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Resumen

Los estudios de asociación de genoma completo han identificado varios polimor-
fismos de un solo nucleótido (SNP) asociados con esquizofrenia (SZ). La eviden-
cia sugiere la existencia de una compleja conexión entre los SNPs y la regulación
epigenética de la expresión génica, que no ha sido resuelta hasta el momento.
Los análisis integrativos con datos genéticos de estudios multi-ómicos podŕıan
constituir un enfoque importante para dilucidar cómo diferentes SNPs asociados
con la SZ afectan al fenotipo de la enfermedad a través de la regulación tran-
scripcional. Para comprobar esta hipótesis, se realizó un análisis cuantitativo
de asociación en una cohorte de 10 sujetos con SZ con el objetivo de identificar
SNPs y sitios de metilación asociados a la gravedad de la enfermedad. En primer
lugar, se identificó un SNP significativo asociado con SZ (P -valor ajustado <
8×10−8), ubicado en una región no codificante del cromosoma 16 próximo a
un gen lncRNA, un tipo de genes conocidos por estar disregulados en la enfer-
medad. Un análisis integrativo de los datos genéticos y de metilación obtenidos
(P < 0.01), permitió identificar 341 genes comunes a SNPs y sitios de meti-
lación asociados a SZ. Finalmente, se realizó un análisis integrativo de genes
diferencialmente expresados empleando datos de estudio previo de RNA-seq.
De los 341 genes totales, 16 fueron identificados como diferencialmente expre-
sados. Notablemente, 3 de ellos (SHANK2, SGK1 y TCN2 ) han sido descritos
previamente en la literatura como genes involucrados en SZ. La metodoloǵıa
presentada aqúı podŕıa constituir una herramienta novedosa y útil para avanzar
en el conocimiento de la fisiopatoloǵıa de la SZ.

Abstract

Genome-wide association studies have identified a number of single nucleotide
polymorphisms associated with Schizophrenia (SZ). Moreover, increasing body
of evidence suggests a complex connection of SNPs and epigenetic regulation of
gene expression, which, up to now, is not fully understood. Integrative analyses
that use genetic data from multi-omics studies to detect DNA methylation sites
associated with gene expression and SZ phenotype might constitute a major
approach able to elucidate how SZ-associated SNPs affect the disease traits
throughout genetic regulation of transcriptional output. To test this hypothesis
we performed an exploratory integrative quantitative association analysis to
obtain summary statistics data for SZ severity associated SNPs and methylation
sites of 10 drug-näıve SZ cases. We firstly identified a significant SZ-associated
SNP (adjusted P < 8×10−8), located on a non-coding region of chromosome 16
downstream a lncRNA gene (Long intergenic non-coding RNAs), a type of genes
known for being dysregulated in SZ. At a less restrictive significant P (< 0.01),
we found 341 common genes to significant SNP and CpG SZ-associated sites.
We further investigate the association of these genes with a previous SZ-RNA
sequencing study containing a set of 200 up and down regulated genes. 16 genes
were identified as being differentially expressed in SZ. Remarkably, 3 of them
(SHANK2, SGK1 and TCN2 ) had been previously described in the literature
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as being involved in SZ. The methodology presented here, might be novel and
useful tool to further dilucidate SZ physiopathology.
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1 Introduction

1.1 Context for this work

1.1.1 Schizophrenia: Epidemiology and symptoms

Schizophrenia (SZ) constitutes a complex, debilitating and chronic psychiatric
disorder, with a lifetime risk of approximately 0.7% [1], and a worldwide preva-
lence of about 1% [2]. Moreover, it is among the top ten leading causes of
disability by mental and neurological disorders in European countries with the
subsequent socioeconomic burden not only for patients but also for the wider
community [3]. SZ is characterized by the combined presence of a variety of
symptoms, including positive (eg. hallucinations, delusions), negative (eg. an-
hedonia, blunted affect, emotional withdrawal) and cognitive (eg. deficits in
executive function, working memory, poor attention) symptoms, as well as mo-
tor and mood symptoms [4]. The ratio and severity of symptoms is greatly
variable depending on each individual, so that SZ is a complex and heterogenic
disorder [5].

1.1.2 Schizophrenia: Aetiology

Two main competiting models have come forward as to explain the aetiology of
SZ. The neurodevelopmental models attribute SZ to alterations in the prenatal-
to-early adolescent development. This model states that genetic and environ-
mental risk factors during prenatal, perinatal, and early adolescence periods, act
as insults altering the natural developmental trajectory of the brain and leading
to the onset of the disease during adolescence and young adulthood [6]. Yet, the
neurodegenerative model describes SZ as a disease of progressively unfavorable
neurodegenerative course [7]. This hypothesis has its origins in the the descrip-
tions given by some psychiatrist in the early 19th century, of SZ as ”dementia
praecox”, depicting thus a progressive deteriorating disease with no recover. Al-
though both models are 2 competiting on the etiology and clinical course of this
disorder, a third unifying hypothesis has been proposed conceptualizating SZ as
a progressive neurodevelopmental disorder [8, 9]

1.1.3 Neurochemical models of Schizophrenia

Two of the most influential hypotheses concerning the neurobiology underly-
ing this disorder involve dopamine and glutamate neurotransmiters [10]. The
dopamine hypothesis of SZ initially arose from the evidence that the administra-
tion of amphetamines and similar compounds that increase extracellular concen-
trations of dopamine induce psychotic symptoms [11]. This hypothesis claims
that hyperactivity of dopamine D2 receptor neurotransmission in subcortical
and limbic brain regions contributes to positive symptoms of SZ, whereas nega-
tive and cognitive symptoms of the disorder can be attributed to hypofunction-
ality of dopamine D1 receptor neurotransmission in the prefrontal cortex [12].
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The glutamate hypothesis was based on the observation that psychotic symp-
toms induced by antagonists at the NMDA glutamate receptor like ketamine,
closely resemble both the positive and negative symptoms of schizophrenia [13].
Broadly, this theory points to a dysfunction of glutamatergic neurotransmis-
sion as responsible for in the etiology of the disease [14]. Although, glutamate
hypothesis has become increasingly popular over the last years, there are still
some inconsistencies with this model. Therefore, an unifying theory involving
both neurotransmitters have been proposed [10]

1.1.4 Genes and Environment in Schizophrenia

Nowadays, it is widely accepted that the main risk for SZ is to share genetic
variability with an affected person [15]. In fact, monozygotic twin studies have
found that the heritability of SZ is around 80% and environmental influence
has been estimated as 20% [16]. These findings are consistent with a view of
schizophrenia as a complex trait that results from genetic and environmental
etiological influences. Basing on the high heritability of SZ, there have been
many efforts to discover the causative genetic factors and candidate gene studies
have been a main approach. However, the identification of single candidate genes
is complicated because of the existence of multiple genes interactions along with
environmental influences. As a result of this, studies using a candidate gene
approach have been confusing and no genes have been unequivocally associated
to SZ [17].

1.1.5 GWAS studies and DNA methylation in Schizophrenia

Contrary to single candidate approach, GWAS studies have been able to identify
many SZ susceptibility loci [18]. They have also shown that the level of DNA
methylation, is partly associated with proximate SNPs [19]. DNA methylation
is a major epigenetic mechanism consisting on the covalent union of a methyl
group on cytosines followed by guanine residues. This type of methylation is
referred to as CpG methylation, and cytosine methylated at the fifth carbon of
the pyrimidine ring is called 5-methylcytosine (Figure1 A,B).

DNAm and other epigenetic phenomena are important mechanisms of tran-
scriptional regulation. In particular, DNAm regulates gene expression by re-
cruiting proteins involved in gene repression or by inhibiting the binding of
transcription factors to DNA [20]. Epigenetic processes can be modified by en-
vironment and have been postulated as links between environmental exposures,
genetic risk, and SZ [21]. Increasing body of evidence suggests a complex con-
nection of SNPs and epigenetic regulation of gene expression, which, up to now,
is not completely understood. Furthermore, most of the disease-associated vari-
ants are located in non-coding regions [22], which causes difficulties in clarifying
their biological effects on the disease pathogenesis.
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Figure 1: DNA methylation and demethylation. (A) DNA methylation occurs
at the fifth carbon of cytosine and leads to the formation of 5-methylcytosine; (B)
DNA methylation is predominantly found at CpG sites. Adapted from Jang et al.,
2017.

1.2 Justification for this work

The identification of genes and regulatory elements underlying the associations
between genetic susceptibility loci and psychiatric phenotype, might be essen-
tial to understand the aetilogy of complex-trait diseases such as SZ [21]. To the
best of our knowledge, few studies have investigated how distinct SNPs linked
with psychiatric disorders are associated with epigenetic marks with relevance
for gene expression [21, 23]. In this context, and given the reduced sample size
(n =10) available for this study, this work constitutes an exploratory analysis
that might be used in the future with larger sample sizes to provide a novel in-
sight on how genetic variants may contribute to the disorder through epigenetic
regulation of gene expression.

2 Objectives

2.1 General objective

To perform an exploratory integrative quantitative association analysis that
includes summary statistics data for SZ severity associated SNPs, methylation
sites and mRNA expression levels, to identify the effect of genetic variants on
SZ phenotype through epigenetic regulation of transcription.

2.2 Specific objectives

The specific objectives of this work are as follows:

1. To perform a SNPs association analysis to identify which genetic loci are
associated with SZ severity.

2. To perform a quantitative association analyses to identify which CpG sites
are associated with SZ severity.
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3. To integrate genetic and methylation data in order to identify common
genes in both analyses.

4. To perform an integrative analysis with differentially expressed genes pre-
viously described in SZ.

3 Approach and follow-up method

Integrative analyses of omics data constitutes a major challenge in Bioinfor-
matics. Omic integration is a complex process requiring thorough study design
and extensive data analysis and it is still an expanding field of research. To
the best of our knowledge few studies have approach omics integration analy-
ses in SZ. One of the few, it is the work of Montano et al., 2016 ; in which a
similar analysis to the one we present here was carried out. For this reason,
we considered that the most appropiate strategy to achive the aforementioned
objectives should have been based on the work of these authors. Although, they
were several differences regarding the data size of both studies, we were able to
adapt the analysis workflow to our own dataset during the development of the
analysis method (see figure 2) .

Figure 2: Analysis workflow. Adapted from Montano et al., 2016.

4 Work planning

To accomplish the proposed objectives according to the different deadlines of
the project, we proposed a final updated task calendar shown in figure 3. The
four tasks corresponded to each one of the objectives of the study. A brief
description of the tasks and the duration assigned to each of them are listed
below.
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• Task 1: SNP quantitative association analysis to identify which genetic
loci are associated with SZ severity. Assigned duration: 19/03/19 - 03/05/19.

• Task 2: Quantitative association analyses to identify which CpG sites are
associated with the SZ severity. Assigned duration: 19/03/19 - 03/05/19.

• Task 3: Integration of genetic and methylation data in order to iden-
tify common genes accross both datasets Assigned duration: 04/05/19 -
13/05/19.

• Task 4: Perform an integrative analysis with differentially expressed genes
found in SZ. Assigned duration: 14/05/19 - 18/05/19.

Tasks 1 and 2 were developed parallely and were finished prior to task 3. Based
on the characteristics of the analyses that tasks 1 and 2 required, we estimated
that the time assigned to both of them should be longer in comparison to the
rest of the tasks. Both tasks 1 and 2 were finished by the delivery time of PAC2:
Phase 1. Task 3 was dependant of tasks 1 and 2 and required a shorter period
of time to be completed. Task 4 accounted for the last part of the project and
to be completed, the accomplishment of the prior tasks was needed. Tasks 3
and 4 were completed prior to the delivery time of PAC3.

Figure 3: Tasks calendar. Figure shows the tasks calendar proposed in order to
fulll the deadlines of the project.

5 Brief summary of the products obtained

At the end of the present project, we have obtained the following items:

• Phenotype assesment and categorization scale for the study cohort.

• Significant SNP sites associated with SZ severity at different significance
values (P< 0.001; P< 0.01; adjusted-P= 1×10−7).

• Significant DNA methylation sites associated with SZ severity (P< 0.01)

• Output for the results of the genetic and methylation data integration
analysis at two different significance values (P< 0.001; P< 0.01)

• Output for the results of the differentially expressed genes integration
analysis at two different significance values (textitP< 0.001; P< 0.01)
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6 Brief description of the other chapters in the
memory

Other chapters in the memory have the following contents:

• Chapter 7: Material and Methods
This section contains two main subsections. The first one (Material) de-
tails data characteristics regarding the sample cohort such as demographic
and phenotypic values are detailed. Also, a description of the genotyping,
methylation and RNA sequencing data employed for the analysis is pre-
sented. The second section (Methods) accounts for the statistical analyses
performed in order to fullfil the objectives of this study.

• Chapter 8: Results
This section contains the main outcomes of the statistical analyses per-
formed in the previous section. More specifically, two main outcomes are
listed and described: the results of the integrative analysis of genetic and
methylation data and also the output for the integrative analysis with
differentially expressed genes.

• Chapter 9: Discussion This section includes a discussion focused on the
2 main findings of this work. More specifically, the results of the unique
associated SZ SNP found to be significant after multiple correction is
addressed. Althoug, the main discussion has been based on the dataset of
3 differentially expressed genes found in our analysis.

7 Material and Methods

Demographic, clinical and genetic data were kindly provided by Professor Bene-
dicto Crespo-Facorro of University Hospital Marques de Valdecilla (Cantabria,
Spain).

7.1 Subjects

The cohort analyzed in the present study included drug-naive schizophrenia
male patients (n=10) aged between 20 and 43 (mean=30,4; SD= 9,8) , ob-
tained from an ongoing epidemiological and three-year longitudinal intervention
program of first-episode psychosis (PAFIP: Programa Atención Fases Iniciales
de Psicosis) at the outpatient clinic and the inpatient unit at the University
Hospital Marques de Valdecilla (Cantabria, Spain). The study procedures were
approved by the medical faculty ethical committee, and written informed con-
sent was obtained from all study participants.

7.2 Phenotype assesment and categorization

Subjects were evaluated at baseline by clinical examiners to confirm the diag-
nosis of schizophrenia, according to the DSM-IV and the ICD-10 criteria (no
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data available). They were also evaluated with the BPRS. This scale [24], first
published in 1962 is based on a 18-items-questionnaire that measures psychotic
symptoms on SZ patients rated on a seven-point scale (1, not present; 2, very
mild; 3, mild; 4, moderate; 5, moderately severe; 6, severe; 7, extremely se-
vere). Accordingly, possible BPRS total scores range from 18 to 126. Although,
psychometric properties of BPRS scale in terms of reliability, validity and sen-
sitivity have been extensively examined [25], the clinical meaning of its total
score and cut-off values used to define the severity of the disease remains un-
clear [26]. Consequently, for the purpouse of this work we assessed SZ severity
cohort by rating BPRS scores as reported in the work of Leucht et al. [26]. The
authors categorized BPRS scores according to CGI scale [27]. This scale is to
some extent more informative than BPRS since it describes a patient’s overall
clinical state as a global impression by the rater. Overall,the cohort SZ severity
was assessed based on the following linking of CGI score and BPRS total score
at baseline (see Tables 1 and 7.2 ):

- Mildly ill on the CGI (CGI score 3) approximately corresponds to a
BPRS total score of 32 at baseline.

- Moderately ill on the CGI (CGI score 4) corresponded to a BPRS total
score of 44 at baseline.

- Markedly ill (CGI score 5) corresponded to a BPRS total score of 55 at
baseline.

- Severely ill (CGI score 6) corresponded to a BPRS total score of 70 at
baseline.

- Extremely ill (CGI score 7) corresponded to a BPRS total score of 85
at baseline.

Study cohort (n = 10)

Age BPRS score CGI score

Mean 30, 4 ± 9.8 62,1 ± 19,5 4,8 ± 1,3
Maximun value 43,6 100 7
Minimum value 20,3 40 3

Table 1: Demographic and clinical features of study cohort. Mean ± standard
deviation and maximum and minimum values are shown for each variable.
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Subject BPRS score CGI score Severity

1 46 4 Moderate ill

2 40 3 Mildly ill

3 58 5 Markedly ill

4 77 6 Severely ill

5 66 5 Markedly ill

6 82 6 Severely ill

7 62 5 Markedly ill

8 42 3 Mildly ill

9 48 4 Moderate ill

10 100 7 Extremely ill

Table 2: Categorization of SZ phenotype. Table shows baseline BPRS scores for
each cohort individial. CGI corresponding scores along with SZ severity phenotype
are also shown.

Figure 4: Histogram of CGI scores and overlaid normal distribution curve.
As observed, phenotype status assessed by CGI scores deviates from normality.
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7.3 Genotyping data

All study participants (n=10) were genotyped using a customised version of the
Illumina InfiniumR© PsychArray-24 v1.2 BeadChip arrray developed by Illumina
in collaboration with the Psychiatric Genomics Consortium [28]. Content for
array included a extended set of proven tag single nucleotide polymorphisms
(SNPs) associated with SZ disorder and other common psychiatric conditions.
Genotyping information data were accessed in PLINK File-Format. PLINK is an
open-source, free toolset, widely used for genome association analysis designed
by Shaun Purcell [29]. It is considered as standard input format for genotyping
array data since it allows to perform a wide range of basic, large-scale genetic
analyses [30].

7.4 Methylation data

DNA methylation levels in peripheral blood were measured in all individu-
als (n=10) using the InfiniumR© Human Methylation 450K BeadChip Assay
[31]. This technology quantifies methylation levels at specific loci covering over
480,000 CpG sites and targeting 96% of CpG islands in human genome [32].
The Illumina 450K BeadChip includes two distinct probe types, one for detect-
ing ’methylated’ (M) intensity and another one for detecting ’unmethylated’(U)
intensity at the interrogated CpG site.To date, two methods have been proposed
to measure the methylation level. The first one is called β value, ranging from
0 to 1, where β=M/(M+U+ 100)[33]. The second method, referred by some
authors as M-value[34], is the log2 ratio of the intensities of methylated probe
versus unmethylated probe [35]. However, β value method has been widely used
to measure the percentage of methylation [34] and this is the method currently
recommended by Illumina. [36, 37].

7.5 RNA sequencing data

To obtain information about differentially expressed genes in SZ, a compre-
hensive bibliographic search on Pubmed repository was conducted. The main
objective for this search was to obtain data about transcriptome studies on
blood tissue samples of SZ patients that could be employed in our analysis. A
total of four RNA-seq studies were found (Table 3).
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Sample Size SZ subjects Platform References

6 (3S, 3C) Drug naive Illumina GA Xu et al, 2012 [38]
76 (36S, 40C) Drug naive Illumina GA Sainz et al, 2013 [39]

22 (22S) Non drug naive Illumina GA Sainz et al,2015 [40]
1189 (529S, 660C) No information Illumina TruSeq Sanders et al, 2017 [41]

Table 3: Summary of RNA-Seq studies in SZ cohorts. *Schizophrenia
(S); healthy control (C). †Illumina Genome Analyzer (GA). Adapted from Li et al;
2017[42] .

The study of Sainz et al, 2015 analysed differentially expressed genes in SZ af-
ter treatment with antypschicotics, while the other two (Xu et al, 2012; Sainz et
al, 2015 ) were conducted on drug naive SZ subjects. There was no information
regarding any antypsychotic prescription for the study of Sanders et al, 2017.
Given that our study cohort was composed of 10 SZ subjects that had not taken
previous antypschotic medication, the first study was discarded. Out of the
other three, the ones with larger sample sizes (Sainz et al, 2013; Sanders et al,
2017 ) were selected. The first one analyzed the blood transcriptome of 36 drug
naive schizophrenia patients and 40 healthy matched controls by next-generation
sequencing. Among the 22.278 genes analyzed, the authors found significant dif-
ferential expression (adjusted P < 0.05) in 200 genes. The second one undertook
an RNA seq-based transcriptomic proling study on a sample of 529 schizophre-
nia cases and 660 controls. A total of 1058 genes were differentially expressed
by affection status after Bonferroni adjustment (P< 2.36×10−6). Among these
genes, 361 were downregulated and 697 were upregulated in cases compared to
controls.

7.6 Statistical Analysis

7.6.1 SNPs association analysis to identify genetic loci associated
with SZ severity.

• Association Analysis

For the association analysis of SNPs and SZ phenotype assesed by CGI score,
PLINK software (v1. 90b68) implemented in Linux (Ubuntu distribution 16.04.5),
was employed. A total of 624,694 genotyped SNPs for each individual were anal-
ysed using a quantitative trait association analysis.

• Annotation of genotyped SNPs

To identify which genes were associated with genotyped SNPs, different gene
annotation strategies were approached. These strategies are briefly described
hereunder.
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1. Annotation Strategy based on Biomart package.

Biomart package [43] from Bioconductor software suite (release version
3.9) was firstly employed to access Ensembl database in order to obtain
gene annotation for the SNP output based on human genome assembly
GRCh37 (hg19). However, method did not provide accurate UCSC gene
ID.

2. Annotation Strategy based on Illumina Psycharray-24 kit.

To the best of our knowledge, all study participants (n=10) were geno-
typed using a customised version of Illumina InfiniumR© PsychArray-24
BeadChip arrray developed by Illumina in collaboration with the Psy-
chiatric Genomics Consortium [28]. Given that no specific information
regarding the array version and customization was provided, the next
annotation strategy was based on the gene annotation files provided by
Illumina Webpage [44] for the following PsychArrays-24 kit versions:

• Infinium PsychArray A

• Infinium PsychArray v1.2

• Infinium PsychArray v1.3

Althoug this method did provide accurate UCSC gene ID description for
most of the genotyped SNPs, some of them were not present in the gene
annotation files for any of the PsychArray versions.

3. Annotation Strategy based on HumanOmniExpress-24 v1.1 Bead-
Chip..

Next annotation strategy was developed using gene annotation files for
HumanOmniExpress-24 v1.1 BeadChip Array provided by Illumina [45].
This latter array was selected since it contains a wider number of SNPs
than Infinium PsychArray versions. Again, some of the genotyped SNPs
were not present in the gene annotation files for this array.

4. Annotation Strategy based on genomic coordinates provided by PLINK
files.

Last annotation strategy was based on finding genomic position coordi-
nates for genotyped SNPs. These coordinates were accessed through the
information provided in the initial PLINK files, specifically in the .bim
extension file. Once the genomic position were annotated, UCSC gene ID
were obtained using SNP Nexus online annotation tool [46].

7.6.2 Quantitative association analyses to identify CpG sites associ-
ated with the SZ severity.
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• Association Analysis

Statistical analyses for testing the quantitative association between CpG sites
and SZ phenotype were performed using R, Statistical Software (version 1.1.463)
[47] and SPSS software (version 24; SPSS, Armonk, NY, USA). For the purpose
of this work DNA methylation levels of 485, 512 CpG sites were computed in
terms of β values. To identify methylated positions associated with SZ sever-
ity, a primary regression analysis was performed. Given the assumption of non
normality for the phenotype as variable response (see Figure 4), a two-predictor
logistic regression model was fitted instead a linear model as initially planned.
The association between proportion methylation values (Illumina “Beta” scale)
and CGI score at each CpG site was tested adjusting for age as a covariate (see
formula 1). Logistic model was run in R, β and P -values for the model were
obtained.

Logistic regression modeling formula for testing the quantitative association between

CpG sites and SZ phenotype:

log(phenotype) ˜ β0+β1(DNAm)+β2(age) (1)

• Annotation of CpGs

Gene annotation for CpG sites was performed with Bioconductor package (re-
lease version 3.9). UCSC genes IDs and coordinates for the CpG sites were
accessed through R library for Illummina Human Methylation 450k Array for
genome assembly hg19.

8 Results

• Identification of significant SNPs

The initial evaluation of statistically significant SNPs was perfomed after ad-
justment for multiple testing based on Bonferroni correction (P < 8×10−8).
Only one SNP, rs9936526, located in a non coding region of chromosome 16,
yielded a significant P( 3 × 10−8). The statistical significance was later set to
less restrictive P -values. For that, a non corrected P of 0.001 was applied. This
resulted in 258 significant SNPs located on 104 genes. A further significance
analysis with a non corrected P of 0.01 yielded 6437 statistically significant
SNPs located on 1586 genes.
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• Manhattan plot

The results from the SNP association analysis were depicted using a Manhat-
tan plot representation (figure 5). As it can be observed, each point represents
a genetic variant. The chromosome position for each variant is showed along
the X axis. The Y-axis shows the negative log-base-10 of the P for each in-
divudal SNP measuring the strength of the association between SZ phenotype
and each particular SNP. In brief, the Y axis tells how much the SZ phenotype
it is associated with a particular variant. The red line shows the threshold for
genome-wide significance after adjustment for multiple testing based on Bon-
ferroni correction (P -value 8 × 10−8), while the blue line corresponds to the
suggestive threshold of P -value 1 × 10−5).

Figure 5: Manhattan plot for SNPs association analysis. Figure shows Man-
hattan plot for the results of the SNP association analysis. Significant SNP: rs9936526
(adjusted P < 8×10−8) located on chr 16, is highlighted in green.

• Identification of significant CpG sites

No stastitically significant CpG sites were found after adjustment for multiple
testing based on Bonferroni correction (P = 1×10−7). Similarly to the statis-
tical procedure conducted in the SNP statistical analysis, a threshold of 0.001
was then applied. This yielded a total of 499 suggestive CpG sites located on
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408 genes. Again a further significance analysis with a non corrected P -value
of 0.01 yielded a total of 5720 suggestive significant CpG sites on 3791 genes.

• Manhattan plot

A Manhattan plot representation depicting the results from the CpGs asso-
ciation analysis can be observed in figure 6. The Y-axis shows the negative
log-base-10 of the P for each indivudal CpG measuring the strength of the
association between SZ phenotype and each particular methylation site. The
red line shows the threshold for genome-wide significance after adjustment for
multiple testing based on Bonferroni correction (P 1 × 10−7). The blue line
corresponding to the suggestive threshold was set on a P of 1 × 10−7).

Figure 6: Manhattan plot for CpGs association analysis. Figure shows
Manhattan plot for the results of the Cpg association analysis. No significant
CpG sites were found after Bonferroni correction (P -value 1 × 10−7).

8.1 Integration of genetic and methylation data.

To integrate data from the SNP and CpGs association analyses, statistically
significant genes identified on each case were annotated for the aforementioned
less restrictive P -value (< 0.001 and 0.01). Then, a search for commom genes
across both gene annotations data sets was performed. Venn diagrams were
plotted on each case to identify the number of overlapped genes.

• Overlapped genes (P-value < 0.001)
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At a significance level of P < 0.001, 4 genes corresponding to RNFT1, CDKL1,
NOTCH1 and SPATA13 overlapped for significant CpG and SNP sites, as ob-
served in figure 7.

Figure 7: Venn diagram for significant SNP and CpG sites (P < 0.001). As
observed, 4 genes overlap overlapped for significant CpG and SNP sites.

• Overlapped genes (P-value < 0.01)

At a less restrictive significance level of P < 0.01, 341 genes overlapped for
significant CpG and SNP sites, as observed in figure 8. These common genes
included the previous 4 genes found at a significance level of P -value < 0.001.
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Figure 8: Venn diagram for significant SNP and CpG sites (P < 0.01). As
observed, 341 genes overlap overlapped for significant CpG and SNP sites.

8.2 Integrative analysis with differentially expressed genes.

The 341 overlapped genes (P < 0.01) found in section 8.1 were used to perform
an integrative analysis with differentially expressed genes in SZ from previous
studies. This analysis was performed by duplicate, first with the 200 differen-
tially expressed genes (P adjusted < 0.05) found in the study of Sainz et al,
2013 and later with the 1058 differentially expressed genes from the study of
Sanders et al, 2017.

• Integrative analysis with differentially expressed genes from Sainz
et al, 2013.

The 200 differentally expressed genes found in the study of Sainz et al, 2013,
were integrate with the 341 genes (P < 0.01) found in our study. As it can
be observed in figure 9, 5 differentially expressed genes overlapped accross both
data sets.
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Figure 9: Venn diagram for significant SNP, CpG sites and differentially
expressed genes (P < 0.01). As observed, there is an overlap of 5 differentially
expressed genes with the 341 genes associated to SNPs and CpGs found in our study.

For each of the 5 genes found, table 4 shows global P and β values computed
as the average values for individual SNPs and CpGs associated to each gene. P
and fold change values for gene expression extracted directly from Sainz et al,
2013 are also shown.

Gene
SNP asssociation CpG association Gene expression

P global β global P global β global P global FC

ABCC13 0.008 -1.793 0.007 2.912 0.0002 1.389
CSMD1 0.005 1.419 0.005 -0.734 0.0004 1.572
RIMBP2 0.006 -1.065 0.005 7.12 0.0004 2.205
SGIP1 0.005 1.642 0.002 21.099 0.0005 1.506
TNS1 0.007 2 0.005 -0.618 0.0004 1.264

Table 4: Summary data for the integrative analysis with differentially ex-
pressed genes from Sainz et al, 2013. Table shows for each individual differ-
entially expressed gene the global P and β values for the SNP and CpG association
analysis. P and Fold Change (FC) values for gene expression levels are also shown.

• Integrative analysis with differentially expressed genes from Sanders
et al, 2017.

Figure 9 shows a Manhattan plot representation for the 1058 differentially
expressed genes found in the study of Sanders et al, 2017. Venn diagram in
figure 11 shows the overlap of 16 differentially expressed genes with significant
341 genes found in our analysis.
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Figure 10: Manhattan plot of differential expression by schizophrenia sta-
tus. The log10 of the P values for the differential expression by SZ status is plotted
against the chromosomal location of the analysed genes. The black bar corresponds
to Bonferroni P <0.05. Extracted from Sanders et al, 2017

Figure 11: Venn diagram for significant SNP, CpG sites and differentially
expressed genes (P < 0.01). As observed, there is an overlap of 16 differentially
expressed genes with the 341 genes associated to SNPs and CpGs found in our study.

Table 5 shows for the 16 differentially expressed genes, global P and β val-
ues computed as the average values for individual SNPs and CpGs associated
to each gene. P, β and fold change (FC) values for gene expression extracted
directly from Sanders et al, 2017 are also shown.
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Gene
SNP asssociation CpG association Gene expression

P global β global P global β global P global β FC

ANK1 0.002 -1.237 0.006 7.883 4.07 × 10−8 0.265 0.154
CLNK 0,009 -2.090 0.003 5.884 4.09 × 10−6 0.190 0.122
COL24A1 0,007 -1.687 0.005 16.542 1.66 × 10−6 -0.121 -0.060
GJA3 0.005 0 0.008 -3.163 3.45 × 10−7 0.098 0.161
GNG7 0.005 2 0.008 11.335 9.41 × 10−8 -0.213 -0.057
IL5RA 0.005 1.876 0.002 2.237 5.96 × 10−7 -0.058 -0.212
IL15 0.005 -2 0.0007 20.287 7.19 × 10−7 0.149 0.053
KDM2B 0.005 2.19 0.005 7.308 1.75 × 10−9 0.212 0.032
NUB1 0.007 2 0.004 9.170 4.27 × 10−9 0.336 0.041
RBPMS 0.006 -0.004 0.008 15.031 5.31 × 10−10 0.452 0.210
SGK1 0.005 2 0.0006 3.478 7.35 × 10−7 -0.213 -0.089
SHANK2 0.009 -2.095 0.002 26.091 7.65 × 10−9 0.165 0.172
TCN2 0.005 2 0.007 14.105 8.61 × 10−7 0.296 0.090
WDFY4 0.006 2.13 0.006 3.326 1.36 × 10−17 0.320 0.065
WDR37 0.009 -1.062 0.003 -22.682 8.50 × 10−8 -0.047 -0.020
ZBTB38 0.008 1.388 0.005 2.168 1.07 × 10−9 -0.763 -0.080

Table 5: Summary data from the integrative analysis with differentially
expressed genes from Sanders et al, 2017. Table shows for each individual dif-
ferentially expressed gene the global P and β values for the SNP and CpG association
analysis. P and Fold Change (FC) values for gene expression levels are also shown.

9 Discussion

GWAS have identfied a number of SNPs associated with SZ [18]. Further-
more, increasing body of evidence suggests a complex connection of SNPs and
epigenetic regulation of gene expression, which, up to now, is not completely
understood. Under these premises, we performed an integrative and exploratory
quantitative association analysis that included summary statistics data for SZ
severity associated SNPs and methylation sites on a cohort of n= 10 drug-naive
SZ subjects. The final purpose was to investigate SNPs and methylation sites
associated to SZ severity and to further associate this variants with differentially
expressed genes in SZ However, as it has been previous mentioned in section
1.2, this study was considered as merely exploratory and final obtained data
must be interpreted only as preliminary results that might be corroborated in
the future with larger samples sizes.

The strategy for the analysis was based on previous omic integration studies in
SZ [21] and was developed on a 4-step process. Firstly, a SNPs association anal-
ysis was performed. This yielded one single significant associated-SZ severity
SNP after adjusting for multiple testing. This variant (rs9936526) was located
on a non-coding region of chromosome 16 proximate to a lincRNA gene. At
a wider significant level of P < 0.01, 258 SNPs on 104 genes were identified.
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Next, a quantitative association analysis for methylation sites yielded a total
of 5720 significant CpG sites on 3791 genes (P < 0.01). Later, the number of
overlapping genes across both gene data sets was computed resulting in a total
of 341 genes. Finally, these genes were used to perform an integrative analysis
with differentially expressed genes in SZ from two pusblished studies [39, 41].
Although, 5 and 16 differentially expressed genes were identified for each study
respectively, only the 16 genes corresponding to the second study have been
selected for further discussion. This choice has been made given the relevance
and implication of some of them with previous studies on SZ.

9.1 Significantly associated SNP after Bonferroni correc-
tion.

The evaluation of statistically significant SNP after adjusting for mutiple testing
based on Bonferoni correction (P < 8×10−8) yielded only one significant variant:
rs9936526 (P = 3×10−8) on a non-coding region of chromosome 16:60.604.961.
The nearest upstream gene RP11-354I13.1, is located at a distance of 47807 bp
and corresponds to a lincRNA gene (chr16: 60.486.818 - 60.523.250). LincRNAs
(Long intergenic non-coding RNAs) are defined as autonomously transcribed
non-coding RNAs longer than 200 nucleotides that do not overlap annotated
coding genes. They have an exon-intron-exon structure, similar to protein-
coding genes, but do not encompass open-reading frames and do not code for
proteins. LincRNAs have been related to a broader lncRNA (long non-coding
RNA) family of transcripts, although unlike lincRNAs, many lncRNAs share
sequence with coding loci [48]. Many publications, however, do not distinguish
between these two sets of transcripts and group them collectively as lncRNAs.

In a similar way to the SNP found in our analysis, GWAS have mapped
disease-associated genetic variants to, or in, the vicinity of lincRNA regions
[49]. Since molecular functions and mechanisms for lincRNAs are still under
debate, it is still not clear how these SNPs may affect the disease. Particularly,
some authors have suggested that some lincRNAs represent a novel link be-
tween non-coding SNPs and the expression of protein-coding genes, which can
be exploited to understand the process of gene-regulation through lincRNAs in
more detail [49]. In fact, recent accumulating evidence has revealed that some
lncRNAs play a critical role in the regulation of gene expression [50]. Moreover
it has been also shown that they participate in the pathogenesis and devel-
opment of some neurodegenerative diseases such as Alzheimer and Parkinson
[51, 52, 53]. Dysfunction of lncRNAs has been also demonstrated to be involved
in psychiatric diseases [54]. Particularly, in SZ a growing number of studies
show dysregulation of lncRNA in SZ subjects [55]. Other studies have pointed
at significant associations of particular lncRNAs to positive SZ symptoms [56] or
with SZ early-onset [57]. LncRNA expression profiles have shown differentially
expression of specific lncRNAs in SZ subjects compared to healthy controls.
Moreover, down-regulation of some lncRNAs was shown to be concurrent with
the improvement of symptoms of patients after antipsychotic medication [54],
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suggesting that lncRNAs could be considered as novel potential treatment tar-
gets.

Overall, no previous association studies were found in literature linking the
lincRNA gene RP11-354I13.1 found in our analysis and SZ. However, only this
single tag remained significant after multiple correction. This, suggests the po-
tential usefulness of lncRNA genes to advance in the understanding of specific
regulatory pathways for the risk genetic variants to affect SZ.

9.2 Differentially expressed associated genes.

The 16 differentially expressed genes found in this study included genes involved
in immune response (IL5, ILRA5, WDFY4, CNK ), genes coding for protein
membranes (ANK1, COL24A1, WDFY4 ), genes with transcriptional activity
(KDMLB, RBMPS, ZBTB38 ), and more remarkably genes previously associ-
ated with SZ (SHANK2 ,SGK1, and TCN2 ). These genes have been selected
here for further discussion.

9.2.1 Genes previously identified in the literature with SZ

SHANK2 (SH3 domain and ankyrin repeat containing)

SHANK proteins (SHANK1, SHANK2 and SHANK3) are a family of synaptic pro-
teins that function as molecular scaffolds in the postsynaptic density (PSD) of excita-
tory glutamatergic synapses. By numerous specic protein–protein interactions (figure
12), they are either directly or indirectly linked to other structural proteins, cell ad-
hesion molecules, receptors, ion channels and to actin interacting proteins at the PSD
[61].
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Figure 12: Interaction network of SHANK proteins at the post-synaptic
density of glutamatergic synapses. Major interaction partners include members
of the NMDA receptor complex, members of the metabotropic glutamate receptor
complex and actin-associated proteins Adapted from Guilmatre et al, 2013.

SHANK proteins seem to have an important role during neurodevelopment [58] and
numerous studies have linked a broad spectrum of genetic variations in SHANK family
members to several neurodevelopmental and neuropsychiatric disorders. Particularly,
SHANK 2 gene mutations have been found in patients with autism sepctrum disorders
(ADS) and intelectual disability (ID) [59]. SHANK2 seems to be upregulated in
brains of Alzheimer’s disorder cases contrary to SHANK1 and SHANK3 that appear
downregulated [60]. Moreover, a study sequencing of SHANK2 in 481 SZ cases and 659
healthy controls identified several non-synonymous variants exclusively in SZ patients
[61]. Also, a whole-genome sequencing study in multiplex families with psychoses,
reported seven siblings in a family with SCZ spectrum disorders carrying a missense
variant in the SHANK2 gene [62]. SHANK2 mutant mice have shown dysfunction of
glutamatergic synapses [63] autistic-like social behaviour [63, 64] and stereotypies ([63])
a common motor symptom observed in SZ patients. According to the study of Sanders
et al SHANK2 seems to be overexpressed in SZ (β = 0,165). However, our study (table
6) identified a highly methylated CpG site (cg0990225 ; β = 26,091) associated with
SZ, meaning that this finding is not consistent with the magnitude and direction of the
β for SHANK2 expression. Notwithstanding, the high β value found for this CpG site
might suggest that this methylation mark regulates or favours SHANK2 expression.
This finding would be supported by the idea that SHANK2 expression is particularly
sensitive to DNA methylation pattern suggested in literature [65]. Although, other
epigenetic mechanisms such as histone acetylation might expected to regulate the
expression of the SHANK2 gene in an isoform-specific manner [66]. Lastly, 3 different
SNPs with a negative effect size (β = -2.095) were found in our analysis to be associated
with SZ severity (table 6). This would suggest that these variants repress SHANK2
expression, although to corroborate this hypothesis further and more sophisticated
association analyses between SNPs and DNA methylation should be performed in the
future.
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Table 6: Association results for SHANK2

Significant SNPs P β Position

rs4245462 0.009 -2.095 70881929
rs4304805 0.009 -2.095 70885169
rs4340077 0.009 -2.095 70890503

Significant CpG P β Position

cg09902254 0.002 26.091 70881929

Table 6 shows P and β values for the significant SNP and CpG sites found in our
analysis for SHANK2 gene. Genomic positions for each site are also shown.

Nevertheless, these ndings suggest that SHANK2 might indeed contribute to the
etiology of SZ. Moreover, the fact that alterations of SHANK2 are common in ASD
and SZ might corroborate the hypothesis of the genetic and biological overlap be-
tween these two pathologies [61] futher supporting the neurodevelopmental model for
SZ. Although, the upregulation found for SHANK2 in Alzheimer’s disorder is also
remarkable and might give an insight into the neurodegenerative hypothesis of SZ.

SGK1 (serum- and glucocorticoid-inducible-kinase-1)

SGK1 gene encodes a serine/threonine protein kinase that was initially described
for its role in the regulation of ion channels in renal cells [67]. However, recent studies
have shown the importance of this kinase in the regulation of diverse functions in the
brain [68]. Indeed, SGK1 has been considered to have a key role in long-term memory
formation [69] and also in fear conditioning [70]. Moreover, SGK1 has been also related
to the pathophysiology of several neurodegenerative diseases such as Parkinson [71],
Alzheimer [70] but also neuropsychiatric disorders like major depresive disorder [72]
and SZ [68]. SGK1 has been even involved in Lafora disease, a severe form of epilepsy
among which some of its symptoms are psychosis and dementia [73].

SGK protein is known to upregulate AMPA and kainate receptors and thus they
are expected to enhance the excitatory effects of glutamate [74], a neurotransmitter
involved in the pathophisiology of SZ [14]. The lack of SGK1 has been proposed to
mitigate the glutamate action and at the same time to decrease its clearance from
the synaptic cleft [68]. Consistent with this hypothesis, the study of Sanders et al
found a decrease in SGK1 expresion in SZ cases (β = -0,213). Remarkably, we found
a highly methylated CpG site (cg03400131; β = 3,478) associated with SZ (table 7),
suggesting that this methylation mark might be involved in the inhibition of SGK1
gene expression. Also, an associated single SNP (rs17063576) with a positive effect
size (β = 2) was also found in our analysis. This variant migth be associated with
downregulation of SGK1 by promoting DNA methylation of the CpG site.

Overall, the down-regulation of SGK1 in the pathophysiology of SZ might account
for an unbalanced SGK1-dependent regulation of AMPA or kainate receptors that
would ultimately affect glutamate neurotransmission.
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Table 7: Association results for SGK1

Significant SNPs P β Position

rs17063576 0.005 2 134578920

Significant CpG P β Position

cg03400131 0.0006 3.478 134497247

Table shows P and β values for the significant SNP and CpG sites found in our
analysis for SGK1 gene. Genomic positions for each site are also shown.

TCN2 (Transcobalamin II )

TCN2 encodes a member of the vitamin B12-binding protein family. TCN2 or
holotranscobalamin when bound, transports vitamin B12 (cobalamin) to peripheral
tissues. Vitamin B12 and other B vitamins like vitamin B6 and folic acid are essential
for a correct neuronal function and severe deficiencies of these vitamins have been
associated to increased risk for cognitive decline and a variety of neuropsychiatric
disorders such as depression, bipolar disorder and SZ [75]. Low blood levels of several
B vitamins (also B12) are a relatively consistent finding in SZ and also in drug naive
first-episode psychosis patients [76, 77]. Although, B12 vitamin supplementation is
sometimes used as an add-on treatment of SZ [75], its admnistration does not always
resolve its deficiency. In fact, low levels of B12 are frequently linked to poor absorption
and metabolism rather than low consumption, suggesting that B12 intermediates such
as transporter TCN2 might be reduced [76]. An epigenetic inhibition of TCN2 gene
expression might account for the decreased levels of TCN2 seen in SZ. Consistent with
this hypothesis, we found 3 highly methylated CpG sites (β = 17.530; β = 12.618;
β = 12.618) in TCN2 gene associated with SZ severity (table 8). Two significant
associated SNP sites with equal effect sizes (β = 2) were also found in TCN2 gene.
This findings might suggest that both variants are associated with downregulation of
TCN2 by promoting DNAm at those CpG sites. These findings are however, contrary
to the study of Sanders et al, 2017, since these authors described an upregulation of
mRNA levels of TCN2. This might be explained by the existence of a alternative
compensatory mechanism that promotes TCN2 RNA expression in order to make up
for the low blood levels of the transporter.

Table 8: Association results for TCN2

Significant SNPs P β Position

rs4820888 0.005 2 31017322
rs5749135 0.005 2 31011906

Significant CpG P β Position

cg00788739 0.003 17.530 31002942
cg17693957 0.009 12.618 31002757
cg22542751 0.009 12.168 31002892

Table 8 shows P and β values for the significant SNP and CpG sites found in our
analysis for TCN2 gene. Genomic positions for each site are also shown.
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Overall, although preliminary, our study has been able to identify genes highly de-
scribed in literature to be associated with SZ. More remarkably, those genes are in-
volved in a wide range of distinct biological processes all of them proposed as affected
mechanisms in this pathology. Further analyses might be carry out to confirm our
findings.

10 Conclusions

SZ constitutes a complex psychiatric disease with multiple aetiological factors involved
in its pathology. Omic integration genetic studies might prove as an useful tool to dilu-
cidate the complex genetic architecture of this disease. However, to our knowledge, few
studies have investigated so far the conexion between SZ-associated SNPs, methylation
marks and gene expression. The methodology presented here, although preliminary
has proved to be a novel and useful tool to identify genes previously described in the
literature as been associated with SZ.

10.0.1 Main Outcomes

In this work, we performed an integrative and exploratory genetic association analysis
on a cohort of n= 10 drug-naive SZ subjects. The final purpose was to investigate
SNPs and methylation sites associated to SZ severity and to further associate this vari-
ants with differentially expressed genes in SZ. For that, a SNP association quantitative
analysis was carried out. This yielded a significant variant (P < 8×10−8) located on a
non-coding region of chromosome 16 proximate to a lincRNA gene. Importantly, spe-
cific LncRNA expression profiles have been shown to be differentially expressed in SZ.
At a wider significance (P < 0.01), 258 SNPs on 104 genes were identified. A quanti-
tative association analysis for methylation sites yielded a total of 5720 significant CpG
sites on 3791 genes (P < 0.01). We further performed an integrative genetic analysis
in order to identify overlapping genes accross both datasets. This computed a total
number of 341 matching genes. Finally, an integrative analysis of these genes with
with differentially expressed genes in SZ from two previous studies was carried out.
From one of this studies, 16 differentially expressed genes were identified. Remarkably,
3 of them: SHANK2 ,SGK1, and TCN2 had been previously described in literature to
be associated to SZ pathology. SHANK2 gene encodes for a protein with an important
role during neurodevelopment. Although, SHANK2 was upregulated, our study iden-
tified a highly methylated CpG site associated with this gene. Thus, probably, other
epigenetic mechanisms could be involved in the regulation of SHANK2 expression. In
fact this gene seems to be particular sensitive to DNA methylation pattern as it has
been suggested in literature.
SGK1 gene encodes for a kinase with relevance in the regulation of several functions

in the brain [68].SGK1 expression levels have been shown to be decreased in SZ. Con-
sistently, we found a highly methylated CpG site associated with this gene. Moreover,
a single SNP also associated to SGK1 was identified. This variant showed a positive
effect size meaning that it could mediate epigenetic regulation of SGK1 by promoting
DNA methylation of the CpG site and thus, inhibiting the expression of SGK1.

Finally, TCN2 gene encodes for a transporter of the vitamin B12 to peripheal tissues.
Low levels of vitamin B12 have been traditionally associated to SZ. Reduced expresion
of transporter TCN2 migh account for this deficiency. In line with this hypothesis, We
found 3 highly methylated CpG sites in TCN2 gene associated with SZ. Moreover, two
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significant associated SNP sites with equal effect sizes were also associated to TCN2.
This might suggest that both variants are associated with downregulation of TCN2
by promoting methylation of those significant CpGs.

10.0.2 Reflexion and critical analysis

As already mentioned, given the small size of the sample available, this work was
considered initially as a purely exploratory analysis designed to learn useful statistical
tools to perform more complex studies in the future on larger sample sizes. Indeed,
there were no initial expectations of finding any signicant outcome throughout the
analysis process. However, not only this work has served as a comprehensive learning
process but also and more remarkably, the methodology presented here has revealed as
a useful tool for omic integration analyses. Regarding the process of data analysis, the
mentor Helena Brunel provided at all times the information and the proper analysis
tools required for an adequate achievement of the proposed objectives. This facilitated
the learning process of data analysis and allowed a proper fullment of the deadlines of
the project. We also came across to several milestones that were successfully addressed.
One was the learning and management of PLINK toolset. As previously mentioned
genotyping information was provided in PLINK bedFile-Format, widely considered as
standard input format for genotyping array data. In spite of its widespread used, the
author of this work had not acquired prior knowledge of this toolset. Therefore, it
was required an introductory and basic learning process regarding the dierent format
types and management of this tool in order to accomplish the rst proposed objective.
The other milestone was the need to perform a prior exploratory analysis regarding
the phenotypic characteristics of the subjects consisting of the phenotype assessment
and categorization of the sample cohort study.

Regardind the accomplishment of the objectives, it shoudl be mentioned that the
initial objective was to perform an integrative case-control association analysis in a
study cohort of n = 10 cases and n = 10 controls. However, data were not finally
accessible for the control samples and only genotyping and methylation information
related to SZ cases (n = 10) were available. Therefore, the general objective was
shifted to perform an integrative quantitative association analysis in a cohort of 10 SZ
cases. Despite this setback regarding the availability of the data, general and specific
objectives were successfully achieved according to the deadlines of the project.

In relation to the metholody employed in the analysis, this was based, as mentioned
on a previous omics integration analysis. However, there were several differences re-
garding the data characteristics of both studies. Firstly, those authors performed a
case-control association analysis and secondly, they had a larger sample size. These
differences were addressed during the development of the analysis method. For that,
we performed an integrative quantitative trait-association analysis as mentioned. Also,
given the assumption of non-normality for the phenotype as variable response, a two-
predictor logistic regression model for the methylation quantitative analysis was fitted
instead a linear model as initially planned.

Finally, this work enables future lines of work such as:

• To perform a methylome quantitative trait locus association analysis in order
to test for significant relationships between SNP and CpG loci linked to SZ
severity.
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• Also, if mRNA data were accesible for SZ cases, an association analysis between
mRNA levels and SZ severity could have been also addressed. The outcome of
these analyses might offer a clear idea of the genes differentially expressed in the
study cohort. These results might be subsequently employed to be correlated
with the significant mQTL sites found in our analysis.

• As the initial objective of this work was proposed, a case-control integrative
association analysis could also have been performed if data regarding control
subjects were available.

Finally, the findings of this study open further and promising lines of research a
similar analysis to the one here with a larger sample size could be performed in order
to corroborate our results.
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GLOSARY

AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

BPRS: Brief Psychiatric Rating Scale

CGI: Clinical Global Impression Scale

CpG: Cytosine-Phosphate-Guanine

DNA: Deoxyribonucleic Acid

DNAm: Deoxyribonucleic Acid methylation

DSM-IV: Diagnostic and Statistical Manual of Mental Disorders version IV

FC: Fold Change

GWAS: Genome Wide Association Studies

ICD-10: International Classification of Diseases version 10

lncRNA: Long non-coding RNA

lincRNA: Long intergenic noncoding RNA

NMDAR: N-methyl-D-aspartate receptor

PAFIP: Programa Atención Fases Iniciales de Psicosis

RNA: Ribonucleic acid

SD: Satandard Deviation

SNP: Single Nucleotide Polymorphism

SZ: Schizophrenia

SPSS: Statistical Package for Social Sciences

UCSC ID: University of California Santa Cruz Identification
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Appendices

A. R CODE FOR SNPs ASSOCIATION ANALYSIS

# Read plink files from SNP association analysis

--------------------------------------------------------

dt <-read.table("SNPanalysis.qassoc", header=T)

SNPassoc <-write.table(dt,"SNPanalysisqassoc.txt")

# Remove NA values

--------------------------------------------------------

dt2<- na.omit(dt)

# Remove rows with NAs in BETA column & Sort table by ascending p-values

--------------------------------------------------------

pval_ord <-(dt[!is.na(dt$BETA ),])[ order ((dt[!is.na(dt$BETA ),])$P),]

# Selecting top 20 p-value positions

top20<- pval_ord[1:20,]

#Select SNPs with p-values < 0.05

--------------------------------------------------------

# Selecting all cases with p-values < 0.05

allpval <-subset(pval_ord , pval_ord$P <=0.05)

tail(allpval)

dim(allpval) # 25950 SNPs with p-values < 0.05

mergedSNPsbimALL <- merge(allpval ,bimPositions , by.x = 2,

by.y = 1, all.x = TRUE , all.y = TRUE)

snpListALLpval <- allpval$SNP

write.table(snpListALLpval ,"snpListALLpval.txt")

write.xlsx(snpListALLpval ,"snpListALLpval.xlsx")

mergedSNPsbimALL[mergedSNPsbimALL$SNP %in% snpListALLpval ,]

selALLSNPsbim <-mergedSNPsbimALL[mergedSNPsbimALL$SNP

%in% snpListALLpval ,]

write.table(selALLSNPsbim ,"selALLSNPsbim.txt")

write.xlsx(selALLSNPsbim ,"selALLSNPsbim.xlsx")

# Apply Bonferroni correction

--------------------------------------------------------

dim(dt2)

pvalue=0.05
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adjpval <-pvalue/nrow(dt2)

# Select SNPs with pvalue <pbonfer

--------------------------------------------------------

SNpsA <-subset(dt2, dt2$P <=adjpval)

write.xlsx(SNpsA , "SNpsA.xlsx")

#CHR SNP BP NMISS BETA SE R2 T

P

#782568 16 rs9936526 60604961 3 -2 9.424e-08 1 -21220000 3e-08

# Selecting SNPs with pvalue <=0.001)

--------------------------------------------------------

pvalue=0.001

valSNP <-as.numeric(as.character(dt2$P))

SNP0.001<-subset(dt2, valSNP <=0.001)

write.xlsx(SNP0.001,"SNP0.001.xlsx")

dim(SNP0.001) # 258

# Selecting SNPs with pvalue <=0.01)

--------------------------------------------------------

valSNP <-as.numeric(as.character(dt2$P))

SNP0.01<-subset(dt2, valSNP <=0.01)

dim(SNP0.01) # 6437

#Basic Manhattan Plot

--------------------------------------------------------

library(qqman)

SNpsA <-subset(dt2, dt2$P <=adjpval)

manhattan(dt2, chr = "CHR", bp = "BP", p = "P", snp = "SNP",

col = c("gray10", "gray60"), chrlabs = c(1:22), suggestiveline =

-log10(1e-05), genomewideline = -log10(adjpval),

highlight = SNpsA , logp = TRUE)

#1. Annotation Strategy 1 based on Ensembl

--------------------------------------------------------

library(biomaRt)

snp.ensembl <- useEnsembl(biomart = "snp", dataset = "hsapiens_snp")

class(snp.ensembl)

## Annotation for SNPs (pvalue < 0,05)

allpval <-subset(pval_ord , pval_ord$P <=0.05)

snp.ensembl <- useEnsembl(biomart = "snp", dataset = "hsapiens_snp")

class(snp.ensembl)

snpListALL <- allpval$SNP

out.ALL <- getBM(
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attributes = c(’ensembl_gene_stable_id’, ’refsnp_id’,

’chr_name’, ’chrom_start ’, ’chrom_end’, ’minor_allele ’, ’minor_allele_freq’),

filters = ’snp_filter ’,

values = snpListALL ,

mart = snp.ensembl.grch37

)

out.ALL

selALL <-out.ALL[,c("ensembl_gene_stable_id","refsnp_id","chr_name")]

selALL <-allpval[,c("SNP", "BETA", "P")]

mergedALL <- merge(selALL ,selALL , by.x = 2, by.y = 1, all.x = TRUE ,

all.y = TRUE)

# 2. Annotation Strategy 2 based on PsychArrays

--------------------------------------------------------

#ARRAY PsychArray_A_ (Not the proper Psycharray)

--------------------------------------------------------

annotationA <-read.table("PsychArray_A_annotated.txt",

header=F, fill=T)

head(annotationA)

annotA <-annotationA[-1,]

head(annotA)

colnames(annotA) <- c("SNP", "Chr", "MapInfo",

"Alleles", "Transcript(s)","Gene(s)","In -exon","Mutation(s)")

mergedSNPsA <- merge(top20,annotA , by.x = 2, by.y = 1, all.x = TRUE ,

all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPsA[mergedSNPsA$SNP %in% snpList20 ,]

selA <-mergedSNPs1[mergedSNPsA$SNP %in% snpList20 ,]

subset(annotA , SNP=="rs4970383") #SNP on ArraY

subset(annotA , SNP=="rs10505477") # SNP NOT on ArraY

subset(annotA , SNP=="rs42905") #SNP on ArraY

subset(annotA , SNP=="rs5760918") # SNP NOT on ArraY

subset(annotA , SNP=="rs7730928") # SNP NOT on ArraY

#ARRAY 1.2 (Not the proper Psycharray)

--------------------------------------------------------

##WORKS BUT IT IS NOT THE CORRRECT PSYCHARRAY

annotation <-read.table("InfiniumPsychArray -24v1-2_A1.
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annotated.txt", header=F, fill=T)

head(annotation)

annot <-annotation[-1 ,]

colnames(annot) <- c("SNP", "Chr", "MapInfo",

"Alleles", "Transcript(s)","Gene(s)","In -exon","Mutation(s)")

mergedSNPs <- merge(top20,annot , by.x = 2, by.y = 1, all.x = TRUE ,

all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPs[mergedSNPs$SNP %in% snpList20,]

sel2<-mergedSNPs[mergedSNPs$SNP %in% snpList20,]

subset(annot , SNP=="rs4970383") #SNP on ArraY 1.2

subset(annot , SNP=="rs10505477") # SNP NOT on ArraY 1.2

#ARRAY 1.1 (Not the proper Psycharray)

--------------------------------------------------------

annotation1<-read.table("InfiniumPsychArray -24v1-1_A1.

annotated.txt", header=F, fill=T)

head(annotation1)

annot1<-annotation1[-1,]

colnames(annot1) <- c("SNP", "Chr", "MapInfo",

"Alleles", "Transcript(s)","Gene(s)","In -exon","Mutation(s)")

mergedSNPs1 <- merge(top20,annot1, by.x = 2, by.y = 1, all.x = TRUE ,

all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPs1[mergedSNPs1$SNP %in% snpList20,]

sel1<-mergedSNPs1[mergedSNPs1$SNP %in% snpList20,]

subset(annot1, SNP=="rs4970383") #SNP on ArraY

subset(annot1, SNP=="rs10505477") # SNP NOT on ArraY

subset(annot1, SNP=="rs42905") #SNP on ArraY

subset(annot1, SNP=="rs5760918") # SNP NOT on ArraY

#ARRAY 1.3 (Not the proper Psycharray)

--------------------------------------------------------

annotation3<-read.table("InfiniumPsychArray -24v1-3_A1.hg19.

annotated.txt", header=F, fill=T)

head(annotation3)

annot3<-annotation3[-1,]
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colnames(annot3) <- c("SNP", "Chr", "MapInfo",

"Alleles", "Transcript(s)","Gene(s)","In -exon","Mutation(s)")

mergedSNPs3 <- merge(top20,annot3, by.x = 2, by.y = 1, all.x = TRUE ,

all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPs3[mergedSNPs3$SNP %in% snpList20,]

sel3<-mergedSNPs3[mergedSNPs3$SNP %in% snpList20,]

subset(annot3, SNP=="rs4970383") #SNP on ArraY

subset(annot3, SNP=="rs10505477") # SNP NOT on ArraY

subset(annot3, SNP=="rs42905") #SNP on ArraY

subset(annot3, SNP=="rs5760918") # SNP NOT on ArraY

subset(annot3, SNP=="rs7730928") # SNP NOT on ArraY

# 3. Annotation Strategy 3 based on HumanOmni

#ARRAY HumanOmniExpress -24 v1.1 (Not the proper Psycharray)

------------------------------------------------------------

annotationOmni1<-read.table("HumanOmniExpress -24v1-1_A.

annotated.txt", header=F, fill=T)

head(annotationOmni1)

Omni1<-annotationOmni1[-1 ,]

head(Omni1)

colnames(Omni1) <- c("SNP", "Chr", "MapInfo",

"Alleles", "Transcript(s)","Gene(s)","In -exon","Mutation(s)")

mergedSNPsOmni1 <- merge(top20,Omni1, by.x = 2,

by.y = 1, all.x = TRUE , all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPsOmni1[mergedSNPsOmni1$SNP %in% snpList20 ,]

selOmni1<-mergedSNPsOmni1[mergedSNPsOmni1$SNP %in% snpList20 ,]

subset(Omni1, SNP=="rs4970383") #SNP NOT ON ArraY

subset(Omni1, SNP=="rs10505477") # SNP on ArraY

subset(Omni1, SNP=="rs42905") #SNP NOT ArraY

subset(Omni1, SNP=="rs5760918") # SNP on ArraY

subset(Omni1, SNP=="rs7730928") # SNP on ArraY

View(selOmni1)

# 4. Annotation Strategy 4 based on bim coordinates

-----------------------------------------------------------------
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##THIS STRATEGY GIVES POSITION FOR ALL SNPS IN THE ANALYSIS

bim <-read.table("metilationNY.bim", header=T) #files from 23.04.19

head(bim)

colnames(bim)

bimsel <-bim[,c(2,4)]

colnames(bimsel)<-c("SNP", "Position")

frow = data.frame(SNP=’rs4477212’, Position=’82154’,

stringsAsFactors = FALSE)

bimPositions <-rbind(frow ,bimsel)

write.table(bimPositions ,"bimPositions.txt")

bimPositions=read.table("bimPositions.txt",dec=",",header=TRUE)

mergedSNPsbim <- merge(top20,bimPositions , by.x = 2,

by.y = 1, all.x = TRUE , all.y = TRUE)

snpList20 <- top20$SNP

mergedSNPsbim[mergedSNPsbim$SNP %in% snpList20,]

sel20SNPsbim <-mergedSNPsbim[mergedSNPsbim$SNP %in% snpList20,]

write.table(sel20SNPsbim ,"sel20SNPsbim.txt")

write.xlsx(sel20SNPsbim ,"sel20SNPsbim.xlsx")

View(sel20SNPsbim)

subset(mergedSNPsbim , SNP=="rs10505477") # SNP on ArraY

subset(mergedSNPsbim , SNP=="rs42905") #SNP on ArraY

B. R CODE FOR CpGs ASSOCIATION ANALYSIS

# Read methylation data

-----------------------------------------------------------------

#methylation data

a <-read.table("bvalues.tsv",header=T)

met <- as.data.frame(t(a))

met$sample_id <- row.names(met)

#demographic data

dem <- read.table("id_age_severity.txt",header=T,sep ="" )

#change rownames in dem file
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id<-dem$sample_id

row.names(dem)<-id

dem2<-dem[,2:3]

#merge methylation and demographic data

dt_merged <- cbind(dem2,met)

#convert CGI score from categorical to a numerical variable

dt_merged$CGI_score <-as.numeric(dt_merged$CGI_score)

#remove column sample_id from the merged dataframe

subset(dt_merged , select=-c(sample_id))->dt_mergedrem

# Logistic Regression Model

-----------------------------------------------------------------

dt_test <- dt_mergedrem[ , ! apply( dt_mergedrem , 2 ,

function(x) any(is.na(x)) ) ]

#p values

m2.pval <- apply(dt_test , 2, function(x) summary(lm(log(dt_test$CGI_score)

~ x + dt_test$edad ))$ coefficients[2,4])

write.foreign(m2.pval , "m2.pval.sps","m2.pval.txt", package="SPSS")

#Export data to .txt and SPSS files

#Betas

m2.beta <- apply(dt_test , 2, function(x) summary(lm(log

(dt_test$CGI_score) ~ x + dt_test$edad ))$ coefficients[2,1])

write.foreign(m2.beta , "m2.beta.sps","m2.beta.txt", package="SPSS")

#Export data to .txt and SPSS files

#Select only pvalues and beta values and merge them in a dataframe

-----------------------------------------------------------------

pvalmethyl <-as.data.frame(m2.pval)

betamethyl <-as.data.frame(m2.beta)

cpgsALL <-cbind(pvalmethyl ,betamethyl)

cpgs <-cpgsALL[-c(1, 2), ]

cpgsorder <-cpgs[order(cpgs$m2.pval , decreasing = FALSE),]

namesCpGs <-rownames(cpgsorder)

as.data.frame(namesCpGs)

cpgs2<-cbind(namesCpGs ,cpgsorder)

rownames(cpgs2) <- c()

head(cpgs2)

## Annotation for ALL CpGs

-----------------------------------------------------------------

install.packages("IlluminaHumanMethylation450kanno.ilmn12.
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hg19")

library("IlluminaHumanMethylation450kanno.ilmn12.

hg19",

lib.loc="~/R/win -library/3.5")

ann450k = getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

head(ann450k)

position <-ann450k[, 1:2]

select450k<-ann450k[, c("chr","pos",

"Name", "UCSC_RefGene_Name","UCSC_RefGene_Accession")]

cpgsMergedALL <- merge(select450k,cpgs2, by.x = 3, by.y = 1, all.x

C. R CODE for integration analysis of genetic and methylation data

# pvalue <0.001

-----------------------------------------------------------------

-----------------------------------------------------------------

# Selecting SNPs for Venn Diagram -> pvalue <0.001

-----------------------------------------------------------------

pvalue=0.001

valSNP <-as.numeric(as.character(dt2$P))

SNP0.001<-subset(dt2, valSNP <=0.001)

write.xlsx(SNP0.001,"SNP0.001.xlsx")

dim(SNP0.001) # 258

SNPvenn <-SNP0.001$SNP

library("openxlsx", lib.loc="~/R/win -library/3.5")

write.table(SNPvenn ,"SNPvenn.txt") -> #SNPs for NEXUS

write.xlsx(SNPvenn , "SNPvenn.xlsx")

dim(SNPvenn)

VennmergedSNP <- merge(SNP0.001,bimPositions , by.x = 2,

by.y = 1, all.x = TRUE , all.y = TRUE)

VennmergedSNP[VennmergedSNP$SNP %in% SNPvenn ,]

selSNPVenn <-VennmergedSNP[VennmergedSNP$SNP %in% SNPvenn ,]

write.table(selSNPVenn ,"selSNPVenn.txt")

write.xlsx(selSNPVenn , "selSNPVenn0.001.xlsx")

### FINAL LIST FOR VENN PLOT

SNPVENNcleared=read.xlsx("SNPVENNcleared.xlsx")

# Selecting CpGs for Venn Diagram -> pvalue <0.001

-----------------------------------------------------------------

pvalue=0.001

val <-as.numeric(as.character(cpgsMergedALLtable$P))

cpgs0.001<-subset(cpgsMergedALLtable , val <=pvalue)
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write.xlsx(cpgs0.001,"cpgs0.001.xlsx")

dim(cpgs0.001) # 499

head(cpgs0.001)

selCPGsVenn <-cpgs0.001[,4]

write.xlsx(selCPGsVenn ,"selCPGsVenn.xlsx")

### FINAL LIST FOR VENN PLOT

CPGsVENNcleared=read.xlsx("CPGsVENNcleared.xlsx")

# Find intersection SNP and CpGs

-----------------------------------------------------------------

library(data.table)

dim(SNPVENNcleared) #103

dim(CPGsVENNcleared)#408

intersect0.001=fintersect(setDT(SNPVENNcleared),

setDT(CPGsVENNcleared )) #dim=4

##VENN DIAGRAM for intersected genes

-----------------------------------------------------------------

dim(SNPVENNcleared) #104

dim(CPGsVENNcleared)#408

grid.newpage ()

draw.pairwise.venn(area1 = 104, area2 = 408,

cross.area = 4, category = c("Significant SNPs (P<0.001)",

"Significant CpGs (P<0.001)"))

# pvalue <0.01

-----------------------------------------------------------------

-----------------------------------------------------------------

# Selecting SNPs for Venn Diagram -> pvalue <0.01

-----------------------------------------------------------------

valSNP <-as.numeric(as.character(dt2$P))

SNP0.01<-subset(dt2, valSNP <=0.01)

dim(SNP0.01) # 6437

SNPvenn0.01<-SNP0.01$SNP

write.table(SNPvenn0.01,"SNPvenn0.01.txt") #SNPs for NEXUS

write.xlsx(SNPvenn0.01, ’SNPvenn0.01.xlsx’)

bimPositions=read.table("bimPositions.txt",dec=",",header=TRUE)

VennmergedSNP0.01 <- merge(SNPvenn0.01,bimPositions , by.x = 2,

by.y = 1, all.x = TRUE , all.y = TRUE)

VennmergedSNP0.01[VennmergedSNP0.01$SNP %in% SNPvenn0.01,]

selSNPVenn0.01<-VennmergedSNP0.01[VennmergedSNP0.01$SNP %in%

SNPvenn0.01,]

write.table(selSNPVenn0.01,"selSNPVenn0.01.txt")

selSNPVenn0.01=read.table("selSNPVenn0.01.txt",dec=",",header=TRUE)

selSNPVenn0.01modif= write.xlsx(selSNPVenn0.01, "selSNPVenn0.01.xlsx")

dim(selSNPVenn0.01)

ucscnameALLgenesNEXUS=read.xlsx("ucscnameALLgenesNEXUS.xlsx")
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### LIST FROM NEXUS

# Selecting CpGs for Venn Diagram -> pvalue <0.01

-----------------------------------------------------------------

pvalue=0.01

val <-as.numeric(as.character(cpgsMergedALLtable$P))

cpgs0.01<-subset(cpgsMergedALLtable , val <=pvalue)

write.xlsx(cpgs0.01,"cpgs0.01.xlsx")

selCPGsVenn001<-cpgs0.01[,4]

write.xlsx(selCPGsVenn001,"selCPGsVenn001.xlsx")

### FINAL LIST FOR VENN PLOT

CPGsVENNcleared0.01=read.xlsx("selCPGsVenn0.01Cleared.xlsx")

### FINAL LIST FOR VENN PLOT

# Find intersection SNP and CpGs

-----------------------------------------------------------------

dim(ucscnameALLgenesNEXUS) #1586

dim(CPGsVENNcleared0.01) #3791

library(data.table)

dim(ucscnameALLgenesNEXUS) #1586

colnames(ucscnameALLgenesNEXUS) <- c("GENE")

intersect001<-fintersect(setDT(ucscnameALLgenesNEXUS), setDT(CPGsVENNcleared0.01))

dim(intersect001) #341

write.xlsx(intersect001,"intersect001.xlsx")

##VENN DIAGRAM for intersected genes

-----------------------------------------------------------------

library(VennDiagram)

grid.newpage ()

draw.pairwise.venn(1586, 3791, 341, category = c("Significant

SNPs (P<0.01)", "Significant CpGs (P<0.01)"), lty =

rep("blank", 2), fill = c("light blue", "pink"), alpha =

rep(0.5, 2), cat.pos = c(2,2), cat.dist = rep(0.025, 2))

D. R CODE for integrative analysis with differentially expressed genes

# Find intersect CGPs ,SNP , and DE genes (Sanders et al , 2017)

-----------------------------------------------------------------

library("openxlsx", lib.loc="~/R/win -library/3.5")

DEgenesSanders <- read.xlsx("DEgenesSanders.xlsx", 1) #1058

colnames(DEgenesSanders) <- c("GENE")
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dim(DEgenesSanders) #1058

library(data.table)

intersect001Sanders <-fintersect(setDT(intersect001), setDT(DEgenesSanders ))

intersect001Sanders

dim(intersect001Sanders) #16

write.table(intersect001Sanders ,"intersect001Sanders.txt")

read.table("intersect001Sanders.txt", header=T,sep ="")

GENE

1 COL24A1

2 IL5RA

3 ZBTB38

4 CLNK

5 IL15

6 SGK1

7 NUB1

8 RBPMS

9 ANK1

10 WDR37

11 WDFY4

12 SHANK2

13 KDM2B

14 GJA3

15 GNG7

16 TCN2

# SNP related information

#1 COL24A1

COL24A1_SNP <-subset(genesSNP0.01MERGED , Symbol =="COL24A1" )

write.xlsx(COL24A1_SNP ,"COL24A1_SNP.xlsx", sheetName="Sheet1")

#2 IL5RA

IL5RA_SNP <-subset(genesSNP0.01MERGED , Symbol =="IL5RA" )

write.xlsx(IL5RA_SNP ,"IL5RA_SNP.xlsx", sheetName="Sheet1")

#3 ZBTB38

ZBTB38_SNP <-subset(genesSNP0.01MERGED , Symbol =="ZBTB38" )

write.xlsx(ZBTB38_SNP ,"ZBTB38_SNP.xlsx", sheetName="Sheet1")

#4 CLNK

CLNK_SNP <-subset(genesSNP0.01MERGED , Symbol =="CLNK" )

write.xlsx(CLNK_SNP ,"CLNK_SNP.xlsx", sheetName="Sheet1")

#5 IL15

IL15_SNP <-subset(genesSNP0.01MERGED , Symbol =="IL15" )

write.xlsx(IL15_SNP ,"IL15_SNP.xlsx", sheetName="Sheet1")

#6 SGK1

SGK1_SNP <-subset(genesSNP0.01MERGED , Symbol =="SGK1" )

write.xlsx(SGK1_SNP ,"SGK1_SNP.xlsx", sheetName="Sheet1")

#7 NUB1

NUB1_SNP <-subset(genesSNP0.01MERGED , Symbol =="NUB1" )
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write.xlsx(NUB1_SNP ,"NUB1_SNP.xlsx", sheetName="Sheet1")

#8 RBPMS

RBPMS_SNP <-subset(genesSNP0.01MERGED , Symbol =="RBPMS" )

write.xlsx(RBPMS_SNP ,"RBPMS_SNP.xlsx", sheetName="Sheet1")

#9 ANK1

ANK1_SNP <-subset(genesSNP0.01MERGED , Symbol =="ANK1" )

write.xlsx(ANK1_SNP ,"ANK1_SNP.xlsx", sheetName="Sheet1")

#10 WDR37

WDR37_SNP <-subset(genesSNP0.01MERGED , Symbol =="WDR37" )

write.xlsx(WDR37_SNP ,"WDR37_SNP.xlsx", sheetName="Sheet1")

#11 WDFY4

WDFY4_SNP <-subset(genesSNP0.01MERGED , Symbol =="WDFY4" )

write.xlsx(WDFY4_SNP ," WDFY4_SNP.xlsx", sheetName="Sheet1")

#12 SHANK2

SHANK2_SNP <-subset(genesSNP0.01MERGED , Symbol =="SHANK2" )

write.xlsx(SHANK2_SNP ,"SHANK2_SNP.xlsx", sheetName="Sheet1")

#13 KDM2B

KDM2B_SNP <-subset(genesSNP0.01MERGED , Symbol =="KDM2B" )

write.xlsx(KDM2B_SNP ,"KDM2B_SNP.xlsx", sheetName="Sheet1")

#14 GJA3

GJA3_SNP <-subset(genesSNP0.01MERGED , Symbol =="GJA3")

write.xlsx(GJA3_SNP ,"GJA3_SNP.xlsx", sheetName="Sheet1")

#15 GNG7

GNG7_SNP <-subset(genesSNP0.01MERGED , Symbol =="GNG7")

write.xlsx(GNG7_SNP ,"GNG7_SNP.xlsx", sheetName="Sheet1")

#16 TCN2

TCN2_SNP <-subset(genesSNP0.01MERGED , Symbol =="TCN2" )

write.xlsx(TCN2_SNP ,"TCN2_SNP.xlsx", sheetName="Sheet1")

# CpG related information

#1 COL24A1

COL24A1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="COL24A1" )

write.xlsx(COL24A1_CpG ,"COL24A1_CpG.xlsx", sheetName="Sheet1")

#2 IL5RA

IL5RA_CpG <-subset(cpgs001, UCSC_RefGene_Name =="IL5RA" )

write.xlsx(IL5RA_CpG ,"IL5RA_CpG.xlsx", sheetName="Sheet1")

#3 ZBTB38

ZBTB38_CpG <-subset(cpgs001, UCSC_RefGene_Name =="ZBTB38" )

write.xlsx(ZBTB38_CpG ,"ZBTB38_CpG.xlsx", sheetName="Sheet1")

#4 CLNK

CLNK_CpG <-subset(cpgs001, UCSC_RefGene_Name =="CLNK" )

write.xlsx(CLNK_CpG ,"CLNK_CpG.xlsx", sheetName="Sheet1")

#5 IL15

IL15_CpG <-subset(cpgs001, UCSC_RefGene_Name=="IL15" )

write.xlsx(IL15_CpG ,"IL15_CpG.xlsx", sheetName="Sheet1")

#6 SGK1

SGK1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="SGK1" )

write.xlsx(SGK1_CpG ,"SGK1_CpG.xlsx", sheetName="Sheet1")

#7 NUB1
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NUB1_SNP <-subset(cpgs001, UCSC_RefGene_Name =="NUB1" )

write.xlsx(NUB1_SNP ,"NUB1_CpG.xlsx", sheetName="Sheet1")

#8 RBPMS

RBPMS_CpG <-subset(cpgs001, UCSC_RefGene_Name =="RBPMS" )

write.xlsx(RBPMS_CpG ,"RBPMS_CpG.xlsx", sheetName="Sheet1")

#9 ANK1

ANK1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="ANK1")

write.xlsx(ANK1_CpG ,"ANK1_CpG.xlsx", sheetName="Sheet1")

#10 WDR37

WDR37_CpG <-subset(cpgs001, UCSC_RefGene_Name =="WDR37" )

write.xlsx(WDR37_CpG ,"WDR37_CpG.xlsx", sheetName="Sheet1")

#11 WDFY4

WDFY4_CpG <-subset(cpgs001, UCSC_RefGene_Name =="WDFY4" )

write.xlsx(WDFY4_CpG ,"WDFY4_CpG.xlsx", sheetName="Sheet1")

#12 SHANK2

SHANK2_CpG <-subset(cpgs001, UCSC_RefGene_Name =="SHANK2")

write.xlsx(SHANK2_CpG ,"SHANK2_CpG.xlsx", sheetName="Sheet1")

#13 KDM2B

KDM2B_CpG <-subset(cpgs001, UCSC_RefGene_Name =="KDM2B" )

write.xlsx(KDM2B_CpG ,"KDM2B_CpG.xlsx", sheetName="Sheet1")

#14 GJA3

GJA3_CpG <-subset(cpgs001, UCSC_RefGene_Name=="GJA3")

write.xlsx(GJA3_CpG ,"GJA3_CpG.xlsx", sheetName="Sheet1")

#15 GNG7

GNG7_CpG <-subset(cpgs001, UCSC_RefGene_Name=="GNG7")

write.xlsx(GNG7_CpG ,"GNG7_CpG.xlsx", sheetName="Sheet1")

#16 TCN2

TCN2_CpG <-subset(cpgs001, UCSC_RefGene_Name =="TCN2" )

write.xlsx(TCN2_CpG ,"TCN2_CpG.xlsx", sheetName="Sheet1")

# FIND INTERSECT CGPs ,SNP , and 200 DE genes (Sainz et al , 2013)

-----------------------------------------------------------------

DEgenesSainz=read.xlsx("DEgenesSainz.xlsx")### LIST FROM BENE PAPER

head(DEgenesSainz)

dim(DEgenesSainz) #199

read.table("intersect001.txt",dec=",",header=TRUE) #-> dim 341

colnames(DEgenesSainz) <- c("GENE")

head(DEgenesSainz)

library(data.table)

intersect001Sanders <-fintersect(setDT(intersect001), setDT(DEgenesSainz ))

intersect001Sanders

GENE

1: CSMD1

2: ABCC13

Page 54



3: RIMBP2

4: TNS1

5: SGIP1

dim(intersect001Sanders) #5

write.table(intersect001Sanders ,"intersect001Sanders.txt")

read.table("intersect001Sanders.txt", header=T,sep ="")

# SNP related information

CSMD1_SNP <-subset(genesSNP0.01MERGED , Symbol =="CSMD1" )

write.xlsx(CSMD1_SNP ,"CSMD1_SNP.xlsx", sheetName="Sheet1")

ABCC13_SNP <-subset(genesSNP0.01MERGED , Symbol =="ABCC13" )

write.xlsx(ABCC13_SNP ,"ABCC13_SNP.xlsx")

RIMBP2_SNP <-subset(genesSNP0.01MERGED , Symbol =="RIMBP2" )

write.xlsx(RIMBP2_SNP ,"RIMBP2_SNP.xlsx")

TNS1_SNP <-subset(genesSNP0.01MERGED , Symbol =="TNS1" )

write.xlsx(TNS1_SNP ,"TNS1_SNP.xlsx")

SGIP1_SNP <-subset(genesSNP0.01MERGED , Symbol =="SGIP1" )

write.xlsx(SGIP1_SNP ,"SGIP1_SNP.xlsx")

# CpG related information

cpgs001=read.xlsx("cpgs001.xlsx",1)

dim(cpgs001) # 5720

head(cpgs001)

CSMD1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="CSMD1" )

write.xlsx(CSMD1_CpG ,"CSMD1_CpG.xlsx", sheetName="Sheet2")

ABCC13_CpG <-subset(cpgs001, UCSC_RefGene_Name =="ABCC13" )

write.xlsx(ABCC13_CpG ,"ABCC13_CpG.xlsx", sheetName="Sheet2")

RIMBP2_CpG <-subset(cpgs001, UCSC_RefGene_Name =="RIMBP2" )

write.xlsx(RIMBP2_CpG ,"RIMBP2_CpG.xlsx")

TNS1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="TNS1" )

write.xlsx(TNS1_CpG ,"TNS1_CpG.xlsx")

SGIP1_CpG <-subset(cpgs001, UCSC_RefGene_Name =="SGIP1" )

write.xlsx(SGIP1_CpG ,"SGIP1_CpG.xlsx")

# Venn diagram SNPs , cpgs and genes (Sanders et al , 2017)

---------------------------------------------------------

intersect001Sanders <-fintersect(setDT(intersect001), setDT(DEgenesSanders ))

intersect001Sanders

dim(intersect001Sanders) #16

dim(ucscnameALLgenesNEXUS)# 1586

dim(CPGsVENNcleared0.01) #3791

dim(DEgenesSanders) #1058
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# venn 3 (snp , cpgs and genes)

grid.newpage ()

draw.triple.venn(area1 = 1586, area2 = 3791, area3 = 1058,

n12 = 341, n23 = 176, n13 = 58, cat.cex = rep(1, 1),

n123 = 16, category = c("Significant SNPs (P<0.01)",

"Significant CpGs (P<0.01)", "Diferentially expressed genes (P<0.05)"),

lty = "blank",fill = c("skyblue", "pink1", "mediumorchid"))

# Venn diagram SNPs , cpgs and genes (Sainz et al , 2013)

---------------------------------------------------------

dim(ucscnameALLgenesNEXUS) #1586

dim(CPGsVENNcleared0.01) #3791

#Intersect SNPs and GENES

SNPandGenes <-fintersect(setDT(ucscnameALLgenesNEXUS),

setDT(DEgenesSainz ))

dim(SNPandGenes) #12

#Intersect CpGs and genes

CPGandGenes <-fintersect(setDT(CPGsVENNcleared0.01),

setDT(DEgenesSainz ))

dim(CPGandGenes) #35

#Intersect SNPs and cpgS

dim(intersect0.01) #341

# venn 3 (snp , cpgs and genes)

library(VennDiagram)

grid.newpage ()

draw.triple.venn(area1 = 1586, area2 = 3791, area3 = 199,

n12 = 341, n23 = 35, n13 = 12, cat.cex = rep(1, 1),

n123 = 5, category = c("Significant SNPs (P<0.01)",

"Significant CpGs (P<0.01)",

"Diferentially expressed genes (P<0.05)"),

lty = "blank",fill = c("skyblue", "pink1", "mediumorchid"))
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E. Supplementary tables

Summary data for the 16 differentially expressed genes
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ANK1

SNP Position Beta coefficient P-value
rs10958698 41641075 -1,237 0,001
rs12156072 41640657 -1,237 0,001
rs13272350 41661716 -1,321 0,006
rs13273224 41641624 -1,237 0,001
rs9650332 41640125 -1,237 0,001

CpG Position Beta coefficient P-value
cg12292531 41685719 16,472 0,008
cg19844326 41755409 7,078 0,006
cg22845790 41694003 4,202 0,006

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000029534.16 0.154 0.265 8.60E-04

CLNK

SNP Position Beta coefficient P-value
rs13112750 10547343 -2,095 0,009

CpG Position Beta coefficient P-value
cg03254067 10591571 10,036 0,005
cg06628679 10609880 3,450 0,002

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000109684.11 0.122 0,190 4.09E-06

COL24A1

SNP Position BETA P-value
rs11589722 86352664 -2 0,005
rs12755267 86350554 -2 0,005
rs1360903 86572463 -1,062 0,010

CpG Position Beta coefficient P-value
cg04622601 86621584 16,542 0,005

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000171502.11 -0.060 -0.121 1.66E-06

GJA3

SNP Position BETA P-value
rs1886176 20715801 -2.19 0.005
rs9509058 20724285 2.19 0.005

CpG Position Beta coefficient P-value
cg26133081 20736342 -3163,000 0.008

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000121743.3 0.161 0.098 7.30E-03

GNG7

SNP Position BETA P-value
rs917415 2514373 19,000 0.005

CpG Position Beta coefficient P-value
cg04603130 2550027 1.747 0.009
cg08461840 2620967 25.841 0.0039

Supplementary table. Summary data for the 16 differentially expressed genes.



cg21340148 2702986 13.113 0.009
cg26863600 2616921 4.649 0.008

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000176533.9 -0.057 -0.213 1.99E-03

IL5RA

SNP Position BETA P-value
rs334788 3153069 2.19 0.005
rs340831 3109444 1.561 0.005

CpG Position Beta coefficient P-value
cg25381017 3151795 2237,000 0.002

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000091181.16 -0.212 -0.058 1.26E-02

IL15

SNP Position BETA P-value
rs10519610 142637101 -2 0.005
rs12504148 142590103 -2 0.005
rs12510514 142601496 -2 0.005

CpG Position Beta coefficient P-value
cg25546588 142557391 20869,000 0.000725640950505874

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000164136.13 0.053 1.52E-02 0.149

KDM2B

SNP Position BETA P-value
rs13754 121867257 2.19 0.005

rs7307400 121925468 2.19 0.005
rs7316418 121927603 2.19 0.005

CpG Position Beta coefficient P-value
cg23972735 121890311 7.308 0.005

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000089094.13 0.032 0.212 3.70E-05

NUB1

SNP Position BETA P-value
rs4430016 151038255 2 0.007

CpG Position Beta coefficient P-value
cg02217041 151037549 9.170 0.004

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000013374.12 0.041 0.336 9.03E-05

RBPMS

SNP Position BETA P-value
rs17554116 30419334 1.388 0.008081
rs17554408 30427531 1.388 0.008081
rs2979531 30383013 -1.469 0.00341
rs7812836 30352258 -1.321 0.006348

CpG Position Beta coefficient P-value



cg13490635 30242021 15.030 0.007
ensGene Fold Change Beta coefficient Bonferroni

ENSG00000157110.12 0.210 0.452 1.12E-05

SGK1

SNP Position BETA P-value
rs17063576 134578920,00 2 0.005391

CpG Position Beta coefficient P-value
cg03400131 134497247 3.478 0.0005

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000118515.8 -0.089 -0.213 1.55E-02

SHANK2

SNP Position BETA P-value
rs4245462 70881929 -2.095 0.009364
rs4304805 70885169 -2.095 0.009364
rs4340077 70890503 -2.095 0.009364

CpG Position Beta coefficient P-value
cg09902254 70858237 26.091 0.002

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000162105.13 0.172 0.165 1.62E-04

TCN2

SNP Position BETA P-value
rs4820888 31017322 2 0.005391
rs5749135 31011906 2 0.005391

CpG Position Beta coefficient P-value
cg00788739 31002942 17.530 0.003
cg17693957 31002757 12.618 0.008
cg22542751 31002892 12.167 0.009

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000185339.5 0.090 0.296 1.82E-02

WDFY4

SNP Position BETA P-value
rs2448544 50008287 2.19 0.005
rs2928391 49997272 2.19 0.005
rs7895907 50177420 2 0.007

CpG Position Beta coefficient P-value
cg04749316 49893346 2.903 0.003
cg15164194 49892930 2.812 0.008
cg17967780 49893445 3.546 0.009
cg20504007 49892954 4.89 0.004
cg26246740 49893026 2.763 0.005
cg27459529 49892943 3.039 0.007

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000128815.14 0.065 0.320 2.88E-13

WDR37



SNP Position BETA P-value
rs12359250 1096538 -1.062 0.009

CpG Position Beta coefficient P-value
cg17833322 1102835 -22.682 0.003

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000047056.11 -0.020 -0.047 1.80E-03

ZBTB38

SNP Position BETA P-value
rs7612543 141158212 1.388 0.008
rs9846396 141140968 1.388 0.008

CpG Position Beta coefficient P-value
cg17495555 141042988 2.168 0.005

ensGene Fold Change Beta coefficient Bonferroni
ENSG00000177311.7 -0.080 -0.763 2.26E-05


