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  Resumen del Trabajo: 
 
Desde que se diagnosticó por primera vez a principios de la década del 1980,              
la investigación sobre el SIDA ha mejorado exponencialmente. Hoy en día, en            
campos como la bioestadística, donde la biología se encuentra con la           
estadística avanzada y las matemáticas, las líneas de estudio han cambiado y            
existe otro enfoque para resolver problemas de investigación científica. 
Debido a las mejoras que la investigación ha proporcionado a la calidad de             
vida de las personas seropositivas, su esperanza de vida es aproximadamente           
normal, pero desarrollan enfermedades relacionadas con el envejecimiento:        
sus huesos se vuelven más frágiles, sus músculos se debilitan y su grasa             
puede estar anormalmente distribuida. 
El objetivo de este proyecto es encontrar métodos de clasificación          
supervisados ​​por aprendizaje automático para detectar enfermedades del        
envejecimiento en personas infectadas por el VIH. 
Así se calcula un modelo de red neuronal significativo (test de "No information             
rate" p-valor<0.05) utilizando R y, en particular, el paquete mlr, para clasificar            
con éxito una enfermedad de masa magra asociada con el proceso de            
envejecimiento, tomando como variables explicativas los datos de masa ósea y           
masa grasa. La topología y distribución de pesos de la red de este modelo              
proporciona información sobre las variables, que puede resultar de interés          
clínico. 
Dada la elevada precisión y los parámetros de rendimiento del método de            
clasificación, se valida la suposición de que se puede predecir una enfermedad            
de envejecimiento magro por las variables de tejido óseo y graso y, por             
consiguiente, se logran los objetivos de este proyecto. 
 

 



 

  Abstract: 
 
Since it was first diagnosed in the early 1980s, the research on AIDS has              
exponentially improved along the years. Nowadays, in fields like biostatistics          
where biology meets advanced statistics and mathematics, the study lines have           
turned and another approach can be made to handle scientific problems. 
Due to the successful improvements that research has provided to the quality of             
life of HIV-positive individuals, their life expectancy is approximately normal, but           
they develop ageing related diseases: their bones turn to be more fragile, their             
muscles get weaker, and their fat mass may be abnormally distributed.  
The aim of this project is to find machine learning supervised classification            
methods to detect ageing diseases in HIV-infected individuals, and discuss if           
these methods provide valuable information regarding the variables of the          
dataset and how they relate to each other. 
Thus, a significative (“No information rate” test p-value < 0.05) Neural Network            
model is computed using R and in particular the package mlr, to successfully             
classify a lean mass disease associated with the ageing process, using bone            
and fat data samples as explicative variables. The topology and weight           
distribution of this model’s network provides information about the most relevant           
variables, which may be of clinical interest. 
Given the elevated accuracy and positive performance parameters of said          
classification method, it is safe to say that the assumption that a lean mass              
ageing disease could be predicted by the bone and fat tissue variables is             
validated, and consequently the goals of this project are achieved. 
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Introduction

In the last quarter century technological development has suffered a really fructiferous exponential bump that
has delivered really important research material. In addition to the purest theoretical results that research
has provided in these years, a new working manner has become more popular: open source materials and
multidisciplinary study teams have spread the range that scientific development can reach. Thus fields like
material science, quantic computation or biostatistics, that mix techniques, theoretical and practical, from
diverse scientific fields have been home to new scientific encounters and are becoming more popular each day.

In particular, biostatistics, the scientific field where biology, mathematics, statistics and computation meet,
has been granted with the latest cutting-edge technological advances that of course lead to new investigation
lines and fields that had yet to be explored.

One of these brand new topics that has aroused interest amongst the bioscientific community is Machine
Learning, and its application in biological problems. From genomic analysis to illness detection, machine
learning methods are nowadays used and developed as an efficient numerical and experimental method that
helps build conjectures or prove results in a way that had never been done before.

This project is related to the "Fundació de lluita contra la SIDA" (FLSIDA), where research teams have
already developed analyses around the subject, and the data used in this work has been provided by them.
This dataset, provided by FLSIDA consists of different body measurements (DEXAS) from HIV-positive
individuals; machine learning techniques will be used to determine if these inviduals are positive or not for
certain body composition illnesses. The challenging part comes from the aim to predict a certain tissue-related
illness without relying on the data related to this specific tissue. For instance, to try to predict if an individual
is lipodystrophic, which means that their fat distribution is abnormal, by analyzing their bone and lean mass
data samples.

Context and aim of the project

Since the early 1980s, AIDS has attracted international medical and political attention, which included media
coverage, fundings, awareness and stigma prevention campaigns, and numerous scientific investigation lines.
Even though the life expectancy of an infected non-treated individual is no longer than 11 years, due to the
scientific results that have been developed since it was first detected, if a HIV-positive goes under combination
antiretroviral therapy (cART), their life expectancy can get closer to a normal one. As nowadays treated
HIV-positive individuals can live just as long as without the disease, they develop age-related illnesses that
can make their body tissues age quicker than a non HIV-positive individual (Meir-Shafrir & Pollack, 2012).

HIV-positive people tend to age sooner: their bones may be more fragile, their muscles can be weaker, and
their fat mass can turn out abnormally distributed. The detection of these ageing diseases is vital to guarantee
the quality of life of HIV-infected patients, and early detection is definitely beneficial to their wellness.

The aim of this project is to find machine learning classification methods to detect ageing diseases in HIV-
infected individuals, and discuss if these methods provide valuable information regarding the variables of the
dataset and how they relate to each other.

Goals and desired achievements

HIV-positive individuals undergoing cART are proven to develop early ageing in some cases. Since early
prevention of the ageing diseases is directly related to their wellness, the goal of this project is to find accurate
classification algorithms that can produce predictions with patients that have not been diagnosed yet with
said diseases.

In addition, if classification algorithms are found, once they are proven to be accurate and significative they
can be analysed in order to know which of the variables of the provided dataset are the ones that have a
greater effect on the disease detection.
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The final goal of this project would be to deliver an accurate detection algorithm for at least one body tissue,
and if the detection is good enough in terms of statistical significance, to provide information about the
algorithm and the decisions it makes regarding the variables and their relationships.

Methods

All of this project is developed using Rmarkdown and the R software engine. The data analysis uses several
third party R packages including mlr, haven, gmodels or NeuralNetTools. The dataset is provided in .xls
format, and it is imported directly to R.

The data analysis section consists of an advanced statistical analysis of the dataset. Starting from a naive
data visualization, it includes missing value detection and treatment, data verification, outlier detection
and variable description and grouping. Before starting the predictive section, as the dataset contains a fair
amount of explanatory variables, a feature relationship analysis is made, which consists of correlation results
and displays and a principal component analysis using two dimensional plots. Once the feature engineering is
done, the results are examined in order to perform dimension reduction to the dataset to avoid redundant
features that can lead to poorly trained models.

Once the dimension reduction is computed, the discussion about which supervised classification method to
used can begin. The three machine learning methods to compute the classification prediction are Random
Forest, XGBoost and Neural Networks.

Planning

The total time to develop and write the full project is approximately eleven weeks, from March 19th to June
5th. To make a reasonable planning the tasks have to fit in four essential categories: Take off, Data analysis,
Machine learning, and Additional tasks. For the take off, which includes understanding the background of
the project and getting familiar with the bibliography, two weeks were scheduled; the data analysis section is
one of the most essential parts of the project, without a nicely treated data no good prediction can be made,
thus five weeks are set for this part; the machine learning section, which includes a brief discussion, model
training, tuning and comparisons, can be also quite long, and even though it would be better to have more
time to develop this subject, four weeks is the time set for this section, overlapping for one week with the
previous section. For the additional tasks, that includes two meetings with the project advisors and writing
down the body of the thesis no weeks have been counted, but presumely, about 2 to 3 weeks are kept just
for the writing part, and the meetings are meant to take about 4 hours in two seeparate days along the
development of the project.

Summary: Resulting products

As the main goal of this project was to obtain proper classification methods to predict certain diseases
in HIV-infected individuals, the main product is the set of trained and tuned algorithms that achieved a
maximum performance when predicting sarcopenia, lipodystrophy and osteoporosis.

Furthermore, since the method with the best performance when predicting the three diseases is neural
networks, as computed in Appendix 3, one can analyze the information delivered by the Garson and Olden
algorithms to provide a biological or clinic interpretation of how the predictive methods work, and which
variables are more have the biggest decision weight in the network. Thus, as a complementary result, being
able to interpret the “black box” of the neural network may provide valuable data about said diseases and
how they are related to other body tissues.
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Summary: Analysis and procedures

This dissertation is split in two parts: Exploratory data analysis and Machine Learning.

The exploratory data analysis section starts with a chapter about data exploration, where the author gets
familiar with the provided dataset and visualizes its variables, and also validates that the dataset is consistent.
This chapter is followed by the process called as data clean-up, that starts handling missing and outlier values;
once the missing values are fixed and the outliers are detected, the author proceeds studying the relationship
and correlations between features, which leads to a dimension reduction process, where the goal is to be able
to build a similar dataset with combinations or subsets of the initial variables without loss of information.
This data analysis part ends when the author performs a principal component analysis that confirms that a
dimension reduction is both feasible and safe.

After reducing the dimension of the dataset the main goal is to determine which supervised classification
method would fit the data better, test them and define a candidate model to predict the ageing diseases.

This process starts with the definition of Random Forests, XGBoost and Neural Networks. Each method
undergoes a repeated stratified cross-validation that provides the first performance parameters, which turn to
be quite decent. Then, since said methods were applied with the default parameters that the package provides,
to improve the performance a really time consuming cross-validated tuning process is done, providing the
optimal parameters for each method and body tissue.

Once the three best models are set, to end the author provides information about the insights of the neural
networks, that relate how relevant are certain features in order to predict certain diseases.
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Data exploration

The dataset that has been provided is a DEXAS table with data of 1480 individuals. A DEXA (Dual-Energy
X-Ray Absorptiometry) (Ayyappan, Niveditha, & Breur, 2017) is a radiological test that measures bone, lean
mass and fat mass distributions and quantities when passing X-rays with two different degrees of energy
through the body.

Thus, prior to beginning exploring the data, this dataset has to be carefully examined and precisely cured
in order to ease further analyses. This chapter starts with basic data description procedures, followed by a
description and classification of the variables. This first section of the chapter follows the regular and typical
data exploration that is made in most machine learning scenarios. Thus, the second part of the chapter
consists of gathering all the cured data and make, prove or discard assumptions about it in order to make
further computations optimal.

Variable exploration

Once one receives a dataset, the first thing to do is to list all the feature names and try to guess what they
describe, so the first step towards exploring the provided dataset is to display the variable names that define
the table. In addition to know the feature names, it is also useful to know its type, and check if they are
numeric, boolean or characters.
raw_data <- as.data.frame(read_sav(paste(getwd(),params$file, sep="")))
n <- nrow(raw_data)
dim(raw_data)

## [1] 1480 82
table(sapply(raw_data, typeof))

##
## character double
## 1 81

It looks like the dataset consists of 1480 rows and 82 columns, and only one of them is of type character,
while the other ones are of type double or numeric. This character variable seems to be the one regarding
the gender of the individuals, and can be left out since there is another categorical variable that specifies the
gender in a numerical way, even though some feature checking will have to be made in order to prove that
the two variables are equivalent.

Once one gets to see the column names and types of the dataset, it is handy to interpret the variables and
try to give them biological meaning, by splitting the columns in subsets. An organic way to classify the
explanatory variables is as follows:

• n.general Includes all the variables that measure general aspects of the person.

• n.fat Includes all the variables that contain measurements of fat distribution and proportion.

• n.bone Includes all the variables that contain measurements of bone density and mass.

• n.lean Includes all the variables that contain measurements of lean mass distribution and proportion.

General variables

The provided dataset lists, as explained, data taken from the DEXAS test. This does not mean that it does
not include any more features about the individuals, since the dataset also contains variables that explain the
gender (binary and text), weight (Kg), height (cm) and age (absolute and grouped) of the patients, as well as
the BMI (body mass index), defined as the body mass divided by the square of the body height, which is
universally expressed in units of kg/m2.
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Figure 2: Parts of the lower spine and the femur.

general = {gender, gender_num, Height, Weight, Age, Age_cat, BMI}

As specified before, one could think of removing redundant variables such as gender, that is also a character
array, and wether Age or Age_cat, since as can be seen in Table 1 it looks like these columns are equivalent.

Table 1: Some samples of the age and gender related columns

Age Age_cat gender gender_num
40 0 F 2
35 0 F 2
33 0 F 2
28 0 F 2
36 0 F 2
45 0 F 2

general = {gender_num, Height, Weight, Age, BMI}

Bone variables

The DEXAS test leaves a quite sizeable group of bone-related variables. To explain them, it is handy to pack
them in subsets, since their biological meaning is related in most cases.

As displayed in Figure 2 (Cosman et al., 2014), (Elkoushy, Jundi, Lee, & Andonian, 2014), all the data
beginning with Li, where i is an integer is referred to the vertebrae; in this case, the vertebrae data that is
provided refers to the first lower four. As for the remaining preffixes, as shown as well in the image, NeckF
stands for the neck area of the femur, Wards stands for the Wards triangle, and Troch is related to the
Trochanter section of the femur. Combinations of vertebrae such as L1L4 are the result of dividing the value
of the data taken from the first by the value of the data taken from the last. And of course, the preffix Total
lists the mean data of the whole bone tests of that individual, and the preffix TotalF gathers the mean of
the samples related to the femur.
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The suffixes, T, and Z, list the T-score and Z-score of the specific part of the bone the preffix sets. The Z
score provides a comparison with healthy subjects of the same age, while the T score provides a comparison
with healthy young adults (20-29 years). The intent of the T score for adults is not to provide an age-matched
comparison, but to estimate the loss of bone relative to peak density.

For adults, clinical evaluations of bone status are based on BMD, defined as the ratio of bone mineral content
(BMC) to the two-dimensional projected image of bone area (BA). The size and geometry of the adult
skeleton remains relatively stable over many years; thus, BA remains relatively constant for the individual.
BMD has a lower variance than BMC; therefore, it has evolved as the bone parameter to assess abnormal
conditions. (Ellis et al., 2001)

Thus, the features contained in the dataset that make reference to bone samples are the following:

TotalBMD, L1BMD, L2BMD, L3BMD, L4BMD, L1L4BMD, L2L4BMD, NeckFBMD, WardsBMD, TrochBMD,
TotalFBMD, L1T, L2T, L3T, L4T, L1L4T, L2L4T, NeckFT, WardsT, TrochT, TotalFT, L1Z, L2Z,
L3Z, L4Z, L1L4Z, L2L4Z, NeckFZ, WardsZ, TrochZ, TotalFZ.

All of these variables are in fact numeric and non-binary.

Lean variables

This set of variables lists the ones that are strictly related to the lean mass distribution in the body. To
describe them, it is handy to split them in two parts: the ones referring to specific body parts, and the ones
that are lean mass related parameters.

The first subset, the one defined as the group of lean mass related variables of specific body parts, consists of
the following features: RALg, LALg, BothALg, RLLg, LLLg, BothLLg.

The names of these features are built as follows: The first block is wether L,R, Both, that stands for left,
right and the sum of the both sides. The next block is one of the following values: A, L that stand for
arm and leg respectively. This is followed by a capital L, for “lean”, and finally a g that explains that the
measurement is made in grams.

The second subset, that gathered lean mass related parameters, contains FFMI, Apendicularleanmas, TLg,
TotalLg.

TLg and TotalLg indicate the value of lean mass in grams in the trunk and in the whole body respectively.

The nutritional status of a patient is typically determined from the use of body mass index (BMI), however
there are numerous cases where BMI may not accurately reflect the actual composition of the patient. Fat
free mass index (FFMI) might offer a better representation since it includes an actual estimate of body
composition in the equation (FFMI=FFM (kg/m2)). (Loenneke et al., 2012)

Finally, the appendicular lean mass is a frequently used indicator regarding the amount of lean mass that can
be found in the limbs of an individual, including both arms and legs.

Fat variables

Just as the lean related variables, there are as well two defined subsets for the fat set. The first one, that
groups variables that define fat proportion in specific parts of the body follow the same name rules as the
lean set: RAFp, RAFg, LAFp, LAFg, BothAFp, RLFp, RLFg, LLFp, LLFg, BothLFp. In this case, the last
character can be a g (for grams) or a p. The ones ending with a p include the specific data expressed as a
percentage.

There is also a subset that groups relationships between variables, such as: FTrunkgFLegsg,
FtrunkpFlimbsp, FtrunkgFtotalg, FLegsgFtotalg, FlimbsgFtotalg, just as, for example, the
L1L4 variable that was defined in the bone set.

TFp, TFg, TotalFp, TotalFg like in the lean set, list data for both the trunk and the whole body, and
finally the two last variables FMR, and FMI are DEXA indicators for the fat tissue. Fat mass ratio (FMR) is
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defined as the ratio between the percent of the trunk fat mass and the percent of the lower-limb fat mass
(Freitas et al., 2010). FMI (fat mass index) was first introduced in a study involving nutritional assessment
(VanItallie, 1990) and is calculated by taking the body fat mass component from BIA and dividing by height
squared (Peltz, Aguirre, Sanderson, & Fadden, 2010).
n.general <- c('Age', 'Height', 'Weight', 'BMI')
n.fat <- c('RAFp', 'RAFg', 'LAFp', 'LAFg', 'BothAFp',

'RLFp', 'RLFg', 'LLFp', 'LLFg', 'BothLFp',
'TFp', 'TFg', 'TotalFp', 'TotalFg',
'FMR', 'FTrunkgFLegsg', 'FtrunkpFlimbsp', 'FtrunkgFtotalg',
'FLegsgFtotalg', 'FlimbsgFtotalg', 'FMI'

)
n.bone <- c('TotalBMD', 'L1BMD', 'L1T', 'L1Z', 'L2BMD',

'L2T', 'L2Z', 'L3BMD', 'L3T', 'L3Z', 'L4BMD', 'L4T',
'L4Z', 'L1L4BMD', 'L1L4T', 'L1L4Z', 'L2L4BMD', 'L2L4T',
'L2L4Z', 'NeckFBMD', 'NeckFT', 'NeckFZ', 'WardsBMD',
'WardsT', 'WardsZ', 'TrochBMD', 'TrochT', 'TrochZ',
'TotalFBMD', 'TotalFT', 'TotalFZ')

n.lean <- c('RALg','LALg','BothALg','RLLg','LLLg','BothLLg','TLg',
'TotalLg','FFMI','Apendicularleanmas')

Data verification

The first step towards verifying the dataset, and measuring the quality of the data is to look for empty cases,
and if some, empty variables.

## ID gender gender_num
## 0 0 0
## TotalBMD Height RAFp
## 12 2 0
## RAFg RALg LAFp
## 0 0 0
## LAFg LALg BothAFp
## 0 0 0
## BothAFg BothALg RLFp
## 0 0 0
## RLFg RLLg LLFp
## 0 0 0
## LLFg LLLg BothLFp
## 0 0 0
## BothLFg BothLLg TFp
## 0 0 0
## TFg TLg TotalFp
## 0 0 0
## TotalFg TotalLg L1BMD
## 0 0 1
## L1T L1Z L2BMD
## 1 1 1
## L2T L2Z L3BMD
## 2 1 1
## L3T L3Z L4BMD
## 2 2 2
## L4T L4Z L1L4BMD
## 2 3 1
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## L1L4T L1L4Z L2L4BMD
## 1 1 2
## L2L4T L2L4Z NeckFBMD
## 2 2 0
## NeckFT NeckFZ WardsBMD
## 0 0 1
## WardsT WardsZ TrochBMD
## 1 1 1
## TrochT TrochZ TotalFBMD
## 1 2 0
## TotalFT TotalFZ Weight
## 0 0 0
## BMI FMI FFMI
## 2 2 2
## Apendicularleanmas FMR FTrunkgFLegsg
## 2 0 0
## Indexdistributionfat FtrunkpFlimbsp FtrunkgFtotalg
## 0 0 0
## FLegsgFtotalg FlimbsgFtotalg LLegFgBMI
## 0 0 2
## LLegFpBMI Age Age_cat
## 2 0 0
## Lipodistrophy Sarcopenia LipoSarcop
## 0 2 2
## BMI_cat phenotype minTscore
## 2 2 1480
## Tscore_3cat
## 1480

Even though the issues around missing data are well-documented, it is common practice (Pampaka, Hutcheson,
& Williams, 2016) to ignore missing data and employ analytical techniques that simply delete all cases that
have some missing data on any of the variables considered in the analysis. It is proven that as long as the
missing data rows do not define a big portion of the dataset, even though machine learning techniques that
apply data imputation are popular and effective, the odds of encountering loss of information can be severe
and may not even be obvious to the analyst.

Prior to handling missing data, the missing features have to be built. Since the only columns that are
completely empty are minTscore and Tscore_3cat, and can be built using data from other columns, in order
to treat missing data, it is convenient to first compute the missing colums.

Medical conditions and missing data

It is easy to notice that there are two empty columns, regarding the variables minTscore and Tscore_3cat.
Since these variables can be obtained through simple calculations including the remaining variables, one
would proceed filling in the empty columns as follows:

minTscore = min(L1T, L2T, L3T, L4T, NeckFT, WardsT, TrochT)

Tscore_3cat =


0 if minTscore ≥ −1
1 if − 1 > minTscore ≥ −2.5
2 if − 2.5 > minTscore
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Figure 3: Distribution of minTscore and Tscore_3cat

Table 2: New columns and related variables

L1T L2T L3T L4T NeckFT WardsT TrochT minTscore Tscore_3cat
-1.3 -1.7 -2.0 -2.3 -1.0 -1.4 -1.0 -2.3 1
-0.6 -0.4 -0.1 -0.7 0.6 0.9 0.0 -0.7 0
0.1 0.7 1.1 0.1 0.4 0.3 -0.1 -0.1 0
-2.3 -1.7 -1.0 -0.8 -0.9 -0.7 -1.4 -2.3 1
-1.4 -0.8 -0.5 -0.9 -0.5 -0.8 -1.0 -1.4 1
-2.8 -2.4 -1.6 -2.6 -1.6 -1.7 -1.4 -2.8 2

As displayed in Table 2, minTscore and Tscore_3cat are now non-empty and their value is correct, as can
be seen comparing the bone variables and the resulting columns.

Once these new variables are built, it is adequate to make a quick variable description to see how they are
distributed in Figure 6.

Now that the originally null columns are filled, two more columns can be built. Osteoporosis and osteopenia
are defined through the minimum T-score in a patient: "As defined by the World Health Organization (WHO),
osteoporosis is present when BMD is 2.5 SD or more below the average value for young healthy women (a
T-score of < -2.5 SD). A second, higher threshold describes "low bone mass" or osteopenia as a T-score that
lies between -1 and -2.5 SD. "Severe" or "established" osteoporosis denotes osteoporosis that has been defined
in the presence of one or more documented fragility fractures." (Sözen, Özişik, & Başaran (2017))
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raw_data[raw_data$Tscore_3cat==2, 'Osteoporosis'] <- 1
raw_data[raw_data$Tscore_3cat!=2, 'Osteoporosis'] <- 0

raw_data[raw_data$Tscore_3cat!=1, 'Osteopenia'] <- 0
raw_data[raw_data$Tscore_3cat==1, 'Osteopenia'] <- 1

As a consequence of building four new features in the dataset no more empty columns remain, thus it is
appropriate to handle the remaining isolated empty values. Since the empty values belong to a tiny portion
of the dataset, one can think about wether to remove them or fill them with mean values. Missing data
engineering is definitely not a trivial problem, and even though imputation methods (which are way more
complex than just applying means or medians) can be applied (Pampaka et al., 2016), for the sake of simplicity
and without losing major information, the rows that contain empty values will be erased, because there are
rows that contain a lot of empty results and filling them in with mean values would be redundant.
raw_data <- raw_data[complete.cases(raw_data),]

After this first data clean up, 22 rows have been removed, which means that a 1.486% of the number of
rows in the original dataset has been discarded, which is a fairly acceptable quantity of rows to be removed,
resulting in a datset of 1458 observations.

Medical conditions and data validation

Just as the Tscore_3cat variable, that defines both osteoporosis and osteopenia, has been computed, the
two other illness-related binary variables have to be validated in order to check that the data that has been
provided is consistent and reliable.

The medical condition known as lipodystrophy is described as the inabillity to normally produce and maintain
fat tissue, and consequently providing abnormal fat mass distributions, or as described in (Savage, Petersen, &
Shulman (2007)), "The lipodystrophic syndromes encompass a rare group of conditions characterized by partial
or complete absence of adipose tissue. The disorders may be genetic or acquired and are further classified
according to the anatomic distribution of the lipodystrophy.". The medical definition based on numbers is
stated by using the Fat Mass Ratio, and it works different in terms of gender, since the critical value is of
1.24 for men and 0.95 for women, for a HIV-positive population. (Grenha et al., 2018)

This same exploration should be done with the lean-related medical condition. The variable regarding a
medical condition related to the lean mass is Sarcopenia, but since there is no data of the strength given by
the muscles in the dataset, it would be incorrect to talk about Sarcopenia. Instead, even though the variable
name will be kept as Sarcopenia, what will be measured is the low quantity or quality muscle mass, defined
as Appendicular Lean Mass Index/height2. The critical values may differ depending on what biography is
relied on. The article Echeverría et al. (2018) suggests 7.26 and 5.5 as the critical values for male and female
respectively. Since these values are not strictly fixed and can vary depending on the status of the measured
population, the variable Lipodistrophy will be taken as correct and will establish the critical values.

So, as proven in Figure 4, one can take 7.225 kg/m2 for men and 5.67 kg/m2 for women as the critical values
of apendicular lean mass for the measured lean disease in the dataset, which are in fact the minimum values
in the healthy set for each gender.

As a quick description in Figure 5, one can easily see that the lean-related medical condition is much less
common than Lipodystrophy, but still a good amount of individuals have the condition, so a proper analysis
can be done with this data.

To summarize, the mosaic plot in Figure 6 contains the proportion of normal and non-normal individuals
in the sets of Sarcopenia, Lipodystrophy and Osteoporosis. As displayed in Figure 5 it is clear that the
amount of lipodystrophy-positive individuals is greater than the normal ones, and by looking at the mosaic
plot in Figure 6, one can see that the biggest subset is the one with lipodystrophy positive, osteoporosis
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negative, lean-related illness negative individuals. On the other hand, the smallest subset is the one containing
lipodystrophy negative, osteoporosis positive, lean-related illness positive individuals.

Descriptive variable visualization

One of the most naive steps towards getting familiar with the dataset is to start analyzing the distribution of
the continuous and discrete variables, and checking the outlier values of the continuous ones. If outlier values
are found, one should send them to the clinical team in order to decide whether it is nice to ignore them or
let the clinical team fix the data. To check the outliers one can just calculate them numerically, even though
a graphical visualization is a quicker solution to determine if there are or are not outliers for every variable.
In Appendix 1 there is the graphical representation of every continuous and discrete feature in the dataframe,
which helps detecting outliers rapidly.

In order to study the distribution of the features two subsets have to be defined, one for the continuous
variables, and another for the discrete ones.
cont.vars <- c('TotalBMD', 'Height',

'RAFp', 'RAFg', 'RALg', 'LAFp', 'LAFg',
'LALg', 'BothAFp', 'BothAFg', 'BothALg', 'RLFp',
'RLFg', 'RLLg', 'LLFp', 'LLFg', 'LLLg',
'BothLFp', 'BothLFg', 'BothLLg', 'TFp', 'TFg',
'TLg', 'TotalFp', 'TotalFg', 'TotalLg','L1BMD',
'L1T', 'L1Z','L2BMD', 'L2T', 'L2Z',
'L3BMD', 'L3T', 'L3Z','L4BMD', 'L4T' ,
'L4Z', 'L1L4BMD','L1L4T','L1L4Z', 'L2L4BMD',
'L2L4T','L2L4Z','NeckFBMD', 'NeckFT', 'NeckFZ',
'WardsBMD', 'WardsT', 'WardsZ','TrochBMD', 'TrochT' ,
'TrochZ', 'TotalFBMD', 'TotalFT', 'TotalFZ', 'Weight',
'BMI', 'FMI', 'FFMI', 'Apendicularleanmas', 'FMR',
'FTrunkgFLegsg', 'Indexdistributionfat', 'FtrunkpFlimbsp',
'FtrunkgFtotalg', 'FLegsgFtotalg',
'FlimbsgFtotalg', 'LLegFgBMI', 'LLegFpBMI', 'Age')

disc.vars <- c("gender", "Age_cat", "Lipodistrophy", "Sarcopenia",
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"Osteoporosis", "BMI_cat")

As one can see in Appendix 1, there are quite a few variables with a non-normal representation, which is
acceptable, even though some of them have extreme values which is a sign of either wrong data or rare
samples. Either way, these extreme values have to be sent to the clinical team in order for them to correct or
verify them for further studies. In this specific work no data has been sent to the clinical team due to time
limitations, but in case further analysis has to be done this would definitely be required to proceed.

In the following code output one can see the complete list of potential outlier values for every continuous
variable in the dataset. In the materials section the .xls file containing these values can be found, and it is
the exact same file that would be sent to the clinical team.

## TotalBMD Height RAFp
## 17 1 17
## RAFg RALg LAFp
## 36 13 20
## LAFg LALg BothAFp
## 38 14 19
## BothAFg BothALg RLFp
## 36 13 12
## RLFg RLLg LLFp
## 30 6 12
## LLFg LLLg BothLFp
## 30 7 12
## BothLFg BothLLg TFp
## 29 5 0
## TFg TLg TotalFp
## 11 13 6
## TotalFg TotalLg L1BMD
## 26 9 16
## L1T L1Z L2BMD
## 16 8 16
## L2T L2Z L3BMD
## 14 13 15
## L3T L3Z L4BMD
## 11 9 15
## L4T L4Z L1L4BMD
## 15 10 12
## L1L4T L1L4Z L2L4BMD
## 11 13 10
## L2L4T L2L4Z NeckFBMD
## 11 16 12
## NeckFT NeckFZ WardsBMD
## 18 24 15
## WardsT WardsZ TrochBMD
## 16 29 16
## TrochT TrochZ TotalFBMD
## 12 17 19
## TotalFT TotalFZ Weight
## 11 16 10
## BMI FMI FFMI
## 32 31 16
## Apendicularleanmas FMR FTrunkgFLegsg
## 10 60 6
## Indexdistributionfat FtrunkpFlimbsp FtrunkgFtotalg
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## 40 58 6
## FLegsgFtotalg FlimbsgFtotalg LLegFgBMI
## 3 5 14
## LLegFpBMI Age
## 9 13

These outlier values can be explained in different ways, but since records of this data can be quite old, some
of the data was transcripted by hand from the DEXAS tool to the database. Thus, data inconsistencies and
voids were frequent, and before starting to analyze the data itself one has to check and prove that the data is
indeed consistent and that related variables match as they should. For instance: the left part, and the right
part of the body should contain similar values.

In the following code chunk several comparison operations are made. The aim of these comparisons is to
prove that the data provided is consistent and that no major transcription errors have been made. The
comparisons that are computed in the following code chunk are:

L1BMD + L2BMD + L3BMD + L4BMD ≡ L1L4BMD

gender ≡ gender_num

Age ≡ Age_cat

LAFp ≡ RAFp, LAFg ≡ RAFg, LALg ≡ RALg, LLFp ≡ RLFp, LLFg ≡ RLFg, LLLg ≡ RLLg

BothAFp ≡ LAFp + RAFp, BothAFg ≡ LAFg + RAFg, BothALg ≡ LALg + RALg

data <- as.data.frame(raw_data)
for (i in 1:n) {

# L1LABMD = sum(LiBMB)
Li <- mean(as.numeric(data[i, c("L1BMD", "L2BMD", "L3BMD", "L4BMD")]))
data.cons$errLi[i] <- abs(Li - data[i, 'L1L4BMD'])

# Gender must be properly transformed
data.cons$errGender[i] <- ifelse(data$gender[i] == 'M', 1, 2) - data$gender_num[i]

# Age must be properly categorized
data.cons$errAge[i] <- ifelse(data$Age[i] < 50, 0, 1) - data$Age_cat[i]

# Left and right part of the body have to be similar
data.cons$errXAFp[i] <- abs(data$LAFp[i] - data$RAFp[i])
data.cons$errXAFg[i] <- abs(data$LAFg[i] - data$RAFg[i])
data.cons$errXALg[i] <- abs(data$LALg[i] - data$RALg[i])
data.cons$errXLFp[i] <- abs(data$LLFp[i] - data$RLFp[i])
data.cons$errXLFg[i] <- abs(data$LLFg[i] - data$RLFg[i])
data.cons$errXLLg[i] <- abs(data$LLLg[i] - data$RLLg[i])

# BothAFp BothAFg BothALg
data.cons$errBothAFp[i] <- abs(data$BothAFp[i] - data$LAFp[i] - data$RAFp[i])

24



0

1

2

3

er
rL

i

er
rG

en
de

r

er
rA

ge

er
rX

A
F

p

er
rX

A
F

g

er
rX

A
Lg

er
rX

LF
p

er
rX

LF
g

er
rX

LL
g

er
rB

ot
hA

F
p

er
rB

ot
hA

F
g

er
rB

ot
hA

Lg

ind

va
lu

es

Figure 7: Logarithmic distribution of the errors between related variables

data.cons$errBothAFg[i] <- abs(data$BothAFg[i] - data$LAFg[i] - data$RAFg[i])
data.cons$errBothALg[i] <- abs(data$BothALg[i] - data$LALg[i] - data$RALg[i])

}

From this first bloxpot set in Figure 7, one can make some assumptions. Since a base 10 logarithmic
transformation has been made in order to make it easy to see how the errors behave, one of the easiest
assumptions to make is that there is a quite relevant amount of outliers, that can possibly be a result of
a bad data transcription. On the other hand, another fact that comes easily to the eye is that there are
several variables (errXAFg, errXALg, errXLFg, errXLLg, errBothAFp) that their mean is far from zero.
Maybe, if one tries to scale the data for these variables, the assumption that the left and the right variables
follow different scales can be proven. To do so, the scale() function will be applied to certain variables, and
another boxplot will be shown.

Even though there are still some outlier values, it becomes clear in Figure 8 that once being scaled the
variables behave as expected. This means that the clinical team should review them and return to us an
updated dataset with equal scales and fixed data for all similar variables.

Data clean-up

It was just proved that the variables, once scaled, behave as expected, thus one can now check how features
behave together, and check their correlations. To do so it is useful to analyze these correlations to possibly
apply a dimension reduction of the main dataset, by seeing which and how many variables could be redundant.
Before proceeding to the next steps, the continuous features in the dataset are scaled in the following code
chunk using the R function scale, that first centers the data distribution at 0 and then scaling is done by
dividing the (centered) columns of the data frame by their standard deviations, standarizing distributions for
all the continuous features.
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Figure 8: Logarithmic distribution of the errors between scaled related variables

raw_data[,cont.vars] <- scale(raw_data[,cont.vars])
data <- as.data.frame(raw_data)

Dimension reduction

As explained in Fodor (2002), "one of the problems with high-dimensional datasets is that, in many cases, not
all the measured variables are "important" for understanding the underlying phenomena of interest. While
certain computationally expensive novel methods can construct predictive models with high accuracy from
high-dimensional data, it is still of interest in many applications to reduce the dimension of the original data
prior to any modeling of the data".

So, it is trivial that in a bi to multivariate way, variables to be reduced together will have to be correlated.
To start this analysis in the most naive way, and to have a global map of how the features work together it is
a good idea to plot a bivariate correlation plot to check which variables are directly correlated and see if the
classification in four subsets (general, fat, bone and lean) makes sense.

The correlation plot in Figure 9, even though is too big and not very specific lets one see how the variables
are clearly classified in groups, as previously suggested. The correlations within the groups are usually high
(or negatively low), which makes sense, and it looks like feature reduction is without a doubt feasible.

Another way to display related variables and map it graphically is through the qgraph function, from the
homonymous package, that creates the network graph representation of the pearson correlations matrix
plotted in Figure 9. The same representation obtained in the traditional correlation heat plot can be seen in
Figure 10, and the same four groups are clear, even though it is not the clearest representation method of the
data.

From both Figure9 and Figure 10 one can make the assumption that the lean and fat sets are lightly related,
maybe not enought to apply feature reduction between sets but it is clear that their clusters are explicitly
related in the network representation.
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Since it becomes hard to visualize and describe the feature grouping phenomena that is happening within the
subsets, one could think about restarting this process and repeating it for each group in the dataset.
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From this big amount of plots and graphs one can take some conclusions:

• It looks like some features are globally correlated.

• It looks like there are features that provide little to no value to the prediction.

• It looks like certain features that are strong in some predictions can be weak in other predictions.

• It looks like it is possible to remove features without damaging the model to avoid redundant relationships.

• It looks like it will be hard to apply some dimension reduction when predicting the lean disease.
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Principal component analysis

From this first analysis using correlation plots and graphs, it is hard to decypher specific multivariate
relationships beyond the bivariate obvious pairing that can be seen in both the network graph and the
correlation plot. This is why a little bit of data engineering is required in order to proceed reducing the
deimension of the classification problem.

"Principal component analysis (PCA) is the best, in the mean-square error sense, linear dimension
reduction technique being based on the covariance matrix of the variables, [...]. In various fields,
it is also known as the singular value decomposition (SVD) , the Karhunen-Lohe transform, the
Hotelling transform, and the empirical orthogonal function (EOF) method. In essence, PCA seeks
to reduce the dimension of the data by finding a few orthogonal linear combinations (the PCs) of
the original variables with the largest variance. The first PC, SI, is the linear combination with the
largest variance. We have s1 = xtw1 , where the pdimensional coefficient vector w1 = (w1,1, ..., w1,p)
solves w1 = arg max||w=1||V ar(xtw).

The second PC is the linear combination with the second largest variance and orthogonal to the
first PC, and so on. There are as many PCs as the number of the original variables. For many
datasets, the first several PCs explain most of the variance, so that the rest can be disregarded
with minimal loss of information. Since the variance depends on the scale of the variables, it is
customary to first standardize each variable to have mean zero and standard deviation one. After
the standardization, the original variables with possibly different units of measurement are all in
comparable units."

Fodor (2002)

The idea of doing a PCA is to keep the most important PCs and use them as explanatory variables. As
the number of “relevant enough” (in terms of variance effect) PCs is always less or equal to the number of
original features, this implies necessairly a dimension reduction but also a less interpretable dataset, and
interpretability is something bad to lose.

"Although they are uncorrelated variables constructed as lineal combinations of the original variables
and have some desirable properties, they do not necessarily correspond to meaningful physical
quantities. In some cases, such loss of interpretability is not satisfactory to the domain scientists.

As an alternative way to reduce the dimension of a dataset using PCA [...] instead of using the
PCs as the new variables, this method uses the information in the PCs to find important variables
in the original dataset."

Fodor (2002)

As suggested in Fodor (2002), the other option is to, for example, graphically display the most important PCs,
and analyze how variables are grouped. A way to do so is to plot it using two dimensional plts comparing by
pairs the principal components.

Using the ggbiplot of the homonymous package, available on github (Tang, Horikoshi, & Li, 2016) one
can compare two PCs. For simplicity, and just to prove the hypotheses made with the bivariate correlation
plots and graphs, only the first two PCs will be compared. The idea would be to first calculate 0 < k ≤
number of features as the number of “relevant enough” PCs to compare, and compare them two by two in a
biplot.

The following figures are the representation of the results of applying ggbiplot() to the general subset with
fat, bone and lean subsets two by two. The plot is a 2-dimensional representation of the plane generated by
the eigenvectors related to the two first PCs, that have in fact the highest eigenvalues, and allows to easily
describe which variables behave alike in this plane. In addition, two sets of points are painted in each plot to
distinguish individuals who are positive in Osteoporosis, Lipodystrophy or Sarcopenia, which may indicate
which are the variables that could be candidates of being the most decisive in a classification problem.
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After plotting the PC plots, and analyzing them carefully, one can make some conclusions:

• The features seem to be paired just as in the correlation plots.

• The classification of Sarcopenia seems to be the easiest to predict, since the ellipses are more separate
than in the other two cases. And even though the two sets are not perfectly distinguished, it looks like
there exists a group of variables that have a slight direct effect on the classification.

• Data reduction without using the PCs as variables is proven to be feasible and effective since there are
a lot of variables that behave alike in the three plots.

Cleaned up data

From the previous graphs and plots it has been proven for the features to be grouped by their correlation
and the PC representation. Thus, carefully analyzing the correlation and PC plots, the following groups are
defined:

• L1T, L1BMD, L1L4BMD, L1L4T

• L2T, L2BMD, L2L4BMD, L2L4T

• L3T, L3BMD, L3Z

• L4T, L4BMD, L4Z, L1L4Z, L1Z, L2L4Z, L2Z

• L1L4BMD, L2L4BMD

• WardsT, WardsBMD

• NeckFT, NeckFBMD
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• TotalFBMD, TotalFT, TrochBMD

• TotalFZ, TrochZ, TotalFT

• TLg, TotalLg

• FFMI, Apendicularleanmas

• RALg, LALg, BothALg

• RLLg, LLLg, BothLLg

• RAFg, LAFg

• RLFp, RLFg, LLFp, LLFg

• TFp, TFg

• FTrunkgFLegsg, FtrunkgFtotalg

• FlimbsgFtotalg, FlegsgFtotalg

So, by keeping one of each group, as the PC and correlation plots and graphs displayed, the dataset will not
lose major information, and the probability of encountering an overfitted model will decrease.
rm.variables <- c("L1BMD", "L1L4BMD", "L1L4T", "L2BMD", "L2L4BMD", "L2L4T",

"L2L4Z", "L2Z","L3BMD", "L3Z", "L4BMD", "L4Z",
"L1L4Z", "L1L4Z", "WardsBMD",
"NeckFBMD", "TotalFT", "TrochBMD", "TrochZ",
"TotalLg", "Apendicularleanmas", "RALg", "LALg",
"RLLg", "LLLg", "LAFg", "RLFg", "LLFp", "LLFg",
"TFg", "FTrunkgFLegsg", "FlimbsgFtotalg")

data <- select(data, -one_of(rm.variables))
dim(data)

## [1] 1458 53

Once the variables to be removed are defined, the four sets that defined general, bone, lean and fat variables
are now described as follows.
n.general <- n.general[!(n.general %in% rm.variables)]
n.bone <- n.bone[!(n.bone %in% rm.variables)]
n.fat <- n.fat[!(n.fat %in% rm.variables)]
n.lean <- n.lean[!(n.lean %in% rm.variables)]

Machine learning: Classification problems and methods

In this chapter the goal is to first describe the classification problems to resolve, and next to find which
methods are preferred to resolve said classification problems.

The classification problem

As stated in previous chapters, the amount of categorical variables in the dataset is in fact small. The only
categorical variables that can be fount in the treated non-raw data frame are: Lipodistrophy, Sarcopenia,
Osteoporosis, Osteopenia, gender_num, and Tscore_3cat.

Even though it would definitely be interesting to try to classify gender_num and Tscore_3cat, the obvious
and most challenging task would be to try to guess if an individual is ill or healthy for a specific-tissue-related
illness taking into account the data that does not belong tho that tissue’s set. For instance, a possible goal
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is to predict if an individual is affected by Lipodystrophy by using the data related just to muscles and
bones. Both Osteopenia and Osteoporosis are bone-related illnesses, and in this chapter, for simplicity, just
Osteoporosis will be predicted, since of the two it is the one causing more struggles to HIV infected patients,
but for further studies it would be definitely useful and interesting to see how the classification for Osteopenia
behaves.

Thus three challenges arise; to predict Sarcopenia, Lipodystrophy, and Osteoporosis in HIV infected individuals.
For the three of them, as analyzed in previous chapters, the data, even though it is fairly unbalanced (and
that is an issue when working with machine learning problems) is decent enough to work with, and as seen
when plotting correlation displays and the PC representations, there exist variables than behave differently
in the three classification problems that can, if not determine, at least have an effect on these classifcation
algorithms, meaning that just by looking at the previously displayed plots it looked like none of the three
classification problems were nonsensical. One possible concern is the unbalanced distribution of the response
variables, displayed in Table 3.

Response variable distributions
Variables Normal Ill
Lipodistrophy 386 1072
Sarcopenia 1091 367
Osteoporosis 993 465

Table 3: Distribution of the response variables

Classification methods

"The process of choosing a machine learning algorithm involves matching the characteristics of
the data to be learned to the biases of the available approaches. Since the choice of a machine
learning algorithm is largely dependent upon the type of data you are analyzing and the proposed
task at hand, it is often helpful to be thinking about this process while you are gathering, exploring,
and cleaning your data. It may be tempting to learn a couple of machine learning techniques and
apply them to everything, but resist this temptation. No machine learning approach is best for
every circumstance. This fact is described by the No Free Lunch theorem, introduced by David
Wolpert in 1996."

Lantz (2013)

Even though the process of selecting the best machine learning algorithm for a specific problem goes from
non trivial to non feasible, one can at least test several adequate methods and see how they perform with
the treated dataset. To decide which method outperforms the others one has to first keep in mind that
performance is just a set of conditions that one sets as comparison rules to determine if one result is better
than the other, and it may vary depending on said conditions selection, the the randomness involved in
selecting the train and test sets, or how the validation techniques are made. A good way to start this section
is to remember the second No free meal Theorem.
Theorem 1 (No free meal Theorem 2). [...] if one algorithm outperforms another for certain kinds of cost
function dynamics, then the reverse must be true on the set of all other cost function dynamics.

Wolpert, Macready, & others (1997)

And as a result of the No free meal theorem 2, Wolpert wrote a corollary: " the Noo free meal theorems mean
that if an algorithm does particularly well on average for one class of problems then it must do worse on
average over the remaining problems. In particular, if an algorithm performs better than random search on
some class of problems then in must perform worse than random search on the remaining problems. Thus
comparisons reporting the performance of a particular algorithm with a particular parameter setting on a
few sample problems are of limited utility. While such results do indicate behavior on the narrow range of
problems considered, one should be very wary of trying to generalize those results to other problems." Wolpert
et al. (1997)
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So keeping this in mind it is wise to acknowledge that the best way to handle the three classification problems
is to list, for instance, three classification methods and validate their performance on the three problems.
This idea will result in nine learners that will have to be compared by their performance in every tissue
classification data, and for every tissue one of the three methoths will for sure outperform the remaining two.

The three selected supervised classification methods are: Random Forest, XGBoost and Neural Networks.

Before starting to build the learners, the train and test sets have to be determined. The train set will consist
of a random sample of a 90% of the treated dataset rows, and consequently, the test set, which will be
complementary to the train group, will be defined by the remaining 10% of the rows.
set.seed(250897)
tr.set <- sample(n, n*0.9)

The package mlr provides useful and easy to use functions that make procedures like testing, tuning and
cross validating really simple. The idea for this section is to apply the three said methods for the three
classification problems using k-fold cross validation to reduce the error of the resulting parameters and avoid
overfitting.

\begin{quote} The mlr package offers a clean, easy-to-use, and flexible domain-specific language for machine
learning experiments in R. It supports classification, regression, clustering, and survival analysis with more
than 160 modelling techniques. Defining learning tasks, training models, making predictions, and evaluating
their performance abstracts from the implementation of the underlying learner through an object-oriented
interface. Replacing one learning algorithm with another becomes as easy as changing a string. mlr goes far
beyond simply providing a unified interface. It implements a generic architecture that allows the assessment
of generalization performance, comparison of different algorithms in a scientifically rigorous way, feature
selection, and hyperparameter tuning for any method [...] Finally, mlr provides sophisticated visualization
methods that allow to show effects of partial dependence of models. mlr’s long term goal is to provide a
high-level domain-specific language to express as many aspects of machine learning experiments as possible."
\end{package} Bischl et al. (2016)

For more information on the mlr package, and about learners, tasks, learning or tuning, check the proposed
bibliography (Bischl et al. (2016)).

Using the function makeLearner, from the package mlr, several learners can be made for more than 80
machine learning methods including regression and classification. For the three methods selected, the learners
will be created as follows:
lrn.rf <- makeLearner("classif.randomForest")
lrn.xgb <- makeLearner("classif.xgboost", par.vals = list(

objective = "binary:logistic",
eval_metric = "error",
nrounds = 10,
verbose=0

))
lrn.nn <- makeLearner("classif.nnet", par.vals = list(

size = 1,
trace = F

))

Random Forest

The first supervised classification model candidate is the Random Forest algorithm. This choice was made
due to the versatility and good overall performance of this method, which has been on the top of classification
contests in combination with other methods and by itself.
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"Two well-known methods are boosting and bagging of classification trees. In boosting, successive
trees give extra weight to points incorrectly predicted by earlier predictors. In the end, a weighted
vote is taken for prediction. In bagging, successive trees do not depend on earlier trees - each is
independently constructed using a bootstrap sample of the data set. In the end, a simple majority
vote is taken for prediction. [...]

In addition to constructing each tree using a different bootstrap sample of the data, random forests
change how the classification or regression trees are constructed. In standard trees, each node
is split using the best split among all variables. In a random forest, each node is split using the
best among a subset of predictors randomly chosen at that node. This somewhat counterintuitive
strategy turns out to perform very well compared to many other classifiers, including discriminant
analysis, support vector machines and neural networks, and is robust against overfitting. In
addition, it is very user-friendly in the sense that it has only two parameters (the number of
variables in the random subset at each node and the number of trees in the forest), and is usually
not very sensitive to their values."

Liaw, Wiener, & others (2002)

Table 4 groups the strengths and weaknesses of the Random Forest method.

Strengths Weaknesses

• It is a classifier that performs nicely with
most problems

• It provides nice results under noisy data
and both categorical and continuous vari-
ables

• It becomes easy to find the most impor-
tant variables

• It can handle big data frames with a huge
amount of features and rows

• It is hard to impossible to decypher the
model

• For certain datasets it can be difficult to
adapt the data to the model

Table 4: Strengths and weaknesses of the Random Forests method

Lantz (2013)

To compute the classification using the Random Forest method, the learner classif.randomForest, that
is the mlr version of the RandomForest package, will be used. This method that calls the randomForest
function from the homonymous package, admits just two input parameters. In this chapter no parameter
tuning will be made, but still, since later on these parameters will be configured, it is convenient to list and
describe them.

• nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees to be grown
(and thus take less time). The default value for classification problems is 5.

• ntree Number of trees to grow. This should not be set to too small a number, to ensure that every
input row gets predicted at least a few times. The default value is 500.

# 10-fold repeated stratified Cross Validation with Random Forest
# for the three body tissues

pred.fat.rf <- repcv(lrn.rf, traintask.fat,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)

pred.lean.rf <- repcv(lrn.rf, traintask.lean,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)

pred.bone.rf <- repcv(lrn.rf, traintask.bone,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)
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XGBoost

The second method candidate is a boosting algorithm called Extreme Gradient Boosting (or XGBoost)(Chen
& Guestrin, 2016). This gradient boosting algorithm is popular due to its great performance in machine
learning contests and its decent results in all kinds of classification and regression problems.

"Similar to bagging, boosting uses ensembles of models trained on resampled data and a vote to
determine the final prediction. The key difference is that the resampled datasets in boosting are
constructed specifically to generate complementary learners, and the vote is weighted based on each
model’s performance rather than giving each an equal vote. [...] The algorithm is based on the
idea of generating weak leaners that iteratively learn a larger portion of the difficult-to-classify
examples in the training data by paying more attention (that is, giving more weight) to often
misclassified examples. Beginning from an unweighted dataset, the first classifier attempts to
model the outcome. Examples that the classifier predicted correctly will be less likely to appear in
the training dataset for the following classifier, and conversely, the difficult-to-classify examples
will appear more frequently. As additional rounds of weak learners are added, they are trained
on data with successively more difficult examples. The process continues until the desired overall
error rate is reached or performance no longer improves. At that point, each classifier’s vote is
weighted according to its accuracy on the training data on which it was built."

Lantz (2013)

"XGBoost is a scalable machine learning system for tree boosting. The system is available as
an open source package. The impact of the system has been widely recognized in a number of
machine learning and data mining challenges [...] Among the 29 challenge winning solutions
published at Kaggle’s blog during 2015, 17 solutions used XGBoost. Among these solutions, eight
solely used XGBoost to train the model, while most others combined XGBoost with neural nets in
ensembles. For comparison, the second most popular method, deep neural nets, was used in 11
solutions. The success of the system was also witnessed in KDDCup 2015, where XGBoost was
used by every winning team in the top10. Moreover, the winning teams reported that ensemble
methods outperform a well configured XGBoost by only a small amount"

Chen & Guestrin (2016)

In Table 5 one can find the overall strengths and weaknesses of the XGBoost method.

Strengths Weaknesses

• Its performance tends to be decent in all
kinds of problems, including regression
and classification.

• One of the first choices in data competi-
tions.

• Usually outperforms other methods when
facing difficult data.

• It is a good choice if one does not know
a lot about the data.

• It is much younger than its fellow com-
petitors, which means that much less in-
vestigation has been done with or around
it.

• It may turn into an overfitted model un-
expectedly.

Table 5: Strengths and weaknesses of the XGBoost method

Lantz (2013)

To compute the classification using XGBoost, the learner classif.xgboost, that is the mlr version of the
xgboost package, will be used. This method calls the xgboost function from the homonymous package, and
has a quite big amount of possible input parameters. In the tuning chapter the following parameters will be
adjusted:

• nrounds Maximum number of boosting iterations.

35



• max_depth Maximum depth of a tree. The default value is 6.

• lambda L2 regularization term on weights. The default value is 0.

• eta "Control the learning rate". Scale the contribution of each tree by a factor of 0 < eta < 1 when it
is added to the current approximation. Used to prevent overfitting by making the boosting process
more conservative. Lower value for eta implies larger value for nrounds: low eta value means model
more robust to overfitting but slower to compute. The default value is 0.3.

• subsample subsample ratio of the training instance. Setting it to 0.5 means that xgboost randomly
collected half of the data instances to grow trees and this will prevent overfitting. It makes computation
shorter (because less data to analyse). It is advised to use this parameter with eta and increase nrounds.
The default value is 1.

• colsample_bytree Subsample ratio of columns when constructing each tree. The default value is 1.
# 10-fold repeated stratified Cross Validation with XGBoost for the three body tissues

pred.fat.xgb <- repcv(lrn.xgb, traintask.fat,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)

pred.lean.xgb <- repcv(lrn.xgb, traintask.lean,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)

pred.bone.xgb <- repcv(lrn.xgb, traintask.bone,
folds=10, reps=params$RepsCV, stratify = T, measures = measList)

Neural networks

An Artificial Neural Network (ANN) models the relationship between a set of input signals and an output
signal using a model derived from our understanding of how a biological brain responds to stimuli from
sensory inputs. Just as a brain uses a network of interconnected cells called neurons to create a massive
parallel processor, the ANN uses a network of artificial neurons or nodes to solve learning problems.

Strengths Weaknesses

• Can be adapted to classification or nu-
meric prediction problems

• Among the most accurate modeling ap-
proaches

• Makes few assumptions about the data’s
underlying relationships

• Reputation of being computationally in-
tensive and slow to train, particularly if
the network topology is complex

• Easy to overfit or underfit training data
• Results in a complex black box model

that is difficult if not impossible to inter-
pret

Table 6: Strengths and weaknesses of the Neural Networks method

Lantz (2013)

To compute the classification using Neural Networks, the learner classif.nnet, that is the mlr version of
the nnet package, will be used. This method calls the nnet function from the homonymous package, and
has a quite big amount of possible input parameters. In the tuning chapter the following parameters will be
adjusted:

• size Number of units in the hidden layer. Can be zero if there are skip-layer units.

• skip switch to add skip-layer connections from input to output. The default value is false.

• maxit Maximum number of iterations. The default value is 100.
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• abstol Stop if the fit criterion falls below abstol, indicating an essentially perfect fit. The default value
is 10−4.

# 10-fold repeated stratified Cross Validation with Neural Networks
# for the three body tissues

pred.fat.nn <- repcv(lrn.nn, traintask.fat, folds=10,
reps=params$RepsCV, stratify = T, measures = measList)

pred.lean.nn <- repcv(lrn.nn, traintask.lean, folds=10,
reps=params$RepsCV, stratify = T, measures = measList)

pred.bone.nn <- repcv(lrn.nn, traintask.bone, folds=10,
reps=params$RepsCV, stratify = T, measures = measList)

Untuned results

Once the Random Forest, XGBoost, and Neural Networks methods have been trained for the three tissue
related datasets, one has to compare their performance. Parameters like the accuracy never fail to be a good
estimator of the performance, even though some other terms have to be checked, for example the specificity,
the FNR and the Kappa coefficient. Since this specific problem is related to a clinic case, the number of false
negatives should be as little as possible, thus between two methods with close performance indicators but
different false negative numbers, one should use the one with the lowest false negative rate.

Fat Results
Random forest XGBoost Neural networks

Accuracy 0.749 0.736 0.721
Specificity 0.914 0.881 0.892
FNR 0.693 0.653 0.737
Kappa 0.257 0.253 0.148

Lean Results
Random forest XGBoost Neural networks

Accuracy 0.831 0.842 0.887
Specificity 0.521 0.623 0.854
FNR 0.063 0.084 0.102
Kappa 0.506 0.562 0.721

Bone Results
Random forest XGBoost Neural networks

Accuracy 0.696 0.694 0.755
Specificity 0.359 0.377 0.595
FNR 0.14 0.152 0.167
Kappa 0.24 0.244 0.435

Table 7: Results of the repeated cross validation for the untuned models

Comparing methods

The results obtained from the untuned training, displayed in Table 7, can be analyzed by comparing the four
performance parameters. The first overall conclusion is that for every disease, the three methods behave
alike, even though there is always one that performs slightly better. The Neural Network results for the lean
and bone sets outperform the other two methods clearly, but for the fat set, even though the accuracies for
the Random Forest and Neural Networks are close, by looking at the Kappa coefficient, and the specificity,
one can take the Random Forest as the untrained method with the best performance for this set.
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When introducing the methods, they were applied with the default parameters, which is a vague option
to compute a classifier. Thus in this chapter the main goal is to find how the method parameters can be
modified, and calculate the values for these parameters to obtain the model with the best performance.

Parameter tuning

The parameter tuning has been computed using the tuneModel function from the mlr package. This function
makes parameter tuning really easy and simple, allowing the user to decide which parameters to tune, their
range or fixed values, the priority of the measures to optimize (for example in this project accuracy, kappa
and fnr are the ones that have been optimized in this same priority order), and the validation technique to
apply.

The parameters to tune for each model have been previously stated even though no ranges or values have
been set. In this section these sets or intervals will be determined in order to proceed to the tuning execution.

The Random Forest implementation from the randomForest package allows the user to modify the parameters
nodesize and nodetree. These parameters must be positive integers and can be as big as the user wants.
For the dataset that will be used in this computation, and taking into account the correlation plots and PC
results displayed in previous sections, the values displayed in the following code block have been assigned to
the parameters in the tuning process.

makeDiscreteParam("nodesize",values = c(1, 3, 5, 7, 15), default=5),
makeDiscreteParam("ntree", values = c(200, 500, 800, 1200), default=500)

The XGBoost method from the xgboost package is highly customizable. To prevent computational time to
be massive, a decent set has been selected to be adjusted in the tuning process as displayed in the following
code chunk.

makeDiscreteParam("nrounds", values=c(2, 5, 10, 50, 100), default=2),
makeDiscreteParam("max_depth", values=c(3, 6, 10, 20), default=6),
makeDiscreteParam("lambda",values=c(0, 0.2, 0.6), default=0),
makeDiscreteParam("eta", values = c(0.01, 0.1, 0.3, 0.4), default=0.3),
makeDiscreteParam("subsample", values = c(0.3, 0.5, 1), default=1),
makeDiscreteParam("colsample_bytree", values = c(0.3, 0.5, 0.7, 1), default=1)

To conclude, the Neural Network customizable parameters from the package nnet that have been chosen to
be modified are the following:

makeIntegerParam("size",lower=1,upper=5, default = 1),
makeLogicalParam("skip", default=FALSE),
makeDiscreteParam("maxit",values=c(80, 100, 200), default=100),
makeDiscreteParam("abstol", values = c(1e-3, 1e-4, 1e-5), default=1e-4)

The complete original algorithm involved in the tuning task can be found in Appendix 2. This said algorithm
combines parameter tuning for the nine classification problems, resulting from combing the three machine
learning methods with the three body composition sets, with a 10-fold stratified repeated cross-validation.
The estimated computation time to obtain the optimal parameters goes from 4 to 32 hours, depending on the
number of repetitions for every cross-validation iteration. Since the computation can be quite time-consuming,
the tuning results are locally saved with .RData extentions, so they do not have to be computed for every
code compilation.

Fat Results
Random forest XGBoost Neural networks

Accuracy 0.752 0.754 0.755
Specificity 0.925 0.941 0.895
FNR 0.714 0.748 0.624
Kappa 0.25 0.236 0.303
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Lean Results
Random forest XGBoost Neural networks

Accuracy 0.824 0.842 0.897
Specificity 0.504 0.635 0.802
FNR 0.066 0.087 0.071
Kappa 0.486 0.567 0.729

Bone Results
Random forest XGBoost Neural networks

Accuracy 0.716 0.721 0.76
Specificity 0.337 0.327 0.572
FNR 0.106 0.095 0.151
Kappa 0.261 0.264 0.428

Table 8: Results of the repeated cross validation for the tuned models

So, by analyzing the performance results for the tuned methods displayed at Table 8, one can compare the
three supervised tuned models for the three sets.

Taking into account the results obtained with the lean set, the Neural Networks approach clearly outperforms
the other two methods, all its performance parameters are more optimal than the ones of the other two
models, and it is safe to say that its accuracy and Kappa values are really positive.

Comparing the perfomance results over the bone set, the Neural Network approach is again the most optimal,
delivering an accuracy and Kappa values that clearly diverge from the other two methods.

Finally, the fat set is the one with tightest results, and the decision of choosing the most adequate algorithm
is far from trivial. If one compares the accuracies, the XGBoost model is the one delivering the best value,
even though it differs minimally from its competitors. The Kappa value, in this case is less trivial to examine,
and the Neural Networks algorithm delivers the best value. Since the FNR for the Neural Networks results is
also clearly more optimal, one would choose this algorithm over the other two.

On this phase of the project, several models have been tried, and what has happened some times, for weak
unstratified tuning approaches, is that the presence of unbalanced data has led to overfitted and poorly
trained models. These overfitted models had both the Kappa value and the FNR equal to 0, and an accuracy
equal to the No Information rate, meaning that the algorithm tends to return always either negative or
positive outputs. To clarify, if a dataset contains a huge amout of healthy individuals (let’s say a 99%), and
just a residual part of infected observations (the remaining 1%) the algoritm may assume that the proportion
of outputs will probably be as well 1% - 99%, and thus, if the prediction always classifies individuals as
healthy, regardless of their variables, the accuracy will always be around 99%, which is good in most cases
but not in this one.

To not stratify data and priorize indicators like TPR in the tuning process can produce highly accurate
nonesense models that when applied to a stratified population deliver poor results.

In order to conclude, the test prediction statistics will be displayed, as well as the tuned model optimal
parameters.

Table 9: Parameters for the Neural Networks method for the Fat variable

size skip maxit abstol
1 1 200 1e-04
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Table 10: Parameters for the Neural Networks method for the Lean variable

size skip maxit abstol
3 0 100 1e-04

Table 11: Parameters for the Neural Networks method for the Bone variable

size skip maxit abstol
1 0 80 0.001

Testing with the tuned models

Training the tuned models with the train test and applying predictions to the set, is a good way to obtain
a result of the performance of the final methods over data that has never been in touch with them. Using
the function train the tuned methods are trained, and the prediction can be computed calling the function
predict.
fat.model <- setHyperPars(lrn.nn, par.vals=Fat.RNN$x)
lean.model <- setHyperPars(lrn.nn, par.vals=Lean.RNN$x)
bone.model <- setHyperPars(lrn.nn, par.vals=Bone.RNN$x)

fat.model.trained <- train(fat.model, traintask.fat)
fat.pred <- predict(fat.model.trained, testtask.fat)

lean.model.trained <- train(lean.model, traintask.lean)
lean.pred <- predict(lean.model.trained, testtask.lean)

bone.model.trained <- train(bone.model, traintask.bone)
bone.pred <- predict(bone.model.trained, testtask.bone)

Table 12: Test results of the Neural Networks model for the fat set

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue
0.753 0.184 0.675 0.821 0.795 0.906 0.405

Table 13: Test results of the Neural Networks model for the lean set

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue
0.877 0.632 0.812 0.925 0.767 0.001 0.239

Table 14: Test results of the Neural Networks model for the bone set

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue
0.726 0.276 0.646 0.797 0.753 0.807 0.874

The parameter that determines if a model or a prediction is significant is the accuracy p-value. This p-value
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is calculated under the assumption that the prediction is independent of the class distribution in the train
subset; This assumption, known as the no information rate is a good indicator of significance in machine
learning models and predictions. In this case, the only p-value < 0.05 is the one found at Table 13, which
validates the assumption that the neural network tuned model is significant, thus its mean accuracy, which is
0.877 and differs from the no information rate (0.767), can be taken as a good indicator for the accuracy of
future predictions. On the other hand the McNemmar p-value indicates if the distribution of false negatives
and false positives is alike. Since in the three cases its value is greater than 0.05, one can assume that the
optimal classification models tend to return unequal values for FPR and FNR, which can be a consequence of
the fact that the subsets test and train are not stratified.

Even though the predictive methods for the fat and bone diseases are not statistically significative, the fact
that the lean disease neural network classifier is statistically valid is enough to set the goal of this project
as achieved. This proves the initial assumption that the lean ageing disease related to sarcopenia could be
successfully predicted using just the features belonging to the bone and fat subsets as explanatory variables.

Variable importance

The Neural Networks method has been selected as the most optimal for the three body composition sets.
For the Random Forest it is easy to compute the variable importance, and there exist a lot of packages that
perform variable importance operations. In this case the method to obtain information about the importance
that the features have, is more experimental but it has proven to deliver accurate results in literature. (Zhang
et al., 2018)

"Garson (1991) proposed a method, later modified by Goh (1995), for partitioning the neural
network connection weights in order to determine the relative importance of each input variable
in the network. [...] It is important to note that Garson’s algorithm uses the absolute values of
the connection weights when calculating variable contributions, and therefore does not provide the
direction of the relationship between the input and output variables."

Olden & Jackson (2002)

"Here, we provide a more appropriate comparison of the different methodologies by using Monte
Carlo simulations with data exhibiting defined (and consequently known) numeric relationships.
Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output
connection weights in the neural network provides the best methodology for accurately quantifying
variable importance and should be favored over the other approaches commonly used in the [...]
literature."

"We found that the Connection Weight Approach provides the best overall methodology for accurately
quantifying variable importance and should be favored over the other approaches examined in
this study. This approach successfully identified the true importance of all the variables in the
neural network, including variables that exhibit both strong and weak correlations with the response
variable. Moreover, a randomization test for the Connection Weight Approach has been recently
developed [...], which provides a tool for pruning null-connection weights and neurons from the
network and determining the statistical significance of variable contributions.""

Olden, Joy, & Death (2004)

To perform the Garson and Olden algorithms, the NeuralNetTools package will be used. This package
has built-in functions to perform Neural Networks analyze their topology or performance. Since the only
computed method that provided significative statistic values is the Neural Networks lean classification model,
for simplicity the Garson and Olden algorithms will only be applied to it, but before computing the feature
importance, a graphical representation of the net will be displayed using the function plotnet (Beck, 2018),
including painted vertices according to the weight distribution. The remaining Garson, Olden and network
topology plots can be found in Appendix 3.
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Figure 11: Graphical representation of the network topology from the lean disease predictor
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Figure 12: Garson and Olden plots for the lean disease neural network predictor

Now that the net is displayed in Figure 11, even though it is not very easy on the eye, the Garson and Olden
plots can be displayed returning feature importance information.

Table 15: Feature importance provided by the Garson and Olden algorithms

garson olden
TFp TFp
TotalFp TotalFp
NeckFT Weight
Weight RAFg
TotalFBMD TotalFg
RAFg FMI

Both in Table 15 and in Figure 12 one can see how relevant the dataset features are, and it is easy to see
that a set of approximately half a dozen features are clearly more important than the rest. These features
are displayed in Table 15, and since as stated in (Olden et al., 2004) the Olden approach is more reliable,
one should see which features are placed on top of the Olden list, and which features can be found in
both lists. This way, the “black box” core of the neural network can be read, and once analyzed, a proper
biological interpretation of the importance of the variables may be made providing in the best of cases
valuable information to the clinical team.
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Conclusions

Having the chance to work with real data, and in particular data from the city you live in, is always remarkable
and challenging.

In this project I had the chance to develop a complete data analysis machine learning study starting from a
dataset with samples from an actual clinic project that FLSIDA has collected since the early 2000. The goals
of the project have been achieved, since a tuned classification method has been developed and proven to be
actually significative. Even that the goals had been achieved, to conclude, additional information about the
model’s insights is provided, which might be useful to the clinical team of FLSIDA.

Since it was my first time developing from start to finish a machine learning project, I was initially willing
to start playing with the predictive methods as soon as possible. My advisors wisely suggested me to start
ananlyzing the dataset carefully, and to understand every feature, and once that was reached, to check if the
dataset was consistent or not. Once this phase was reached, the data analysis section seemed more intriguing,
and new challenges such as dimension reduction arosed. This part of the project which initially seemed less
challenging ended being the most essential part of the work, and without it the quality that the final product
has could not have been achieved.

On the other hand, I would have liked to develop this project with more time, since more data consistency
analysis would have been handy. For instance the outliers and feature consistency was not delivered to the
clinical team due to time constraints, and this information would have definitely improved the quality of the
dataset.

For further studies I would suggest more communication with the clinical team, and more time spent on
the analysis of the quality of the data. I am proud of how the prediction methods were controlled, even
though the stratified repeated 10-fold cross-validation was really time consuming, and with a regular laptop,
the computation time with 10 repetitions per round was over 30 hours, which is incompatible with agile
programming.

The original planned schedule was inconsistent with the project study line. This was a consequence of my
unfamiliarity with machine learning project management, even though the first meeting with the project
advisors fixed this issue on time and the reschedule was both feasible and positive.

To conclude, I am grateful for having had the chance to participate in such a challenging project; I am
greatful for the support and advice that my advisors have given me, it has made this journey really smooth
and interesting, and I feel like I have definitely learned a lot, both autonomously and with their support.
Beyond the fact that the goals have been succesfully reached, I am proud of this dissertation as it has taught
me uncountable interesting concepts and subjects related to HIV, AIDS, health science, clinical procedures,
and of course data analysis and machine learning.
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Glossary

• FLSIDA: Fundació lluita contra la sida (Fight AIDS foundation)

• AIDS: Acquired immunodeficency syndrome

• HIV: Human immunodeficency virus

• DEXAS: Dual-Energy X-Ray Absorptiometry

• cART: Combination antiretroviral therapy: combinations of drugs that are used to keep HIV infections
under control.

• BMD: Bone mineral density

• BMC: Bone mineral content

• BA: Bone area

• FMI: Fat mass index

• FMR: Fat mass ratio

• PC: Principal Component

• PCA: Principal Component Analysis

• XGBoost: Extreme gradient boosting

• FNR: False negative rate

• FPR: False positive rate

• TPR: True positive rate
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Appendices

Appendix 1: Distribution of the continuous and discrete variables

for (vname in disc.vars) {
barplot(table(raw_data[,vname]))

}
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for (vname in cont.vars) {
p1 <- ggplot(raw_data, aes(x=eval(parse(text =vname)))) +

geom_histogram(aes(y=..density..), colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666") + labs(x = vname)

grid.arrange(p1, ncol=1)
}
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Appendix 2: Parameter tuning

set.seed(230994)
cv.tr.set <- sample(n, n*0.9)
measList <- list(acc, kappa, fnr, tpr, fpr, tnr )

cv.data <- data
cv.data$Lipodistrophy <- as.factor(cv.data$Lipodistrophy)
cv.data$Sarcopenia <- as.factor(cv.data$Sarcopenia)
cv.data$Osteoporosis <- as.factor(cv.data$Osteoporosis)

getRRF = function(Rsets, expl.vars, pred.var) {
n.expl <- c(n.general, expl.vars, pred.var)

cv.train <- cv.data[Rsets, n.expl]

traintask <- makeClassifTask(data = cv.train,target = pred.var)

#set parameter space
params.rf <- makeParamSet(

makeDiscreteParam("nodesize",values = c(1, 3, 5, 7, 15), default=5),
makeDiscreteParam("ntree", values = c(200, 500, 800, 1200), default=500)

)

#set validation strategy
rf.rdesc <- makeResampleDesc("RepCV",folds=10, reps=params$RepsCV, stratify = T)

#set optimization technique
rf.ctrl <- makeTuneControlRandom()

var.name <- paste('rrf',pred.var, sep="")
if (paste(var.name,'.RData', sep="") %in% list.files()) {

load(paste(getwd(), paste('/rrf',pred.var, sep=""),'.RData', sep=""))
r.rf <- eval(parse(text = var.name))

} else {
r.rf <- tuneParams(learner = lrn.rf
,task = traintask
,resampling = rf.rdesc
,measures = measList
,par.set = params.rf
,control = rf.ctrl
,show.info = F)

assign(var.name, r.rf)
save(list=c(var.name), file=paste(var.name,'.RData', sep=""))

}
return(r.rf)

}
getRXGB = function(Rsets, expl.vars, pred.var) {

n.expl <- c(n.general, expl.vars, pred.var)

cv.train <- cv.data[Rsets, n.expl]

traintask <- makeClassifTask(data = cv.train,target = pred.var)
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#set parameter space
params.xgb <- makeParamSet(

makeDiscreteParam("nrounds", values=c(2, 5, 10, 50, 100), default=2),
makeDiscreteParam("max_depth", values=c(3, 6, 10, 20), default=6),
makeDiscreteParam("lambda",values=c(0, 0.2, 0.6), default=0),
makeDiscreteParam("eta", values = c(0.01, 0.1, 0.3, 0.4), default=0.3),
makeDiscreteParam("subsample", values = c(0.3, 0.5, 1), default=1),
makeDiscreteParam("colsample_bytree", values = c(0.3, 0.5, 0.7, 1), default=1)

)

# define search function
xgb.ctrl <- makeTuneControlRandom()

# k fold cross validation
xgb.rdesc <- makeResampleDesc("RepCV",folds = 10, reps=params$RepsCV, stratify = T)

var.name <- paste('rxgb',pred.var, sep="")
if (paste(var.name,'.RData', sep="") %in% list.files()) {

load(paste(getwd(), paste('/rxgb',pred.var, sep=""),'.RData', sep=""))
r.xgb <- eval(parse(text = var.name))

} else {
r.xgb <- tuneParams(learner = lrn.xgb

,task = traintask
,resampling = xgb.rdesc
,measures = measList
,par.set = params.xgb
,control = xgb.ctrl
,show.info = F)

assign(var.name, r.xgb)
save(list=c(var.name), file=paste(var.name,'.RData', sep=""))

}
return(r.xgb)

}
getRNN = function(Rsets, expl.vars, pred.var) {

n.expl <- c(n.general, expl.vars, pred.var)

cv.train <- cv.data[Rsets, n.expl]
traintask <- makeClassifTask(data = cv.train,target = pred.var)

#set parameter space
params.nn <- makeParamSet(

makeIntegerParam("size",lower=1,upper=5, default = 1),
makeLogicalParam("skip", default=FALSE),
makeDiscreteParam("maxit",values=c(80, 100, 200), default=100),
makeDiscreteParam("abstol", values = c(1e-3, 1e-4, 1e-5), default=1e-4)

)

#define search function
nn.ctrl <- makeTuneControlRandom()

#10 fold cross validation
nn.rdesc <- makeResampleDesc("RepCV", folds = 10, reps=params$RepsCV, stratify = T)
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var.name <- paste('rnn',pred.var, sep="")
if (paste(var.name,'.RData', sep="") %in% list.files()) {

load(paste(getwd(), paste('/rnn',pred.var, sep=""),'.RData', sep=""))
r.nn <- eval(parse(text = var.name))

} else {
r.nn <- tuneParams(learner = lrn.nn

,task = traintask
,resampling = nn.rdesc
,measures = measList
,par.set = params.nn
,control = nn.ctrl
,show.info = F)

assign(var.name, r.nn)
save(list=c(var.name), file=paste(var.name,'.RData', sep=""))

}
return(r.nn)

}
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Appendix 3: Feature importance and net topology

fat.model.trained$learner.model$call$formula = 'Lipodistrophy ~ .'
lean.model.trained$learner.model$call$formula = 'Sarcopenia ~ .'
bone.model.trained$learner.model$call$formula = 'Osteoporosis ~ .'

plotnet(fat.model.trained$learner.model, max_sp=T, cex_val=0.6, circle_cex=3)
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plotnet(lean.model.trained$learner.model, max_sp=T, cex_val=0.6, circle_cex=3)
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plotnet(bone.model.trained$learner.model, max_sp=T, cex_val=0.6, circle_cex=3)
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print('FAT')

## [1] "FAT"
# The garson and olden algorithms do not admit nets with skip layes,
# so the importance of the Random forest will be displayed
# garson(fat.model.trained$learner.model)
# olden(fat.model.trained$learner.model$wts, struct = c(21,1,1),
# x_lab = fat.model.trained$features)
#
# gar.fat <- garson(fat.model.trained$learner.model, bar_plot=F)
# old.fat <- olden(fat.model.trained$learner.model$wts, struct = c(21,1,1),
# x_lab = fat.model.trained$features, bar_plot=F)
#
# knitr::kable(data.frame(garson=head(rownames(gar.fat)[order(
# gar.fat$rel_imp, decreasing = T)]),
# olden=head(rownames(old.fat)[order(abs(old.fat$importance), decreasing = T)])))
fat.model.rf <- setHyperPars(lrn.rf, par.vals=Fat.RRF$x)
fat.model.trained.rf <- train(fat.model.rf, traintask.fat)
fat.importance <- fat.model.trained.rf$learner.model$importance
fat.importance.o <- fat.importance[order(fat.importance, decreasing = T),]

knitr::kable(head(fat.importance.o), col.names=c('Importance'))

Importance
Age 71.9
BMI 32.0
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Importance
WardsT 28.1
FFMI 27.4
Weight 25.4
L1Z 25.0

print('LEAN')

## [1] "LEAN"
garson(lean.model.trained$learner.model)
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olden(lean.model.trained$learner.model$wts, struct = c(31,3,1),
x_lab = lean.model.trained$features)
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gar.lean <- garson(lean.model.trained$learner.model, bar_plot=F)
old.lean <- olden(lean.model.trained$learner.model$wts, struct = c(31,3,1),

x_lab = lean.model.trained$features, bar_plot=F)

knitr::kable(data.frame(garson=head(rownames(gar.lean)[order(
gar.lean$rel_imp, decreasing = T)]), olden=head(rownames(old.lean)[order(

abs(old.lean$importance), decreasing = T)])))

garson olden
TFp TFp
TotalFp TotalFp
NeckFT Weight
Weight RAFg
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garson olden
TotalFBMD TotalFg
RAFg FMI

print('BONE')

## [1] "BONE"
garson(bone.model.trained$learner.model)
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olden(bone.model.trained$learner.model$wts, struct = c(22,1,1),
x_lab = bone.model.trained$features)
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gar.bone <- garson(bone.model.trained$learner.model, bar_plot=F)
old.bone <- olden(bone.model.trained$learner.model$wts, struct = c(22,1,1),

x_lab = bone.model.trained$features, bar_plot=F)

knitr::kable(data.frame(garson=head(rownames(gar.bone)[order(
gar.bone$rel_imp, decreasing = T)]), olden=head(rownames(old.bone)[order(

abs(old.bone$importance), decreasing = T)])))

garson olden
BMI BMI
FFMI FFMI
FMI FMI
TotalFp TotalFp
Weight Weight
FtrunkgFtotalg FtrunkgFtotalg
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