
Quality comparison of published genomes:

Definition of methods and techniques.

Abel J́ımenez Mollà
Master’s degree in Bioinformatics and Biostatistics
Bioinformatics genome quality

Guillem Ylla
David Merino Arranz
June 6, 2019

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

1

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Table 1: Thesis sheet

Thesis title: Quality comparison of published genomes: Defi-
nition of methods and techniques.

Author: Abel J́ımenez Mollà
Consultant’s name: Guillem Ylla
Teacher responsible: David Merino Arranz
Deadline (mm/aaaa): 06/2019
University degree: Master’s degree in Bioinformatics and Biostatis-

tics
Thesis area: Bioinformatics
Language: English
Keywords Genomics, Genomes quality, Methods, Tech-

niques, Analysis, Genome assembly, Genome an-
notation

Abstract

Based on recent versions of the genomes that are publicly available within the scientific
community, we have decided to investigate the quality of such existing genomes. The aim of
this analysis is to evaluate current methods and techniques to measure and compare the quality
of assemblies and annotations, considering genomes from different origins and evolutionary
lineages (both from model and non-model organisms).

The aim of this study is to further evaluate the consequences of the use of a poor-quality
genome and avoid inaccuracies which are intrinsic in order to minimize the range of error in
research. Moreover, we want to assess if by using genomes with different quality standards in
research, we can optimize results. The above-mentioned questions justify the development for
new methods and techniques which will help us control the quality of genomes and improve
investigation in the future. The main objective of this project is the identification of varied
techniques using a range of existing software technologies to automate and make the quality
control of genomes more accessible for researchers, as well as the possibility to compare genome
quality as a result.

Keywords— Genomics, Genomes quality, Methods, Techniques, Analysis, Genome assembly, Genome
annotation

2

Contents

1 Introduction 6
1.1 Project Context and justification . 6

1.1.1 General description . 6
1.1.2 Justification of the Master’s thesis . 6

1.2 Project Objectives . 6
1.2.1 General objectives . 6
1.2.2 Specific objectives . 6

1.3 Approach and Methods . 7
1.3.1 Software . 8
1.3.2 Hardware . 8

1.4 Project Planning . 8
1.4.1 Tasks . 8
1.4.2 Calendar . 8
1.4.3 Milestones . 9
1.4.4 Risk analysis . 11
1.4.5 Contingency plan . 11

1.5 Summary of Products Obtained . 12
1.6 Description of the Report Chapters . 12

2 Genome quality tools 12
2.1 Genome quality characteristics . 12
2.2 Existing tools . 13
2.3 Understanding the software . 14

2.3.1 Installation . 14
2.3.1.1 Assembly-stats . 14
2.3.1.2 Dogma . 14
2.3.1.3 Busco . 15

2.3.2 First run . 15
2.3.2.1 Assembly-stats . 15
2.3.2.2 Dogma . 16
2.3.2.3 Busco . 18

2.4 Development of alternatives . 20

3 Results 21
3.1 Menu . 21
3.2 Assembly-stats . 22
3.3 Dogma . 23
3.4 Busco . 24

4 Conclusions 25

5 List of terms 26

Acronyms 26

Glossary 26

6 Bibliography 27

3

7 Annexes 28
7.1 Load requirements . 28
7.2 Create Shiny app . 28

7.2.1 UI . 28
7.2.2 Server . 30

7.3 Important functions . 30
7.3.1 StartMainProcess . 30
7.3.2 ReadFile . 33
7.3.3 Init . 34
7.3.4 StartProcess . 36

4

List of Figures

1 Original Planning Gantt chart . 9
2 Effective Planning Gantt chart . 9
3 Assembly-stats command output example . 16
4 pfam˙scan.pl command output example . 18
5 Dogma command output example . 18
6 Busco command output example . 20
7 Genome quality tool overview . 22
8 Genome quality tool Assembly-stats overview . 23
9 Genome quality tool Dogma overview . 23
10 Genome quality tool Busco overview . 25

List of Tables

1 Thesis sheet . 2
2 Proposed Milestones Deadlines . 10
3 Effective Milestones Deadlines . 10
4 Software technical comparison . 13
5 Software comparison from a biological point of view . 14
6 Comparison of the main programming languages . 21

List of Listings

1 Assembly-stats install steps . 14
2 Assembly-stats command help . 15
3 Assembly-stats command example . 15
4 Dogma command help . 16
5 pfam˙scan.pl command help . 17
6 pfam˙scan.pl command . 18
7 Dogma command . 18
8 Busco command help Mandatory . 19
9 Busco command help Optional . 19
10 Busco command Example . 20
11 Source Code - Load requirements . 28
12 Source Code - Create Shiny app . 28
13 Source Code - UI . 28
14 Source Code - Server . 30
15 Source Code - StartMainProcess . 31
16 Source Code - ReadFile˙assembly . 33
17 Source Code - ReadFile˙busco . 33
18 Source Code - ReadFile˙dogma . 33
19 Source Code - init˙assembly . 34
20 Source Code - init˙busco . 34
21 Source Code - init˙dogma . 35
22 Source Code - StartProcess˙assembly . 36
23 Source Code - StartProcess˙busco . 37
24 Source Code - StartProcess˙dogma . 37

5

1 Introduction

1.1 Project Context and justification

1.1.1 General description

A reference genome also known as a reference assembly is a comprehensive, integrated, non-redundant,
well-annotated set of reference sequences including genomic, transcript, and protein [9]. It is a database,
assembled by scientists to obtain a representative example of a species set of genes. Once we know what
the reference genome is, we can introduce the term DNA annotation. It is the process of identifying the
locations of the genes and all the coding regions in a genome and determining what function those genes
have [1].

By definition the quality of the reference genomes and also the quality of it’s annotation might vary
greatly, due to technical limitation. Current trends emphasize the need for improving the quality of those
techniques which determine the quality of such genomes. Our intention is to create a tool that helps us to
evaluate the quality of different genome versions. We intend to combine existing tools, the methods, and
techniques to measure the quality of assemblies and their annotations. After having carried out a thorough
look at existing genome quality tools, we have considered an in-depth analysis of three specific tools: Busco,
assembly-stats and Dogma, considering these are the most up-to-date tools regarding software maintenance.
In order to test that the tool we propose works correctly, we will use data from genomes of different origins
and evolutionary lineages (both from model and non-model organisms), specifically eukaryotes.

1.1.2 Justification of the Master’s thesis

Our aim is to study the quality of different genomes sequences and also the quality of it’s annotations in
an attempt to rise a warning to researchers to make them aware of the mistakes that and incorrect genome
might induce in their research. These mistakes are not necessarily inherent to the research processes but
rather related to the poor quality of genomes itself used as the starting point for such research. This is
the reason why we want to evaluate if through the use of the tool we have developed, we can obtain higher
quality results that can be used during the investigation, obtaining much more precise and relevant results.
This clearly justifies the need for development of new methods and techniques which will certainly help the
scientific community control the quality of genomes and improve research in the future. The genome quality
tool developed will determine the quality of the genome sequence we opt to use and its annotations.Therefore,
the researcher will know in advance which problems, errors or bias might face in his analysis mainly due to
the genome quality.

1.2 Project Objectives

The objectives that are to be achieved with the Master’s Final Project are the ones which follow. We believe
it deemed necessary to split them into general and specific objectives.

1.2.1 General objectives

The general objectives of this thesis are:

1. Analyze methods and techniques to measure and compare the quality of assemblies and annotations
of genomes.

2. Develop a tool which researchers can use to verify the quality of the genome sequence they are working
with.

1.2.2 Specific objectives

The specific objectives have been organized into two blocks. The first block is an analysis phase which will
serve as the basis of the design and implementation of the tool we suggest. The second stage is that of

6

the actual development of the tool itself. Obviously, both phases intertwine, and they may well happen
simultaneously as, certainly, improvements will have to be made on the development of the tool itself based
on the findings of the analysis. The rationale behind this being simply a logical way of grouping such
objectives.

1. Analysis phase

(a) Perform a market survey to analyze software programs currently on the market.

(b) Study the characteristics of the software programs obtained in the survey.

(c) Identify the characteristics of the genomes to be studied, the qualitative variables as the quan-
titative variables.

(d) Decision making, is it convenient to implement a new method or technique? Or, on the contrary,
does the existing software cover all the needs?

2. Development phase

(a) Analysis of the most used technologies and with greater distribution among the community.

(b) Decision making, making a completely new software or using existing software and combining it
to generate a more robust solution.

(c) Implement the software, in which the different analyzes performed previously are applied.

(d) Delivery the software to the community.

1.3 Approach and Methods

Several strategies can be adopted to carry out this project. One can focus the development by using a much
more traditional methodology with the following phases: strategic analysis, specification of requirements,
design and implementation. The traditional methodology is characterized by a strong analytical phase in
which most of the time is spent on the actual analysis of what needs to be developed [11]. This is not a very
flexible kind of methodology which does not serve the purpose of this project.

On the other hand, the possible changes in the requirements of the design of the program during its
development or any special requests from the community make us opt for agile methodology techniques. This
is certainly more flexible and adaptable to changes [11]. A functional prototype needs to be created every
two weeks in order to increase the interaction between the end user and the developer, thus improving the
quality of the software solution provided. The end user is presented with each of the prototypes fortnightly
and encouraged to test it and suggest improvements, detect misfunctions, propose new functionalities of the
tool which are deemed necessary from this end user perspective. The developer will adapt those changes
in order to present the new prototype which includes those updated functionalities along with any other
improvements.

During the analysis phase that will not last longer than two weeks, the utmost need is to perform a
market survey to analyze the software programs that are currently on the market. The main interest in this
first step is to determine each of the characteristics of the genome in which each of this software programs
focuses on. This will facilitate identify both the qualitative variables and the quantitative variables and
provide a preview on the development of the software program to be developed.

During the development phase, as it has already been anticipated, the delivery of a functional prototype
of the application every two weeks is key, increasing the functionalities in each of the prototypes and applying
the corrections and changes proposed by the end user.

The software and hardware required and used to perform the correct development stages will be detailed
in the next sections.

7

1.3.1 Software

In this section the software characteristics are detailed to have an overview of all the software components.

• The final application is developed in Shiny.[10]

• R is the main software used to manipulate the data.

• Third-party applications were developed using different software such as Python, Perl or C++.

• Linux terminal is the connection point between the R Shiny app and the Third-party applications.

• Virtualbox is used to group and run all the software that is needed.

1.3.2 Hardware

The application is running in a Virtualbox machine with the following characteristics:

• Processor: 2 virtual CPU’s.

• Memory: 4 GB of RAM.

• Storage: Dynamic storage.

• Operating System: Ubuntu 16.04 LTS (Xenial Xerus) 32 bits.

1.4 Project Planning

In this section, tasks and its deadlines variations, Gantt charts and project milestones will be exposed. The
task section lists the various tasks in which the objectives have been divided. The Gantt charts is used to
specify a date for each of the tasks and project milestones. It also includes an analysis of the risks that
could occur initially and those that have finally happened.

1.4.1 Tasks

Among the identified tasks we have also included those required by university criteria. Although not directly
related to the project itself we consider them indispensable for the correct resolution of the project. Therefore
tasks have been identified and divided into the following ones:

• Initial analysis (1a, 1b, 1c , 1d)

• Technological analysis (2a , 2b)

• Prototype design (2c)

• Master’s thesis redaction conclusion. (2d)

• Presentation development.

• Public defense.

1.4.2 Calendar

The thesis was planned using a temporary structure based on days per month. It has taken into account
the work as a freelancer of the author. The calendar indicates the days on which to work on each task,
without entering into detail on the hours as this does fully depend on the author. To this purpose we used
Teamgantt©[13] implementing it by adding the milestones to the chart. This will be explained in more
detail in the next section.

As we can see in the figure 1 and figure 2, changes have been made to the timeline. The delivery of the
second prototype has been delayed of two weeks due to problems with the hosting server. This happened
because of the occurance of 4 and 5 that were identified in the initial phase. For this reason the development
of the second prototype overlaps with the delivery of the third prototype. At this point we have decided to
reduce the number of prototypes to be delivered and continue with the already established plan.

8

Figure 1 and figure 2 show the differences between the original planning and the effective one:

Figure 1: Original Planning Gantt chart

Figure 2: Effective Planning Gantt chart

1.4.3 Milestones

As already mentioned in the calendar, the planning has changed and this has also affected the milestones.
In this section, we will compare the milestones initially proposed with those that have finally been carried
out.

As we can see in table 2 within milestones that were initially proposed we had two initial analysis that
guided the development of each of the 4 prototypes and three milestones that were related with mandatory
steps that have to be performed for the successful outcome of this thesis.

The difference with the proposed milestones and the effective milestones is mainly due to the elimination
of the delivery of one of the prototypes more specifically the prototype number two because it overlaps with

9

the delivery of the third prototype. We can observe the changes in detail in the following tables: table 2
and table 3 .

Table 2: Proposed Milestones Deadlines

Milestone PEC number Deadlines
Conclusions for Initial analysis PEC2 24/03/2019

Conclusions for Technological analysis PEC2 31/03/2019
Proposed Prototype 1 delivery PEC2 14/04/2019
Proposed Prototype 2 delivery PEC3 28/04/2019
Proposed Prototype 3 delivery PEC3 12/05/2019
Proposed Prototype 4 delivery PEC3 20/05/2019

Master’s thesis delivery PEC4 04/06/2019
Presentation delivery PEC5a 12/06/2019

Public defense PEC5b 25/06/2019

• Proposed Prototype 1 delivery includes:

– Implementation of the software architecture;

– Creation of a draft project.

• Proposed Prototype 2 delivery includes:

– Implementation of the modifications reported by the user in the previous step;

– Creation of the first user interface.

• Proposed Prototype 3 delivery includes:

– Implementation of the modifications reported by the user in the previous step;

– Interpretation of the data from files and databases;

– Presentation of the first results and calculations based on the input genome.

• Proposed Prototype 4 delivery includes:

– Implementation of the modifications reported by the user in the previous step;

– Release of the candidate version.

Table 3: Effective Milestones Deadlines

Milestone PEC number Deadlines
Conclusions for Initial analysis PEC2 24/03/2019

Conclusions for Technological analysis PEC2 31/03/2019
Effective Prototype 1 delivery PEC2 14/04/2019
Effective Prototype 3 delivery PEC3 12/05/2019
Effective Prototype 4 delivery PEC3 20/05/2019

Master’s thesis delivery PEC4 04/06/2019
Presentation delivery PEC5a 12/06/2019

Public defense PEC5b 25/06/2019

• Effective Prototype 1 delivery includes:

10

– Implementation software architecture;

– Creation of a draft project.

• Effective Prototype 3 delivery includes:

– Implementation of the modifications reported by the user in the previous step;

– Creation of the first user interface;

– Interpretation of data from files and databases.

• Effective Prototype 4 delivery includes:

– Implementation of the modifications reported by the user in the previous step;

– Presentation of the first results and calculations based on the input genome;

– Release of the candidate version.

1.4.4 Risk analysis

As already mentioned, during the carrying out of the project there are certain factors that could occur and
negatively affect the planning and execution of the project. These may lead the master’s thesis not to reach
a good outcome. The factors that were identified are the following ones:

1. Time for developing is limited and the project can not be done on time;

2. Software licenses to be used are not public;

3. Not being able to identify qualitative and quantitative variables;

4. Hardware limitation on the tools that we are using to develop the software;

5. Economic difficulties: software, hardware, hosting server;

6. Size of the genomes and their availability;

7. Time for testing the prototypes can be short due to the duration of the cycles.

Some of the risks anticipated in the initial analysis eventually occurred. We have adapted the delivery
of the prototypes because we have found problems due to the size of genomes(6) and the databases used by
third-party applications. Moreover, the free/student versions of the cloud appeared to be not enough to run
the project thus resulting in high costs for running the application(5).

1.4.5 Contingency plan

In this section we will detail how we can act in each of the risk cases detected in the risk analysis section.
Obtaining an alternative in the case of having problems during the development.

1. Few things can be done if time is not enough, if this happens I would try again next year. (Risk.1)

2. Luckily there are many free software alternatives, but if you still do not satisfy our needs we can always
write to the owner of the software and explain that its use will be for academic purposes. (Risk.2)

3. We are lucky not to be alone in this adventure, so if we are not able to identify the qualitative and
quantitative variables we can always ask for help from teachers and colleagues. (Risk.3)

4. If we are faced with any hardware limitation, we can always access a university cluster or use one of
the free versions of super computers offered by large companies. (Risk.4)

5. If we can not pay the cost of development, we can apply for grants or scholarships. (Risk.5)

6. We can always access a supercomputer from the university or use one of the free versions of super
computers offered by large companies. (Risk.6)

7. We can reduce the number of prototypes and increase their duration to extend the test time. (Risk.7)

11

1.5 Summary of Products Obtained

This section shows a list of tangible items of what is expected obtain at the end of its development.

• List with the main characteristics of the genome that we intend to study.

• Market survey to analyze genome quality analysis software that currently exists in the market.

• Table with the comparison of the main characteristics of the software detected in the market analysis.

• Table comparing the existing alternatives to develop our application.

• Fully functional application for the analysis of genome quality through files in FASTA format.

• The document of the master thesis itself.

• A Power point presentation summarizing the most important features of the application and a video
with its the operation.

1.6 Description of the Report Chapters

Below are described the theoretical and practical chapters related with this project, each of them will be
detailed in the following sections:

• Genome quality characteristics: the aim of the chapter contextualizes the different characteristics
genomes that can be used to measure their quality;

• Existing tools: the purpose is to make a market analysis of the software of the currently existing
software,to further make a comparison of the qualities in order to be able to select the best software
options to control the quality of the genome;

• Understanding the software: once the market analysis is done and the best software is selected,
it is indispensable to familiarize with it. This chapter explains the peculiarities of each of the chosen
software and shows how to use it;

• Development alternatives: an important step in the development of our application to measure
the quality of the software is to show the results obtained in a clean and clear way. To do so, this
chapter analyzes the available options in the market, to select the best technology in order to carry
out our application.

2 Genome quality tools

2.1 Genome quality characteristics

These are some of the characteristics of the genome that we can consider to evaluate the quality of the
genome.

• Genome size: this is an important value to bring to the sequencing facility, as the genome size will
greatly influence the amount of data that needs to be ordered. To assemble a genome, a certain amount
of sequences (also called reads) is needed. A number of >60x sequence depth is often mentioned[2].
This means that the number of total nucleotides in the sequencing reads used for the genome assembly
need to be at least 60 times the number of nucleotides in the genome.[3] for this reason the genome
size is a characteristic to consider during the genome quality control.

• N50 statistics: it is a measure to describe the quality of assembled genomes that are fragmented
in contigs or scaffolds of different lengths.To get the N50 contig length, all contigs of a genome must
be sorted by their length, then we must look for the base that is in the center at 50% of the total
genome length, at this point we can get the contig size to which this base belongs and we will have the
N50 contig length. There are also similar statistics like N70 or N90 that also used during the genome
quality control. They are the same as N50 but instead of 50%, N70 corresponds to the 70% and N90
corresponds to the 90% [7].

12

• Benchmarking Universal Single-Copy Orthologs (OrthoDB) : the term ortholog refers to
any of two or more homologous gene sequences found in different species related by linear descent,
[5] namely, genes present in different species coming from the same ancestral gene. We can use this
characteristic to order and quantify the genome assemblies by using a database called OrthoDB [14].
From its conception, OrthoDB promoted delineation of orthologs at varying resolution by explicitly
referring to the hierarchy of species radiations. The current release provides comprehensive coverage
of animals, fungi and bacteria. This provides us with a broad database where we can consult and
assess the similarities of our genome assemblies.

• Conserved protein domains: another way to control the quality of our genome assemblies is by
consulting the proteins conserved during the evolution of the spies also known as Conserved Domain
Arrangements (CDAs) [6].

2.2 Existing tools

At this point we will analyze the different software alternatives that are currently available for analyzing the
qualities of genomes and genomes annotations. In particular, this is important in order to see if they are
good enough to measure the quality of the software or on the contrary to test whether they do not meet the
minimum requirements to measure the quality of the genome. We will analyze in detail the characteristics
of these applications in order to know them and have an objective idea of which are the best options.

From a more technical point of view we could study many different features but in this case we have
decided to focus on the following ones and proceed to explain each of them with more detail and they are
shown in table 4.

• Maintenance: the questions will be: does the software have support from its creators? Is there an
open and participatory community that brings updates and improvements to the software? To answer
them we will use two possible values: supported or obsolete.

• Platform: the aim would be to understand whether the platforms support the software, if it is a
cross-platform and if there is a version for each of the different platforms

• Language: in terms of efficiency, some programming languages are better than others,[4] but this
needs a separate study to see which one is better. At an informative level we show the programming
languages in which each software is written.

• Version: this column refers to the type of CPU in which the software can be executed. 32 or 64
bits are the most extended types of CPU. In most cases with a version 64 we can obtain a higher
performance.[8]

Table 4: Software technical comparison

Software maintenance platform language version
BBMap Supported Unix Python 32-bit/64-bit
Dogma Supported cross-platform Perl 32-bit/64-bit
Assembly-stats Supported cross-platform C++ 32-bit/64-bit
Busco Supported Unix Python 32-bit/64-bit
Quast Supported Unix Python 32-bit/64-bit
Cegma Obsolete Unix Perl 32-bit/64-bit

Focusing on the biological point of view we will discuss some more features, which are displayed in table
5. These can help us to choose the most interesting software for the development of the final solution.

• Genome: when deciding which software to use it has to be considered whether the software supports
a Genome assembly file.

13

• Transcriptome: support for a transcript set (DNA nucleotide sequences).

• Proteome: it has to be considered whether the analyzed software supports a gene set (protein amino
acid sequences).

• Input: the last column displays the type of input file that is supported by each program, in this case
all of them support FASTA files.

Table 5: Software comparison from a biological point of view

Software genome transcriptome proteome input
BBMap TRUE TRUE FALSE FASTA
Dogma FALSE TRUE TRUE FASTA
Assembly-stats TRUE FALSE FALSE FASTA
Busco TRUE TRUE TRUE FASTA
Quast TRUE TRUE TRUE FASTA
Cegma TRUE FALSE TRUE FASTA

These tables will help us to make a decision about which software to use and what type of software will
be most useful when measuring the quality of the genome.

2.3 Understanding the software

After having obtained an overview of the software, we can decide which software is more convenient for the
development of the application. At this point it is better to carry out tests with the software and learn how
they work, how they are installed and know their advantages and disadvantages.

2.3.1 Installation

In this section the installation process for each of the programs is detailed.

2.3.1.1 Assembly-stats

Assembly-stats is a program written in c ++ and does not have a pre-compiled version of the software,
so we must compile it ourselves. To install the software we have to download the source code of the official
Github repository and then execute the commands as shown in code 1.

Code 1: Assembly-stats install steps

1 mkdir build

2 cd build

3 cmake ..

4 make

5 make test

6 make install

2.3.1.2 Dogma

Dogma is written in Python language and therefore it is not necessary to install it, since Python is an
interpreted programming language. Its characteristic is that it has dependencies: this means that Dogma
needs other programs to work correctly, such as RADIANT or pfam˙scan.pl. Considering that RADIANT

14

is in beta phase, its use is not recommended. On the other hand pfam˙scan.pl is still supported by its
developers.

For this reason we have chosen pfam˙scan.pl to be able to execute Dogma normally. pfam˙scan.pl is
written in Perl as Python is a language interpreted for that reason we do not need to install anything. As
long as we have Python and Perl installed on our computer they will be enough to run the two programs.

2.3.1.3 Busco

Similarly to Dogma, Busco is a program written in Python and therefore does not need an installation.
It has more dependencies than Dogma because it needs three more programs to function correctly. These
programs are: NCBI BLAST +, HMMER and Augustus. It is a bit more complicated to configure and install
due to its dependencies, that is why Busco itself offers us a pre-installed virtual machine with everything
necessary to start it up.

We have chosen this option and we have used it as a base to install the other programs, thus obtaining
a closed system with everything necessary to operate. This gives us the option of transporting the entire
system to a server if it is necessary to deploy the application to make it accessible to the whole world.

2.3.2 First run

Once the software is installed we will proceed to test it, in this section we will explain the necessary commands
to operate each of the programs and we will cover in detail its most important parameters.

2.3.2.1 Assembly-stats

Assembly-stats has only 5 parameters, the 4 that we describe in Code 2 and the fifth argument for the
sequence in .FASTA format.

Code 2: Assembly-stats command help

1 assembly-stats

2 usage: stats [options] <list of fasta/q files>

3

4 Reports sequence length statistics from fasta and/or fastq files

5

6 options:

7 -l <int>

8 Minimum length cutoff for each sequence.

9 Sequences shorter than the cutoff will be ignored [1]

10 -s

11 Print 'grep friendly' output

12 -t

13 Print tab-delimited output

14 -u

15 Print tab-delimited output with no header line

The code section 3 and the figure 3 show an example of using Assembly-stats and its respective console
output. These will help us understand how it works and provide us with the first visible results.

Code 3: Assembly-stats command example

15

1 assembly-stats -t test_files/fasta_unittest.fasta

Figure 3: Assembly-stats command output example

2.3.2.2 Dogma

Dogma is the only one of the 3 chosen programs that needs a previous command to function. So in this
section we will detail the parameters of Dogma and the parameters of pfam˙scan.pl since these are necessary
for the correct functioning of Dogma.

Code 4: Dogma command help

1 -h, --help show this help message and exit

2 -a ANNOTATION_FILE, --annotation_file ANNOTATION_FILE

3 Annotation file of the transcriptome to be quality

4 checked asRADIANT or PfamScan output.

5 -i SEQUENCE_FILE, --initial_radiant_run SEQUENCE_FILE

6 The transcriptome file (in fasta format) that should

7 be used for an initial run of RADIANT (domain

8 annotation) and subsequently analyzed with DOGMA.

9 -r REFERENCE_TRANSCRIPTOMES, --reference_transcriptomes REFERENCE_TRANSCRIPTOMES

10 A directory that contains annotation files of selected

11 core species (*.rad for RADIANT annotated files and

12 *.pfsc for pfam scan annotated files). Used to

13 construct the core set with conserved domain

14 arrangements. If omitted, the script looks for default

15 values stored in the "pfamXX/reference-

16

16 sets/eukaryotes" directory. Valid values for analysis

17 with the default core sets are "eukaryotes" ,

18 "mammals" , "insects" , "bacteria" and "archaea"

19 (without quotes)

20 -o OUTFILE, --outfile OUTFILE

21 Summary will be saved in a file with the given name

22 (and path), instead of printed in the console.

23 -s CDA_SIZE, --cda_size CDA_SIZE

24 Specifies up to which size subsets of CDAs should be

25 considered (default=3; A-B-C-D --> A-B-C, A-B-D, B-C-D

26 etc.).

27 -m PFAM, --pfam PFAM The version number of the pfam database that should be

28 used (Default is 32).

29 -d DATABASE, --database DATABASE

30 If the RADIANT database is not located in the RADIANT

31 directory, please specify path and name of the

32 database. (Just necessary for -i option)

33 -cov COVERAGE, --coverage COVERAGE

34 Specifies how much of a domain has to be annotated to

35 count as a partial domain. Default=0.5 This would mean

36 if less than 50% of the domain is annotated it is

37 considered a partial domain. The partial domain

38 analysis is just available with PfamScan annotations.

Code 5: pfam˙scan.pl command help

1 -h : show this help

2 -outfile <file> : output file, otherwise send to STDOUT

3 -clan_overlap : show overlapping hits within clan member families (applies to Pfam-A families only)

4 -align : show the HMM-sequence alignment for each match

5 -e_seq <n> : specify hmmscan evalue sequence cutoff for Pfam-A searches (default Pfam defined)

6 -e_dom <n> : specify hmmscan evalue domain cutoff for Pfam-A searches (default Pfam defined)

7 -b_seq <n> : specify hmmscan bit score sequence cutoff for Pfam-A searches (default Pfam defined)

8 -b_dom <n> : specify hmmscan bit score domain cutoff for Pfam-A searches (default Pfam defined)

9 -as : predict active site residues for Pfam-A matches

10 -json [pretty] : write results in JSON format. If the optional value "pretty" is given,

11 the JSON output will be formatted using the "pretty" option in the JSON

12 module

13 -cpu <n> : number of parallel CPU workers to use for multithreads (default all)

14 -translate [mode] : treat sequence as DNA and perform six-frame translation before searching. If the

15 optional value "mode" is given it must be either "all" , to translate everything

16 and produce no individual ORFs, or "orf" , to report only ORFs with length greater

17 than 20. If "-translate" is used without a "mode" value, the default is to

18 report ORFs (default no translation)

Below are some examples of how to run each of the two softwares together with their respective outputs.

17

Code 6: pfam˙scan.pl command

1 perl pfam_scan.pl -fasta test_data/target.fa -dir Bio/Pfam/ -outfile TFM_outputs/pfam_out_TFM

Figure 4: pfam˙scan.pl command output example

Code 7: Dogma command

1 python dogma.py transcriptome -a PfamScan/TFM_outputs/pfam_out_TFM -o TFM_outputs/Dogma_out_TFM

Figure 5: Dogma command output example

2.3.2.3 Busco

18

Busco is the program with the most parameters of all those that we have analyzed. To work, you only
need 4 parameters that are mandatory but it also includes many optional parameters that help us improve
our results. In Code 8 and 9 we detail all BSUCO parameters, both optional and mandatory.

Code 8: Busco command help Mandatory

1 -i FASTA FILE, --in FASTA FILE

2 Input sequence file in FASTA format. Can be an assembled genome or transcriptome (DNA),

3 or protein sequences from an annotated gene set.

4 -o OUTPUT, --out OUTPUT

5 Give your analysis run a recognisable short name. Output folders and files will be

6 labelled with this name. WARNING: do not provide a path

7 -l LINEAGE, --lineage_path LINEAGE

8 Specify location of the BUSCO lineage data to be used.

9 Visit http://busco.ezlab.org for available lineages.

10 -m MODE, --mode MODE Specify which BUSCO analysis mode to run.

11 There are three valid modes:

12 - geno or genome, for genome assemblies (DNA)

13 - tran or transcriptome, for transcriptome assemblies (DNA)

14 - prot or proteins, for annotated gene sets (protein)

Code 9: Busco command help Optional

1 -c N, --cpu N Specify the number (N=integer) of threads/cores to use.

2 -e N, --evalue N E-value cutoff for BLAST searches. Allowed formats, 0.001 or 1e-03 (Default: 1e-03)

3 -f, --force Force rewriting of existing files. Must be used when output files with the provided

4 name already exist.

5 -r, --restart Restart an uncompleted run. Not available for the protein mode

6 -sp SPECIES, --species SPECIES

7 Name of existing Augustus species gene finding parameters. See Augustus

8 documentation for available options.

9 --augustus_parameters AUGUSTUS_PARAMETERS

10 Additional parameters for the fine-tuning of Augustus run. For the species, do not

11 use this option.

12 Use single quotes as follow: '--param1=1 --param2=2' , see Augustus documentation

13 for available options.

14 -t PATH, --tmp_path PATH

15 Where to store temporary files (Default: ./tmp/)

16 --limit REGION_LIMIT How many candidate regions (contig or transcript) to consider per BUSCO (default: 3)

17 --long Optimization mode Augustus self-training (Default: Off) adds considerably to the run time,

18 but can improve results for some non-model organisms

19 -q, --quiet Disable the info logs, displays only errors

20 -z, --tarzip Tarzip the output folders likely to contain thousands of files

21 --blast_single_core Force tblastn to run on a single core and ignore the --cpu argument for this step only.

22 Useful if inconsistencies when using multiple threads are noticed

23 -v, --version Show this version and exit

24 -h, --help Show this help message and exit

19

A simple example to understand the code, it would be 10 while the output it produces is shown in 6.

Code 10: Busco command Example

1 python scripts/run_BUSCO.py -i sample_data/target.fa -o TFMBusco -l sample_data/example -m geno -f

Figure 6: Busco command output example

2.4 Development of alternatives

In this section we will analyze the main programming languages for the development of our application. We
will solve mainly technical issues about the different programming languages available. The analysis of the
advantages and disadvantages is important to obtain a general vision of which of them suits us more.

• Biological packages: the programming language should support specific packages focused on the
biological world;

• Platform: it has to be considered whether the platforms support the software, if it is a cross-platform
and if there is a version for each of the different platforms;

• Suitability for statistical calculations: it has to be considered whether the software is specifically
designed or not for statistical operations;

• Embed frontend: in this case the question would be if the programming language contains a simple
way to implement the forntend, or if it is necessary to implement two different applications one for
frontend and one for backend.

20

Table 6: Comparison of the main programming languages

Software biological packages platform statistical calculations easy frontend
R Supported cross-platform suitable TRUE
PYTHON Supported cross-platform suitable TRUE
JAVA Supported cross-platform less suitable FALSE
C++ Supported cross-platform less suitable FALSE
JAVASCRIPT Supported cross-platform less suitable TRUE
PHP Supported cross-platform less suitable TRUE

3 Results

The application developed Genome quality tool also known as GQT, which is the combination of 3 different
softwares and facilitates its use and helps us to obtain a clear output in a simple way. GQT uses R to
compute and manipulate the data, and with the help of the Shiny package it presents an application with
a graphical interface that is very intuitive and easy to use. Everything is executed in an Ubuntu virtual
machine, one of the most known distributions of Linux, offering the chance, if necessary, to implement the
application in a server in a simple and fast way. It has to be kept in mind that the implementation in a
server occur outside the project scope due to technical and economic limitations.

The application is divided into two parts, the left part 7 contains the application menu, where we can
change the input parameters and load our files in .FASTA format while the center/right 10 part contains
three tabs with the outputs of each of the programs containing each of them a table with the data obtained
and a graph that shows us in a visual way the data. Below we will detail each of the parts of the application
in detail.

3.1 Menu

As shown in figure 7, the menu is vertically divided into three sections. The first, allows us to upload our
archives in .FASTA format. The second one gives us crucial information to understand the operation of the
application and to finish the buttons where we can change the modes.

21

Figure 7: Genome quality tool overview

3.2 Assembly-stats

In the Assembly-stats tab, we obtain information about the sequence we have entered. It shows the total
size of the sequence, the average, the shortest, the longest among others. The most important information
that shows Assembly-stats shown in the bar chart are the N statistics these are a measure to describe the
quality of assembled genomes that are fragmented in contigs of different length.

22

Figure 8: Genome quality tool Assembly-stats overview

3.3 Dogma

DOGMA is a program that assesses the quality of transcriptome and proteome data based on conserved
protein domains. A core set of Conserved Domain Arrangements or CDAs is used in DOGMA to be compared
against the transcriptome or proteome provided by the user. As it can be seen from figure 9 , in DOGMA
we will be able to see two different sections one with a table and a another with a bar plot. In the table
we should focus on the columns found and expct. Found refers to the number of CDA’s found while expct
refers to the number that the program expects to find. The percentage of how much completed each one of
the CDA’s sizes is can be displayed on the bar plot in visual way.

Figure 9: Genome quality tool Dogma overview

23

3.4 Busco

BUSCO is a program that provides quantitative measures for the assessment of genome assembly, gene
set, and transcriptome completeness, based on evolutionarily-informed expectations of gene content from
near-universal single-copy orthologs selected from OrthoDB. As usual the tab is divided in two vertical
sections one displays a table and the other displays a graph. In this case the graph shows in a dynamic way
the percentages of: Complete and single-copy BUSCOs, Complete and duplicated BUSCOs, Fragmented
BUSCOs or Missing BUSCOs. We will detail each one of these values to understand it better.

• Complete: if found to be complete, either single-copy or duplicated, the BUSCO matches are scored
within the expected range of scores and within the expected range of length alignments to the BUSCO
profile. If in fact an orthologue is not present in the input dataset, or the orthologue is only partially
present (highly fragmented), and a high-identity full-length homologue is present, it is possible that
this homologue could be mistakenly identified as the complete BUSCO. The score thresholds are
optimised to minimise this possibility, but it can still occur; [12]

• Fragmented: If found to be fragmented, the BUSCO matches have scored within the range of scores
but not within the range of length alignments to the BUSCO profile. For transcriptomes or annotated
gene sets this indicates incomplete transcripts or gene models. For genome assemblies this could
indicate either that the gene is only partially present or that the sequence search and gene prediction
steps failed to produce a full-length gene model even though the full gene could indeed be present
in the assembly. Matches that produce such fragmented results are given a ‘second chance’ with a
second round of sequence searches and gene predictions with parameters trained on those BUSCOs
that were found to be complete, but this can still fail to recover the whole gene. Some fragmented
BUSCOs from genome assembly assessments could therefore be complete but are just too divergent
or have very complex gene structures, making them very hard to locate and predict in full. [12]

• Missing: If found to be missing, there were either no significant matches at all, or the BUSCO
matches scored below the range of scores for the BUSCO profile. For transcriptomes or annotated
gene sets this indicates that these orthologues are indeed missing or the transcripts or gene models are
so incomplete/fragmented that they could not even meet the criteria to be considered as fragmented.
For genome assemblies this could indicate either that these orthologues are indeed missing, or that
the sequence search step failed to identify any significant matches, or that the gene prediction step
failed to produce even a partial gene model that might have been recognised as a fragmented BUSCO
match. Like for fragments, BUSCOs missing after the first round are given a ‘second chance’ with a
second round of sequence searches and gene predictions with parameters trained on those BUSCOs
that are complete, but this can still fail to recover the gene. Some missing BUSCOs from genome
assembly assessments could therefore be partially present, and even possibly (but unlikely) complete,
but they are just too divergent or have very complex gene structures, making them very hard to locate
and predict correctly or even partially. [12]

24

Figure 10: Genome quality tool Busco overview

4 Conclusions

• During the analysis phase we have learned the main qualitative and quantitative characteristics of a
genome, we have also learned the methodology used to obtain the genome. Thus, we could be able to
understand why quality is so important in these processes.

• After probing the different applications available, we have opted for Busco, Assembly-stats and Dogma
because they meet all the necessary requirements to measure the quality of a genome in different ways.
We have opted for them because they still receive updates from their developers.

• In the development phase we have established our knowledge of R with the development of a fully
functional application starting from scratch. We have also learned to generate dynamic interfaces with
Shiny. These two tools are often used together in bioinformatics. The development an application
with these technologies has helped to develop confidence with them and be able to use them without
problem.

25

5 List of terms

Acronyms

CDAs Conserved Domain Arrangements. 13

CPU Central Processing Unit. 8

DNA Deoxyribonucleic Acid. 14

GB Gigabyte. 8

GQT genome quality tool. 21

LTS Long Term Support. 8

PEC comes from Spanish ”pruebas de evaluación continua” which means continuous assessment tests. 10

RAM Random-Access Memory. 8

UI User Interface. 28

Glossary

contigs Contigs are contiguous fragments of DNA sequence from an incomplete draft genome. 22

eukaryotes any organism having as its fundamental structural unit a cell type that contains specialized
organelles in the cytoplasm, a membrane-bound nucleus enclosing genetic material organized into
chromosomes, and an elaborate system of division by mitosis or meiosis, characteristic of all life forms
except bacteria, blue-green algae, and other primitive microorganisms. 6

Gantt charts a diagram of the stages of a piece of work, showing stages that can be done at the same
time, and stages that must be completed before others can start. 8

genomes Genetic material of an organism. 2

hardware the physical and electronic parts of a computer. 7

Shiny Shiny is an R package that helps to build interactive web apps. 8

software the instructions that control what a computer can do. 7

26

6 Bibliography

References

[1] J. F. Abril and S. Castellano. Genome annotation. In S. Ranganathan, M. Gribskov, K. Nakai, and
C. Schönbach, editors, Encyclopedia of Bioinformatics and Computational Biology, pages 195 – 209.
Academic Press, Oxford, 2019.

[2] A. Desai, V. S. Marwah, A. Yadav, V. Jha, K. Dhaygude, U. Bangar, V. Kulkarni, and A. Jere.
Identification of optimum sequencing depth especially for de novo genome assembly of small genomes
using next generation sequencing data. PloS one, 8(4):e60204, 2013.

[3] V. Dominguez Del Angel, E. Hjerde, L. Sterck, S. Capella-Gutierrez, C. Notredame, O. Vinnere Pet-
tersson, J. Amselem, L. Bouri, S. Bocs, C. Klopp, J.-F. Gibrat, A. Vlasova, B. L. Leskosek, L. Soler,
M. Binzer-Panchal, and H. Lantz. Ten steps to get started in Genome Assembly and Annotation.
F1000Research, 7:148, feb 2018.

[4] N. Fatima and S. Arabia. Performance Comparison of Most Common High Level Programming Lan-
guages. International Journal of Computing Academic Research (IJCAR), 5(5):246–258, 2016.

[5] R. A. Jensen. Orthologs and paralogs - we need to get it right. Genome biology, 2(8):INTERAC-
TIONS1002, 2001.

[6] A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, R. C. Geer, J. He,
M. Gwadz, D. I. Hurwitz, C. J. Lanczycki, F. Lu, G. H. Marchler, J. S. Song, N. Thanki, Z. Wang,
R. A. Yamashita, D. Zhang, C. Zheng, and S. H. Bryant. CDD: NCBI’s conserved domain database.
Nucleic acids research, 43(Database issue):D222–6, jan 2015.

[7] Metagenomics.wiki. N50 statistics - Metagenomics, 2019. http://www.metagenomics.wiki/pdf/definition/assembly/n50.

[8] J. C. Mogul, J. F. Bartlett, R. N. Mayo, and A. Srivastava. Performance Implications of Multiple
Pointer Sizes. In Proceedings of USENIX Winter, pages 187–200, 1995.

[9] National Center for Biotechnology Information. RefSeq: NCBI Reference Sequence Database, 2018.

[10] I. RStudio. Shiny, 2019. https://shiny.rstudio.com/.

[11] H. Salameh. What, When, Why, and How? A Comparison between Agile Project Management and
Traditional Project Management Methods. International Journal of Business and Management Review,
2(52):52–74, 2014.

[12] F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. BUSCO: Assessing
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19):3210–
3212, 2015.

[13] TeamGantt. Online Gantt Chart Software — TeamGantt. https://www.teamgantt.com/.

[14] R. M. Waterhouse, F. Tegenfeldt, J. Li, E. M. Zdobnov, and E. V. Kriventseva. OrthoDB: a hierarchical
catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research, 41(Database issue):D358, jan
2013.

27

7 Annexes

Here we will explain in detail the most important parts of the source code from the application. The code
of this application is written in R, thus we decided to write the application in the mode one single app, that
means that the application is written in a single R file.

7.1 Load requirements

Most of R applications starts loading the external packages that will be used subsequently by the application.
This app imports different packages to help us to manipulate the data once loaded and imports the Shiny
package, to be able to display the graphical part of the app.

Code 11: Source Code - Load requirements

1 library(shiny)

2 library(DT)

3 library(data.table)

4 library(RColorBrewer)

7.2 Create Shiny app

Every Shiny app has two parts: UI and Server. The UI defines the components that will be displayed on
the browser and the server part contains the functions with the logic of the app.

Code 12: Source Code - Create Shiny app

1 shinyApp(ui, server)

7.2.1 UI

The Ui is almost self-explanatory, we define the layouts and create the html components like radiobuttons,
inputs and panels.

Code 13: Source Code - UI

1 ui <- fluidPage(# App title ----

2 titlePanel("Genome quality tool"),

3

4 # Sidebar layout with input and output definitions ----

5 sidebarLayout(

6 # Sidebar panel for inputs ----

7 sidebarPanel(

8 # Input: Select a file ----

9 fileInput(

28

10 "file1" ,

11 "Choose FASTA File" ,

12 multiple = FALSE,

13 accept = c("text/csv" ,

14 "text/comma-separated-values,text/plain" ,

15 ".csv")

16),

17

18 # Horizontal line ----

19 tags$hr(),

20

21 #Help text

22 helpText(

23 "Right now you are in test mode. You can load a FASTA file to get your own results but

24 the processing time will depend on the size of the file and the characteristics of your

25 machine."

26),

27

28 tags$hr(),

29

30 radioButtons(

31 "radio" ,

32 label = h4("Selected species:"),

33 choices = list(

34 "Eukaryota" = 1

35),

36 selected = 1

37),

38

39 radioButtons(

40 "radio2" ,

41 label = h4("Mode:"),

42 choices = list("Transcriptome" = 1,

43 "Proteome" = 2),

44 selected = 1

45)

46

47),

48

49 # Main panel for displaying outputs ----

50 mainPanel(# Output: Tabset w/ plot, summary, and table ----

51 tabsetPanel(

52 type = "tabs" ,

53 tabPanel(

54 "busco" ,

55 fluidRow(column(6, DT::dataTableOutput("busco")),

56 column(6, plotOutput('plot1'))),

57 icon = icon("glyphicon glyphicon-search" , lib = "glyphicon")

58),

59 tabPanel(

29

60 "assembly-stats" ,

61 fluidRow(column(6, DT::dataTableOutput("assembly")),

62 column(6, plotOutput('plot_assembly'))),

63 icon = icon("glyphicon glyphicon-stats" , lib = "glyphicon")

64),

65 tabPanel(

66 "dogma" ,

67 fluidRow(column(6, DT::dataTableOutput("dogma")),

68 column(6, plotOutput('plot_dogma'))),

69 icon = icon("glyphicon glyphicon-tasks" , lib = "glyphicon")

70)

71))

72))

7.2.2 Server

The server part contains the logic of the application. Here we see the init˙ functions for the first time but we
have to highlight two things: the function observe and the function StartMainProcess. The observe function
executes the StartMainProcess function every time it detects a change in the input. The StartMainProcess
function initializes the general process that is responsible for processing the data.

Code 14: Source Code - Server

1 server <- function(input, output) {

2 init_assembly(output)

3 init_busco(output)

4 init_dogma(output)

5

6

7 observe({

8 inFile <- input$file1

9 if (is.null(inFile))

10 return(NULL)

11

12 StartMainProcess(inFile$datapath, output,input)

13

14 })

15

16

17 }

7.3 Important functions

7.3.1 StartMainProcess

This function covers the general process, so every time a new file is loaded, all the code necessary is executed.
It is also responsible to prepare the system commands that will be executed later.

30

Code 15: Source Code - StartMainProcess

1 StartMainProcess <- function(seq_filepath, output,input) {

2 Sys.getenv("£PATH")

3

4 from_assembly <- "/home/osboxes/ASSEMBLY-STATS/"

5 from_busco <- "/home/osboxes/BUSCOVM/busco3/"

6 from_pfmscan <- "/home/osboxes/DOGMA/PfamScan/"

7 from_dogma <- "/home/osboxes/DOGMA/"

8

9

10 if (input$radio2 == "1"){

11 busco_mode <- "geno" # other option tran

12 dogma_mode <- "transcriptome"

13 }

14 if (input$radio2 == "2"){

15 busco_mode <- "prot"

16 dogma_mode <- "proteome"

17 }

18

19

20 # perl pfam_scan.pl -fasta test_data/target.fa -dir Bio/Pfam/ -outfile TFM_outputs/pfam_out_TFM

21 command_pfmscan <-

22 paste(

23 "perl pfam_scan.pl -fasta" ,

24 seq_filepath ,

25 "-dir Bio/Pfam/" ,

26 "-outfile TFM_outputs/pfam_out_TFM" ,

27 sep = " "

28)

29

30

31 # python dogma.py transcriptome -a PfamScan/TFM_outputs/pfam_out_TFM -o TFM_outputs/Dogma_out_TFM

32 command_dogma <-

33 paste(

34 "python dogma.py" ,

35 dogma_mode,

36 "-a PfamScan/TFM_outputs/pfam_out_TFM" ,

37 "-o TFM_outputs/Dogma_out_TFM" ,

38 sep = " "

39)

40

41 # assembly-stats -t test_files/fasta_unittest.fasta > TFM_outputs/assembly

42 command_assembly <-

43 paste(

44 "assembly-stats -t" ,

45 seq_filepath ,

46 ">" ,

31

47 paste(from_assembly, "TFM_outputs/assembly" , sep = ""),

48 sep = " "

49)

50

51 # python scripts/run_BUSCO.py -i sample_data/target.fa -o TFMBusco -l sample_data/example -m geno -f

52 command_busco <-

53 paste(

54 "python3" ,

55 paste(from_busco, "scripts/run_BUSCO.py -i" , sep = "") ,

56 seq_filepath ,

57 "-o TFMBusco" ,

58 paste("-l " , from_busco, "sample_data/example" , sep = ""),

59 "-m" ,

60 busco_mode,

61 "-f" ,

62 sep = " "

63)

64

65

66 # Create a Progress object

67 progress <- shiny::Progress$new()

68 # Make sure it closes when we exit this reactive, even if there's an error

69 on.exit(progress$close())

70 progress$set(message = "General status:" , value = 0)

71 # Number of steps

72 n <- 3

73

74

75

76

77 # assembly

78 progress$inc(1 / n, detail = "assembly is running")

79 StartProcess_assembly(command_assembly)

80 init_assembly(output)

81

82

83 #busco

84 progress$inc(1 / n, detail = "busco is running")

85 StartProcess_busco(command_busco)

86 init_busco(output)

87

88

89 #dogma

90 progress$inc(1 / n, detail = "dogma is running")

91 StartProcess_dogma(command_pfmscan,command_dogma)

92 init_dogma(output)

93

94

95

96 }

32

7.3.2 ReadFile

The ReadFile˙ functions are responsible for reading the file generated by each of the programs, making a
first manipulation of the files to make them more user-friendly.

Code 16: Source Code - ReadFile˙assembly

1 ReadFile_assembly <- function(workingDir) {

2 file <-

3 read.table(file.path(workingDir, "assembly"),

4 sep = "" ,

5 header = TRUE)

6 return(file[,-1])

7 }

Code 17: Source Code - ReadFile˙busco

1 ReadFile_busco <- function(workingDir) {

2 fileBUSCO <-

3 read.table(

4 file.path(workingDir, "run_TFMBusco/short_summary_TFMBusco.txt"),

5 sep = '\t' ,

6 comment.char = "#" ,

7 header = FALSE,

8 fill = TRUE

9)

10 #levels(fileBUSCO£V3)[levels(fileBUSCO£V3)==''] <- NA

11

12 fileBUSCO <- fileBUSCO[-1,-1]

13 rownames(fileBUSCO) <- NULL

14

15 colnames(fileBUSCO) <- c("Number" , "Value")

16 return(fileBUSCO)

17 }

Code 18: Source Code - ReadFile˙dogma

1 ReadFile_dogma <- function(workingDir) {

2 res <- readLines(file.path(workingDir, "Dogma_out_TFM_clean"))

3 return(res)

4 }

33

7.3.3 Init

Init functions are those in charge of finalizing the manipulation of the data and sending them to the objects
that are in charge of showing the results in a visual way.

Code 19: Source Code - init˙assembly

1 init_assembly <- function(output) {

2 workingDir_assembly <- "/home/osboxes/ASSEMBLY-STATS/TFM_outputs/"

3 file_assembly <- ReadFile_assembly(workingDir_assembly)

4

5 test <- transpose(file_assembly)

6 colnames(test) <- rownames(file_assembly)

7 rownames(test) <- colnames(file_assembly)

8

9 #output assembly ----

10 output$assembly <-

11 DT::renderDataTable(DT::datatable(test, options = list(

12 paging = FALSE, searching = FALSE

13)))

14

15

16 output$plot_assembly <- renderPlot({

17 local_data <- data.matrix(file_assembly[, 8:13])

18 barplot(

19 local_data,

20 col = c("#009999"),

21 main = "Assembly N's" ,

22 horiz = TRUE

23)

24

25

26 })

27

28

29 }

Code 20: Source Code - init˙busco

1 init_busco <- function(output) {

2 #Working Directories

3 workingDir_busco <- "/home/osboxes/BUSCOVM/busco3/"

4 file_busco <- ReadFile_busco(workingDir_busco)

5

6 #output busco ----

7 output$busco <-

8 DT::renderDataTable(DT::datatable(

34

9 file_busco ,

10 rownames = FALSE,

11 options = list(paging = FALSE, searching = FALSE)

12))

13

14 output$plot1 <- renderPlot({

15 # Create data for the graph.

16 local_data <- file_busco[-1,]

17 local_data <- local_data[-5,]

18 #local_data<- local_data[-4,]

19

20 local_data[local_data == 0] <- NA

21 local_data <- local_data[complete.cases(local_data),]

22

23 x <- as.numeric(as.character(local_data$Number))

24 #labels <- row.names(local_data£Value)

25 leg <- local_data$Value

26 #print(as.numeric(as.character(local_data£Number)))

27 piepercent <- round(100 * x / sum(x), 1)

28

29 # Plot the chart.

30 pie(x,

31 labels = leg,

32 main = "BUSCOs" ,

33 col = rainbow(length(x)))

34 legend(

35 "topright" ,

36 title = "Percentage" ,

37 as.character(piepercent),

38 fill = rainbow(length(x))

39)

40 })

41

42 }

Code 21: Source Code - init˙dogma

1 init_dogma <- function(output) {

2 workingDir <- "/home/osboxes/DOGMA/TFM_outputs/"

3 file_dogma <- ReadFile_dogma(workingDir)

4

5 MYDF <-

6 rbind.data.frame(unlist(strsplit(file_dogma[11], "\t" , fixed = TRUE)), unlist(strsplit(file_dogma[12], "\t" , fixed = TRUE)), unlist(strsplit(file_dogma[13], "\t" , fixed = TRUE)))

7 colnames(MYDF) <-

8 unlist(strsplit(file_dogma[9], "\t" , fixed = TRUE))

9

10 output$dogma <-

35

11 DT::renderDataTable(DT::datatable(MYDF, options = list(

12 paging = FALSE, searching = FALSE

13)))

14

15

16

17 output$plot_dogma <- renderPlot({

18 par(oma = c(4, 1, 1, 1))

19

20 locald <- t(data.matrix(MYDF[, 4]))

21

22 locald <-

23 rbind(locald, c(

24 100 - as.double(locald[1, 1]),

25 100 - as.double(locald[1, 2]),

26 100 - as.double(locald[1, 3])

27))

28

29 barplot(

30 locald,

31 col = c("#009999" , "red") ,

32 border = "white" ,

33 main = "%Completeness" ,

34 names.arg = c("CDAsize 1" , "CDAsize 2" , "CDAsize 3"),

35 legend = c("Complete" , "Incomplete"),

36 args.legend = list(

37 x = "bottom" ,

38 bty = "n" ,

39 inset = c(0, -0.4),

40 horiz = TRUE,

41 xpd = TRUE

42)

43)

44 })

45

46

47 }

7.3.4 StartProcess

These functions are responsible for executing third-party programs in which the environment is prepared
and the system commands are executed.

Code 22: Source Code - StartProcess˙assembly

1 StartProcess_assembly <- function(command_assembly) {

2 system(command_assembly)

3 }

36

Code 23: Source Code - StartProcess˙busco

1 StartProcess_busco <- function(command_busco) {

2 setwd("/home/osboxes/BUSCOVM/busco3")

3 system(command_busco)

4 setwd("../../TFM/app/")

5 }

Code 24: Source Code - StartProcess˙dogma

1 StartProcess_dogma <- function(command_pfmscan,command_dogma) {

2 setwd("/home/osboxes/DOGMA/PfamScan")

3 system("rm -f TFM_outputs/pfam_out_TFM")

4 system(command_pfmscan)

5 setwd("../")

6 system("rm -f TFM_outputs/Dogma_out_TFM")

7 system(command_dogma)

8 system("head -n 18 TFM_outputs/Dogma_out_TFM > TFM_outputs/Dogma_out_TFM_clean")

9 }

37

	1 Introduction
	1.1 Project Context and justification
	1.1.1 General description
	1.1.2 Justification of the Master's thesis

	1.2 Project Objectives
	1.2.1 General objectives
	1.2.2 Specific objectives

	1.3 Approach and Methods
	1.3.1 Software
	1.3.2 Hardware

	1.4 Project Planning
	1.4.1 Tasks
	1.4.2 Calendar
	1.4.3 Milestones
	1.4.4 Risk analysis
	1.4.5 Contingency plan

	1.5 Summary of Products Obtained
	1.6 Description of the Report Chapters

	2 Genome quality tools
	2.1 Genome quality characteristics
	2.2 Existing tools
	2.3 Understanding the software
	2.3.1 Installation
	2.3.1.1 Assembly-stats
	2.3.1.2 Dogma
	2.3.1.3 Busco

	2.3.2 First run
	2.3.2.1 Assembly-stats
	2.3.2.2 Dogma
	2.3.2.3 Busco

	2.4 Development of alternatives

	3 Results
	3.1 Menu
	3.2 Assembly-stats
	3.3 Dogma
	3.4 Busco

	4 Conclusions
	5 List of terms
	Acronyms
	Glossary
	6 Bibliography
	7 Annexes
	7.1 Load requirements
	7.2 Create Shiny app
	7.2.1 UI
	7.2.2 Server

	7.3 Important functions
	7.3.1 StartMainProcess
	7.3.2 ReadFile
	7.3.3 Init
	7.3.4 StartProcess

