ cd q3c

$ make

$ make install

$ psql -c "create extension q3c" open_astro_archive oaa

$ exit

Create system user:

$ sudo adduser --gid 100 oaa

$ sudo mkdir -p /srv/www/open_astro_archive

$ sudo chown oaa.users /srv/www/open_astro_archive

APPENDIX B. DEPLOYMENT INSTRUCTIONS 75

Create a bare repository to which you are going to sync to:

$ su - oaa

$ mkdir open_astro_archive.git && cd open_astro_archive.git

$ git init --bare

$ cd hooks

Create post receive hook for checking out the code from the repo

Hit CTRL-D for finishing input and to save the file.

$ cat > post-receive

#!/bin/sh

git --work-tree=/srv/www/open_astro_archive \

--git-dir=/home/oaa/open_astro_archive.git checkout -f

$ chmod +x post-receive

On your local system, add your live system as a remote in order

to automatically deploy to it, so from your local machine inside

the repository do:

$ git remote add live oaa@hostname:~/open_astro_archive.git

In order to deploy the code to the server invoke:

$ git push live origin/master:master

On your server:

$ cd /srv/www/open_astro_archive

$ virtualenv venv

$ source venv/bin/activate

$ pip install -r requirements.txt

Create instance folder, attachment upload directory and logs:

$ cd /srv/www/open_astro_archive

$ mkdir -p instance/log

$ mkdir -p instance/uploads

$ cd instance

Optionally, create instance settings to override the default ones:

$ cat > settings.cfg

Create database tables:

$ cd ..

$ flask createdb

Run the application:

$ flask run

PER ASPERA AD ASTRA

	Abstract
	Acknowledgments
	Introduction
	Background
	Objectives
	Procedure Statement
	Time Management
	Results
	Chapter Summaries

	Requirements
	Stakeholders
	Product Backlog
	Product Constraints
	User Story Template

	Sprint Zero
	User Stories
	Architecture
	Technology
	Project Layout
	Domain Model
	Data Import
	Retrospective

	Sprint One
	User Stories
	User Interface Design
	Permissions and Security
	User Management
	Domain Model
	Data Import
	Retrospective

	Sprint Two
	User Stories
	Data Search
	Raw File Details
	Retrospective

	Sprint Three
	User Stories
	Program Details
	Data Download
	User Management
	Domain Model
	Retrospective

	Sprint Four
	User Stories
	Notifications
	Domain Model
	Retrospective

	Conclusions
	Bibliography
	Source Code
	Data Import Tool
	Controller Permission Checks

	Deployment Instructions
	Production Environment
	Development Environment

