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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados i conclusiones del trabajo. 

La citometría de flujo convencional es una tecnología que permite detectar hasta 
30 parámetros por célula. Recientemente, la citometría de flujo y la 
espectrometría de masas se han fusionado dando lugar a la denominada 
citometría de masas, que potencialmente permite la detección de hasta 100 
parámetros por célula. Las poblaciones celulares se caracterizan principalmente 
mediante el procedimiento de gating, consistente en delimitar manualmente las 
poblaciones usando histogramas o gráficos de puntos de manera secuencial. 
Este procedimiento es lento, impreciso y particularmente inadecuado para un 
elevado número de parámetros. En los últimos años se han estado desarrollando 
nuevas técnicas computacionales con la finalidad de manejar datos de citometría 
multidimensional de modo eficiente. Sin embargo, la eficacia de tales desarrollos 
todavía se está evaluando. Además, el manejo de estas técnicas requiere 
habilidad en el uso de paquetes R y programación. 
El objetivo principal de este proyecto es proporcionar a los citometristas 
algoritmos de aprendizaje no supervisado y técnicas de visualización para 
explorar datos de citometría multiparamétrica de modo reproducible. Con esta 
finalidad, se ha realizado una extensa búsqueda bibliográfica sobre algoritmos 
de agrupamiento aplicados a la citometría y se ha desarrollado una metodología 
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para la evaluación del rendimiento. Una selección de algoritmos ha sido 
contrastada aplicando esta metodología a datos de citometría reales y datos 
ficticios generados expresamente con este fin. Este estudio comparativo ha 
permitido seleccionar un algoritmo de agrupamiento, RPhenograph, para ser 
implementado mediante una aplicación Shiny. La metodología desarrollada es 
aplicable para la evaluación de nuevos algoritmos y nuevos diseños 
experimentales. 
 
 
 

  Abstract (in English, 250 words or less): 

Conventional flow cytometry is an experimental technique enabling to measure 
up to 30 fluorescence parameters per cell. Recently, flow cytometry has been 
fused to mass spectrometry giving rise to a new methodology named mass 
cytometry that can potentially detect up to 100 parameters per cell. Cell 
populations are mainly characterized by a procedure known as gating, consisting 
in manually delimitating cell subsets using histograms or two-dimensional dot 
plots in a sequential manner. This procedure is time-consuming, imprecise and 
particularly inadequate to be used with a high number of parameters. In the past 
few years new computational techniques have been developed in order to 
efficiently handle high-dimensional cytometry data. However, such 
developments are still under evaluation. Furthermore, dealing with these 
techniques requires proficiency in using R packages and script writing.  
The main objective of this project is to provide cytometrists with efficient and 
easy-to-use unsupervised learning algorithms and visualization tools to explore 
high-dimensional cytometry data in a reproducible way. To that end, an extensive 
bibliographic research on unsupervised clustering algorithms applied to 
cytometry data has been performed and a methodology for performance 
evaluation has been developed. A selection of algorithms has been 
benchmarked using this methodology and both real cytometry and synthetic data, 
the latter being specially generated to that end. This comparative study has 
allowed the selection of a clustering algorithm, RPhenograph, to implement a 
Shiny application. The developed methodology is now ready to be applied to 
benchmark further algorithms and compare performances on other experimental 
designs. 
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1 Introduction

1.1 Background

1.1.1 General description

This project aims to compare new standardized protocols based on emerging computing
strategies for multiparametric cytometry data analysis.

1.1.2 Project justification

The Institut de Recherche Saint-Louis (IRSL) in Paris is a reference European research
institute focused on hematology, oncology and immunology. The IRSL has developed state-of-
the-art core facilities in order to provide scientists with highly specialized research equipment.
The facility, managed by Dr Setterblad, is organized in four main axes: Flow Cytometry,
Imaging, Genomics and the BioData Center. The facility’s team offers technical support
and scientific advice but, unless for some specific cases, does not perform nor analyze user’s
experiments. In order to help users to work more independently, seminars discussing technical
aspects in data acquisition and analysis methods are often organized.

The use of the Flow Cytometry facility has dramatically increased in the last few years. Flow
cytometry is an experimental technique that enables the measurement of multiple parameters
at a single cell level with high accuracy and at a high speed (thousands of cells per second).
Cells can be fluorescently stained, typically with fluorochromes conjugated to antibodies
directed against cell surface or intracellular molecules. Individual cell fluorescence, as well
as information about cell size and structural complexity, is collected thanks to a system of
lasers and photonic detectors. In hematology, flow cytometry is routinely used to characterize
and quantify cell populations. This technology, developed in the late sixties/early seventies,
has evolved during the past decades mainly by increasing the number of lasers, enabling
to simultaneously measure up to 30 fluorescence parameters per cell. Additionally, flow
cytometry has been recently fused to mass spectrometry giving rise to a new technology,
named mass cytometry (or cytometry by time-of-flight, CyTOF), that can potentially detect
up to 100 parameters per cell using metal-conjugated antibodies. The possibility to acquire
such a number of parameters has opened up new research and diagnostic perspectives,
particularly in the quest for rare populations [1].

Users of the IRSL Flow Cytometry facility have access to flow cytometers that can detect
up to 18 fluorescent signals. The facility also offers informatic equipment to analyze the
data generated in the same facility or in other facilities that enable to measure even a higher
number of parameters.

To date, cell populations are characterized by a procedure known as gating, consisting
in manually delimitating cell subsets using histograms or two-dimensional dot plots in a
sequential manner. FlowJo is the reference software used to perform these tasks. Even though
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it has a friendly graphical environment, FlowJo offers such a number of functions that even
experienced cytometrists are encouraged to attend a specific training to properly use it.

Gating can be an appropriate procedure to handle a low number of parameters and/or
experimental conditions; however, it is not efficient to handle high-dimensional datasets
[2]. This procedure is time-consuming and particularly affected by inter-user variability.
Moreover, the choice of the parameters to be used to define a cell population, and the
specific sequential order by which these parameters are used in the gating strategy, can alter
the final result. This can be particularly troublesome when looking for rare populations.
There is therefore a need for new computational techniques that can handle high-
dimensional cytometry data in a more efficient and reproducible way. In the past
few years new promising developments have appeared in the literature. New analysis strategies
include different techniques for automatic gating, clustering, dimensionality reduction and
data visualization [1]. However, such developments are still under evaluation and there is
no standardized protocol approved by the cytometric community.

Dr Duchez, responsible of the Flow Cytometry facility, and Dr Tournier, responsible of the
BioData Center, are gathering efforts to test these emerging analysis tools and to introduce
them to the Flow Cytometry facility’s users. However, dealing with these techniques
requires proficiency in using R packages and script writing, a hard task for
experimental cytometrists that feel uncomfortable with the command line.

1.2 Objectives

The main objective of this project is to provide cytometrists with efficient and easy-
to-use unsupervised learning algorithms and visualization tools to explore high-
dimensional cytometry data in a reproducible way. Further applications that could
also be interesting for multiparametric cytometry analysis such as automated population
identification or biomarker discovery are beyond the scope of this project.

1.2.1 Main objectives

1. Explore and select appropriate algorithms of unsupervised learning and data visualiza-
tion for multiparametric cytometry data (8-18 parameters).

2. Make the selected computational approaches accessible to the Flow Cytometry facility’s
users with little or no knowledge in bioinformatics.

1.2.2 Specific objectives

Objective 1
1.1. Establish a standardized method to import pre-processed FCS (Flow Cytometry Standard)
data files.
1.2. Establish some standardized methods to apply unsupervised learning techniques involving
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clustering and dimensionality reduction methods.
1.3. Establish some standardized methods for data visualization.
1.4. Establish a standardized method to export the compensated, transformed, dimensionally-
reduced and/or clustered data as FCS files.

Objective 2
2.1. Construct pipelines implementing the established methods that could be launched on
batch and that could be used to build a graphical front-end.

1.3 Scope and Methods

1.3.1 Statements

The methods used to achieve the objectives of this project have been considered taking into
account the following aspects:

1.3.1.1 Target

The final aim of this project, the graphical front-end, is intended to be used by the cytometrists
of the IRSL Flow Cytometry facility (and by any other who may want to). IRSL users mostly
include researchers interested in the detection, quantification and discovery of cell populations
(including rare populations), with different experience levels in flow cytometry, an increasing
interest in multiparametric cytometry, but almost no, if not any, programming skills.

1.3.1.2 Computing resources

The IRSL Cytometry facility offers its users three computers for post-acquisition analysis
equipped with proprietary software such as FlowJo available upon reservation. Besides, the
IRSL BioData Center has a Dell T620 machine with 32 processor cores and 32GB of RAM,
and a cluster with 9 nodes, 40 processor cores per node and 120 GB of RAM per node.

1.3.1.3 Reproducibility and Portability

The pipelines developed on this project must be reproducible over time and portable over
different computer environments. Users should be able to reanalyze data at any time with no
need to adapt the code to different programming environments or software versions.

1.3.1.4 Collaborative work

This project is codirected by Dr Tournier and Dr Duchez from the IRSL Core Facilities, and
supervised by Dr Adsuar from the UOC. There is a need for communicative tools that also
enable to trace the development of the project.
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1.3.1.5 Availability of code

Even though this project is designed to fulfill the needs of the IRSL Flow Cytometry facility
users, it is freely available to use and open for feedback.

1.3.1.6 Education

This project aims not only to provide cytometrists an easy-to-use tool, but also to introduce
them to programming.

1.3.2 Resolutions

Taken into consideration these circumstances and purposes, the following strategies have
been chosen:

1.3.2.1 Choice of software

The software should be open source in order to allow IRLS users to use it in their own
computers. In that way, the IRSL analysis computers would be exclusively used for the
proprietary software. The language software should also enable to construct pipelines that
could be launched on batch on the IRSL machines. Finally, the software should support
the majority of algorithms designed for cytometry data analysis. For all these reasons, the
R programing language and RStudio software, altogether with Bioconductor and other
freely available packages, seem to be the perfect choice. Moreover, RStudio has a simple
and efficient package to build interactive front-ends, Shiny, that enables users to easily use
RStudio through a graphical interface while displaying the code behind. The latter is an
important point, as one of the missions of the IRSL Core Facilities is to introduce researchers
to bioinformatics.

1.3.2.2 Programming environment

R scripts have been developed in R Markdown through RStudio. All the work has been
performed on a laptop (MacBook Pro with an Intel Core i7 processor and 16 GB of RAM).
The final products of this project (R pipelines and, afterwards, a Shiny front-end) are intended
to be introduced on Docker images containing all the necessary dependencies to run them
(this aspect will not be part of the project).

1.3.2.3 Communication

Meetings are held once a week at the IRSL Core Facilities. Brief summaries of the meetings
are shared on a free facility for project management (www.teamgantt.com), altogether with
a Gantt chart of the project. In order to share, comment and keep a record of the script
development and modifications, the code is saved under the distributed version control system
git and served by a public platform at: https://github.com/plateforme-stlouis/RCyto.
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1.3.2.4 Algorithm benchmarking

The algorithm selection has been performed through three main steps:

1. Algorithm selection based on the literature
2. Testing selected algorithms for biological significance on generated synthetic data
3. Evaluation of computational complexity (CPU time)

The use of synthetic data with has enabled testing the algorithms on controlled situations,
making special attention to the detection of rare populations (<1%). Synthetic samples are
based in real marker expression and simulate being spill-over compensated and pre-processed
(i.e., cleaned from debris, dead cells and doublets).

1.3.2.5 Algorithm testing on real data

The selected algorithms have been tested on real multiparametric cytometry data obtained
from IRSL experiments and pre-processed using FlowJo.

1.4 Implementation and timetable

1.4.1 Activities

Here below are listed the main activities planned for this project.

1. Bibliographic research on R packages for cytometry data processing.
2. Bibliographic research on algorithms for unsupervised learning and visualization methods

for multiparametric cytometry data.
3. Bibliographic research on multiparametric cytometry data.
4. Selection of algorithms based on the literature.
5. Development of an R script that generates synthetic cytometry data.
6. Generation of synthetic cytometry data.
7. R script writing: Testing of selected algorithms and implementation on ‘R pipelines.
8. Selection of algorithms based on their performances on synthetic data.
9. Testing of selected algorithms with real data.
10. Selection of algorithms based on their algorithm performance (CPU time).
11. Final selection, correction and/or validation of the R pipeline(s)
12. Development of a Shiny front-end that implements the validated R pipeline(s).

This list has been modified with respect to the initial Project Plan Proposal. In fact, it
was first planned to make a third algorithm selection based on the CPU runtimes recorded
with the synthetic data sets, just after activity 8. Arrived at that time point, it appeared
inadequate to eliminate more algorithms while it was not known how would they perform
with real data. Thus, the algorithms have been first tested with real data before performing
any other selection. Both performance scores and time complexity have been taken into
consideration for the final selection.
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1.4.2 Timeline

The different activities and milestones had been scheduled ambitiously. Tasks and milestones
were first delineated as indicated in Figure 1.

This scheduled has been modified during the project development. Indeed, the modification on
the planned activities mentioned above impacted on the milestone plan, which was modified
in the Phase I Project Implementation Report (see Table 1). Nevertheless, this schedule
has not been accomplished. The dates of achievement that have been sensibly delayed or
postponed are indicated in orange.

Table 1: Summary of Accomplishment: Milestones
(Milestones scheduled for Phase II are indicated in bold).

Milestone Scheduled Achieved
1 Bibliographic review on algorithms for unsupervised learning

and visualization methods for multiparametric cytometry
analysis.

25/03/19 27/03/19

2 First algorithm selection (based on the bibliographic review). 25/03/19 27/03/19
3 R script to generate synthetic cytometry data. 26/03/19 27/03/19
4 Synthetic data. 27/03/19 27/03/19
5 Second algorithm selection (based on the tests

performed on synthetic data).
26/04/19 14/05/19

6 Testing on real data. 10/05/19 27/05/19
7 Third algorithm selection (based on performances on

real data)
17/05/19 29/05/19

8 Shiny front-end. 28/05/19 Cancelled

1.4.2.1 Justification of delay

The task that has generated the main delay has been establishing an adequate method to
evaluate algorithm performances. A first procedure was used with the algorithms tested
on synthetic data and refined when the tests with real data began. In fact, the algorithm
selection based on synthetic data (fifth milestone) was finished ahead of time (on 19/04/2019)
and was performed again with the improved evaluation method, which is discussed in Chapter
3. Indeed, choosing adequate algorithms is the core of the project and it could
not be overlooked.

Delaying the establishment of the evaluation method and the test on synthetic data had
consequences on the rest of the project, leading to postpone of the Shiny front-end. Although
implementing a Shiny front-end would be quite useful for non-expert usability, it represented a
less challenging work since the framework allows to easily glue straightforward code. Actually,
the main products of this project have been the evaluation and benchmarking
methods, the obtained performance measures and the final conclusions.
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Figure 1: Gantt chart with the project schedule.
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It appears clear now that the initial objectives were too ambitious with such a constrained
schedule for someone who has no experience with clustering algorithms nor script writing
before starting this master’s courses. Nevertheless, the final objective, building a graphical
front-end, must be kept in mind, as it has determined the choice of software and algorithms.
The development of the graphical front-end is thus considered a future perspective instead of
a specific objective of the Final Master’s Degree Project.

1.5 Obtained products

1.5.1 Bibliographic review

A bibliographic review has been performed in order to select R packages for cytometry data
processing, unsupervised clustering algorithms and visualization techniques.

1.5.2 R script to generate synthetic data

A script for synthetic cytometry data generation has been developed in order to benchmark
the selected algorithms in controlled conditions.

1.5.3 R scripts for real data pre-processing for algorithm benchmarking

With the finality to use real cytometry data as a reference to evaluate the performance of
clustering algorithms, a script has been created. The script allows importing the gating
strategies performed on FlowJo and labelling the cell examples accordingly.

1.5.4 R scripts for algorithm benchmarking

R scripts have been developed allowing to benchmark algorithms with different kinds of data:
the generated synthetic data and real samples from 5 and 11-parameter experimental designs.
A matching procedure has been developed in order to assign the predicted clusters to the
reference populations. Algorithm performances are evaluated in terms of F1 score, number of
predicted clusters, number of detected populations and computational time and recorded for
further analysis.

1.5.5 Comparative study of clustering algorithms

The results obtained from benchmarking a selection of clustering algorithms are compared
and discussed in this report.
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1.6 Project structure

The project is structured through its main milestones and the tasks that have been performed
to achieve them:

• First selection of unsupervised clustering algorithms based on bibliographic review
• Methods for performance evaluation
• Second selection of unsupervised clustering algorithms based on testing on synthetic

data
• Comparative study of selected clustering algorithms
• Discussion
• Conclusions
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2 First selection of unsupervised clustering algorithms
based on bibliographic review

2.1 Bibliographic research

2.1.1 R packages for cytometry data processing

Bioconductor offers several packages performing basic tasks for cytometry data analysis.
Table 2 gathers some of the most relevant ones. The package flowcore is the main core library
providing tools for flow cytometry data management. Most of the flowCore functionalities
have been tested and discussed by reproducing the examples included in its vignette. Code
and comments are shared in the GitHub repository dedicated to this project at https:
//github.com/plateforme-stlouis/RCyto.

Table 2: R/Bioconductor packages for cytometry data processing
Package Short description Ref.
flowCore Basic Functions for Flow Cytometry Data 17
ggcyto A ggplot2 graphics implementation 18
flowWorkspace Infrastructure for representing and interacting with gated and

ungated cytometry data sets
19

CytoML A GatingML Interface for Cross Platform Cytometry Data
Sharing

20

flowAI Automatic and interactive quality control for flow cytometry
data

21

flowClean A quality control tool for flow cytometry data based on
compositional data analysis

22

2.1.2 Algorithms for unsupervised learning and visualization methods for mul-
tiparametric cytometry data

An extensive bibliographic research on recent high-dimensional cytometry data analysis
methods has been performed. The gathered references (that have not all been included in
this report) can be consulted in a BibTeX file that is periodically updated and shared at the
project’s GitHub repository.

The main objective of this project has been selecting unsupervised clustering methods
and visualization tools for high-dimensional cytometry data. Recent advances on this
field include algorithms, methods and pipelines comprising a broad variety of techniques
performing supervised or unsupervised clustering, meta-clustering, automatic partitioning
and visualization. Table 3 summarizes the main aspects of a selection of methods performing
unsupervised clustering, dimensionality reduction and/or data visualization. The summary is

14
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extended on table 4, essentially with unsupervised clustering methods. Table 5 gathers other
interesting methods and packages found in the literature that are beyond the scope of this
project.
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Table 3: Dimensionality reduction, unsupervised clustering and/or visualization methods
Main goal Method Language /

Environment
Year Downsampling Unsupervised

learning
methods

Number of
clusters

Additional
methods

Visualization Comments Ref.

Dimensionality
Reduction

t-SNE C++, Matlab,
Python, R

2008 no t-SNE - t-SNE map
(2D scatter
plot)

6

Dimensionality
Reduction

UMAP R package 2018 no UMAP - UMAP map
(2D scatter
plot)

8

Dimensionality
Reduction

viSNE Matlab GUI
(CYT), Cytobank
online platform

2013 uniform,
random

t-SNE - t-SNE map
(2D scatter
plot)

23

Dim.
reduction +
clustering

Cytosplore
+HSNE

Standalone
application

2017 no multi-level
hierarchy of
non-linear
similarities
(k-NN) +
(BH)-SNE

scatter plots Highly suitable for
the analysis of
massive
high-dimensional
data sets

24

Visualization
+ clustering

SPADE R package from
GitHub, Matlab,
Cytobank online
platform

2011 density-
dependent

hierarchical,
agglomera-
tive
clustering

user-defined MST
(dendrogram)

Very high
computational
time compared to
flowSOM (38, 39)

12

Visualization
+ clustering

ACCENSE Standalone
application with
graphical interface

2013 density-
dependent

t-SNE,
k-means

user specifies
a threshold
p-value

density-based
partitioning

t-SNE map
(2D scatter
plot)

25

Visualization
+ clustering

DensVM R package
(cytofkit) from
GitHub

2014 t-SNE density-based
partitioning +
SVM

t-SNE map
(2D scatter
plot)

26

Visualization
+ clustering

FlowSOM R package from
Bioconductor

2015 no self-
organizing
map (SOM)

User can
define the
exact number
of clusters or
a maximum
to try out

consensus
hierarchical
metacluster-
ing

nodes
represented
as star charts
or pie charts
on a 2D grid,
MST or
t-SNE graphs

Significantly less
computational
time than SPADE
(38, 39)

13

Visualization
+ clustering

X-Shift Standalone
application
(Vortex) with
graphical interface

2016 weighted
KNN-DE +
detection of
local maxima
+ cluster
merging
(Mahalanobis
distance)

Divisive
Marker Tree,
Force-
directed
layout

16
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Table 4: Unsupervised clustering methods
Main goal Method Language /

Environment
Year Unsupervised learning

methods
Number of
clusters

Additional methods Visualization Comments Ref.

Clustering flowClust R package from
Bioconductor

2009 multivariate t mixture
models with Box-Cox
transformation

user-defined
or determined
by BIC

scatter plots,
contour plots,
image plots

First clustering step is
performed on
FSC_H/SSC-H

27

Clustering flowMerge R package from
Bioconductor

2009 multivariate t mixture
models with Box-Cox
transformation +
cluster merging

user-defined
or determined
by BIC

scatter plots,
contour plots,
image plots

Extension of flowClust 28

Clustering FLAME GenePattern
online platform

2009 multivariate skew t
mixture model

2-tiered metaclustering
(matching populations
across samples)

3D
projections,
heatmaps

29

Clustering FLOCK C source code,
Java application

2010 Grid-based
partitioning

automatic density-based
partitioning

scatter plots 30

Clustering SamSPECTRALR package from
Bioconductor

2010 spectral clustering Faithful Sampling data
reduction

scatter plots 31

Clustering flowMeans R package from
Bioconductor

2011 k-means + merging of
clusters

User can also
specify a
specific or a
maximum
number of
clusters.

change point detection scatter plots,
contour plots,
image plots

10

Clustering flowPeaks R package from
Bioconductor

2012 k-means + finite
mixture model

automatic density-based peak
finding

scatter plots 11

Clustering SWIFT MATLAB GUI 2014 Gaussian mixture
model-based clustering

automatic unimodal splitting and
merging

histograms,
scatter plots

32

Clustering ImmunoClust R package from
Bioconductor

2015 finite mixture
model-based iterative
clustering

metaclustering scatter plots 33

Clustering PhenoGraph Python,
MATLAB GUI
(CYT), R package
(RPhenoGraph)
from GitHub, R
package (cytofkit)
from GitHub

2015 automatic k-NNG + Louvain
graph partition
algorithm

14

Clustering densityCut R code available
on Bitbucket

2016 k-NNG +
local-maxima based
clustering

34

Clustering ClusterX R package
(cytofkit) from
GitHub

2016 automatic density-based
partitioning

t-SNE map
(2D scatter
plot)

9
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Table 5: Other approaches and purposes
Main goal Method Language /

Environment
Year Unsupervised

learning methods
Number of
clusters

Additional
methods

Visualization Comments Ref.

Supervised
approach

flowType/RchyOptimyxR package from
Bioconductor

2012 35

Supervised
approach

flowDensity R package from
Bioconductor

2015 density-based
partitioning

Automated gating approach
that emulates an expert’s
sequential 2D gating
strategy

36

Supervised
approach

GateFinder R package from
Bioconductor

2018 Enriches high-dimensional
cell types with simple,
stepwise polygon gates
requiring only two markers
at a time

37

Statistical analysis Citrus R package from
GitHub, GUI

2014 hierarchical,
agglomerative
clustering

user defines a
minimum
cluster size
threshold

SAM correaltive
model used to
identify traits
associated with an
experimental
endpoint

radial
hierarchy
trees

38

Relationships
between categories

oneSENSE R package from
Bioconductor

2015 One-SENSE measures
cellular parameters
assigned to manually
predefined categories, and a
one-dimensional map is
constructed for each
category using t-SNE

39

Multiple time
points comparison

FLOW-MAP R, igraph package,
Gephi software
package

2015 highly
connected
graph
structure

Compares clusters defined
by other algoritnms such as
SPADE

40

Joint cell
population
identification in
many flow
cytometry samples

BayesFlow Python, available
at GitHub

2016 multivariate
Gaussian mixture
model

41

Statistical analysis cytofast R package from
Bioconductor

2018 heatmaps,
scatter plots,
t-SNE maps,
boxplots

Quantification of specific
cell clusters and
correlations between
samples

42

Differences
between two
groups of samples

CytoBinning R packages
(kernlab, flowCore,
e1071, ggplot2)

2018 scatter plots 43

Algorithm
benchmarking,
cluster comparison

CytoCompare R package from
GitHub

2018 4

18



2.2 Selection of algorithms

Methods have been selected according the following criteria:

1. Exclude all methods not available on R.
2. Include dimensionality reduction methods.
3. Include unsupervised clustering methods.

Informations provided in recent important reviews on the field [1,2] and algorithm bench-
marking articles [3,5] have also been considered. Even though the reviews do not perform a
proper benchmarking exercise, they give examples of some visualization techniques. Table 6
indicates which methods following our inclusion criteria have been explored in each article.

Table 6: Recent reviews and benchmarking articles on high-dimensional cytometry data
analysis

Mair et al.
2016 [2]

Saeys, Van
Gassen, and
Lambrecht
2016 [1]

Weber and
Robinson 2016

[3]

Kimball et al.
2018 [5]

Type of article Review Review Benchmarking
article

Benchmarking
article

Method
SPADE X X X X
t-SNE X X
PhenoGraph X X X
FlowSOM X X
ClusterX X
flowClust X
flowMeans X
flowPeaks X
immunoClust X
SamSPECTRAL X

After considering all this information, the methods detailed below have been selected as the
most adequate for the IRSL Core Facilities.

2.2.1 Nonlinear dimensionality reduction techniques

Dimensionality reduction techniques aim to represent multidimensional data in a lower dimen-
sional space. While linear dimensionality reduction methods, such as principal component
analysis (PCA), aim to transform the data in a way that best preserves its variance, non-linear
approaches search to represent the similarity found in the high-dimensional space.

19



Dimensionality reduction methods are used to visualize high-dimensional data in two or three
dimensions. Additionally, they can be used as a pre-processing step before applying methods
for supervised or unsupervised learning.

1. t-SNE (t-Stochastic Neighbor Embedding)
Developed by van der Maaten in 2008 [6], t-SNE is a widely used technique to illustrate and
compare different gating, clustering and partitioning strategies on cytometry data. It is also
used as previous step in some clustering methods such as ClusterX, ACCENSE or DensVM.

2. UMAP (Uniform Manifold Approximation and Projection)
A promising new technique proposed last year by McInnes, claiming better structure preser-
vation and computational performances than t-SNE [7]. Becht and colleagues have tested it
with single-cell (mass cytometry and RNA sequencing) data obtaining satisfactory results in
terms of data visualization and computational times. Nevertheless, to our knowledge, UMAP
has not been tested as a previous dimensionality reduction step for clustering algorithms
applied to cytometry data.

Furthermore, UMAP and t-SNE embeddings were used to train random forest models to
predict Phenograph clusters’ identities leading to similar results [8].

Both t-SNE and UMAP methods have been used in this project as pre-processing cluster-
ing steps as well as visualizing methods post-clustering, easing the visualization and the
understanding of the clustering results.

2.2.2 Clustering methods

1. ClusterX: A density-based partitioning method
This method is included in the Bioconductor package for mass cytometry data analysis
named cytofkit. Its developers have created ClusterX from the Clustering by fast search
and find of density peaks (CFSFDP) algorithm introducing modifications to reduce the
computational time thanks to a Split-Apply-Combine strategy and automate the density peak
detection by using generalized (extreme Studentized deviate) ESD test. ClusterX is able to
manage up to 4 dimensions, further off, it can be conducted after a t-SNE dimensionality
reduction step [9].

2. Clustering methods based on the k-means algorithm: flowMeans and flowPeaks
These methods are adapted from the k-means algorithm.

Following the multidimensional clustering, flowMeans performs a merging step based on the
Euclidean or Mahalanobis distances that allows to identify concave cell populations. It also
includes a change point detection algorithm to determine the number of subpopulations [10].
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flowPeaks applies the k-means algorithm with a large K in order to find small clusters
allowing the generation of a smoothed density function using the finite mixture model. The
number of clusters is then determined by density-based peak finding [11] .

3. Clustering methods with Minimum Spanning Tree visualization

SPADE, developed in 2011 by Qiu and colleagues, is one of the main clustering and data
visualization methods used nowadays (see table 6) [12]. Briefly, it performs hierarchical,
agglomerative clustering after a density-dependent down-sampling step. Results are visualized
on an MST dendrogram.

In 2015, Van Gassen et al. published flowSOM, a method performing MSTs similar to
those obtained with SPADE [13]. The main difference between these methods relies on the
clustering algorithm. flowSOM uses self-organizing maps (SOM), which do not require any
down-sampling step. This might be the reason for flowSOM achieving remarkably better
performance scores and run times than SPADE in all the tests realized by Weber and Robinson
[3]. For these reasons, only flowSOM will be tested as MST-producing method.

4. PhenoGraph

PhenoGraph is nowadays one of the most used partitioning methods for cytometry data. It
was developed for high-dimensional cytometry data by Levine and colleagues in 2015 [14].
It has the ability to partition high-dimensional single-cell data with no need of previous
clustering nor dimensionality reduction steps. Briefly, the high-dimensional space is modelled
using a weighted nearest-neighbor graph (NNG) that is then partitioned using the Louvain
community detection method. Importantly, the NNG is constructed in two iterations, namely
using the Jaccard similarity coefficient in the second iteration. This should help distinguish
small cellular subsets from noise. Even though in the tests performed by Weber and Robinson
to detect rare populations (0.03% and 0.8%) PhenoGraph does not achieve particularly good
F1 scores (0.498 and 0.229, respectively), Kimball et al. point out that PhenoGraph can be
an interesting tool to identify novel phenotypic subtypes [3,5].

3 Methods for performance evaluation

3.1 F1 score

In order to give guidance on the newly emerging analysis methods for multidimensional flow
cytometry data analysis, the Flow Cytometry: Critical Assessment of Population Identification
Methods (FlowCAP) consortium has organized four different challenges from 2010 to 2014.
In the first challenge (FlowCAP-I) the ability of unsupervised methods to reproduce expert
manual gating was evaluated [15]. Methods were compared using the F1 score, a widely used
performance measure that combines precision and recall using the harmonic mean. The F1
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score ranges from 0 (worst performance) to 1 (best precision and recall scores). Precision,
or positive predictive value, is the proportion of predicted positive examples that are truly
positive, whereas recall, which is also known as sensitivity or true positive rate, measures the
proportion of truly positive examples that are correctly classified. Thus, the F1 score is built
from the confusion matrix.

The computation of the F1 score requires comparing the clustering results to a labelled
reference. For the synthetic data generated in this study there is no need of gating as the
examples have been created according specific phenotypic patterns and are thus already
labelled. For the real data, the labels are created by manual gating with FlowJo. Afterwards,
for both synthetic and real data approaches, it is necessary a procedure to assign predicted
clusters to cell labels: the matching procedure.

3.1.1 Matching procedure

In FlowCAP-I, the F1 score was calculated for all the possible combinations of predicted
clusters and reference populations. Each population was then assigned to the cluster giving
the highest F1 score, i. e., the F1 scores were maximized individually [15]. This method
allowed a cluster to be assigned to multiple reference populations, a problem that was solved
by Samusik et al in 2016: by using the Hungarian assignment algorithm, it was the sum
of F1 scores that was maximized, limiting the clusters to be assigned to no more than one
population [16].

In this work, two different matching procedures have been considered. In order to illustrate
them, the clustering result obtained with RPhenograph on one of the synthetic data sets
generated for this study will be used as example. The methodology used to generate synthetic
data will be explained in detail in Chapter 4.1.

In this example, RPhenograph has predicted 18 clusters for a data set containing 50,000 cells
divided on 11 populations (labels):
(t <- table(clustering, labels))

labels
clustering B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2 U3 U4

1 0 0 30 0 0 0 0 9 356 0 0
2 0 0 2743 1 0 0 0 0 1 12 0
3 32 0 0 0 1 0 0 0 0 9 975
4 0 8 0 0 959 4 3 0 0 13 0
5 1 0 131 26 10 0 0 21 0 3116 9
6 0 0 11 0 4 217 0 0 0 0 0
7 0 1 5 8702 0 0 16 1 0 51 1
8 0 0 3078 0 0 6 0 0 0 0 0
9 0 0 0 18 8 0 731 0 0 1 0
10 0 0 3643 0 0 1 0 0 2 0 1
11 0 0 2985 1 0 1 0 0 5 2 0

22



12 0 2953 0 0 15 0 0 18 0 0 0
13 0 0 2668 0 0 7 0 1 5 13 0
14 7445 0 0 0 0 0 0 33 0 0 14
15 0 0 3057 0 1 14 0 0 0 5 0
16 22 38 0 1 2 0 0 2042 5 12 0
17 0 0 1433 1 0 0 0 0 0 8 0
18 0 0 2216 0 0 0 0 0 1 8 0

3.1.1.1 First matching procedure

In the first matching procedure, a maximum of one cluster is assigned to one reference
population. As the generated synthetic data simulates a simplified flow cytometry data
set, the method used to assign clusters to partitions has also been simplified. Instead of
maximizing the F1 score, only the number of true positives has been maximized. In other
words, the procedure finds the most representative cluster for each population:
# Finding and sorting column maximums:
max_values <- apply(t, 2, max)
(sorted_max_values <- sort(max_values))

NKT_4 U2 NKT_8 NKT_NN U4 U1 NK U3 T4 B
217 356 731 959 975 2042 2953 3116 3643 7445
T8

8702

The maximums will be assigned sequentially. Sorting them from smaller to higher assures
that, in the case that more than one population find its maximum on the same cluster, the
population with a higher number of assigned examples will prevail.
# Finding the maximum number of each cell type (columns)
# on each cluster (rows):
(m <- apply(t, 2, which.max))

B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2 U3
14 12 10 7 4 6 9 16 1 5
U4
3

For instance, the cluster 10 is assigned to the label T4. On the contrary, the cluster 2 owns
2743 T4 cells that have not been assigned. In this case there are 7 clusters (18 clusters - 11
populations) that have not been assigned. However, all the examples must be assigned to a
label in order to compute the confusion matrix. Hence, the label unknowns is introduced.
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# Creating a list with n unknowns
matched_preds <- rep("unknown", length(clustering))

# Replacing the numbers of the clusters by the names of the cell types:
for(i in 1:length(clustering)){

for(j in 1:length(levels(labels))){ # number of populations
# we compare to the sorted maximum values:
if(clustering[i] == m[names(sorted_max_values)[j]]){

matched_preds[i] <- names(sorted_max_values)[j]
}

}
}

# Factorize matched predictions including the "unknown" level
matched_preds_1 <- factor(matched_preds,

levels = c(levels(labels), "unknown"))

summary(matched_preds_1)

B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2
7492 2986 3647 8777 987 232 758 2122 395

U3 U4 unknown
3314 1017 18273

18273 unmatched cells have been classed as unknowns.

The confusion matrix can now be computed:
# Adding the label "unknown" to the labels:
all_labels <- labels
levels(all_labels) <- c(levels(labels), "unknown")

(confusionMatrix(data = matched_preds_1, reference = all_labels))$table

Reference
Prediction B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2 U3

B 7445 0 0 0 0 0 0 33 0 0
NK 0 2953 0 0 15 0 0 18 0 0
T4 0 0 3643 0 0 1 0 0 2 0
T8 0 1 5 8702 0 0 16 1 0 51
NKT_NN 0 8 0 0 959 4 3 0 0 13
NKT_4 0 0 11 0 4 217 0 0 0 0
NKT_8 0 0 0 18 8 0 731 0 0 1
U1 22 38 0 1 2 0 0 2042 5 12
U2 0 0 30 0 0 0 0 9 356 0
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U3 1 0 131 26 10 0 0 21 0 3116
U4 32 0 0 0 1 0 0 0 0 9
unknown 0 0 18180 3 1 28 0 1 12 48

Reference
Prediction U4 unknown

B 14 0
NK 0 0
T4 1 0
T8 1 0
NKT_NN 0 0
NKT_4 0 0
NKT_8 0 0
U1 0 0
U2 0 0
U3 9 0
U4 975 0
unknown 0 0

In this case, the B cells have been correctly assigned, but most of the T4 cells have been
classed as unknowns.

3.1.1.2 Second matching procedure

In both the FowCAP-I challenge and the work of Samusik using the Hungarian assignment
algorithm, the objective was to evaluate methods for automatic gating. It made sense
performing one-to-one assignments, i. e., assigning one population to only one cluster [15,16].
However, the present study aims to evaluate exploratory procedures making special attention
to rare populations. This is no without cost: algorithms finding small populations will tend
to split the largest ones. It is therefore assumed that populations can be predicted by more
than one cluster and that results will require validation. Therefore, instead of choosing the
cluster giving a better F1 score or a greater number of true positives, all the clusters matching
for the same population will be merged and the F1 score will be calculated for the merged
clusters.

The matching procedure has thus been modified as follows.

1. Each cluster will be assigned to the population for which it contains a higher number of
cells. Several clusters can be assigned to the same label. There will be no unknowns.
# Finding the cell population (columns)
# with a higher number of cells for each cluster (rows):
(m <- apply(t, 1, which.max))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
9 3 11 5 10 6 4 3 7 3 3 2 3 1 3 8 3 3
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Here, the first row indicates the cluster numbering, and the second row is the population
label. For example, the label B (1) is assigned to the cluster 14.

In this case, the population 3 (T4) has been split in 8 clusters, as it can be appreciated in
the following table.
table(m)

m
1 2 3 4 5 6 7 8 9 10 11
1 1 8 1 1 1 1 1 1 1 1

In this case, population 3 (T4) has been split in 8 clusters.

2. Matching cell labels and clusters:
# Empty list
matched_preds <- rep("NA", length(clustering))

# Replacing the numbers of the clusters by the names of the cell types:
for(i in 1:length(clustering)){

for(j in 1:length(m)){ # Number of predicted clusters
if(clustering[i] == names(m)[j]){

matched_preds[i] <- levels(labels)[m[[j]]]
}

}
}

# Factorize matched predictions
matched_preds_2 <- factor(matched_preds, levels = levels(labels))

3. Computing the confusion matrix:
(confusionMatrix(data = matched_preds_2, reference = labels))$table

Reference
Prediction B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2 U3

B 7445 0 0 0 0 0 0 33 0 0
NK 0 2953 0 0 15 0 0 18 0 0
T4 0 0 21823 3 1 29 0 1 14 48
T8 0 1 5 8702 0 0 16 1 0 51
NKT_NN 0 8 0 0 959 4 3 0 0 13
NKT_4 0 0 11 0 4 217 0 0 0 0
NKT_8 0 0 0 18 8 0 731 0 0 1
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U1 22 38 0 1 2 0 0 2042 5 12
U2 0 0 30 0 0 0 0 9 356 0
U3 1 0 131 26 10 0 0 21 0 3116
U4 32 0 0 0 1 0 0 0 0 9

Reference
Prediction U4

B 14
NK 0
T4 1
T8 1
NKT_NN 0
NKT_4 0
NKT_8 0
U1 0
U2 0
U3 9
U4 975

The 18180 T4 cells previously classed as unknowns by the first matching procedure are now
included in the partition matched to the T4 cells label (3643 + 18180 = 21823).

3.1.1.3 Visualization

In order to visualize labels, predictions and matching results with single cell resolution, data
(which is five-dimensional) is reduced to two dimensions using the t-SNE algorithm and
mapped onto scatter plots (Figure 2). Original cell labels (ground truth), predicted clusters
and partitions resulting from the two matching procedures are indicated. It can be observed
that the first matching procedure (bottom left) classes most of the T4 cells (upper left, yellow)
as unknowns (pink).

3.1.2 Mean F1

The F1 score for each population has been calculated using the partitions matched with the
second procedure. Afterwards, the F1 scores will be averaged in order to obtain a global
performance score.

In the FlowCAP-I study, the F1 scores are normalized by the size of the population. The sum
of the normalized scores produces an F1 measure. As the size of the populations is referred to
all the reference populations, whether they have been detected by the clustering algorithm or
not, the final F1 measure computation penalizes the fact of missing populations [15]. In the
benchmarking article from Weber and Robinson, the F1 scores are averaged without weights,
considering equally important small and large populations [3]. As the present study aims to
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Figure 2: t-SNE mapping of the original five-dimensional data. Data points are colored
according reference cell labels (upper left), the RPhenograph clustering (upper right), and
the partitions resulting from the two matching procedures (bottom).
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select algorithms particularly able to detect rare populations, the mean F1 scores have also
been computed unweighted.

3.1.2.1 Fewer clusters than populations

In the first algorithm benchmarking approach using synthetic data, the fact of missing popu-
lations has been penalized as in the FlowCAP-I study by according the undetected reference
populations with an F1 score of zero. On the contrary, for the subsequent benchmarking
on real cytometry data, only the detected populations have been taken into consideration
to compute the mean F1 score. This change of criterium is due to the fact that with the
synthetic data, the algorithms that accept specifying number of clusters as a parameter have
been run asked to find the exact number of reference populations, whereas with the real data
it has been analyzed the fact of performing a clustering asking to find fewer clusters than
reference populations. Besides, the tests performed with real data have been analyzed more
in detail, paying attention to the number of clusters detected. The mean F1 score computed
for the real data tests, thus, does not indicate the global algorithms’ ability to identify the
different populations, but the overall degree of accuracy for the detected populations.

3.1.2.2 Outliers

The synthetic samples produced in this project do not contain any outlier or unknown cell:
all the examples are assigned to a cell label. However, manually gating real data can produce
outliers, including extremely different examples: cells with atypical marker expressions,
intermediate forms or experience artefacts. Thus, algorithms are not expected to detect a
common pattern in this group of examples. Nevertheless, outliers should not be excluded
from the data sets in order to test algorithm performances in real conditions. Therefore, the
outliers have been maintained to feed the clustering algorithms but excluded before building
the confusion matrix.

3.2 CPU time

Running user times have been recorded as a measure of computational complexity. All
the tests have been performed in the same machine, a MacBook Pro with an Intel Core i7
processor and 16 GB of RAM.
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4 Second selection of unsupervised clustering algo-
rithms based on testing on synthetic data

4.1 Clustering algorithms

The algorithms selected based on the bibliographic review are listed in Table 7, indicating
whether they have been used with high-dimensional and/or dimensionality-reduced data, and
whether there is a possibility to indicate the number of desired clusters.

ClusterX cannot be applied to data with more than four dimensions, thus, a dimensionality
reduction step is required. FlowSOM and RPhenograph algorithms are designed to cluster high-
dimensional data, the former by building self-organizing maps and the latter by measuring
distances in a k-Nearest Neighbor graph. It does not seem useful to reduce the data before
applying these algorithms. The methods based on the k-means algorithm, flowMeans and
flowPeaks, do not need any previous dimensionality reduction step neither, but have been
used to test whether non-linear dimensionality reduction is useful to improve their clustering
performances. Two different techniques for dimensionality reduction have been tested: t-SNE
and UMAP.

Table 7: First selected clustering algorithms
Method High-

dimensional
data

Dimensionality-
reduced
data

Number of clusters

1 FlowSOM X User-defined
2 RPhenograph X Cannot be specified
3 flowMeans X X User can indicate a

maximum number of
clusters

4 flowPeaks X X Cannot be specified
5 ClusterX X Cannot be specified

4.2 R script to generate synthetic data

An R Markdown script has been developed in order to generate controlled synthetic data.
Each run produces a sample with 11 populations defined by 5 markers according to real data.
Marker expression values follow normal distributions.

The following chapters summarize the main aspects of the script, that is available on the
GitHub repository dedicated to this project.
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4.2.1 Parameters

The script takes as parameters:

• The name of the synthetic sample
• The number of cells
• A random seed

Additional information can be modified in the first chunk:

• Mean and SD for the negative (“low”) markers
• Mean and SD for the positive (“high”) markers
• Table of phenotypes
• Percentage of cells per population. This information is exported to be used to evaluate

algorithm performances.

A phenotype table is built indicating the expression level pattern for each cell type, as in this
example:
B <- c("CD3" = "low", "CD4" = "low", "CD8" = "low",

"CD56" = "low", "CD19" = "high")

4.2.2 Sample generation

The procedure is based in three steps:

• Values are generated according the phenotype table using the rnorm() function in order
to follow a normal distribution.

• Synthetic cell values are randomly rearranged in order to simulate a real sample.
• Cells labels are exported in order to be used to evaluate algorithm performances.

Below is shown the core of the script:
# creating the dataframe
set.seed(params$seed)
for(i in (1:length(cells))){ # i takes values [1, number of CELL TYPES]

# For cell type i, repeat its name as many times as the number of cells
c <- rep(cells[i], ns[i])
# One column will be created for every marker with intensity values
for(j in (1:length(markers))){

if(pheno[i,j] == "low"){
p <- rnorm(ns[[i]], mean = neg_mean, sd = neg_sd)

}else{
p <- rnorm(ns[[i]], mean = pos_mean, sd = pos_sd)

}
# all the columns (one per marker) are joined:
# convert the "c" list as data frame
# to preserve numeric "p" values after cbind-ing
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c <- cbind(as.data.frame(c), p)
}
if(i==1){

# Values for the first cell type start to fill the dataframe "pop"
pop <- c

}else{
# Values for the other cell types are joined to "pop"
pop <- rbind(pop, c)

}
}

# Name the variables:
names(pop) <- c("cells", markers)

#### REARRANGING
# Randomly sampling
set.seed(42)
x <- sample(1:n, n, replace = F)

pop <- pop[x,] # Rearranging the dataframe

rownames(pop) <- 1:n # Renaming the rows (in order)

# Save the column with the cell labels to a file
saveRDS(pop$cells,

paste("labels", params$pop_number, Sys.Date(), sep = "_"))

head(pop)

cells CD3 CD4 CD8 CD56 CD19
1 U2 508.589 4962.590 928.24123 -208.6189 -579.0167
2 U3 3452.062 -2542.275 -729.86929 -181.6612 -181.8577
3 T4 4152.289 5555.634 714.79808 -227.0640 -734.4824
4 NKT_NN 5818.124 -1460.082 1104.66106 6156.4867 330.6812
5 T4 4398.932 4267.739 -639.52833 522.0184 204.6559
6 T4 3223.760 4304.875 -86.19721 -747.4541 2552.5026

4.2.3 Conversion to FlowFrame class objects

The data frame is stored as an object of class flowFrame. This is the format used by flowCore
to manage FCS (Flow Cytometry Standard) files.
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library(flowCore)
ff <- new("flowFrame", exprs = as.matrix(pop[,-1]))

Marker expression can be visualized using the tools provided by the package ggcyto for
cytometry data:
library(ggcyto)
autoplot(ff, markers[1], markers[5])
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4.2.4 Export to .fcs

Finally, a synthetic FCS data file is exported.
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write.FCS(ff,
paste("ff_", params$pop_number, "_", Sys.Date(), ".fcs", sep = ""))

4.3 Synthetic data generated for algorithm benchmarking

Eight synthetic samples have been generated according to the following parameters:

• 11 populations
• 5 markers
• Mean for negative (low) markers: 50
• Mean for positive (high) markers: 5000

The 11 phenotypes are created according the expression patterns indicated in Table 8.

Table 8: Phenotypes
CD3 CD4 CD8 CD56 CD19

B low low low low high
NK low low low high low
T4 high high low low low
T8 high low high low low
NKT_NN high low low high low
NKT_4 high high low high low
NKT_8 high low high high low
U1 low low low low low
U2 low high low low low
U3 high low low low low
U4 high low low low high

Cell number, standard deviations and cell type proportions have taken different values in
function of the conditions indicated in Table 9.

Table 9: Parameters used for synthetic sample generation
SD percenteages n

Condition 1 500 equal 10000
Condition 2 1000 equal 10000
Condition 3 1000 different 10000
Condition 4 1000 different 50000

In conditions 3 and 4, the generated samples are composed of populations in different
percentages according a real sample, as indicated in Table 10.
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Table 10: Cell populations percentages
B NK T4 T8 NKT_NN NKT_4 NKT_8 U1 U2 U3 U4

% 15 6 44 17.5 2 0.5 1.5 4.25 0.75 6.5 2

Each condition has been used to generate two different samples by using two different random
seeds, resulting in 8 final samples. Samples are identified with the number of the condition
and the letters “A” or “B” for the different random seeds. For example, sample “2 B” has
been generated with condition 2 and second seed (B).

4.4 Algorithm benchmarking script

An Rmd script has been written and used to test the selected methods with the generated
samples. The same script includes all the methods and is run one at a time for every sample.
The script is available at the project repository. The main aspects of the procedure are
indicated below.

4.4.1 Random seeds

Algorithms requiring a random start (FlowSOM, t-SNE and UMAP) have been tested five
times with different random seeds in order to test their reproducibility.

4.4.2 Number of clusters

All the synthetic samples produced to benchmark the clustering algorithms contain 11
populations. FlowSOM does not determine automatically the number of clusters; it must be
specified by user. There is also the option of choosing a maximum number of clusters to
be tested, but it is not recommended [3]. The flowMeans method determines the number
of clusters automatically, but the user has the option to indicate a maximum number of
clusters. These algorithms have been run asked to find exactly or a maximum of 11 clusters,
respectively. flowMeans has always produced the maximum number of clusters indicated
with the tested synthetic samples (Figures 5 and 8).

4.4.3 Functions

The matching procedure and the computation of the mean F1 score are performed through
functions according the methodology discussed in Chapter 3.

4.4.3.1 Matching procedure

This procedure allows merging the clusters that match to the same reference population into
the same partition.
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matching <- function(prediction, labels){
# cross table
t <- table(prediction, labels)

# Finding the cell population (columns)
# with a higher number of cells for each cluster (rows):
m <- apply(t, 1, which.max)

# Empty list
matched_preds <- rep("NA", length(prediction))

# Replacing the numbers of the clusters by the names of the cell types:
for(i in 1:length(prediction)){

for(j in 1:length(m)){ # Number of predicted clusters
if(prediction[i] == names(m)[j]){
matched_preds[i] <- levels(labels)[m[[j]]]
}

}
}

# Factorize matched predictions
matched_preds <- factor(matched_preds, levels = levels(labels))

matched <- list("preds" = matched_preds, "m" = m, "t" = t)
return(matched)

}

4.4.3.2 Computing the mean F1

In this case, the F1 scores for the undetected populations are fixed at zero and taken into
account for the F1 average.
mean_f1 <- function(cm, c){

# Extracting the F1 values
f1_list <- cm$byClass[,"F1"]
# replacing NAs by zero
f1_list[is.na(f1_list)] <- 0

return(mean(f1_list[1:c]))
}

4.4.4 Clustering

Each method is performed using the matching() and mean_f1() functions as in this example:
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pred <- flowMeans(ff@exprs, MaxN = c )

# Macth labels and predictions (cell level)
matched <- matching(pred@Labels[[1]], labels)

# Storing the results
flowmeans_pred <- matched$preds

# COMPUTING THE CONFUSION MATRIX AND OTHER PERFORMANCE MEASUREMENTS
# store and print
print(matched$t)
(flowmeans_cm <-

confusionMatrix(data = matched$preds, reference = labels))$table

# COMPUTE THE MEAN F1
flowmeans_F1 <- mean_f1(flowmeans_cm, c)

The intermediate cross tables and the confusion matrices are printed for the html docu-
ments generated with the Knit package. The confusion matrix elements produced by the
confusionMatrix() function from the package caret (that include the F1 scores for all the
populations) and the computed mean F1 scores are recorded for further analyses.
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Figure 3: F1 scores obtained for sample “3 A” for all the cell types using RPhenograph,
flowMeans or flowPeaks. Dot sizes and coloring both indicate populations’ frequencies.
Missing points on a row indicate undetected populations.

4.5 Evaluation of performance

4.5.1 Methods without random start

The clustering algorithms RPhenograph, flowMeans and flowPeaks do not need any random
start. Thus, each method has been tested for each sample only once. Figure 3 shows the
F1 scores computed for a sample generated with the condition 3 (sample “3 A”) using these
methods. RPhenograph makes good predictions for all the populations. flowMeans fails to
detect the smallest populations (U2 and NKT_4). Finally, flowPeaks fails to detect all
populations below 6%.

This analysis has been performed for the four synthetic sample types in duplicate. The
mean F1 has been computed for every method and sample. This enables performing a global
comparison but lacks the detail for the specific populations.

On Figure 4.5.1, mean F1 values obtained with the methods without random start are
compared. It can be appreciated that changing the cell type proportions (conditions 3 and 4)
reduces dramatically the global performances. RPhenograph is the only method that keeps
producing good scores in these circumstances. Thus, flowMeans and flowPeaks methods
(without previous dimensionality reduction) will be discarded.
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Figure 4: Mean F1 scores for all the samples generated using RPhenograph, flowMeans or
flowPeaks.

Figure 5 gives important additional information about RPhenograph performances. In this
graph, mean F1 scores are related to the number of detected clusters. For flowMeans it has
been specified to limit the number of clusters to 11. As it happened with sample “3 A” (Figure
3), flowPeaks only predicts 4 clusters for the samples generated according conditions 3 and
4, drastically decreasing the F1 score (Figure . RPhenograph achieves good F1 scores, but it
can be seen here that it is not without cost: increasing the samples complexity (conditions 3
and 4) also increases the number of detected clusters (15-19).

4.5.2 Methods with random start

FlowSOM clustering method and dimensionality reduction techniques t-SNE and UMAP use a
random start. The F1 scores obtained with these methods are plotted as box plots in order
to see their reproducibility. Five different random starts have been used.

Figure 6 shows the results obtained with the sample “3 A”. A huge dispersion is observed with
the methods using flowMeans, meaning that this partitioning method (that does not use any
random start) would be extremely sensitive to changes on the t-SNE and UMAP maps. On the
contrary, flowPeaks partitioning is highly reproducible after UMAP dimensionality reduction.
Nevertheless, this algorithm fails to detect the rarest populations (U2 and NKT_4), whether
it is performed following t-SNE or UMAP dimensionality reduction. ClusterX algorithm is
also very reproducible. It fails to detect the NKT_4 population when it is applied following
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Figure 5: Mean F1 scores for all the samples (4 conditions performed in duplicate) related
to the number of predicted clusters obtained using RPhenograph, flowMeans or flowPeaks.
Dotted lines indicate the number of populations (ground truth).

t-SNE but finds all the populations after UMAP dimensionality reduction. FlowSOM also
manages to detect all the cell populations, but with some more variability on the small
populations (<6%).

Figure 7 shows the mean F1 values obtained for the random start methods with five different
seeds. Again, increasing the sample complexity by including populations with extremely
different frequencies decreases the overall performances. flowMeans is definitely giving poor
results for these samples and will thus be discarded. On the other hand, flowPeaks is
potentially interesting, particularly after UMAP dimensionality reduction, as it gets improved
when the total number of cells increases (condition 4 vs condition 3). In fact, condition 4
samples contain 50,000 cell examples; it is possible that this algorithm performs better with
samples having a higher number of cells, which is often the case. On the other hand, ClusterX
does not seem to be affected by the sample size and tends to give better performances when
it is conducted after UMAP dimensionality reduction. In fact, UMAP + ClusterX method
achieves equivalent or even better performances than FlowSOM, an algorithm that generates
good mean F1 values in all conditions.

Finally, graphs on Figure 8 give information about the number of predicted clusters, which has
been fixed to 11 in FlowSOM and to a maximum of 11 in flowMeans. It can be observed that
with flowPeaks, both F1 scores and the number of predicted clusters get improved as the
sample size increases. Following UMAP, flowPeaks produces better and more reproductible
predictions. ClusterX performs clearly better following UMAP. As it can be seen, following t-
SNE, ClusterX produces similar mean F1 scores for conditions 3 and 4 samples. Nevertheless,
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Figure 6: F1 scores obtained for sample “3 A” for all the cell types using flowSOM and the
dimensionality reduction algorithms t-SNE and UMAP followed by flowMeans or flowPeaks
clustering methods. Coloring indicates the populations’ frequencies. n = 5 random starts for
every method.
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Figure 7: Mean F1 scores for all the samples generated using flowSOM and the dimensionality
reduction algorithms t-SNE and UMAP followed by flowMeans, flowPeaks or ClusterX
clustering methods. n = 5 random starts for every method.
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increasing the sample size (condition 4) dramatically increases the number of predicted
clusters. On the contrary, when ClusterX is conducted following UMAP dimensionality
reduction, the number of predicted clusters is closer to the ground truth and is not affected
by the sample size. Moreover, better mean F1 scores are achieved with the largest samples.

4.6 Conclusions

Synthetic samples have been evaluated using a matching procedure that does not penalize
the splitting of populations and taking into consideration the number of predicted clusters.
The following methods have been selected to be tested with real data:

• flowSOM
• RPhenograph
• UMAP + flowPeaks
• UMAP + ClusterX
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Figure 8: Mean F1 scores for all the samples (4 conditions performed in duplicate) related to
the number of predicted clusters obtained using flowSOM and the dimensionality reduction
algorithms t-SNE and UMAP followed by flowMeans, flowPeaks or ClusterX clustering
methods. n = 5 random starts for every method. Dotted lines indicate the number of
populations (ground truth).
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5 Comparative study of selected clustering algorithms

The clustering algorithms selected after being tested on synthetic data are applied to real flow
cytometry samples generated at the IRSL Flow Cytometry facility according two experimental
designs aiming to characterize human lymphocytes. The first design uses five parameters to
characterize five main populations. The second experimental design counts with 11 parameters
allowing for the characterization of several subpopulations from the same main populations
defined with the 5-parameter design. Actually, some other parameters have been used to
define the ensemble of single-cell, living lymphocytes, such as the Forward Scatter (FSC) or
the Side Scatter (SSC). The 5 or 11 parameters are the ones used to explore this particular
cell subset.

5.1 5-parameter design

Data is manually gated with FlowJO as depicted in Figure 9. Five main populations are
defined: T, NKT, NK, B and NO_BTNK (no B, no T, no NK). Moreover, 20 additional
populations have been defined according to the different expression patterns that can be
distinguished with the five markers used.

5.1.1 Data preparation

An R Markdown script has been developed in order to prepare flow cytometry data for
algorithm benchmarking. The script enables importing and exploring the data, applying the
hierarchical strategy performed on FlowJo, labelling the examples according to this gating
strategy, performing down-sampling and exporting the data for further analysis. The whole
script is available at the GitHub repository. Its main aspects are indicated below:

5.1.1.1 Importing data from FlowJo workspace

The FlowJo workspace (.wsp) holding the gating strategy is open using the openWorkspace()
function from the flowWorkspace package. The workspace is then parsed with the corre-
sponding .fcs files through the parseWorkspace() function, creating a GatingSet object.
library(flowWorkspace)
ws <- openWorkspace(params$wsp)
gs <- parseWorkspace(ws, name = 2, sampNloc="sampleNode")
# 1: All Samples, 2: group

The gating strategy can now be visualized (see Figure 10), showing the gating performed on
FlowJo (Figure 9).

The expression data can be extracted from the GatingSet object:
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Figure 9: Manual gating strategy for the 5-parameter experimental design. The five main
populations are indicated in orange.
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Figure 10: Representation of the hierarchical gating strategy for the 5-parameter design
imported from FlowJo.
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s <- 3 # sample number
data <- exprs(gs@data[[s]])
head(data)

FSC-A FSC-H FSC-W SSC-A SSC-H SSC-W Comp-PE-A
[1,] 169366.58 128283 86524.39 63138.69 54779 75537.30 29.93590
[2,] 145468.56 100582 94782.64 82188.27 69586 77404.80 19.39655
[3,] 135920.16 100470 88659.93 53039.61 46870 74162.66 44.84264
[4,] 121107.00 82767 95894.12 84879.90 71531 77766.14 59.92522
[5,] 124500.77 97207 83937.19 43174.62 38739 73039.88 36.18717
[6,] 11673.43 11070 69108.39 5941.35 5802 67110.02 50.22970

Comp-APC-A Comp-FITC-A Comp-640-A-A Comp-BUV 395-A Comp-BV510-A Time
[1,] 129.87708 51.53669 42.42691 40.446030 180.03268 0.613
[2,] 127.46664 54.71684 39.96397 8.473352 190.05092 0.615
[3,] 133.58005 53.47903 50.55981 56.433731 172.99860 0.615
[4,] 141.69080 65.89689 50.58980 38.403183 185.50795 0.615
[5,] 39.93256 50.88087 43.56737 131.534653 55.13123 0.617
[6,] 33.90350 45.97820 37.56026 32.189224 69.36352 0.617

The markers used to characterize the lymphocytes are the ones included in columns 7 to 11.
data <- data[,7:11]
data <- as.data.frame(data)

The data frame can be interrogated for each of the nodes represented in Figure 10 producing
a logical list indicating whether the examples are included or not in the gate defined at the
node. This functionality has been used to label the examples.

Getting the nodes:
(nodes <- getNodes(gs, path = "auto"))

[1] "root"
[2] "Lymphocytes"
[3] "Single Cells"
[4] "Single Cells SSC"
[5] "Time, NEG viab-CD14 subset"
[6] "CD56+ CD3+ NKT cell subset"
[7] "CD56+ CD3+ NKT cell subset/Q1: CD8a- , CD4+"
[8] "CD56+ CD3+ NKT cell subset/Q2: CD8a+ , CD4+"
[9] "CD56+ CD3+ NKT cell subset/Q3: CD8a+ , CD4-"

[10] "CD56+ CD3+ NKT cell subset/Q4: CD8a- , CD4-"
[11] "CD56+ CD3- NK cell subset"
[12] "CD56+ CD3- NK cell subset/Q1: CD8a- , CD4+"
[13] "CD56+ CD3- NK cell subset/Q2: CD8a+ , CD4+"
[14] "CD56+ CD3- NK cell subset/Q3: CD8a+ , CD4-"
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[15] "CD56+ CD3- NK cell subset/Q4: CD8a- , CD4-"
[16] "CD56- CD3+ T cell subset"
[17] "CD56- CD3+ T cell subset/Q1: CD8a- , CD4+"
[18] "CD56- CD3+ T cell subset/Q2: CD8a+ , CD4+"
[19] "CD56- CD3+ T cell subset/Q3: CD8a+ , CD4-"
[20] "CD56- CD3+ T cell subset/Q4: CD8a- , CD4-"
[21] "CD56- CD3- non T non NK cell subset"
[22] "B cell subset"
[23] "B cell subset/Q1: CD8a- , CD4+"
[24] "B cell subset/Q2: CD8a+ , CD4+"
[25] "B cell subset/Q3: CD8a+ , CD4-"
[26] "B cell subset/Q4: CD8a- , CD4-"
[27] "CD56-, CD3-, CD19-"
[28] "CD56-, CD3-, CD19-/Q1: CD8a- , CD4+"
[29] "CD56-, CD3-, CD19-/Q2: CD8a+ , CD4+"
[30] "CD56-, CD3-, CD19-/Q3: CD8a+ , CD4-"
[31] "CD56-, CD3-, CD19-/Q4: CD8a- , CD4-"

5.1.1.2 Labelling

Cells
Labelling the viable, single cells lymphocytes (no monocytes): node 5.
nodes[5]

[1] "Time, NEG viab-CD14 subset"

cells <- getIndices(gs[[s]], nodes[5])
table(cells)

cells
FALSE TRUE

295426 139230

data$cells <- "other_events"
data$cells <- ifelse(cells, "lymphocytes", data$cells)
data$cells <- factor(data$cells)
table(data$cells)

lymphocytes other_events
139230 295426

Subpopulations
Afterwards, the 20 potential subpopulations have been labelled. All the ungated cells will be
tagged as “outliers”.

Naming the labels:
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label_names <-
c("7" = "NKT_4", "8" = "NKT_DP", "9" = "NKT_8", "10" = "NKT_DN",

"12" = "NK_4", "13" = "NK_DP", "14" = "NK_8", "15" = "NK_DN",
"17" = "T_cells_4", "18" = "T_cells_DP",
"19" = "T_cells_8", "20" = "T_cells_DN",
"23" = "B_4", "24" = "B_DP", "25" = "B_8", "26" = "B_DN",
"28" = "NO_BTNK_4", "29" = "NO_BTNK_DP",
"30" = "NO_BTNK_8", "31" = "NO_BTNK_DN")

names(label_names)

[1] "7" "8" "9" "10" "12" "13" "14" "15" "17" "18" "19" "20" "23" "24"
[15] "25" "26" "28" "29" "30" "31"

Labelling the cells:
for(i in names(label_names)){

indices <- getIndices(gs[[s]], nodes[as.numeric(i)])
# if index for node i is TRUE, data$label takes label_name[i]
# otherwise, it remains unchanged
data$labels <- ifelse(indices, label_names[[i]], data$labels)

}

data$labels <- as.factor(data$labels)
table(data$labels)

B_4 B_8 B_DN NK_4 NK_8 NK_DN
69 72 14369 458 14615 12314

NK_DP NKT_4 NKT_8 NKT_DN NKT_DP NO_BTNK_4
474 569 3023 979 218 1328

NO_BTNK_8 NO_BTNK_DN NO_BTNK_DP outliers T_cells_4 T_cells_8
446 4636 107 295762 62113 17625

T_cells_DN T_cells_DP
4209 1270

Main populations
The populations of interest are easily extracted using 2 genreic lists: metalabels_list and
patterns_list:
# Empty column
data$metalabels <- "outliers"

# Naming the meta-labels and the patterns that will be used to define them
metalabels_list <- c("NKT", "NK", "T", "B", "NO_BTNK")
patterns_list <- c("NKT_", "NK_", "T_cells_", "B_", "NO_B")
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for(i in 1:length(metalabels_list)){
data$metalabels <-

ifelse(grepl(patterns_list[i], data$labels),
metalabels_list[i], data$metalabels)

}

data$metalabels <- factor(data$metalabels,
levels = c(metalabels_list, "outliers"))

table(data$metalabels)

NKT NK T B NO_BTNK outliers
4789 27861 85217 14510 6517 295762

Lymphocytes
Finally, all the events not included in the gate delimiting the single-cell, living lymphocytes
are excluded:
data <- data[data$cells == "lymphocytes",]
table(data$labels, data$metalabels)

NKT NK T B NO_BTNK outliers
B_4 0 0 0 69 0 0
B_8 0 0 0 72 0 0
B_DN 0 0 0 14369 0 0
NK_4 0 458 0 0 0 0
NK_8 0 14615 0 0 0 0
NK_DN 0 12314 0 0 0 0
NK_DP 0 474 0 0 0 0
NKT_4 569 0 0 0 0 0
NKT_8 3023 0 0 0 0 0
NKT_DN 979 0 0 0 0 0
NKT_DP 218 0 0 0 0 0
NO_BTNK_4 0 0 0 0 1328 0
NO_BTNK_8 0 0 0 0 446 0
NO_BTNK_DN 0 0 0 0 4636 0
NO_BTNK_DP 0 0 0 0 107 0
outliers 0 0 0 0 0 336
T_cells_4 0 0 62113 0 0 0
T_cells_8 0 0 17625 0 0 0
T_cells_DN 0 0 4209 0 0 0
T_cells_DP 0 0 1270 0 0 0
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5.1.1.3 Down-sampling

The createDataPartition() function from the caret package is used. This function
generates partitions with representative frequencies for the indicated classes. The partitioning
is based on the tag “labels” (the subpopulations) according the number of cells indicated in
the parameters:
p <- params$cells/nrow(data)
set.seed(42)
subsample <- createDataPartition(data$labels, p = p, list = F)
data <- data[subsample, ]

The data is finally exported as an .fcs file. Label lists are exported as RDS objects.

5.1.2 Algorithm benchmarking script

5.1.2.1 Number of clusters

FlowSOM clustering is performed by specifying the number of clusters. For the other algorithms
it cannot be specified. The 5-parameter experimental design uses 5 markers to define 5 main
cell populations, 4 of them with biological interest. One of the main populations (T cells)
can be divided in 4 subpopulations of interest. According to these premises, FlowSOM has
been conducted with the following number of clusters:

• 4: The number of populations a researcher may expect to find (NKT, NK, T and B
cells)

• 5: Main populations (NKT, NK, T, B cells and other lymphocytes)
• 8: Main populations + T subpopulations (NKT, NK, T4, T8, T double positive, T

double negative, B cells and other lymphocytes)
• 10, 20: A higher number of clusters may help finding rare populations. 20 is the number

of potential subpopulations.

5.1.2.2 Functions

The function for the matching procedure is the same that has been used for the synthetic
samples. On the contrary, the mean F1 is now computed taking into consideration exclusively
the populations that have been predicted:
mean_f1 <- function(cm){

# Extracting the F1 values
# cm: confusion matrix element
f1_list <- cm$byClass[,"F1"]
# removing NAs
f1_list <- f1_list[!is.na(f1_list)]
# Computing mean F1
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return(mean(f1_list))
}

5.1.2.3 Clustering

Runtimes are measured for each clustering algorithm using the proc.time() function. For
example:
# CLUSTERING
ptm <- proc.time()
pred <- Rphenograph(ff@exprs)
clustering <- pred$membership
ptm <- proc.time() - ptm

After the clustering, a first round of matching is performed against the main populations.
Afterwards, a second round of matching is run with the populations that have been split into
several clusters, if that is the case:
#### SPLIT POPULATIONS

# How many clusters have been assigned to each population?
table_maxs <- table(matched$m)
# Which populations have been assigned to more than one cluster?
split_list <- names(table_maxs[table_maxs>1])
split_list <- as.numeric(split_list)

# If there are, start MATCHING SUB-LABELS AND PREDICTORS,
# one population at a time
if(length(split_list) != 0){

for(j in 1:length(split_list)){
# counter
k <- k + 1
# Name of the population
name_pop <- levels(metalabels)[split_list[j]]
# Selecting the well-predicted cells
# (e.g., all the T cells matched as T)
well_pred <- rep(NA, length(metalabels))
well_pred <- ifelse(main_matched == name_pop &

metalabels == name_pop, TRUE, FALSE)

# MATCHING SUBLABELS AND PREDICTIONS
# Only the clusters for the population
table_clusters <- table(clustering[well_pred])
clusters_list <- names(table_clusters[table_clusters>0])
# Only the sublabels for the population
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# Only the levels for those sublabels
sublevels <- sublabels_levels[[name_pop]]
matched <- matching(

factor(clustering[well_pred], levels = clusters_list),
factor(sublabels[well_pred], levels = sublevels))

# COMPUTING THE CONFUSION MATRIX AND OTHER PERFORMANCE MEASUREMENTS
cm <- confusionMatrix(data = matched$preds,

reference = factor(
sublabels[well_pred], levels = sublevels))

# Add the F1 values to a list
subs_f1 <- c(subs_f1, cm$byClass[, "F1"])

# COMPUTE THE MEAN F1
mf1 <- mean_f1(cm)
# Storing the result
summ_subs[k,] <- c(

params$file, nrow(ff@exprs), method, nc, number_partitions,
name_pop, f1_temp[[split_list[j]]], table_maxs[table_maxs>1][[j]],
length(table(matched$m)), mf1)

The procedure has been explained in detail in the eighth deliverable, available upon request.
The whole benchmarking script can be found at the GitHub repository.

5.1.3 Results

5.1.3.1 Samples

Three samples from different blood donors have been analyzed. The frequencies for the
main populations and subpopulations obtained with the manual gating strategy are shown
in Figure 11. Samples 2 and 3 have been down-sampled to 25,000, 50,000 and 100,000
examples. Sample 1 had fewer than 100,000 examples (single-cell, living lymphocytes), thus,
only the 25,000 and 50,000 down-samples have been performed. Finally, the method UMAP
+ ClusterX could not be applied to the Sample 3, 1000,000 cells, because ClusterX requires
too much computing power compared to other methods.

5.1.3.2 FlowSOM: selection of the better condition

The results obtained with the number of clusters tested on FlowSOM are compared in terms
of mean F1 score, number of matched partitions (detected populations) and CPU runtimes.
Figure 12 shows the results obtained for the different down-samples. In some cases, the lines
might overlap.
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Figure 11: Cell frequencies for the 3 samples analyzed for the 5-parameter design, obtained by
manual gating. Frequencies for the 5 main populations and the potential 20 subpopulations
are indicated, as well as the outliers.
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The best mean F1 scores are obtained at 20 clusters for all the samples. Below 20 clusters, the
mean F1 scores are highly variable among samples. This number of clusters allows finding the
5 partitions in all the conditions tested. Increasing the number of clusters clearly increases
the runtime, but it remains fast anyway. The condition with 20 clusters is thus selected to
be compared to the other algorithms tested.

5.1.3.3 Mean F1

The mean F1 scores obtained with FlowSOM (20 clusters), RPhenograph , UMAP + flowPeaks
and UMAP + ClusterX are compared in terms of number of found clusters and number of
cells (Figure 13). Please notice that the scale for the mean F1 is narrower in this figure than
in the previous one.

The number of cells does not seem to influence the mean F1 scores. The UMAP + flowPeaks
method achieves similar mean F1 scores than the other methods but with fewer clusters,
getting closer to the number of main populations (5). The other methods are closer to the
number of potential subpopulations (20).

5.1.3.4 Number of matched partitions

The number of matched partitions (detected populations) is compared to the number of
detected clusters (Figure 14). FlowSOM (20 clusters), RPhenograph and UMAP + ClusterX
methods find the five populations in all the conditions tested. Nevertheless, the number of
clusters found by these methods is high. On the contrary, UMAP + flowPeaks manages to
detect all the populations with fewer number of clusters. On the contrary, it seems to need a
higher number of cells, as for 2 of the 25,000 down-samples only 4 populations are detected.

5.1.3.5 CPU runtime

Runtimes are recorded for all methods and samples combinations (Figure 15). The runtime for
UMAP is added to the runtimes for flowPeaks or ClusterX. Both FlowSOM and RPhenograph
are computationally efficient in the conditions tested. The runtime used by UMAP +
flowPeaks increases noticeably as the number of cells and the number of detected clusters
increases but remains reasonable in comparison with the runtimes achieved with the UMAP
+ CLusterX method, extremely sensitive to the number of cells. In fact, the clustering with
one of the 100,000 samples could not been achieved with this latter method due to insufficient
computing power. For this reason, the UMAP + ClusterX method has been discarded.

5.1.3.6 Analysis of split populations

The populations that have been matched to more than one cluster have been compared to
their corresponding subpopulations. For example, if the population T has been detected by
more than one cluster, all the clusters matching to this population have been compared to
the T subpopulations: T4, T8, T_DP and T_DN. The matching procedure is applied, the

56



Figure 12: 5-parameter design. FlowSOM clustering has been performed specifying to find 4,
5, 8, 10 or 20 clusters. Sample 1, n=2 down-samples; samples 2 and 3, n=3 down-samples.
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Figure 13: 5-parameter design. Mean F1 scores related to the number of predicted clusters
(left panel) and the number of cells (right panel, mean ± standard error). Sample1, n=2;
samples 2 and 3, n=3. FlowSOM, RPhenograph and UMAP + flowPeaks, 25,000 and 50,000
cells, n=3; 100,000 cells, n=2. UMAP + ClusterX 25,000 and 50,000 cells, n=2; 100,000 cells,
n=1.
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Figure 14: 5-parameters design. Number of matched partitions (detected populations) related
to the number of clusters. Sample 1, n=2; samples 2 and 3, n=3. FlowSOM, RPhenograph
and UMAP + flowPeaks, 25,000 and 50,000 cells, n=3; 100,000 cells, n=2. UMAP + ClusterX
25,000 and 50,000 cells, n=2; 100,000 cells, n=1.
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Figure 15: 5-paramenter design. CPU (user) runtimes related to the number of detected
clusters (left panel) and the number of cells (right panel). Sample 1, n=2; samples 2 and
3, n=3. FlowSOM, RPhenograph and UMAP + flowPeaks, 25,000 and 50,000 cells, n=3;
100,000 cells, n=2. UMAP + ClusterX 25,000 and 50,000 cells, n=2; 100,000 cells, n=1.
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F1 scores computed for each of the subpopulations and averaged for the subpopulations that
have been matched, obtaining a final mean F1 score. The objective of this analysis is to
determine if the algorithms split the populations according its phenotypic profile or in an
apparently random manner.

Results obtained for the samples containing 25,000 and 50,000 cells are shown in Figure 16.
On the first vertical panels for each down-sample condition (1st and 3th), the F1 scores for
the matched partitions are indicated. On the right panels (2nd and 4th), the F1 scores for
the populations that had been matched to more than one cluster are related to the mean F1
scores obtained with the analysis of the subpopulations.

When the samples are close to reach the point (1,1), optimal F1 and mean F1 scores
are obtained: when populations are split, they are correctly matched to the reference
subpopulations. This is the case for all the methods except for FlowSOM. If the samples
appear above the diagonal, as it happens with some NKT cells with FlowSOM, it indicates
good F1 scores but poor accuracy for the subpopulations. On the contrary, samples located
below the diagonal indicate that populations that had bad F1 scores have been correctly split.
Interestingly, RPhenograph achieves good mean F1 scores for subpopulations of NKT having
poor F1 scores. Furthermore, the small size of these samples on the plot indicates that these
cells have been matched to a small number of clusters, probably 1 or 2. This could explain
the poor F1 score: only a part of the NKT population has been detected. The analysis of
the subpopulations allows to determine that, nevertheless, the part that has been detected
matches correctly with referenced subpopulations. In this sense, RPhenograph appears to be
a powerful algorithm to detect small populations.
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Figure 16: 5-parameter design. Anlysis of subpopulations on split main populations. 1st and
2nd panels: 25,000 cell down-samples. 3th and 4th panels: 50,000 cell down-samples. 1st and
3th panels: The F1 scores are indicated for all the matched partitions. 2nd and 4th panels:
The F1 scores obtained for the matched partitions corresponding to the main populations
are related to the mean F1 scores computed for the populations that have been split in more
than one cluster. Dot, square and triangle sizes are drown proportional to the number of
clusters found for each population. Notice that NO stands for NO_BTNK cells.
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5.2 11-parameter design

Data is manually gated in FlowJO as depicted in Figure 17. Lymphocytes are divided onto
19 populations with biological significance.

5.2.1 Data preparation

An R Markdown script has been developed in order to prepare the 11-parameter flow cytometry
data for algorithm benchmarking. The whole script is available at the GitHub repository.
The script is a simplified version of the preparing script used for the 5-parameter experimental
design. In fact, the complexity of expression patterns detected with 11 markers does not
allow to perform an analysis of subpopulations with just two levels of complexity as it has
been done with the 5-parameter design. Thus, the clustering results have been compared
to a unique label list containing 19 populations of biological interest. The gating strategy
imported from FlowJo is shown in Figure 18.

5.2.2 Algorithm benchmarking script

The script used for the 11-parameter experimental design is a simplified version of the one
used for the 5-parameter design. There is no second matching round on subpopulations, and
the UMAP + ClusterX method has been eliminated. The script is available at the GitHub
repository.

5.2.3 Results

5.2.3.1 Samples

Two samples from different blood donors have been analyzed. Frequencies for the 19 popula-
tions obtained with the manual gating strategy are shown in Figure 19. The samples have
been down-sampled to 100,000, 200,000, 300,000 and 400,000 examples.

5.2.3.2 FlowSOM: selection of the better condition

FlowSOM clustering has been performed for 5, 10, 15, 20, 30, 40, 50 and 60 clusters. Figure 20
shows the results obtained in terms of mean F1 score, number of matched partitions (detected
populations) and CPU runtimes. In all the cases, the running times are excellent.

Whereas the number of clusters does not have a clear effect on the mean F1 score, it does
influence the number of matched partitions, getting closer to the 19 populations of reference
as the number of clusters increases. From 40 to 60 clusters, sample 1 experiences a slight
improvement in the mean F1 score, but the number of partitions remains quite stable; there
is no clear amelioration for sample 2 neither. The slight improvements that are observed for
some of the down-samples with 60 clusters appear to be random and, in any case, insufficient
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Figure 17: Manual gating strategy for the 11-parameter experimental design. 19 populations
of lymphocytes are delimited (orange).
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Figure 18: Representation of the hierarchical gating strategy for the 11-parameter design
imported from FlowJo.
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Figure 19: Cell frequencies for the 2 samples analyzed for the 11-parameter design, obtained
by manual gating. Frequencies for 19 populations are indicated, as well as the outliers.

to justify using such a number of clusters. Therefore, the condition with 40 clusters is thus
selected to be compared to the other tested algorithms.

5.2.3.3 Mean F1

The mean F1 scores obtained with FlowSOM (40 clusters), RPhenograph and UMAP +
flowPeaks are compared in terms of number of found clusters and number of cells (Figure
21). None of the methods seems to be affected by the number of cells. However, RPhenograph
seems to be sensitive to the sample: it reaches better mean F1 scores with sample 1 and
founds fewer clusters with sample 2. UMAP + flowPeaks seems to be more robust in terms
of mean F1 score. Finally, the scores obtained with FlowSOM are clearly poorer.

5.2.3.4 Number of matched partitions

The number of matched partitions (detected populations) is compared to the number of
detected clusters (Figure 22). Whereas FlowSOM reaches the poorest mean F1 scores (Figure
21), it is the method that gets closer to the number of reference populations (which is 19). The
number of clusters does not seem to affect the number of matched partitions in RPhenograph,
that gets its better result with one of the largest down-samples. On the contrary, UMAP +
flowPeaks number of matched partitions seems to correlate positively with the number of
clusters.
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Figure 20: 11-parameter design. FlowSOM clustering has been performed specifying to find
5, 10, 15, 20, 30, 40, 50 or 60 clusters.
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Figure 21: 11-parameter design. Mean F1 scores related to the number of predicted clusters
(left panel) and the number of cells (right panel, mean ± standard error). Samples 1 and 2,
n=4 down-samples.
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Figure 22: 11-parameters design. Number of matched partitions (detected populations)
related to the number of clusters. Samples 1 and 2, n=4 down-samples.

5.2.3.5 CPU runtime

Runtimes are recorded for all methods and samples combinations (Figure 23). The runtime
for UMAP is added to the runtimes for flowPeaks.

FlowSOM is really efficient in terms of computational time in all the conditions tested.
RPhenograph runtime increases with the cell number; nevertheless, it remains moderate
in comparison with the runtimes achieved by the UMAP + flowPeaks method, which seems
to be sensitive to both cell number and number of clusters.

5.3 Conclusions

Figure 24 summarizes the results obtained with the better conditions tested:

• 5-parameter design : 100,000 cells, FlowSOM number of clusters settled to 20.

• 11-parameter design : 400,000 cells, FlowSOM number of clusters settled to 40.

As it can be observed, increasing the complexity of the experimental design makes more
evident the differences on algorithm performances. With 5 parameters, FlowSOM achieves
equivalent mean f1 scores to the other two methods; on the contrary, it appears to be less
performant in the 11-parameter design. Mean F1 scores are poorer and number of clusters is
more elevated to those found by other algorithms, making further analyses difficult.
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Figure 23: 11-paramenter design. CPU (user) runtimes related to the number of detected
clusters (left panel) and the number of cells (right panel).Samples 1 and 2, n=4 down-samples.
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Figure 24: Summary of the results achieved with the methods and conditions tested. 5_2: 5
parameters, sample 2. 5_3: 5 parameters, sample 3. 11_1: 11 parameters, sample 1. 11_2:
11 parameters, sample 2.

The number of matched partitions is also less stable in the 11-parameter design, whereas it
remains constant for the 5-parameter examples that are shown in this figure.

Finally, RPhenohgraph and UMAP + flowPeaks obtain similar mean F1 scores, slightly
higher for RPhenograph for the 11-parameter samples, and similar numbers of matching
partitions. RPhenograph seems to need more clusters than UMAP + flowPeaks to achieve
similar performances, but it is much more competitive in terms of computational time.

To conclude, RPhenograph provides the best balance among the different performance mea-
surements that have been tested in this study. Additionally, as it does not need any random
start, it appears to be more robust.
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6 Discussion

The main objective of this project has been to explore, evaluate and select clustering algorithms
for multiparametric data exploration in order to accommodate the selected methods in a
graphical front-end. This final goal has been decisive in the choice of software and algorithms,
nevertheless, due to the limited time available, this task will be performed afterwards as a
logical continuance.

The project was ambitious and not enough developed to properly estimate the duration of the
different tasks. Nevertheless, the work that has been performed has allowed to get introduced
and familiarized with the methodology and bibliography of the field. Furthermore, the
experimental methodology that has been developed and the results that have been obtained
will be the core for further analyses at the IRSL Flow Cytometry facility.

First of all, an extensive bibliographic research on unsupervised clustering algorithms applied
to cytometry data has been performed. Afterwards, a selection of algorithms has been
explored and evaluated by adapting the methodology found in the literature to the specific
needs of the project. Furthermore, a script for generating synthetic data has been developed,
enabling the performance of tests in strictly controlled conditions. Indeed, the synthetic
data has been an excellent material to develop a methodology for performance evaluation.
The existing methods used to explore automatic gating algorithms have been adapted to
evaluate clustering algorithms as explorative tools. This methodology has then been applied
to real flow cytometry data. Two common experimental designs used to characterize human
lymphocytes have been used to benchmark a selection of algorithms. In agreement with the
literature, the obtained results indicate RPhenograph as a powerful clustering algorithm.

In addition to the generated results, several interesting questions have risen during the
development of this project. One example: the concept of “population”. Cytometrists are
used to define cell populations of biological interest based on the differential expression of
some particular markers. Nevertheless, populations of “no interest” such as the “NO_BTNK”
are also present in the sample. Phenotypic differences without any significant biological
interest can be detected by the clustering algorithms. This problem is aggravated with the
increase in the number of parameters: markers that are used to define a specific population
can reveal different expression patterns in other populations. Hence, increasing the number
of parameters might increment the number of unexpected clusters. In this regard, the
matching procedure developed in this study already merges the clusters matching to the
same population. Thus, the procedure is particularly well adapted to benchmark algorithms
used with high-dimensional experimental designs.

As a matter of fact, new methodologies must be accompanied by new conceptions. With
the manual gating, populations are explored in a supervised manner. For example, in the
11-parameter experimental design, the CD27 marker is used to characterize B and T cell
subpopulations. As it is not a useful marker to define the NKT cells, its expression in
this cellular compartment is not explored. Nevertheless, NKT cells do express CD27 in a
heterogenous manner. Researchers will thus need to improve their knowledge in the cell
phenotype of the studied populations (at least for the markers used in the same experimental
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design) in order to correctly interpret the results obtained with unsupervised clustering
algorithms. With respect to the benchmarking studies, special attention must be paid to the
choice of reference populations.

Finally, there is the question about the limits of the methodology. New clustering algorithms
for cytometry data are validated with the results obtained by manual gating, which is
precisely the methodology that needs to get improved. Indeed, looking at the gating
strategies performed on histograms or dot plots, it is noticeable that the boundaries between
cell populations are often arbitrary. Thus, some of the discrepancies observed between the
evaluated methods and the manual gated populations of reference might actually be due to
this artefact. Further investigations based on synthetic datasets should help strengthen the
evaluation process.

7 Conclusions

An extensive review on unsupervised clustering algorithms for high-dimensional data has
been performed in order to select the algorithms that could potentially fulfill the requirements
of the IRSL Flow Cytometry facility users. These algorithms have been benchmarked using a
methodology developed to that end. This methodology includes:

• The production of synthetic data
• A methodology to label the cells from real cytometry experiences according to a manual

gating strategy
• A performance evaluation method including a matching procedure specially designed

for this project

This methodology has been tested with two different experimental designs for human leukocyte
characterization using 5 and 11 parameters. The results obtained with these tests indicate that
RPhenograph is the most adequate clustering method in terms of accuracy and computational
time and thus the best candidate for the Shiny front-end for the IRSL Flow Cytometry
facility. Finally, the methods developed during this work are ready to be conducted with
other experimental designs including a higher number of parameters.

73



8 Glossary

IRSL Institut de Recherche Saint-Louis

B B lymphocyte

CPU Central Processor Unit

FCS Flow Cytometry Standard

FlowCAP Flow Cytometry: Critical Assessment of Population Identification Methods

NK Natural killer cell

NKT Natural killer T cell

NNG nearest neighbor graph

NO_BTNK No B, no T, no NK lymphocyte

SOM self-organizing map

T T lymphocyte

t-SNE t-Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection
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