

Fuzzy C-means and clustering algorithms: a
comparative study

Victor Garcia Domingo
Grau en Enginyeria Informàtica
Intel·ligència Artificial

Dr. Joan M. Nuñez Do Rio
Dr. Carles Ventura Royo

4 juny 2019

i

Aquesta obra està subjecta a una llicència de

Reconeixement-NoComercial-SenseObraDerivada

3.0 Espanya de Creative Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

FITXA DEL TREBALL FINAL

Títol del treball:
Fuzzy C-means and clustering algorithms: a
comparative study

Nom de l’autor: Victor Garcia Domingo

Nom del consultor/a: Joan M. Nuñez Do Rio

Nom del PRA: Carles Ventura Royo

Data de lliurament (mm/aaaa): 06/2019

Titulació o programa: Grau d’Enginyeria Informàtica

Àrea del Treball Final: Intel·ligència Articial

Idioma del treball: Anglès

Paraules clau
Clustering, Fuzzy C-Means, overlapping
clusters

 Resum del Treball (màxim 250 paraules): Amb la finalitat, context
d’aplicació, metodologia, resultats i conclusions del treball

La clusterització de dades és una tècnica que agrupa les observacions d’un

conjunt de dades en funció de la distància al centre dels clústers. Un dels

primers algoritmes de clusterització va ser el K-Means (KM), que és

especialment acurat per a reconèixer grups de clústers separats. El Fuzzy C-

Means (FCM) va ser formulat per a millorar la precisió del KM amb clústers

superposats. S'han desenvolupat altres algorismes derivats del FCM per a

millorar-lo: el Gustafson Kessel Fuzzy C-Means (GKFCM), per a clústers no

esfèrics, el Fuzzy C-Means++ (FCM++) i el Suppressed Fuzzy C-Means (S-

FCM), més eficients, i el Possibilistic C-Means (PCM), més precís per a

observacions atípiques. En aquest projecte, he comparat el KM, el FCM, el

GKFCM, el FCM++, el S-FCM i el PCM i les millores dels nous respecte als

predecessors, centrant-ho al voltant del FCM. He validat paràmetres com

l’eficiència computacional, el rendiment i la precisió. He trobat que, d’entre tots

els algorismes, el FCM té el millor rendiment per a conjunts de dades amb

clústers superposats i el KM és l'algorisme més eficient. El GKFCM funciona

bé amb clústers no esfèrics, però no és del tot precís. Finalment, el PCM no ha

mostrat cap avantatge respecte al FCM. Aquest projecte és un punt de partida

per a futures investigacions sobre els algorismes de clusterització, ja que la

majoria dels conjunts de dades utilitzats aquí són conjunts de dades sintètics,

basats en característiques ideals. i s'espera que els conjunts de dades reals

tinguin estructures més complexes.

iii

 Abstract (in English, 250 words or less):

Clustering is a technique that groups observations in a dataset based on the

distance to the centre of the clusters. One of the first clustering algorithms was

K-Means (KM), which is especially accurate at recognising well-separated

clusters. Afterwards, Fuzzy C-Means (FCM) was formulated to improve the

accuracy of KM with datasets containing overlapping clusters. Since then,

other derivatives of FCM have been developed to improve it: Gustafson Kessel

Fuzzy C-Means (GKFCM) performs better for non-spherical clusters, Fuzzy C-

Means++ (FCM++) and Suppressed-Fuzzy C-Means (S-FCM) improve FCM’s

efficiency and Possibilistic C-Means (PCM) is more accurate for datasets with

noise and outliers. In this project, I have compared KM, FCM, GKFCM,

FCM++, S-FCM and PCM to check how each evolution has improved its

predecessor. This comparison is centralised around FCM. I have validated

parameters such as computational efficiency, performance and accuracy. I

have found that, among all the algorithms, FCM has the best performance for

datasets with overlapping clusters, even though S-FCM improves its

computational efficiency. Also, KM is the most efficient algorithm and GKFCM

performs well with non-spherical clusters. However, it is less accurate. Finally,

PCM has not shown any advantage over FCM. This project is a starter point for

future investigations of the conditions under which every algorithm works

better. Most of the datasets used here are synthetic datasets, based on near-

ideal characteristics. Nevertheless, real-world datasets are expected to have

more complex structures for which the choice of algorithms require a more

thorough investigation.

4

Acknowledgements

I would like to express my infinite gratitude to my family, Llucià, Dolors and Eric,

for their unconditional support throughout all these years of hard work and

difficulties.

I would also like to express my warm thanks to Jalpa for her motivation and

patience.

Finally, my sincere thanks to Dr. Joan M. Nuñez Do Rio for the fantastic

supervising job he has done.

It is because of all of them that this project exists.

5

Index

1 Introduction .. 7

1.1 Context and justification .. 7

1.2 Objectives .. 10

1.3 Method and Approach ... 11

1.4 Planification ... 13

1.5 Short summary of the products ... 14

1.6 Short description of the rest of the chapters .. 14

2 Algorithms .. 15

2.1 Introduction .. 15

2.2 Algorithms ... 15

2.2.1 K-Means ... 15

2.2.2 Fuzzy C-Means .. 17

2.2.3 Fuzzy C-Means++ .. 19

2.2.4 Suppressed-Fuzzy C-Means .. 21

2.2.5 Gustafson-Kessel Fuzzy C-Means ... 23

2.2.6 Possibilistic C-Means ... 25

3 Datasets and validation methods ... 27

3.1 Introduction .. 27

3.2 Datasets .. 27

3.2.1 Synthetic dataset 1 (SD1) ... 27

3.2.2 Synthetic dataset 2 (SD2) ... 28

3.2.3 Synthetic dataset 3 (SD3) ... 29

3.2.4 Synthetic dataset 4 (SD4) ... 30

3.2.5 Synthetic dataset 5 (SD5) ... 30

3.2.6 Synthetic dataset 6 (SD6) ... 31

3.2.7 Synthetic dataset 7 (SD7) ... 32

3.2.8 Synthetic dataset 8 (SD8) ... 33

3.2.9 Synthetic dataset 9 (SD9) ... 33

3.2.10 Synthetic dataset 10 (SD10) ... 34

3.2.11 Real-world dataset 1 (RWD1) ... 35

3.3 Validation methods .. 36

3.3.1 Internal methods ... 36

3.3.2 External methods.. 37

4 Experiments ... 38

4.1 Introduction .. 38

4.2 Groups of experiments .. 39

4.2.1 K-Means and Fuzzy C-Means .. 39

4.2.2 Fuzzy C-Means, Fuzzy C-Means ++ and Supressed-Fuzzy C-Means . 41

4.2.3 Fuzzy C-Means and Gustafson-Kessel Fuzzy C-Means 46

4.2.4 Fuzzy C-Means and Possibilistic C-Means .. 55

4.3 Discussion ... 61

5 Conclusions ... 63

6 Bibliography ... 65

6

List of figures

Figure 1. SD1 ... 28

Figure 2. SD2 ... 29

Figure 3. SD3 ... 29

Figure 4. SD4 ... 30

Figure 5. SD5 ... 31

Figure 6. SD6 ... 32

Figure 7. SD7 ... 32

Figure 8. SD8 ... 33

Figure 9. SD9 ... 34

Figure 10. SD10 ... 35

Figure 11. RWD1 .. 36

Figure 12. Efficiency of FCM, FCM++ and S-FCM for SD1 42

Figure 13. Performance (Xie-Beni) of FCM, FCM++ and S-FCM for SD1 42

Figure 14. Performance (Silhouette) of FCM, FCM++ and S-FCM for SD1 43

Figure 15. Efficiency of FCM, FCM++ and S-FCM for RWD1 44

Figure 16. Performance (Xie-Beni) of FCM, FCM++ and S-FCM for RWD1 44

Figure 17. Performance (Silhouette) of FCM, FCM++ and S-FCM for RWD1 .. 45

Figure 18. Efficiency of FCM, and GKFCM for SD3 ... 47

Figure 19. Performance (Xie-Beni) of FCM, and GKFCM for SD3 47

Figure 20. Performance (Silhouette) of FCM and GKFCM for SD3 48

Figure 21. Clusters of SD3 recognised by FCM ... 48

Figure 22. Clusters of SD3 recognised by GKFCM .. 48

Figure 23. Clusters of SD7 recognised by GKFCM .. 49

Figure 24. Clusters of SD7 recognised by FCM ... 50

Figure 25. Clusters of SD8 recognised by GKFCM .. 51

Figure 26. Clusters of SD8 recognised by FCM ... 52

Figure 27. Clusters of SD9 recognised by GKFCM .. 53

Figure 28. Clusters of SD9 recognised by FCM ... 53

Figure 29. Clusters of SD10 recognised by FCM ... 54

Figure 30. Clusters of SD10 recognised by GKFCM .. 54

Figure 31. Clusters of SD4 recognised by PCM ... 55

Figure 32. Clusters of SD4 recognised by FCM ... 56

Figure 33. Original classes in SD4 vs PCM and FCM results........................... 56

Figure 34. Clusters of SD5 recognised by PCM ... 57

Figure 35. Clusters of SD5 recognised by FCM ... 57

Figure 36. Clusters of SD6 recognised by FCM ... 58

Figure 37. Clusters of SD6 recognised by PCM ... 58

Figure 38. Clusters of SD9 recognised by FCM ... 59

Figure 39. Clusters of SD9 recognised by PCM ... 59

Figure 40. Clusters of SD10 recognised by FCM ... 60

Figure 41. Clusters of SD10 recognised by PCM ... 60

7

1 Introduction

1.1 Context and justification

Clustering1 was originally formulated by Linnaeus, a Swedish physician and

botanist from the eighteenth century. He provided a hierarchical structure that

helped to understand the roles and interactions of different botanical species

[1]. Since its development, the concept of clustering has become a common

technique for statistical analysis and classification of data. It is at the heart of

exploratory data mining and has been extensively used in many fields, such as

image analysis, pattern recognition, information retrieval, bioinformatics, data

compression, computer graphics, and most recently in machine learning and

artificial intelligence.

Clustering is not defined by one specific algorithm and therefore it is not an

automatic task, but it is a method of information extraction by iterative process

making it a very robust technique for statistical analysis. More specifically,

clustering is a method that aims at “classifying observations from a dataset

based on the notions of similarity, distance, or indistinguishability” [1]. The goal

of clustering analysis is to find clusters in a dataset by grouping similar

observations in the same group based on a distance function. There are

different distance measures, such as the Euclidian, the Manhattan or the

Chebyshev, depending on the dataset of interest. It has been shown by several

studies that the Euclidian distance is a fitting choice for most datasets.

As mentioned above, clustering cannot be defined by one specific algorithm,

which is one of the reasons for the development of multiple algorithms for

clustering. For a group of datasets, there can be different cluster models, and

furthermore, many different algorithms have been developed for each of the

cluster models. Therefore, there are different types of clustering algorithms

based on different ways to classify them. Among the existing clustering

algorithms, there are two important classification criteria to distinguish between

them. One of the criteria is to distinguish between “hierarchical clusters, non-

hierarchical (flat) or mixture techniques” [2]. The other criterion distinguishes

between hard clustering and soft clustering.

The fact that there are possibly over 100 clustering algorithms in existence

indicates that there is no objectively “correct” clustering algorithm, rather the

choice of an algorithm depends on the dataset in question. This choice is often

1 Linnaeus referred to this method as classification. However, I will refer to it as clustering, since
classification is nowadays a different technique.

8

based on experimental selection unless there is a mathematical reason to

prefer one algorithm over another.

Soft clustering, especially fuzzy clustering, has several advantages compared to

hard clustering. For example, membership restriction of each observation in

hard clustering is quite unrealistic [11] for real-world datasets, and it would be

more natural to assign a degree of membership to each observation. Also, fuzzy

clustering categorises observation-outliers more accurately than hard clustering,

because of the degree of membership assigned to each of the observations.

This means that, for example, if an observation does not clearly belong to one

cluster or another, a hard-clustering algorithm is more likely to mis-categorise it,

as it must choose only one of the clusters. On the other hand, a fuzzy algorithm

will be more precise in categorising such observations because the assigned

degree of membership will exactly identify its parent cluster, even if by a small

percentage of difference.

In the 1960’s and 1970’s, cluster analysis became a big topic in statistics, data

analysis and applications when Sokal and Sneath published the monograph

‘Principles of numerical taxonomy’ in 1963. [4] One of the first clustering

algorithms, the K-Means, is based on the sum-of-squares criterion. This

criterion was first formulated by Dalenius (1950) and Dalenius and Gurney

(1951) to estimate “the expectation 𝜇 = [𝐸] of a real-valued random variable X

with distribution density f(x).” [4] However, the first who formulated the K-Means

algorithm was Steinhaus in 1956, then Forgy proposed it for clustering data in

1965 and the name K-Means was used for the first time by MacQueen in 1967.

Since then, the algorithm “became a standard procedure in clustering”. [4]

Even though K-Means performs well on datasets with well-separated clusters, it

is not very accurate with overlapping ones. [2] This is because K-Means works

with the notion of hard sets, which is not appropriate for overlapping clusters.

The concept of fuzzy sets was first introduced by Zadeh in 1965, as an

extension of the notion of hard sets. This laid the foundation for later works in

fuzzy clustering. In 1969, Ruspini generalized the fuzzy partition of Zadeh,

based on which Dunn addressed the problem of K-Means in 1973. However,

Dunn’s idea was an extension of K-Means and not a completely new algorithm.

It was Bezdek who connected K-Means and Dunn’s generalization in the same

year to develop the Fuzzy C-Means (FCM) algorithm. [1]

Fuzzy C-Means works well with overlapping clusters, but it forces all the

clusters in a dataset to have approximately the same shape. In 1978, Gustafson

and Kessel addressed this problem with a new algorithm, the Gustafson Kessel

Fuzzy C-Means (GKFCM), that adapted to the shape of each cluster in a

dataset. [1] GKFCM is also important because it was the first algorithm derived

from Fuzzy C-Means which tried to improve some of its defects. Since then,

9

several other modifications have been applied to address other limitations of the

original FCM. Some of the latest ones are Fuzzy C-Means++ (FCM++) and

Suppressed-Fuzzy C-Means (S-FCM).

In 1993, Krishnapuram and Keller introduced a new algorithm, the Possibilistic

C-Means (PCM). This algorithm was based on a different mathematical concept

than FCM, which is based on the probabilistic idea that each observation

belongs to all the clusters in some degree. In FCM, the sum of all these degrees

of belongingness must be equal to 1, so even the outliers can be part of a

cluster even if it is obvious that they do not. The theory behind the PCM, on the

contrary, does not have this constraint. Instead, the PCM measures “how close

the point is to each cluster prototype”. [1] Thus, for example, an outlier may not

belong to any of the clusters, whereas a point in a vector may belong to more

than one cluster along this vector in the same degree. This gives an advantage

to PCM for datasets with noise and outliers.

In this project, I will compare some of the most important clustering algorithms

that have been developed so far. This is important because not all algorithms

are best for all kinds of datasets. Therefore, I want to check in which situations

the choice of an algorithm is more appropriate over another.

10

1.2 Objectives

The main objective of this project is to validate how every new algorithm have

improved the previous one by comparing their computational efficiency,

performance and accuracy on different types of datasets.

I will also show the advantages and disadvantages of fuzzy clustering

compared with hard clustering. Also, within soft clustering algorithms, I will

investigate which ones perform better under which conditions.

First, I want to perform a series of experiments to validate that Fuzzy C-Means

is more accurate than K-Means when there are overlapping clusters in a

dataset. These experiments will also validate that K-Means is generally more

efficient than Fuzzy C-Means, since the convergence speed is much slower for

the latter. [2]

Second, I will compare FCM with FCM++ and S-FCM. I want to conduct a

series of experiments that will validate whether both FCM++ and S-FCM are

more computationally efficient and perform better than FCM.

Third, I will compare FCM with GKFCM to validate that the latter adapts to the

shape of each cluster and thus performs better than FCM with differently

shaped clusters.

Finally, I will perform a series of experiments to validate that PCM performs

better than FCM with differently shaped clusters and outliers.

This project aims at being a starting point for further investigations about which

conditions make one algorithm a better choice.

11

1.3 Method and Approach

I intend to combine internal and external validation methods “to validate the

goodness of partitions after clustering”. [18]

Internal validation is a way to measure the goodness of partitions, relying only

on information present in the data. It can be used either to choose the best

clustering algorithm or to find the optimal cluster number [23]. Internal validation

can be performed through indexes. Even though there some research studies

about mixed indexes, these are still not very stable, Thus, these indexes are

used to compare only hard clustering methods or only soft clustering methods.

Among the most used soft-clustering indexes are Xie-Beni and Silhouette.

Computational time through number of iterations is another internal validation

method.

On the contrary, external validation is a way to measure the goodness of

partitions relying on information external to the data. To use external validation

methods, it is important to know in advance the correct class labels. Some of

the external validation methods are accuracy, entropy or purity. [25] External

validation is a good validation method when the aim is to compare algorithms

hard and soft clustering algorithms, since, as explained above, these algorithms

cannot be compared with indexing methods. [22]

I will perform different groups of experiments. In the first group of experiments, I

will perform internal and external validation of K-Means and Fuzzy C-Means on

two datasets, one with overlapping clusters and another with both overlapping

and well-separated clusters. I will specifically validate the accuracy and the

computational efficiency of both algorithms. This will allow me to check whether

Fuzzy C-Means is more accurate than K-Means for overlapping clusters.

In the second group of experiments, I will perform internal validation of Fuzzy C-

Means, Fuzzy C-Means++ and Suppressed-Fuzzy C-Means on two datasets.

One of the datasets contains overlapping clusters and the other one both

overlapping and well-separated clusters. I will validate the performance through

the Xie-Beni and Silhouette indexes and the efficiency of each clustering

method. This will allow me to check whether Fuzzy C-Means++ and

Suppressed-Fuzzy C-Means are more computationally efficient than Fuzzy C-

Means.

The third group of experiments will consist in the internal validation of Fuzzy C-

Means and Gustafson Kessel Fuzzy C-Means on five different datasets. Three

of the datasets contain non-spherical clusters, one contains spherical clusters,

and the last one has both spherical clusters. I will validate the performance of

each algorithm on each dataset through the Xie-Beni and the Silhouette

indexes. I will also validate their efficiency. This will allow me to check whether

12

the Gustafson Kessel Fuzzy C-Means performs better than Fuzzy C-Means on

datasets with different-shaped clusters.

Finally, in the fourth group of experiments I will compare Fuzzy C-Means and

Possibilistic C-Means through internal and external validation on five different

datasets. Four of the datasets contain spherical clusters with outliers and

different levels of overlapping and one of the datasets contain both spherical

and non-spherical clusters. I will validate both algorithms by comparing their

accuracy and efficiency. This will allow me to check whether Possibilistic C-

Means is more accurate than Fuzzy C-Means on datasets with outliers.

13

1.4 Planification

14

1.5 Short summary of the products

This project aims at being a starting point to understand the evolution of

clustering, the main algorithms and under which conditions it is better to use

one or another.

1.6 Short description of the rest of the chapters

In Chapter 2, I introduce each one of the six algorithms and I explain how to

computationally compute them.

In Chapter 3, I introduce each one of the eleven datasets. I also introduce the

internal and external validation methods that I will use.

In Chapter 4, the results and the discussion of four groups of experiments are

presented.

Finally, Chapter 5 contains the general conclusions of the project.

15

2 Algorithms

2.1 Introduction

In this chapter, I will introduce with more detail the six algorithms that I will later

compare. For each algorithm, I will develop a short introduction and then I will

explain how they work in technical details.

2.2 Algorithms

2.2.1 K-Means

The most famous algorithm in hard clustering (HC) is K-Means. It was first

explicitly proposed by Steinhaus [12], although the name K-Means was first

used by MacQueen [4, 5].

K-means algorithm works the following way. “It iteratively computes cluster

centroids for each distance measure to minimize the sum with respect to the

specified measure” [2]. The goal is to minimize this objective function, that is,

“the sum of the squared error over all K clusters”, [6] as seen in the equation

(1):

𝐽𝐾𝑀(𝐶𝑘) = ∑ ∑ 𝐷𝑖𝑗
2𝑛

𝑗
𝐶
𝑖 (1)

Where C is the cluster, n is the observation and 𝐷𝑖𝑗
2 is the Euclidean distance,

which is the one used in most of cases because of its good results.

The algorithm has the following constraints:

• A set 𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛} of N points with d dimensions each.

• A number of 𝐶 = {𝑐1, … 𝑐𝑘}, 𝐶 ≥ 2 clusters.

• A distance 𝐷𝑖𝑗
2 , 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛, usually the Euclidean distance. [2]

The steps of the algorithm are:

1. Select the number of clusters.

2. The initial C centroids are chosen randomly among the N dimensions of

the dataset.

3. For 1 to C centroids, calculate the distance of each observation to each

cluster to find which one it belongs to. If the Euclidean distance is used, if

the observations have two attributes, then the formula is (2). This formula

subtracts each attribute from one observation to the correspondent

16

attribute of another observation and it squares it. Then, all the results are

summed up and the square root of the final sum is calculated.

𝐷𝑖 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + ⋯ (2)

4. The centroids are recalculated using the formula (3), where the value of

first attribute of each dataset is summed up and divided by the number of

observations, then the second and so on.

𝐶𝑘 = (
𝑥1+𝑥2±...+𝑥𝑛

𝑛
,

𝑦1+𝑦2±...+𝑦𝑛

𝑛
, …) (3)

5. When the there is new clusters are not assigned to any data point, then

stop the iteration, else, go back to step 2 and repeat.

17

2.2.2 Fuzzy C-Means

Fuzzy C-Means was developed by Bezdek in 1981 and it “is still the most

popular classical fuzzy clustering technique” [6]. It is used in fields such as

image processing, data analysis, and construction of models [7].

It minimizes the objective function of the equation (4). X indicates the dataset, U

the membership matrix and V, the prototypes matrix. The membership matrix

has size C x N, where C is the cluster and N is the data point, where each

observation has assigned a degree of belongingness to every cluster.

𝐽𝐹𝐶𝑀(𝑋, 𝑈, 𝑉) = ∑ ∑ (𝑢𝑖𝑗)𝑞𝐷𝑖𝑗
2𝑛

𝑗
𝐶
𝑖 (4)

The popularity of FCM is partly due to its flexible mathematical foundations,

which lets to incorporate image feature information such as pixel location, pixel

intensity, and combination of location and intensity.

Its performance is supposedly better than any hard-clustering algorithm

because of the fuzzifier parameter and the membership value. However, its

convergence speed is lower than hard-clustering algorithms.

Otherwise, one of the parameters used in the calculation of the membership

matrix is the fuzzifier m. If the value of the m is large (m > 2), it increases the

gap between the membership values, leading to a decrease of the overall

segmentation performance. If m is close to 1, then the algorithm becomes the

K-Means.

Some studies show that “high dimensions seem to have a devastating effect on

the FCM algorithm” [8]. Specifically, FCM works well until five dimensions. If the

data set contains more than that, then it must be started with well initialised

prototypes, and if there are more than 20 dimensions, the exact position of the

clusters must be known in advance, which means that random initialisation

cannot be used at all to find cluster centres. According to [8], this can be solved

by initialising the prototypes “very close to the cluster centres”.

It is also worth noticing that the “computational complexity of FCM is quadratic

in the number of clusters 𝑂(𝑁𝐶2𝑃), where N is the number of data points, C is

the number of clusters and P is the dimension of the data points” [13].

Finally, even though one advantage of fuzzy clustering when compared to hard

clustering algorithms is good performance in front of outliers, FCM can also be

too sensitive to them. This is because of the membership matrix, “since even a

noise point has to be considered to have a higher membership value in a

particular cluster” [14].

The constraints of the algorithm are the following:

18

• A set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛} of N points with d dimensions each.

• A number C of clusters where 𝐶 ≥ 2

• A confusion matrix 𝑈 = [𝑢𝑖𝑗] 𝜖[0, 1]; 1 ≤ 𝑖 ≤ 𝐶; 1 ≤ 𝑗 ≤ 𝑁 where i is the

index of the data point and j is the cluster.

• A prototype matrix 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑗 , … , 𝑣𝑐].

• A distance 𝐷𝑖𝑗
2 , 1 ≤ 𝑖 ≤ 𝐶, 1 ≤ 𝑗 ≤ 𝐶.

• A parameter m representing the fuzzifier

The steps of the algorithm are:

1. Select the number of clusters.

2. Randomly initialise the membership matrix considering the constraint of

(5), that is, the sum of the degree of belongingness of each data point to

every cluster must be 1.

∑ 𝑢𝑖𝑗 = 1; 𝑖 = 1, 2, … , 𝑁
𝑗
1 (5)

3. Calculate the prototypes using the equation (6), where the sum of each

degree of belongingness to the power of the fuzzifier m multiplied by the

observation is divided by the sum of the degrees of belongingness of

each data point to the power of m. The value of m is usually 2.

𝑉𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗

 (6)

4. Calculate the distance to each observation to every prototype using the

formula (2).

5. Update the membership matrix using the formula (7). In the formula, in

the numerator, 1 is divided by the distance and then raised to the power

of 1 divided by the fuzzifier minus 1. The same is performed in the

denominator, but for each degree of belongingness of each data point to

every cluster, and then it all summed up for each observation.

𝑈𝑖𝑗 =
(

1

𝑑𝑖𝑗
)

1
𝑚−1

∑ (
1

𝑑𝑖𝑘
)

1
𝑚−1𝐶

𝑘=1

 (7)

6. If the result of formula (8) is true, then stop, else, repeat from step 2. The

value of 𝜖 is usually very low, 0.01 or 0.001.

‖𝑈𝑡+1 − 𝑈𝑡‖ < 𝜖 (8)

19

2.2.3 Fuzzy C-Means++

One of the problems of FCM is its low convergence speed. There have been

many attempts to improve its efficiency, such as Fuzzy C-Means or

Suppressed-Fuzzy C-Means. Fuzzy C-means++, which was introduced in 2015

by Stetco, Zeng and Keane [13].

As Stetco et al. explain, Fuzzy C-means++ utilises the seeding mechanism of

the K-means++ algorithm to improve the effectiveness and speed of FCM. The

idea is to choose points that are spread out in the dataset as representatives

and update the membership matrix accordingly before starting.

The first representative is randomly chosen from the dataset and added to the

prototype’s matrix, renamed by the authors as R. This point determines a

probability distribution for each other point 𝑟𝑖 in the dataset. The bigger the

distance from 𝑟1 to 𝑟𝑖, the higher the chance of 𝑟𝑖 being picked as the next

center.

On synthetic datasets with moderately overlapping clusters, FCM++ was on

average 2.1 times faster than FCM.

Fuzzy C-Means++ is not a completely different algorithm. Instead, it is just a set

of preparations that are done before starting the actual Fuzzy C-Means

algorithm. As Stetco et al. explain [13], the idea is to choose points in the

dataset as representatives and then update the membership matrix accordingly

before starting FCM. This allows FCM to start in a better position, which is

closer to the real centre of the clusters. Hence, the algorithm requires less steps

to converge.

The constraints of FCM++ are:

• A set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛} of N points with d dimensions each.

• A number C of clusters where 𝐶 ≥ 2

• A confusion matrix 𝑈 = [𝑢𝑖𝑗] 𝜖[0, 1]; 1 ≤ 𝑖 ≤ 𝐶; 1 ≤ 𝑗 ≤ 𝑁 where i is the

index of the data point and j is the cluster.

• A prototype matrix 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑗 , … , 𝑣𝑐].

• A distance 𝐷𝑖𝑗
2 , 1 ≤ 𝑖 ≤ 𝐶, 1 ≤ 𝑗 ≤ 𝐶.

• A parameter m representing the fuzzifier

• A vector 𝑑𝑖𝑠𝑡 = 𝐷𝑖𝑗
2 with the distance of every data point to the last

centroid calculated.

• A parameter p representing the spreading factor

20

Before executing the FCM algorithm, the FCM++ algorithm performs the

following steps:

1. Randomly initialise the first row of the matrix R by choosing a random

point from the dataset (9).

𝑅1 = 𝑥𝑖 (9)

2. Calculate the distance of every data point to the first centroid and story it

in the vector of distances. Find then the probability of belongingness of

each dataset to the first centroid and add it to the first column of the

membership matrix 𝑈 (10).

𝐹𝑜𝑟 1 𝑡𝑜 𝑁: 𝑑𝑖𝑠𝑡𝑖 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑅1 , 𝑥𝑖) (10)

3. 𝐹𝑜𝑟 2 𝑡𝑜 𝐶:

Find the value of the next centroid 𝑅𝑗 through the probability

distribution given by
𝑑𝑖𝑠𝑡𝑝

𝑠𝑢𝑚(𝑑𝑖𝑠𝑡𝑝)
 . The value chosen will be the one

with the highest probability.

4. 𝐹𝑜𝑟 1 𝑡𝑜 𝑁:

Update the vector of distances to the next cluster

5. Repeat from step 3 until the membership matrix 𝑈 and the set of

representatives 𝑅 are filled.

21

2.2.4 Suppressed-Fuzzy C-Means

Introduction:

Before Suppressed-Fuzzy C-Means, Rival Checked Fuzzy C-means was

introduced to address the problems of FCM. It is based on competitive learning,

meaning that it magnifies the largest membership value (𝑢𝑝𝑗) and suppresses

the second largest (𝑢𝑠𝑗) membership value through a value α [6], as seen in

(11) and (12).

𝑢𝑝𝑗 = 𝑢𝑝𝑗 + (1 − 𝛼)𝑢𝑠𝑗 (11)

𝑢𝑠𝑗 = 𝛼𝑢𝑠𝑗 (12)

The main problem is that it only pays attention to the largest membership

values, so if the choice of α is not suitable, it can distort the membership values

by making the second largest smaller than others. This may lead to a non-

convergence of the algorithm.

To overcome this, a new algorithm was introduced by Fan et al [9]. This

algorithm is Suppressed-Fuzzy C-Means. S-FCM magnifies only the largest

membership value and supresses the rest, as seen in equations (13) and (14).

𝑢𝑝𝑗 = 1 − 𝛼 ∑ 𝑢𝑖𝑗𝑖≠𝑝 = 1 − 𝛼 + 𝛼𝑢𝑝𝑗 (13)

𝑢𝑖𝑗 = 𝛼𝑢𝑖𝑗 , 𝑖 ≠ 𝑝 (14)

Where p indicates the cluster where the value u of the membership is bigger. If

there exist more than two biggest membership values, then it takes one of them

randomly [9]. Thus, this prizes the biggest membership.

This modification does not disturb the original order and forces the convergence

of the algorithm. Also, when α=0, the algorithm is equal to hard-clustering

algorithms, and when α=1, it becomes FCM, that is, it establishes a more

natural relationship between both hard and soft clustering algorithms.

S-FCM supposedly integrates the advantages of both HC (i.e. it is more

efficient) and FCM (i.e. it provides a better clustering performance), and it is not

sensitive to the fuzzy factor m.

Finally, it is worth noticing that one of the uses of S-FCM is to segment objects

having similar surface variations (SSV) precisely because of its insensitiveness

to the fuzzy factor m and because it “prizes the biggest membership values and

suppresses the others”. [10]

The constraints of the algorithm are:

• A set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛} of N points with d dimensions.

22

• A number C of clusters where 𝐶 ≥ 2

• A confusion matrix 𝑈 = [𝑢𝑖𝑗] 𝜖[0, 1]; 1 ≤ 𝑖 ≤ 𝐶; 1 ≤ 𝑗 ≤ 𝑁, where i is the

index of the data point and j is the cluster.

• A centroids matrix 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑗 , … , 𝑣𝑐].

• A distance 𝐷𝑖𝑗
2 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘.

The steps are the same as FCM, although the formulas (13) and (14) are

calculated after step 5.

23

2.2.5 Gustafson-Kessel Fuzzy C-Means

GKFCM was first developed in 1978 by Donald E. Gustafson and William E.

Kessel on his famous article “Fuzzy Clustering With A Fuzzy Covariance Matrix”

[11]. It was designed to find non-spherical clusters, since FCM was made to

discover spherical clusters with equal volumes and density. This is important

because in many cases, datasets have clusters with different shapes [16].

Hence, GKFCM adapts the distance metric to the shape of the cluster. This is

done through an “adaptative distance norm unique for every cluster as the

norm-inducing matrix A, which is calculated by estimates of the data

covariance” [1, 16], following the formula (15).

𝐴𝑖 = [𝜌𝑖det (𝐹𝑖)]1/𝑛𝐹𝑖
−1 (15)

Another advantage of the GKFCM is that while FCM needs a good initialization

of the partition matrix to return good results, GKFCM is insensitive to the data

scaling of that initialization. Also, GKFCM performs very well for large datasets

and it allows to integrate generic shape information into the clustering

framework, which means that it is a good tool for image processing.

One disadvantage of GKFCM is that, even though it is computationally more

efficient than FCM [21], its performance is not the best when the datasets are

small or there are linearly correlated datapoints [6], since the covariance matrix

becomes singular.

The steps of the algorithm are [24]:

𝑹𝒆𝒑𝒆𝒂𝒕 𝒇𝒐𝒓 𝒍 = 𝟏, 𝟐, …

1. Compute the cluster prototypes with the formula (6).

2. Compute the cluster covariance matricx using the formula (16).

𝑭𝒊 =
∑ (𝜇𝑖𝑘

(𝑙−1)
)

𝑚
(𝑍𝑘−𝑉𝑖

𝑙)(𝑍𝑘−𝑉𝑖
𝑙)𝑇𝑁

𝑘=1

∑ (𝜇
𝑖𝑘
(𝑙−1)

)𝑚𝑁
𝑘=1

, 1 ≤ 𝑖 ≤ 𝐾 (16)

3. Compute the distances with (17), which uses the covariance matrix from

(16) and the covariance of (15).

𝑫𝒊𝒌𝑨𝒊

𝟐 = (𝑍𝑘 − 𝑉𝑖
𝑙)

𝑇
⌈𝜌𝑖𝑑𝑒𝑡(𝐹𝑖)

1

𝑛𝐹𝑖
−1⌉ (𝑍𝑘 − 𝑉𝑖

𝑙), 1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑘 ≤ 𝑁 (17)

4. Update the partition matrix iteratively:

𝒇𝒐𝒓 1 ≤ 𝑘 ≤ 𝑁

24

 𝒊𝒇 𝐷𝑖𝑘𝐴𝑖
> 0 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝐾 𝒕𝒉𝒆𝒏

 𝝁𝒊𝒌
(𝒍)

=
𝟏

∑ (𝑫𝒊𝒌𝑨𝒊
/𝑫𝒋𝒌𝑨𝒋

)
𝟐/(𝒎−𝟏)

𝑲
𝒋=𝟏

 𝒆𝒍𝒔𝒆

 𝒊𝒇 𝐷𝑖𝑘𝐴𝑖
> 0, 𝑎𝑛𝑑 𝜇𝑖𝑘

(𝑙)
∈ [0,1] 𝒕𝒉𝒆𝒏

 𝜇𝑖𝑘
(𝑙)

= 0

 𝒆𝒍𝒔𝒆

 ∑ 𝜇𝑖𝑘
(𝑙)

= 1𝐾
𝑖=1

𝑼𝒏𝒕𝒊𝒍 ‖𝑼𝒍 − 𝑼𝒍−𝟏‖ < 𝝐

25

2.2.6 Possibilistic C-Means

Fuzzy clustering algorithms are based on the probabilistic theory, but there are

other soft clustering algorithms based on the possibilistic theory. In fact, FCM

uses a probabilistic constraint to make the sum of all the memberships of one

observation across all the clusters be 1. Thus, the degree of membership of one

data point to one cluster, represents the degree of sharing, i.e. an arbitrary

division of data, but not the actual degree of belongingness. Possibilistic

algorithms such as Possibilistic C-Means were introduced to address this issue

[6].

Possibilistic C-Means was defined by Krishnapuram in 1993 [17] to improve

some of the flaws of FCM. For example, PCM is said to be better in finding the

correct clusters in noisy datasets thanks to a less strict degree of belongingness

to every cluster. While FCM’s memberships represent probabilities, PCM’s

memberships represent typicality or an elastic constraint.

Thus, in PCM, the probabilistic constraint (see equation below) is eliminated,

and every cluster is independent of the other clusters, as shown by (18), and

minimises the objective function (19).

∑ 𝑢𝑖𝑗 = 1, 𝑗𝜖{1, … , 𝐶}𝐶
𝑖=1 (18)

𝐽𝑃𝐶𝑀(𝑋, 𝑈, 𝑉) = ∑ ∑ (𝑢𝑖𝑗)𝑞𝐷𝑖𝑗
2 +𝑛

𝑗=1
𝐶
𝑖=1 ∑ 𝜂𝑖 ∑ (1 − 𝑢𝑖𝑗)𝑞𝑛

𝑗=1
𝐶
𝑖=1 (19)

The PCM algorithm is applied twice. If the value of q is equal to 1, then the PCM

becomes crisp.

The main advantage of PCM is that, as it gives more emphasis to typicality, it

can visually separate distinctive objects very well. The main disadvantage is

that, when objects are not visually different, it produces poorer segmentation

performance.

The constraints of the algorithm are:

• A set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛} of N points with d dimensions.

• A number C of clusters where 𝐶 ≥ 2

• A confusion matrix 𝑈 = [𝑢𝑖𝑗] 𝜖[0, 1]; 1 ≤ 𝑖 ≤ 𝑐; 1 ≤ 𝑗 ≤ 𝑛 where i is the

index of the data point and j is the cluster.

• A vector 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑗 , … , 𝑣𝑐] of centroids.

• A distance 𝐷𝑖𝑗
2 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘, usually the Euclidean distance.

26

The steps of PCM are [17]:

1. Randomly initialise the possibilistic C-partition 𝑼(𝑜)

2. Estimate the value of the parameter 𝜼𝒊 by using the formula (20).

𝜂𝑖 = 𝐾
∑ 𝑢𝑖𝑗

𝑚𝑢𝑖𝑗
2𝑁

𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 (20)

3. Until (21) is true, repeat steps 4 and 5.

‖𝑈(𝑙−1) − 𝑈(𝑙)‖ < 𝜖 (21)

4. Update the prototypes using (22).

𝑢𝑖𝑗 =
1

1+(
𝑑𝑖𝑗

2

𝜂𝑖
)

1
𝑚−1

 (22)

27

3 Datasets and validation methods

3.1 Introduction

In this section, I will introduce the datasets and the validation methods I will use

in Section 4. There are eleven datasets, ten synthetically generated and one

from a real-world case, which is the Iris dataset. As for the validation methods,

they are divided in internal and external validation methods. The internal

methods are the performance, which will be measured through two indexes, the

Xie-Beni and the Silhouette, and the computational efficiency, which will be

measure through the number of iterations. Otherwise, I am going to use one the

external method, the accuracy.

3.2 Datasets

3.2.1 Synthetic dataset 1 (SD1)

I will use the Synthetic Dataset 1 (SD1) with the objective to compare KM with

FCM and FCM with FCM++ and S-FCM. Based on this aim, I have synthetically

generated this dataset with 1000 observations and three clusters, two of them

overlapping and one well-separated. This is a convenient number of

observations and clusters in order to reduce the number of iterations required

by the fuzzy clustering algorithms.

This dataset will allow me to check how much more accurate is the FCM

compared to the KM and how much more efficient are FCM++ and S-FCM

confronted to FCM. The pictorial representation of the dataset is given in Figure

1.

28

Figure 1. SD1

3.2.2 Synthetic dataset 2 (SD2)

I will use the Synthetic Dataset 2 (SD2) with the objective to compare KM with

FCM and FCM with FCM++ and S-FCM. Based on this, I have synthetically

generated this dataset with 1000 observations and three well-separated

clusters. This is a convenient number of observations and clusters in order to

reduce the number of iterations required by the fuzzy clustering algorithms.

This dataset will allow me to check how much more accurate is the KM

compared to the FCM in the event of well-separated clusters and how much

more efficient are FCM++ and S-FCM confronted to FCM. The representation of

the dataset is given in Figure 2.

29

Figure 2. SD2

3.2.3 Synthetic dataset 3 (SD3)

I will use the Synthetic Dataset 3 (SD3) with the objective to compare FCM and

GKFCM. Based on this, I have synthetically generated this dataset with 240

observations and three non-spherical and well-separated clusters. This is a

convenient number of observations and clusters in order to reduce the number

of iterations required by the fuzzy clustering algorithms.

This dataset will allow me to check how much more accurate is the GKFCM

compared to the FCM in the event of non-spherical and well-separated clusters.

The representation of the dataset is given in Figure 3.

Figure 3. SD3

30

3.2.4 Synthetic dataset 4 (SD4)

I will use the Synthetic Dataset 4 (SD4) with the objective to compare FCM and

PCM. Based on this, I have synthetically generated this dataset with 1000

observations and two well-separated clusters with outliers. This is a convenient

number of observations and clusters in order to reduce the number of iterations

required by the fuzzy clustering algorithms.

This dataset will allow me to check how much more accurate is the PCM

compared to the FCM in the event of outliers. The representation of the dataset

is given in Figure 4.

Figure 4. SD4

3.2.5 Synthetic dataset 5 (SD5)

I will use the Synthetic Dataset 5 (SD5) with the objective to compare FCM and

PCM. Based on this, I have synthetically generated this dataset with 1000

observations, 3 well-separated clusters with outliers and two attributes. This is a

convenient number of observations, clusters and attributes in order to reduce

the number of iterations required by the fuzzy clustering algorithms and to make

easier its representation. Also, it will allow me to see the behaviour of PCM

under a different number of clusters.

This dataset will allow me to check how much more accurate is the PCM

compared to the FCM in the event of outliers. The representation of the dataset

is given in Figure 5.

31

Figure 5. SD5

3.2.6 Synthetic dataset 6 (SD6)

I will use the Synthetic Dataset 6 (SD6) with the objective to compare FCM and

PCM. Based on this, I have selected this dataset from [26] which contains 3100

observations, 31 clusters with some noise and two features. This is a

convenient number of observations, clusters and attributes because it will allow

me to see the behaviour of PCM under an extreme number of clusters.

This dataset will allow me to check how much more accurate is the PCM

compared to the FCM in the event of outliers and many clusters. The

representation of the dataset is given in Figure 6.

32

Figure 6. SD6

3.2.7 Synthetic dataset 7 (SD7)

I will use the Synthetic Dataset 7 (SD7) with the objective to compare FCM and

GKFCM. Based on this, I have selected this dataset from [28] which contains

312 observations, 3 non-spherical clusters and two features. This is a

convenient number of observations, clusters and attributes because it will allow

me to see the behaviour of GKFCM under non-spherical and curved clusters.

Thus, this dataset will allow me to check how much more accurate is the

GKFCM compared to the FCM in the event of non-spherical clusters. The

representation of the dataset is given in Figure 7.

Figure 7. SD7

33

3.2.8 Synthetic dataset 8 (SD8)

I will use the Synthetic Dataset 8 (SD8) with the objective to compare FCM and

GKFCM. Based on this, I have selected this dataset from [28] which contains

373 observations, two non-spherical and fuzzy clusters and two features. This is

a convenient number of observations, clusters and attributes because it will

allow me to see the behaviour of GKFCM under non-spherical, fuzzy and

curved clusters.

Thus, this dataset will allow me to check how much more accurate is the

GKFCM compared to the FCM in the event of this specific dataset. The

representation of the dataset is given in Figure 8.

Figure 8. SD8

3.2.9 Synthetic dataset 9 (SD9)

I will use the Synthetic Dataset 9 (SD9) with the objective to compare FCM and

GKFCM and FCM and PCM. Based on this, I have selected this dataset from

[26] which contains 600 observations, 15 spherical and well-separated clusters

and two features. This is a convenient number of observations, clusters and

attributes because it will allow me to see the behaviour of FCM, GKFCM and

PCM under the conditions several well-separated clusters.

34

Thus, this dataset will allow me to check how much more accurate is the FCM

compared to the GKFCM and PCM in the event of this specific dataset. The

representation of the dataset is given in Figure 9.

Figure 9. SD9

3.2.10 Synthetic dataset 10 (SD10)

I will use the Synthetic Dataset 10 (SD10) with the objective to compare FCM

and GKFCM and FCM and PCM. Based on this, I have selected this dataset

from [28] which contains 300 observations, 3 clusters, two spherical and one

non-spherical, and two features. This is a convenient number of observations,

clusters and attributes because it will allow me to see the behaviour of FCM,

GKFCM and PCM under the conditions mixed spherical and non-spherical

clusters.

Thus, this dataset will allow me to check how much more accurate is the FCM

compared to the GKFCM and PCM and vice-versa in the event of this specific

dataset. The representation of the dataset is given in Figure 10.

35

Figure 10. SD10

3.2.11 Real-world dataset 1 (RWD1)

I will use the Real-world Dataset (RWD1) with the objective to compare KM with

FCM and FCM with FCM++ and S-FCM. Based on this, I have selected this

dataset which contains 150 observations, 3 well-separated and overlapping

clusters, and four features. This is a convenient number of observations,

clusters and attributes because it will allow me to compare KM, FCM, FCM++

and S-FCM within a reasonable amount of iterations.

Thus, this dataset will allow me to check how much better performance and

efficiency has FCM confronted to KM and vice-versa, as well as FCM++ and S-

FCM compared with FCM. The representation of the dataset is given in Figure

11, which shows the four attributes of the dataset in a confusion matrix.

36

Figure 11. RWD1

3.3 Validation methods

3.3.1 Internal methods

I will use two internal validation methods, performance and efficiency. I will

measure performance through two indexes, the Xie-Beni and the Silhouette.

Equation (23) shows how the Xie-Beni index works. It defines the separation

between the clusters, which is the minimum square distance that exists

between the cluster centres and the compactness within each cluster, which is

the average square distance existing between every observation and its cluster

center. [23] The smaller the value of this index is, the more optimal the number

of clusters is.

Otherwise, equation (24) shows how the Silhouette index works. It “validates

the clustering performance based on the pairwise difference of between and

within-cluster distances”. [23] The larger the value of this index is, the more

optimal the number of clusters is.

[∑ ∑ 𝑑2(𝑥, 𝐶𝑖)]/[𝑛 · 𝑚𝑖𝑛𝑖,𝑗≠𝑖𝑑
2(𝑥, 𝐶𝑖)]𝑥𝜖𝐶𝑖𝑖 (23)

{
1

𝑁𝐶
∑ {

1

𝑛𝑖
∑

𝑏(𝑥)−𝑎(𝑥)

max [𝑏(𝑥),𝑎(𝑥)]
}𝑥𝜖𝐶𝑖𝑖 (24)

On the other hand, I will measure efficiency through the number of iterations.

37

3.3.2 External methods

I will use one external measure, accuracy. I will validate accuracy by finding the

correct number of well-clustered observations, based on the original clusters,

and dividing it by the total number of observations.

38

4 Experiments

4.1 Introduction

I have established four groups of experiments which concern six algorithms. I

will perform fifteen experiments to do the validation, using eleven different

datasets. The datasets contain different kind of clusters such as overlapping or

non-overlapping clusters with and without noise. Some of them are spherical

and some other contain non-spherical geometrical shapes. I will explain the

relationship between hypotheses, experiments and datasets below.

The first group of experiments concern the K-Means and the Fuzzy C-Means

algorithms as well as the datasets SD1, SD2 and RWD1. The details of these

datasets are given in Section 3. I want to validate that FCM is more accurate

than KM when the dataset contains overlapping clusters. I also want to validate

that KM is always more computationally efficient than FCM. The parameters for

these experiments are efficiency and accuracy.

The second group of experiments concerns Fuzzy C-Means, Fuzzy C-Means++

and Suppressed-Fuzzy C-Means. For this group, I will use the datasets SD1

and RWD1, two datasets that contain both overlapping and well-separated

fuzzy clusters. I want to validate that FCM++ and S-FCM perform better than

FCM when the number of clusters set in the algorithm is exactly or closer to the

actual number, and they perform worse otherwise. The parameters used to

validate these experiments are efficiency and performance.

The third group of experiments involves Fuzzy C-Means and Gustafson Kessel

Fuzzy C-Means. For this group, I will use five datasets, SD3, SD7, SD8, SD9

and SD10, which contain different kind of datasets, such as spherical and non-

spherical clusters. I will check under which conditions GKFCM performs better

than FCM, and vice-versa. The parameters used to validate these experiments

are efficiency and accuracy.

Finally, in the fourth group of experiments I will compare Fuzzy C-Means and

Possibilistic C-Means on the datasets SD4, SD5, SD6, SD9 and SD10. These

datasets contain clusters with different degrees of outliers and shapes. I want to

validate that, for clusters with different degrees of outliers and shapes, PCM is

more accurate than FCM. The parameters used for the validation are efficiency

and accuracy.

The following sections will provide the results of each group of experiments, a

discussion at the end of each one and a final discussion involving all of the

experiments.

39

4.2 Groups of experiments

4.2.1 K-Means and Fuzzy C-Means

The following group of experiments is based on three experiments and

validations involving K-Means and Fuzzy C-Means.

The main advantage of K-Means over Fuzzy C-Means is that it is a faster

algorithm, which means that it takes less iterations to converge. Otherwise, the

main advantage of FCM over KM is that is more accurate when clusters are

overlapping. I am going to validate this by measuring the accuracy and the

efficiency of each algorithm and by comparing the results.

I will use SD1 and SD2 to validate that FCM is more accurate than KM for

overlapping and fuzzy clusters and that KM is always more computationally

efficient. I will use a RWD with both overlapping and well-separated clusters to

do the validation under realistic observations with unexpected situations.

The results of the validation are summarised in Table 1. The table shows that

when clusters are clear and separated and for over ten executions of the

algorithm, KM requires an average of 1.89 iterations to converge, whereas FCM

requires 10.82 iterations. In both cases, the accuracy is the same, 100%. Then,

for clear and well-separated clusters, either KM or FCM are equally accurate

finding the actual clusters. In the specific case of KM, it is clearly faster than

FCM.

Iterations
K-Means

Iterations
Fuzzy C-
Means

Accuracy
K-Means

Accuracy
Fuzzy C-
Means

1.89 10.82 100% 100%
Table 1: Validation for Hypothesis 1 using SD2

Hence, the numbers show that, for datasets with well-separated clusters, both

KM and FCM have the same accuracy, although KM is converges faster than

FCM.

Table 2 shows the results of the validation on a dataset with three fuzzy clusters

where two of them are overlapping overlap (SD1). Over ten executions of the

algorithm, KM has performed an average of 2.89 iterations, whereas FCM has

performed an average of 63.68 iterations. The average accuracy of KM has

been 29.8%, and the average accuracy of FCM, 36.6%.

Based on the results, for overlapping and fuzzy clusters, FCM is more accurate

than KM, even though KM is clearly more computationally efficient than FCM.

40

Iterations
K-Means

Iterations
Fuzzy C-
Means

Accuracy
K-Means

Accuracy
Fuzzy C-
Means

2.89 63.68 29.8 36.5
Table 2: Validation for Hypothesis 2 with SD1

So far, I have used synthetic datasets specifically built for the validation. In real-

world, though, the observations in a dataset are not so optimal to validate the

hypotheses, since the observations are unexpected. Hence, I want to do the

validation under the circumstances of unexpected conditions. For that objective,

I am going to use a real-world dataset (RWD1). This dataset contains one clear

cluster and two overlapping clusters.

Table 3 shows the results of the validation with RWD1. After ten executions of

both KM and FCM, the average iterations of KM are 2.14, whereas the average

iterations for FCM are 47.17. The average accuracy of KM is 29.5% and the

average accuracy of FCM is 28.7%. Therefore, although the KM is slightly more

accurate than FCM, the difference is not significative. Also, the KM is much

more efficient than FCM.

Iterations
K-Means

Iterations
Fuzzy C-
Means

Accuracy
K-Means

Accuracy
Fuzzy C-
Means

2.14 47.17 29.5 28.7
Table 3: Validation for Hypothesis 2 using RWD1

In conclusion, FCM provides with more information about the class every

observation belongs to through a probability. This allows to get more accurately

the class of each data point, but also, in the cases when it is not clear where do

they belong to, it indicates it is possibly an outlier. However, FCM takes

increasingly longer time to converge as the clusters get more overlapping in

nature. In datasets with clear and separated clusters, KM is more accurate than

FCM. Finally, in all cases, FCM has been less computationally efficient than

KM, which is a disadvantage for large datasets.

41

4.2.2 Fuzzy C-Means, Fuzzy C-Means ++ and Supressed-Fuzzy C-Means

In this group of experiments, I want to investigate how good the performance

(internal validation) and the efficiency (external validation) of FCM++ and SFCM

algorithms is on datasets containing fuzzy and overlapping clusters. The

datasets used for the validation are SD1 and RWD1. I will execute the algorithm

ten times and then I will calculate the average number of iterations and the

average performance.

Even though the actual number of clusters is always k = 3, I will also perform

the validation for k = 2, 3, 4, 5. This will help me determine whether the

algorithms actually find the best results for the actual number of clusters of the

datasets or for another number of clusters. It will show which number of clusters

is most suitable for these soft algorithms, effectively determining their capacity

to perform well with overlapping clusters.

In order to carry the performance validation, I have chosen the indexes Xie-Beni

and Silhouette because they are two of the most widely used indexes to

validate fuzzy algorithms.

My third hypothesis is that modified Fuzzy C-Means algorithms, such as Fuzzy

C-Means++ and Suppressed Fuzzy C-Means, increase the computational

efficiency compared to Fuzzy C-Means and they improve the performance.

The results of the validation are in Table 4, Figure 12, Figure 13 and Figure 14.

Table 4 illustrates the efficiency and performance of FCM, FCM++ and S-FCM

for k = 2, 3, 4, 5. The efficiency is measured through the iterations and the

performance through the Xie-Beni and Silhouette indexes.

Table 4 shows that for actual number of clusters k=3, S-FCM takes 20 iterations

to converge while FCM and FCM++ take between 64 and 66. Otherwise, the XB

index is lower for FCM and FCM++, 0.288, than for S-FCM, 0.577, but the

Silhouette index is similar in all cases. For the rest of the values of k, it is worth

it to note that the number of iterations of S-FCM increase slightly as k

increases, while in the case of FCM and FCM++, it increases significantly.

Finally, for FCM and FCM++, the values of XB are always lower than S-FCM,

and the values of Silhouette are similar in all cases.

Num. of
clusters

(k)
It. FCM

It.
FCM++

It. S-
FCM

XB
FCM

XB
FCM++

XB S-
FCM

Sil.
FCM

Sil.
FCM++

Sil. S-
FCM

2 35.1 37.3 11.7 0.18 0.18 0.455 0.717 0.717 0.678

3 64.2 66.6 20 0.228 0.228 0.577 0.675 0.675 0.616

4 245.3 186.3 26.3 0.207 0.192 0.574 0.644 0.673 0.565

5 101.1 102.7 25.9 0.265 0.265 0.657 0.608 0.608 0.523
Table 4: Validation for Hypothesis 3 using XB and Sil. Indexes for SD1

42

Therefore, S-FCM is always more computationally efficient than FCM and

FCM++, but the Xie-Beni index shows that FCM and FCM++ perform better

than S-FCM. Also, there is not much difference between FCM and FCM++ in

efficiency and performance.

Figure 12. Efficiency of FCM, FCM++ and S-FCM for SD1

Figure 12 shows that the efficiency of FCM and FCM++ is very similar, the

efficiency of S-FCM is better, and that the efficiency of SFCM is more consistent

than FCM and FCM++ for all values of k.

Figure 13. Performance (Xie-Beni) of FCM, FCM++ and S-FCM for SD1

Figure 13 shows that FCM and FCM++ always performs better than S-FCM, as

their values are lower.

43

Figure 14. Performance (Silhouette) of FCM, FCM++ and S-FCM for SD1

Figure 14 shows that FCM and FCM++ always performs better than S-FCM

especially for lower values of k.

Table 5 and in Figures 15, 16 and 17 are the results of the validation using a

real-world data set (RWD1) with less overlapping clusters than SD1. The

number of iterations is like the one for SD1, showing that, as the value of k

increases, so does the number of iterations. On the contrary, the number of

iterations of S-FCM is lower than those of FCM and FCM++ being always very

similar for all values of k.

The Xie-Beni indexes are quite low for FCM and FCM++, being the lowest for

k=2, followed by k=3. On the contrary, the S-FCM shows higher values of XB

compared to FCM and FCM++, especially for higher values of k, although the

difference between the three algorithms is smaller than that of SD1.

On the other hand, the Silhouette index shows higher values for FCM and

FCM++, which are very similar. The highest value is for k=2. The values for S-

FCM are more like those of FCM and FCM++ than in the case of SD1. The

highest value is also for k=2. Therefore, the performance is slightly better in the

case of FCM and FCM++.

Number
of

clusters
(k)

It.
FCM

It.
FCM++

It. S-
FCM

XB
FCM

XB
FCM++

XB S-
FCM

Sil.
FCM

Sil.
FCM++

Sil.
S-

FCM

2 23.4 22.8 10.5 0.113 0.113 0.253 0.807 0.807 0.792

3 45.7 48.4 9.8 0.222 0.222 0.59 0.729 0.729 0.69

4 68.9 73.9 13.4 0.272 0.272 0.835 0.669 0.668 0.596

5 107.5 73 14.3 0.367 0.359 1.68 0.609 0.658 0.524
Table 5: Validation for Hypothesis 3 using XB and Sil. Indexes using RWD1

44

Figure 15. Efficiency of FCM, FCM++ and S-FCM for RWD1

Table 15 shows that the number of iterations of FCM++ increase as k

increases, but it becomes stable for k = 4, 5 and the number of iterations of S-

FCM remains low and stable for every value of k.

Figure 16. Performance (Xie-Beni) of FCM, FCM++ and S-FCM for RWD1

Table 16 shows that the XB index is better on FCM and FCM++, as it is lower,

although in the case of S-FCM performs better for lower values of k, which are

closer to the actual number of clusters, and worse for higher values of k. On the

contrary, XB remains lower and stable for FCM and FCM++. It is also worthy to

note that FCM and FCM++ have similar values.

45

Figure 17. Performance (Silhouette) of FCM, FCM++ and S-FCM for RWD1

In Table 17, the Silhouette index is better on FCM and FCM++, even though the

values are similar for the three algorithms.

In conclusion, either on the synthetic or the real-world dataset with overlapping

and well-separated clusters (SD1 and RWD1), both FCM and FCM++ perform

better than S-FCM, even though their efficiency is worse. Therefore, S-FCM is

more computationally efficient than FCM and FCM++: the efficiency of these

two algorithms decreases as the number of k increases, whereas for S-FCM the

efficiency remains always stable. However, the performance of S-FCM is a bit

better for less overlapping clusters. Hence the less the clusters overlap on a

dataset, the better the S-FCM performs, and the more the clusters overlap, the

better the FCM and FCM++ perform. In any case, if efficiency is important and

the clusters do not overlap so much, the best choice is S-FCM, whereas if

efficiency is not important, either FCM or FCM++ are a good option.

Finally, it is interesting to note that, for the datasets analysed, FCM++ does not

seem to improve the efficiency of FCM, as it is claimed.

46

4.2.3 Fuzzy C-Means and Gustafson-Kessel Fuzzy C-Means

Gustafson-Kessel Fuzzy C-Means is an algorithm designed to improve FCM’s

efficiency and to work better with non-spherical clusters. Next, I am going to

introduce a group of experiments on five datasets to validate these

assumptions. Three of the datasets contain non-spherical clusters and different

levels of fuzziness (SD3, SD7 and SD8), one contains spherical clusters (SD9)

and another has a mix of spherical and non-spherical clusters (SD10). They will

let me check under which conditions GKFCM performs better than FCM and

vice-versa.

Table 6 shows the results of the validation for SD3. The number of iterations of

FCM increases as the value of k increases, except for k=4, which is the lowest

value. The number of iterations of GKFCM, instead, significantly decreases

when k > 2, and is very high for k=2. This shows that, in general, GKFCM is

much more computationally efficient than FCM, keeping the number of

iterations very stable for higher values of k. On the contrary, and as seen in

previous validations of FCM, it is not very efficient as the number of clusters

increase.

The XB index is always lower for FCM compared to GKFCM, showing that the

former performs better, especially for k=3 and k=4. The lowest values of XB in

GKFCM are those for k=2 and k=4.

As mentioned in Sections 4.3, the higher values of the Silhouette index

compliment the results of XB index, that is, that FCM performs better in general.

However, Figure 21 and Figure 22 show that GKFCM has found the correct

clusters, whereas FCM has not, although the indexes values indicate the other

way. This may be because these indexes are ideally defined for spherical

clusters, and since the dataset SD3 has non-spherical clusters, the index values

do not correctly indicate the performance of the GKFCM algorithm.

Number
of

clusters
(k)

It. FCM
It.

GKFCM
XB FCM

XB
GKFCM

Sil. FCM
Sil.

GKFCM

2 71 161 0.208 0.388 0.713 0.492

3 113 13 0.179 0.416 0.73 0.497

4 45 14 0.085 0.359 0.814 0.397

5 684 14 0.222 1.088 0.752 0.155
Table 6: Validation for Hypothesis 4 using SD3

47

Figure 18. Efficiency of FCM, and GKFCM for SD3

Figure 18 shows that FCM is less efficient than GKFCM for k = 3, 4, 5, but more

efficient for k = 2. The number of iterations for GKFCM are similar for all values

of k, whereas they are very different in the case of FCM.

Figure 19. Performance (Xie-Beni) of FCM, and GKFCM for SD3

Figure 19 shows that FCM always performs better than GKFCM, especially for k

= 3 (the actual number of clusters) and k = 4.

48

Figure 20. Performance (Silhouette) of FCM and GKFCM for SD3

Figure 20 demonstrates that FCM always performs better than GKFCM,

according to Silhouette’s index, especially for higher values of k.

Observe from Figure 21 and Figure 22 that GKFCM is very good at finding the

actual clusters when they are non-spherical. The accuracy is much better for

GKFCM than for FCM. On the contrary, FCM does not perform well for non-

spherical clusters and tries to fit them based on the assumption that they are

overlapping, resulting in inaccurate detection of clusters.

Figure 21. Clusters of SD3 recognised by FCM

Figure 22. Clusters of SD3 recognised by GKFCM

FCM, k=3

GKFCM, k=3

49

Table 7 shows the results of the validation on the dataset SD7, which contains

non-spherical clusters with noise. As seen on the table, the computational

efficiency of GKFCM and FCM do not seem to follow a pattern. This may be

because the clusters are not spherical. FCM is not very efficient for k=2, k=4,

and k=5, whereas its efficiency gets better for the actual number of clusters,

k=3. Otherwise, GKFCM seems to be more efficient than FCM for all the values

of k, except for k=3.

The XB index indicates that FCM performs better higher values of k and

GKFCM for k=3 and k=4. Otherwise, in the case of GKFCM, the Silhouette

index is better for k=3 whereas for FCM, it performs similarly for higher values

of k. In general, the XB and the Silhouette indexes show that the performance

of GKFCM is a bit better for non-spherical and curved clusters Figure 23 and

Figure 24 show that both algorithms have found similar clusters.

Therefore, for datasets with non-spherical and curved clusters, GKFCM

performs a bit better than FCM while having a similar computational efficiency,

but the clusters found by both algorithms are similar.

Number
of

clusters
(k)

It. FCM
It.

GKFCM
XB FCM

XB
GKFCM

Sil. FCM
Sil.

GKFCM

2 1000 668 0.37 0.327 0.577 0.56

3 210 319 0.152 0.181 0.657 0.612

4 1000 1000 0.17 0.168 0.632 0.581

5 1000 356 0.154 0.496 0.619 0.353
Table 7: Validation of FCM and GKFCM using SD7

Figure 23. Clusters of SD7 recognised by GKFCM

50

Figure 24. Clusters of SD7 recognised by FCM

Figure 23 and Figure 24 display the results of the GKFCM and FCM algorithms

respectively. The clusters found by both algorithms are very similar.

The next experiment involves the dataset SD8, which also contains non-

spherical clusters. These clusters, however, are made of more fuzzy

observations than the previous two clusters. It allows to validate how good the

performance of GKFCM is when the shape of the clusters is made out of a

cloud of scattered observations. It will also reveal the performance of FCM

under the circumstances of fuzzy non-spherical clusters.

Table 8 shows the results of the validation. The computational efficiency of FCM

is similar to that of datasets SD3 and SD7, since it gets worse as the value of k

increases. In the case of GKFCM, the computational efficiency does not follow a

pattern for the values of k, although it is better for k=3.

The XB index is similar for both FCM and GKFCM when k=2 and k=3. In the

case of GKFCM, though, the value of the index increases significantly for k=3

and k=4. Something similar occurs for the Silhouette index. For FCM, it is very

similar for all values of k, whereas for GKFCM, the highest value is that of the

actual number of clusters, k=2, and performs worse and worse the higher the

value of k. This shows that GKFCM works better for the actual number of

clusters, when these are non-spherical, and worse for the rest. FCM, instead,

works the same for all values of k.

51

However, Figures 25 and Figures 26 show that both algorithms have found

similar clusters, so it is likely that the Xie-Beni index and the Silhouette index

are not the best tool to validate fuzzy clustering on non-spherical clusters.

Number
of

clusters
(k)

It. FCM
It.

GKFCM
XB FCM

XB
GKFCM

Sil. FCM
Sil.

GKFCM

2 35 380 0.142 0.139 0.744 0.734

3 88 72 0.152 0.186 0.759 0.524

4 91 195 0.105 0.204 0.754 0.56

5 152 405 0.153 0.787 0.734 0.471
Table 8: Validation for Hypothesis 4 using SD8

Figure 25. Clusters of SD8 recognised by GKFCM

52

Figure 26. Clusters of SD8 recognised by FCM

The next dataset is SD9, which contains fifteen clusters with outliers. Here I

want to see the compare the performance and efficiency of both algorithms on a

dataset with spherical clusters.

Table 9 shows the results of the validation, in this case, only for k=15 because

the computational efficiency of the GKFCM working with this dataset is very low.

For example, it has taken GKFCM 818 iterations to converge, and only 70 for

FCM. Nevertheless, XB index shows that FCM performs worse than, although

the Silhouette index is similar in both cases.

Hence, on datasets with several clusters with outliers, GKFCM performs a bit

better than FCM, but FCM is much more efficient than GKFCM.

Number
of

clusters
(k)

It. FCM
It.

GKFCM
XB FCM

XB
GKFCM

Sil. FCM
Sil.

GKFCM

15 70 818 1 0.844 0.818 0.85
Table 9: Validation of PCM and GKFCM using SD9

53

Figure 27. Clusters of SD9 recognised by GKFCM

Figure 28. Clusters of SD9 recognised by FCM

Finally, the last validation of this section is on the dataset SD10, which contains

three spherical and non-spherical fuzzy clusters. This is an interesting validation

to check the performance and the efficiency of both algorithms when the

dataset has different kinds of clusters.

Table 10 shows that, for all cases, the computational efficiency decreases as

the value of k increases, although the efficiency of GKFCM gets much worse.

Otherwise, the XB index is similar in both cases, being always lower when k=3,

the real number of clusters. In the case of the Silhouette index, the values of

both algorithms are also similar for all values of k. In the case of FCM, however,

the bigger value is when k=3, and for GKFCM, when k=4.

54

Consequently, for datasets containing both spherical and non-spherical

clusters, FCM is much more efficient than GKFCM and performs slightly better.

Nonetheless, Figure 29 and Figure 30 show that both algorithms have failed in

finding the actual clusters, even though FCM is closer to the real ones, since it

has classified better more data points from the non-spherical cluster.

 It. FCM
It.

GKFCM
XB FCM

XB
GKFCM

Sil. FCM
Sil.

GKFCM

2 44 45 0.277 0.257 0.65 0.633

3 61 291 0.14 0.171 0.751 0.668

4 72 707 0.28 0.176 0.71 0.7

5 113 588 0.354 0.357 0.625 0.569
Table 10: Validation of FCM and GKFCM using SD10

Figure 29. Clusters of SD10 recognised by FCM

Figure 30. Clusters of SD10 recognised by GKFCM

55

4.2.4 Fuzzy C-Means and Possibilistic C-Means

Possibilistic C-Means algorithm is based on the possibilistic theory instead of

the probabilistic theory of FCM and its derivatives. This algorithm allows to

incorporate the noise and outliers in the dataset when the clusters are

separated. For that reason, it is supposed to be more accurate than FCM in

such cases.

In this group of experiments, I am going to validate this on five different

datasets: SD4, SD5, SD6, SD9 and SD10. The first and the second datasets

contain two and three well-separated clusters with outliers between them

respectively. They will be used to validate the performance of PCM when there

are outliers. The third and the fourth dataset contain 31 and 15 clusters with

outliers. They will allow me to check if the number of clusters affects the

performance of both algorithms. Finally, the last dataset contains two well-

separated and spherical clusters with noise and one non-spherical cluster to

validate the performance of FCM and PCM under unexpected clusters.

Table 4 shows the efficiency and the accuracy of both FCM and PCM when

k=2. Notice that the accuracy of PCM is slightly better than that of FCM.

However, the number of iterations of FCM are half as many as PCM.

It. FCM It. PCM Accuracy FCM Accuracy PCM

16 38 0,99 0,991
Table 11: Validation for Hypothesis 5 using SD4

Therefore, while the PCM is 1% more accurate than FCM, this different is not

significant to say that PCM is better than FCM in the event of outliers.

Nevertheless, FCM is much more efficient than PCM.

Figure 31. Clusters of SD4 recognised by PCM

PCM

56

Figure 32. Clusters of SD4 recognised by FCM

Figure 33. Original classes in SD4 vs PCM and FCM results

Figure 33 shows the magnified views of the clusters found in Figure 31 and Figure 32.

The left panel shows the noisy area of the actual dataset and the centre and right panel

shows the same area analysed using PCM and FCM, respectively. Observe that on the

noisy area, PCM is slightly more accurate than FCM finding the data points belonging

to the actual clusters of the dataset, although the difference is not significant. However,

the computational efficiency of PCM declines by more than half of the efficiency of

FCM. This means that PCM may be a better choice of algorithm when accuracy is

more important than efficiency. On the other hand, FCM can be more useful for faster

analysis because it is computationally more efficient (less than half the number of

iterations compared to PCM) if the accuracy is of less importance.

Table 12 shows the efficiency and the accuracy of both algorithms for the dataset SD5,

which has three clusters with outliers in the regions in between the clusters. The FCM

has done 49 iterations and the PCM, 194. On the other hand, the accuracy of FCM is

much higher than that of PCM. In fact, Figure 34 shows that the majority of

observations have been classified in one of the clusters, while a second cluster is

made only out of one single green observation in the middle of the figure.

FCM

57

It. FCM It. PCM Accuracy FCM Accuracy PCM

49 194 88.7% 33.5%
Table 12: Validation of PCM and FCM using SD5

Figure 34. Clusters of SD5 recognised by PCM

Figure 35. Clusters of SD5 recognised by FCM

Otherwise, Figure 35 shows that FCM has found better clusters than PCM. In

conclusion, in the event of datasets with three spherical clusters and outliers, FCM is

more efficient and accurate than PCM.

Table 13 shows the validation on the dataset SD6, which contains 31 well-separated

spherical clusters with some noise. In this case, FCM has done more than twice as

58

many iterations as PCM, whereas its accuracy has been 89.7% and 87.7% for PCM, so

the difference is not significant.

It. FCM It. PCM Accuracy FCM Accuracy PCM

234 81 89.7% 87,7%
Table 13: Validation using SD6

Figure 36. Clusters of SD6 recognised by FCM

Figure 37. Clusters of SD6 recognised by PCM

Figure 36 and Figure 37 represent the cluster identification of dataset SD6 with FCM

and PCM, respectively. Observe that, in general, the PCM is better at identifying

clusters in noisy area compared to FCM.

59

In conclusion, for datasets with spherical and well-separated clusters with outliers, the

accuracy of both algorithms is the same, but PCM is significantly more efficient than

FCM.

Table 14 shows the results of the validation for the SD9, which has 15 spherical and

well-separated clusters with some noise. The accuracy of both algorithms is the same,

99,67%, but FCM takes almost half the iterations to converge compared to PCM.

It. FCM It. PCM Accuracy FCM Accuracy PCM

32 56 99,67% 99,67%
Table 14: Validation using SD9

Figure 38. Clusters of SD9 recognised by FCM

Figure 39. Clusters of SD9 recognised by PCM

60

Figure 38 and Figure 39 show the cluster identification by FCM and PCM, respectively.

As evident by the efficiency, the figures compliment the observation that both

algorithms have the same accuracy in finding clusters. Also, since the FCM is

computationally more efficient than PCM, the former would be a better choice of an

algorithm for this type of datasets.

Finally, Table 15 shows the results of the validation for the dataset SD10, which

contains a mixture of spherical and non-spherical clusters with noise. FCM has taken

56 iterations to converge and PCM, 96. On the other hand, the accuracy of FCM has

been 76.3% and that of PCM, 65%.

It. FCM It. PCM Accuracy FCM Accuracy PCM

56 96 76.3% 65%
Table 15: Validation using SD10

Figure 40. Clusters of SD10 recognised by FCM

Figure 41. Clusters of SD10 recognised by PCM

61

Therefore, for datasets with both spherical and non-spherical clusters, FCM is more

efficient more accurate than PCM. The latter requires twice as many iterations to

converge as FCM.

However, notice from Figure 40 and 41 that neither FCM nor PCM can correctly identify

the clusters present in the dataset. On more detail observation, although it appears that

FCM does well to identify the spherical clusters present in the dataset, it fails for the

non-spherical cluster and tries to find overlapping clusters instead. On the other hand,

PCM does not identify either the spherical or the non-spherical clusters of the dataset

correctly.

This shows that for datasets with mixed clusters, both FCM and PCM fails to do correct

analysis, although PCM fails relatively more miserably than FCM as the latter at least

finds the spherical clusters to some extent.

4.3 Discussion

In this section, I have compared different algorithms to investigate the evolution of hard

and soft clustering techniques in terms of efficiency, accuracy and performance on

datasets with differently shaped clusters.

I have found that KM is definitely a better choice of algorithm for datasets with clearly

defined clusters and has higher computational efficiency. FCM also performs as good

as KM in the same cases in terms of accuracy, however, its computational efficiency is

considerably lower compared to that of KM, making KM a better choice. On the other

hand, FCM is generally a better algorithm for most cases involving datasets with

overlapping clusters. Also, I have found that KM does perform well when overlapping

clusters are present, and its computational efficiency is still better than that of FCM.

This leads me to question whether the little improvement of accuracy offered by FCM

for overlapping clusters is worth the significant reduction of computational efficiency. Of

course, this requires more comprehensive study of both these algorithms, which is

beyond the scope of this project.

As for the comparison between FCM and its derivatives FCM++ and S-FCM, the

performance of the first two improves when clusters overlap more. However, their

computation efficiency gets worse as the number of clusters increase. It is interesting

to note that the performance of the three algorithms become similar when there is less

overlap between clusters, however, SFCM is always computationally more efficient

compared to the other two. Therefore, when the clusters do not strongly overlap then

SFCM is a better choice because of its highly invariable computational efficiency with

number of clusters in the dataset.

For the comparison of the GKFCM and FCM, I have used five different datasets: three

non-spherical, one spherical and one mixed. The dataset with non-spherical and clear

clusters, the GKFCM is much more computationally efficient than FCM, whereas FCM

has performed better. However, the accuracy of GKFCM is found to be much better

than that of FCM. This may be because the indexes used to validate this dataset are

defined for spherical datasets, which may not be ideal for this case. On the other hand,

62

both algorithms show similar performance for datasets with non-spherical and noisy

clusters, although GKFCM is slightly more efficient. It is important to note that they both

fail to find the actual clusters. Finally, for non-spherical and fuzzy clusters, GKFCM is

clearly less efficient than FCM, whereas its performance is better than that of FCM.

Once again, they both fail to find the actual clusters, reconfirming the scepticism over

the use of the indexes to validate non-spherical clusters. On the contrary, for spherical

clusters with noise, GKFCM is significantly less efficient than FCM, although its

performance in general is better. They both have similar accuracy in finding clusters.

Therefore, FCM is a better choice because is more computationally efficient. At last, for

mixed clusters, GKFCM is less efficient than FCM, yet the performance is similar in

both cases. However, FCM seems to be more accurate in finding the actual clusters. In

conclusion, GKFCM is a better choice for non-spherical and clear clusters while FCM is

better for spherical clusters.

Finally, between PCM and FCM for non-overlapping and noisy clusters, I did not find

any conclusive answer about the better choice between the two. In general, the

accuracy of PCM is slightly better than FCM, but its computational efficiency is

significantly lower. For the case of a dataset with three separated and noisy clusters,

the PCM completely fails to identify correct cluster, whereas the FCM succeeds

contrary to expectation. However, PCM is considerably better than FCM in terms of

computational efficiency when the dataset contains 31 clusters by keeping the same

accuracy as FCM. However, for the dataset with 15 clusters, FCM has been more

efficient and accurate than PCM, so this needs further investigation in order to find out

which is the ideal number of clusters under which PCM is better than FCM. Finally, for

mixed clusters, FCM outperforms PCM in both accuracy and computational efficiency,

although they both fail to correctly identify the actual clusters. In conclusion, the choice

between FCM and PCM is not straightforward and appears to depend on the case by

case basis.

63

5 Conclusions

During this project, I have reviewed the history of clustering and the main contributions

to the field in order to follow what the improvements of each algorithm has been over

the rest. I have validated these improvements in a series of experiments on six

clustering algorithms, K-Means, Fuzzy C-Means, Fuzzy C-Means++, Suppressed-

Fuzzy C-Means, Gustafson Kessel Fuzzy C-Means and Possibilistic C-Means.

K-Means was one of the first clustering algorithms. It was first formulated in 1956 and

its aim was to become a tool to find groups in data based on the sum-of squares

criterion. Even though KM is accurate in finding groups when the data contains well-

separated clusters, it is not so much when they are overlapping.

To solve this problem, Bezdek defined the Fuzzy C-Means algorithm in 1973 based on

the KM. FCM was able to tell the degree of belongingness of each observation to every

cluster, thus being more accurate with overlapping clusters. However, FCM does not

perform well on datasets with different shapes, because it assumes that they all are

spherical. Also, the convergence speed of FCM is very slow compared to KM.

Since then, other authors have formulated several algorithms in order to improve FCM.

Some of the most important contributions are the Gustafson Kessel Fuzzy C-Means

and the Possibilistic C-Means.

Gustafson and Kessel created GKFCM in 1978, being the first one explicitly created to

improve FCM. Unlike FCM, GKFCM adapts to the shape of every cluster in a dataset,

and it is more accurate especially when clusters are non-spherical.

Otherwise, PCM was defined by Krishnapuram and Keller in 1993. Unlike FCM, where

the sum of all the degrees of belongingness of an observation to all the clusters must

be equal to 1, PCM does not have this constraint. In PCM, a degree is assigned to

each data point based on how close it is to each cluster so, for example, the outliers

may not belong to any of them. This makes PCM a better choice for clusters containing

noise and outliers.

More recently, there have been some other attempts to improve the FCM’s

computational efficiency. I have chosen two of the more recent, which are Fuzzy C-

Means++ and Suppressed-Fuzzy C-Means.

Throughout this project, I have designed a series of experiments to validate the

improvements of each algorithm over another. I have found that FCM is more accurate

than KM for datasets with overlapping clusters, although the difference is not very high.

Also, KM is significantly more computationally efficient than FCM in all cases.

Moreover, I have discovered that FCM is still the fuzzy algorithm that performs better

for spherical clusters, although S-FCM improves its efficiency. On the contrary, FCM++

does not show any significant advantage over FCM. On the other hand, I have

validated that, in some cases, GKFCM performs better than FCM when clusters are

non-spherical. Finally, PCM has been more accurate than FCM when the number of

clusters is very high, but it has not shown any advantage when the number of clusters

is low.

64

This work aims at being a starting point for further investigations about clustering to

better define when it is adequate to choose one algorithm or another. Although I have

mainly used synthetic datasets, further studies are required with real-world datasets to

test the algorithms under unexpected situations. Also, it will be interesting to use other

parameters for the validations.

65

6 Bibliography

[1] Ruspini EH, Bezdek JC, Keller JM (2019) ‘Fuzzy Clustering A Historical

Perspective’, IEEE Comp. Int. Mag. 14(1): 45-55

[2] Cebeci Z, Yildiz F (2015) ‘Comparison of K-Means and Fuzzy C-Means Algorithms

on Different Cluster Structures’, Journal of Agricultural Informatics. Vol. 6, No. 3:13-23

[3] Pakhira MK, Bandyopadhyay S, Maulik U (2004) ‘Validity index for crisp and fuzzy

clusters’, Pattern Recognition 37(3):487-501

[4] Bock (2017) Clustering Methods: A History of k-Means Algorithms, in Studies in

Classification, Data Analysis, and Knowledge Organization, pp. 161-172

[5] MacQueen, JB (1967) ‘Some Methods for Classification and Analysis of Multivariate

Observations’. Proc. of 5th Berkeley Symp. on Mathematical Statistics and Probability,

Berkeley, University of California Press, 281-297.

[6] Ali, MA, Karmakar, GC & Dooley, LS (2008) ‘Review on Fuzzy Clustering

Algorithms’. IETECH Journal of Advanced Computations, vol. 2, no. 3, 169 – 181

[7] Suganya, R & Shanthi, R (2012) ‘Fuzzy C- Means Algorithm - A Review’. Int. J. of

Scientific and Research Publications, vol. 2, no. 11, 1-3

[8] Winkler R, Klawonn, F, Kruse R (2010) ‘Fuzzy c-means in high dimensional

spaces’, International Journal of Fuzzy System Applications, 1(1), 1-16

[9] Fan JL., Zhen WZ, Xie WX (2003) ‘Suppressed Fuzzy c-means Clustering

Algorithm’, Pattern Recognition Letters 24, 1607–1612

[10] Ali A, Karmakar GC and Dooley LS (2004) ‘Fuzzy Image Segmentation using

Suppressed Fuzzy C-Means Clustering’. In: 7th International Conference on Computer

and Information Technology, 26-28 Dec 2004, Dhaka, Bangladesh

[11] Gustafson DE and Kessel WC (1978). ‘Fuzzy clustering with a Fuzzy covariance

matrix’. IEEE Conference on Decision and Control including the 17th Symposium on

Adaptive Processes, 17, 761–766

[12] Steinhaus H (1956), ‘Sur la division des corps matériels en parties. Bulletin de

l’Académie Polonaise des Sciences’, Classe III, vol. IV, no. 12, 801-804.

[13] Stetco A, Zeng X-J, and Keane J (2015) ‘Fuzzy C-means++: Fuzzy C-means with

effective seeding initialization’. Expert Systems with Applications. 42(21): p. 7541-7548

[14] Siddique et al (2018) ‘Implementation of Fuzzy C-Means and Possibilistic C-Means

Clustering Algorithms, Cluster Tendency Analysis and Cluster Validation’,

arXiv:1809.08417v2 [cs.LG]

[15] Gan G, Lan Q, and Sima S (2016) ‘Scalable Clustering By Truncated Fuzzy C-

Means’, Big Data and Information Analytics, American Institute of Mathematical

Sciences, Volume 1, Number 2&3, pp. 247–259

66

[16] Georgieva O and Filev D (2009) ‘Gustafson-Kessel Algorithm for Evolving Data

Stream Clustering’, International Conference on Computer Systems and Technologies,

CompSysTech’09

[17] Krishnapuram R and Keller J (1993) ‘A possibilistic approach to clustering’, IEEE

Trans. Fuzzy Syst., vol. 1, no. 2, pp. 98–110.

[18] Liu Y et al (2010) ‘Understanding of Internal Clustering Validation Measures’, 2010

IEEE International Conference on Data Mining, pp. 911-916

[19] Kannan SR, Ramathilagam S, and Chung PC (2012) ‘Effective fuzzy c-means

clustering algorithms for data clustering problems’, Expert Systems with Applications

39 (2012) 6292–6300

[20] Jain, AK (2009) ‘Data clustering 50 years beyond K-means’, Pattern Recognition

Letters, Volume 31, Issue 8, 1 June 2010, Pages 651-666

[21] Krishna Priya CB, Venkateswari S (2017) ‘Application of Gustafson-Kessel-like

clustering algorithm in Delineation of management Zones in precision Agriculture’,

International Journal of Applied Agricultural Research, Volume 12, Number 3 pp. 279-

293

[22] Cebeci Z, Kavlak AT, Yildiz F (2017) ‘Validation of Fuzzy and Possibilistic

Clustering Results’, International Artificial Intelligence and Data Processing Symposium

(IDAP)

[23] Liu et al (2010) ‘Understanding of Internal Clustering Validation Measures’, ICDM

'10 Proceedings of the 2010 IEEE International Conference on Data Mining, Pages

911-916

[24] Babuska R, Veen PJ, Kaymak U (2002) ‘Improved covariance estimation for

Gustafson-Kessel clustering’, in Proceedings of the 2002 IEEE international conference

on fuzzy systems (pp. 1081-1085)

[25] Rendón E et al. (2011) ‘A comparison of internal and external cluster validation

indexes’, Applications of Mathematics and Computer Engineering

[26] Veenman CJ, Reinders MJT and Backer E (2002) A maximum variance cluster

algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence. 24(9): p. 1273-1280.

[27] Jain A and Law M (2005) Data clustering: A user's dilemma. Lecture Notes in

Computer Science. 3776: p. 1-10.

[28] Chang H and Yeung DY (2008) Robust path-based spectral clustering. Pattern

Recognition, 2008. 41(1): p. 191-203.

