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Abstract

The transportation sector accounts for a significant amount of greenhouse gas emissions. To mitigate

this problem, electric vehicles have been widely recommended as green vehicles with lower emissions.

However, the driving range of electric vehicles is limited due to their battery capacity. In this paper,

a bi-objective mixed-integer linear programming model is proposed to minimise total costs (fixed

plus variable) as well as CO2 emissions caused by the vehicles used in the fleet for a Heterogeneous

Vehicle Routing Problem with Multiple Loading Capacities and Driving Ranges (HeVRPMD). To

solve the proposed model, an enhanced variant of Multi-Directional Local Search (EMDLS) is de-

veloped to approximate the Pareto frontier. The proposed method employs a Large Neighbourhood

Search (LNS) framework to find efficient solutions and update the approximated Pareto frontier

at each iteration. The LNS algorithm makes use of three routing-oriented destroy operators and a

construction heuristic based on a multi-round approach. The performance of EMDLS is compared

to MDLS, an Improved MDLS (IMDLS), non-dominated sorting genetic algorithm II (NSGAII),

non-dominated sorting genetic algorithm III (NSGAIII), and the weighting and epsilon-constraint

methods. Extensive experiments have been conducted using a set of instances generated from the

Capacitated Vehicle Routing Problem benchmark tests in the literature. In addition, real data is

utilised to estimate fixed and variable costs, CO2 emissions, capacity, and the driving range of each

type of vehicle. The results show the effectiveness of the proposed method to find high-quality

non-dominated solutions.
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1. Introduction

A number of factors stimulate the use of eco-friendly means of transport including (Juan et al.,

2016): (i) government’s incentives for reducing the greenhouse gas emissions; (ii) high risk associ-

ated with oil-based products in terms of their availability and cost; (iii) possibility of the utilisation

of these vehicles with lower purchase cost because of government subsidies; and (iv) advances in

new generations of alternative energy technologies, which make them more competitive compared

to Internal Combustion Engine Vehicles (ICEVs). For these reasons, most recently some companies

have become interested to use more fuel-efficient vehicles such as electric and hybrid vehicles in

countries such as Germany, France and the United Kingdom (Montoya et al., 2017; Browne et al.,

2011). Therefore, many researchers and practitioners have focused on the transportation sector,

which produces most of the greenhouse gas emissions compared to other sectors in the supply chain

such as production and inventory (Dekker et al., 2012). As a consequence, Green Logistics and

Green Vehicle Routing Problems (GVRP) have been increasingly receiving attention (Lin et al.,

2014).

In the context of GVRP, Electric Vehicles (EVs) are likely to be used in mix fleets with Plug-in

Hybrid Electric Vehicles (PHEVs) and ICEVs. For example, UPS announces its plan to expand the

number of electric delivery trucks it operates in London from 50 to 70. According to UPS’s director

of sustainability, the company plans to test a new smart grid technology in London as part of a two-

year testing project (Edie.net). However, there is a general agreement that driving range limitations

impose a major challenge to the popularisation of electric vehicles.Thus, a report published by the

Canadian Pollution Probe organisation states that: “As evident from the driver surveys, concerns

about driving range limitations of electric vehicles combined with drivers’ tendency to overestimate

the distances that they actually drive limits how often drivers choose an electric vehicle for their day-

to-day needs” (Council, 2015). Similarly, an article published in The Financial Times states that:

“Without a technology breakthrough, battery electric vehicles are not expected to gain significant

market share in the foreseeable future...” due to “... high purchase prices, driving range limitations

and poor battery performance...” (Clark and Campbell, 2016). Hence, optimisation of routing plans

considering these driving range limitations constitutes a necessary step in order to reduce the cost

associated with the use of electric vehicles and promote their use in modern freight fleets.

Unlike EVs, the driving ranges of ICEVs and PHEVs are unlimited due to the fact that they

can be refuelled at any fuel station along the route. Additionally, the loading capacity of ICEVs

and PHEVs is more than EVs. Therefore, from an economic point of view, ICEVs and PHEVs are
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more efficient. On the contrary, as stated before, EVs are more eco-friendly compared to ICEVs and

PHEVs, and can result in a greener fleet. Hence, given two fleet configurations that could perform

the requested delivery, the one using less combustion-engine vehicles and more EVs is considered

to be greener. Using various vehicles in the fleet can be a challenging issue if the total costs (fixed

plus variable), as well as environmental impacts, are considered simultaneously. Hence, it is highly

desirable to provide trade-off solutions considering both environmental impact and monetary costs.

Juan et al. (2014b) analyse how distance-based costs increase when a fleet consists of EVs, PHEVs

and ICEVs. However, they have not studied the HeVRPMD model as a bi-objective problem, and

therefore they are not able to provide the Pareto approximation set explicitly. The research work

proposed in this paper addresses this gap.

In this paper, we propose a bi-objective model to integrate the impact of using a greener fleet

on the monetary costs. The three primary contributions of this paper are as follows: (i) A bi-

objective optimisation model is proposed to provide trade-off solutions between monetary costs and

environmental impacts; (ii) EMDLS algorithm is developed, which is an enhanced variant of the

Improved Multi-Directional Local Search (IMDLS) introduced by Lian et al. (2016) for the multi-

objective consistent VRP; and (iii) Large Neighbourhood Search (LNS) is proposed to solve each of

the two objectives. The operators used within LNS differ from the ones in the literature as they are

based on each solution routes instead of its nodes. As regards IMDLS, it is an improved variant of

the Multi-Directional Local Search (MDLS) proposed by (Tricoire, 2012) for general multi-objective

optimisation problems. The effectiveness of EMDLS is demonstrated by comparing its performance

with MDLS, IMDLS, non-dominated sorting genetic algorithm II (NSGAII), non-dominated sorting

genetic algorithm III (NSGAIII) and two traditional methods, namely: ε-Constraints and Weighted

Sum.

The rest of the paper is organised as follows. Section 2 provides a review of the literature on

GVRP. Section 3 presents the mathematical optimisation model. The developed solution methods

are described in Section 4. Section 5 presents the computational experiments and results. Lastly,

several conclusions and some possible future research directions are given in Section 6.

2. Related literature review on GVRP

The transportation sector contributes significantly to the generation of GHG emissions. There-

fore, it has become a tangible player for reducing these emissions (Tight et al., 2005). In recent

years, GVRP has received an increasing amount of attention in the literature with the aim to re-

duce GHG emissions. In the literature of VRP and GHG emission, two relatively new streams can
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be found. In the first category, studies focus on reducing conventional fuel consumption in order

to minimise the CO2 emissions. Whereas, in the second category, alternative fuel consumption is

considered to fulfil the same objective. In some practical situations, when alternative fuel is used,

a heterogeneous fleet of vehicles is required to serve the customers. This fact is also reflected in the

literature where studies on alternative fuel consumption consider Heterogeneous Vehicle Routing

Problem (HVRP). HVRPs are an extension of the classical VRP in which one needs to additionally

decide about the composition of the heterogeneous fleet. Koç et al. (2016) provide an overview of

significant research studies on HVRP in recent years.

The first category of studies seeks to minimise the amount of fuel consumed by a vehicle since

CO2 emissions are directly proportional to this value. The fuel consumption of a given vehicle

can be influenced by three dominant factors including travel distance, truckload and vehicle speed

(Elhedhli and Merrick, 2012). Consequently, researchers have investigated the environmental VRP

from different perspectives (Lin et al., 2014). Many researchers considered the fuel consumption as a

function of distance and vehicle load (Zhang et al., 2014; Xiao et al., 2012; Kara et al., 2007). Some

researchers have looked into integrating traffic-related parameters, such as vehicle speed, load and

acceleration into VRP. This has resulted in a so-called Pollution-Routing Problem (PRP), which

consists of generating a set of routes to serve the customers and determining the speed of each

vehicle on each route segment (Bektaş and Laporte, 2011). The primary goal of the PRP is to

minimise the fuel consumption along with other criteria such as minimising travel distance and

travel time (Demir et al., 2014; Eshtehadi et al., 2017; Franceschetti et al., 2017).

With the increasing prevalence of Alternative Fuel Vehicles (AFVs) and the extensive growth

of EVs in recent years, the second category of studies on alternative fuel consumption has emerged.

In addition, the role of refuelling and recharging has become more significant in GVRP problems.

Erdoğan and Miller-Hooks (2012), to the best of our knowledge, provide the first GVRP model which

considers recharging stations. New mathematical programming models for GVRPs to formulate

refuelling AFVs can be found in Bruglieri et al. (2016); Koç and Karaoglan (2016); Madankumar

and Rajendran (2018). Bruglieri et al. (2016) introduce a new mixed-integer linear programming

model to minimise the total travel distance. They formulate the visits to the Alternative Fuel

Stations (AFSs) with less numbers of variables through pre-computing a set of efficient AFSs which

may be actually used in the optimal solution. Koç and Karaoglan (2016) also propose a new

formulation of GVRP with less number of variables and constraints to minimise the total travel

distance of AFVs with limited refuelling infrastructure. They show the merit of solving the problem

to optimality by an exact solution approach based on Simulated Annealing (SA). Another work

which investigates minimising total routing and refuelling costs of AFVs is a study on GVRP
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with Pickups and Deliveries in a Semiconductor Supply Chain (G-VRPPD-SSC) by Madankumar

and Rajendran (2018). Unlike most of the existing models for EVs, Goeke and Schneider (2015)

incorporate a non-linear energy consumption model which considers speed, gradient and cargo load

distribution.

Among the studies on EV routing, various heuristics and metaheuristics are implemented to

consider when and where to charge EVs. Felipe et al. (2014) develop several solution methods

including various constructive algorithms, local search heuristics and an SA framework in a study

which considers cost and energy savings through partial recharges and usage of several recharge

technologies. Hiermann et al. (2014) develop a hybrid variable neighbourhood search and tabu

search heuristic to solve electric VRP with time windows. Vaz Penna et al. (2016) propose a

hybrid iterative local search for the same problem. Bruglieri et al. (2017) introduce a three-phase

matheuristic to solve the electric VRP with partial recharges, which combines an exact method with

a Variable Neighbourhood Search local Branching (VNSB). The aim is to minimise hierarchically

the number of EVs used and their total travelling, charging and waiting times. For a survey on the

recent development of GVRP, we refer the readers to Bektaş et al. (2016).

It should be noted that it is not necessary to consider recharging decisions in our study as a

vehicle route is completed before recharging is required. It is important to consider the driving

range constraints as this operational limit is relevant to the current practice of EVs. Also, the

development of recharging facilities throughout the road transportation networks might be only an

option in the long run, despite the recent advances on EVs-related technology and infrastructure.

Therefore, the travel range still remains as one of the main issues concerning the use of EVs in

transportation. Hence, Juan et al. (2014b) introduce a new variant of VRP, called the VRP with

Multiple Driving Ranges, in which vehicles are heterogeneous in terms of driving-ranges. Our study

extends the previous research work by proposing the following: (i) a bi-objective HeVRPMD to

minimise total cost and environmental impacts, and (ii) an efficient solution approach inspired by

MDLS and IMDLS to provide a set of non-dominated solutions.

3. Problem definition and bi-objective optimisation model

In this section, we describe the proposed bi-objective HeVRPMD optimisation model, which

considers a heterogeneous fleet of vehicles with loading capacities and driving ranges. This model

extends the VRP with multiple driving ranges model proposed by Juan et al. (2014b) by considering

a heterogeneous fleet of vehicles with respect to loading capacities.

Unlike the model proposed by Juan et al. (2014b), where the main goal is to minimise distance,
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the proposed model seeks to minimise both the fixed and variable costs and environmental impacts

of the fleet used to serve the customers. Indeed, both objectives stem from the real data for

different types of vehicles. The fixed cost refers to the cost components such as capital investment

over a constant period of time, tax, insurance and warranty costs; while the variable cost includes

fuel/energy and driver costs. Inspired by the real data, both fixed and variable costs are defined

as a function of distance units. Since CO2 accounts for a predominant source of greenhouse gas

emissions, and thanks to the data-accessibility, the environmental impact could be measured as the

amount of CO2 emissions produced per unit of distance for each vehicle type.

The bi-objective HeVRPMD optimisation model is a complete, directed graph G = (N,A)

consisting of a set N of n+ 1 nodes, N = {0, 1, . . . , n} and a set A = {(i, j) : i, j ∈ N, i 6= j}, which

represents the arcs connecting pairs of nodes. Node 0 denotes the depot, where the vehicle fleets are

located, and the remaining nodes represent the n customers. Each customer i has a known demand

qi > 0. We denote the distance from node i to node j by dij , where dij = dji ≥ 0. In addition,

there is a set K of k different types of vehicles, K = {1, 2, . . . , k}. The number of vehicles for each

type is unlimited. The total travel cost using vehicle of type l per each distance unit is denoted

by f l. Similarly, el represents the CO2 emissions generated by vehicle type l per distance unit.

Each vehicle of type l has a loading capacity Ql and a maximum driving range T l. Three different

decision variables are used in the model: (i) a binary decision variable xlij , which takes the value 1 if

vehicle l ∈ K travels from node i to j, and 0 otherwise; and (ii) two continuous decision variables uli
and vli, which represent the cumulative amount of load carried and distance traveled, respectively,

by vehicle l ∈ K when leaving customer i ∈ N\{0}. It should be noted that ul0 and vl0 are both

set to zero when leaving the start depot node. The hard constraints are as follows: (i) each route

starts and ends at the depot and is associated with a vehicle type; (ii) each customer belongs to

exactly one route; and (iii) loading capacities and driving ranges of the vehicles are never exceeded.

As mentioned earlier, the vehicles are heterogeneous both in loading capacity and driving range.

The first objective function of the optimisation model is defined in Equation 1. This function

calculates the total fixed and variable costs of the used vehicles by multiplying the total cost per

unit distance of each vehicle and the traveled distance by each vehicle l over all arcs (i, j) ∈ A:

minimise z1 =
∑
l∈K

∑
(i,j)∈A

f ldijx
l
ij (1)

Equation 2 is the second objective function minimising the CO2 emissions generated by all the

vehicles used in the fleet by multiplying the CO2 emission per unit distance of each vehicle to the

traveled distance by each vehicle l over all arcs (i, j) ∈ A:
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minimise z2 =
∑
l∈K

∑
(i,j)∈A

eldijx
l
ij (2)

The constraints of the HeVRPMD model are defined in Equations 3 to 9. Constraints 3 ensure that

every customer is visited exactly once by a single vehicle:∑
l∈K

∑
j∈N,i6=j

xlij = 1 ∀i ∈ N\{0} (3)

Constraints 4 guarantee the flow conservation for a given customer using a vehicle of type l:∑
j∈N,i 6=j

xlij −
∑

j∈N,i 6=j
xlji = 0 ∀i ∈ N\{0}, l ∈ K (4)

Constraints 5 ensure that the load of the vehicle in the next node j depends on the load of the

vehicle in the previous node i as well as the demand of node j:

uli ≤ ulj − qjxlij +Ql(1− xlij) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (5)

Constraints 6 ensure that load uli is always greater than zero and less than the maximum capacity

Ql for a vehicle of type l:

0 ≤uli ≤ Ql ∀l ∈ K, i ∈ N\{0} (6)

Constraints 7 and 8 ensure that a route length does not exceed the maximum range of vehicle

l. Constraints 7 restrict the accumulated distance travelled at customer j (vj) to be larger than

the accumulated distance travelled at previous visited node i (vi) plus the distance travelled from

customer node i to customer j.

0 ≤ vli ≤ vlj − dijxlij + T l(1− xlij) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (7)

Constraints 8 ensure that the current accumulated distance travelled to be smaller than the max-

imum driving range of vehicle type l ∈ K minus the distance traveled from node i ∈ N to node

j ∈ N .

0 ≤ vli ≤ T l − dijxlij ∀l ∈ K,∀(i, j) ∈ N, i 6= j (8)

Lastly, constraints 9 guarantee the binary conditions of the decision variables:

xlij ∈ {0, 1} ∀l ∈ K,∀(i, j) ∈ A (9)

As discussed in Juan et al. (2014b), even small-scale instances for the single objective homoge-

neous (simplified) version of this problem are hard to solve in reasonable computation times using

commercial optimisation packages such as CPLEX. Therefore, in the remaining of this paper, we

have developed a meta-heuristic method to solve the problem and generate a set of non-dominated

solutions.
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4. Enhanced multi-directional local search to solve HeVRPDR

Multi-objective optimisation involves the optimisation of two or more conflicting objectives

subject to a set of constraints. A common approach to compare two solutions in multi-objective

optimisation is to consider a dominance rule, which means a solution dominates another one if it is

better in at least one objective and not worse in all other objectives (Tricoire, 2012). A solution is

Pareto-optimal if there does not exist any solution that dominates it. Multi-objective optimisation

methods aim to find the Pareto-optimal set consisting of several trade-off solutions rather than a

single optimal solution (Eberhart et al., 1996).

In the following sections, MDLS and IMDLS are firstly explained. We then introduce the

proposed Enhanced Multi-Directional Local Search (EMDLS), as an enhanced version of MDLS

and IMDLS to approximate the Pareto frontier. We complete this section with the description of

the LNS framework and its components (e.g. destroy and repair operators), which is used as a local

search in EMDLS.

4.1. MDLS and IMDLS methods

MDLS introduced by Tricoire (2012) is a meta-heuristic for multi-objective optimisation. The

fundamental idea of this method relies on the concept of Pareto dominance. A neighbour solution

x′ of x is efficient if x′ is better than x for at least one objective. Hence, to find efficient neighbour

solutions of x, it is sufficient to search one direction at a time using single objective local search

methods.

The initialisation of MDLS requires an initial set F of non-dominated solutions. At each iter-

ation, a solution x from F is randomly selected and then for each objective, a corresponding local

search method is employed to generate a neighbour solution x′. After that, the non-dominated set

F is updated by merging solutions in F and the new neighbour solutions using the dominance rule,

and deleting all dominated solutions. At the end of the algorithm, MDLS returns the set F of

mutually non-dominated solutions.

Lian et al. (2016) proposed IMDLS which is different from MDLS in two aspects: (i) IMDLS

limits the size of F . The crowding distance introduced by Deb et al. (2002) is used to guide

the selection of specific solutions in F in case the size of F exceeds the maximum size; (ii) at

each iteration, the neighbourhood of all the solutions in F are explored, while MDLS explores

only a single solution. Lian et al. (2016) have proved the effectiveness of IMDLS on the multi-

objective consistent VRP in comparison to the state of the art methods such as NSGAII (Deb

et al., 2002), NSGAIII (Deb and Jain, 2014) and the multi-objective evolutionary algorithm based

on decomposition (Zhang and Li, 2007).
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We propose to enhance the method further to approximate the Pareto frontier. EMDLS is

different from MDLS and IMDLS in three aspects: (i) determination of the number of solutions to

be explored at each iteration (α); (ii) selection of α solutions to be explored (Fα); and (iii) a local

search is performed on each solution in Fα for a new direction, so-called adaptive direction, as well

as for each objective/direction. This adaptive direction is computed based on how far a solution is

from the ideal point.

4.2. Enhanced Multi-Directional Local Search (EMDLS)

Details of EMDLS are formally described in Algorithm 1. Similar to IMDLS, the algorithm

requires a set of non-dominated solutions F and its size limit Fmax as inputs. The initial set of

non-dominated solutions are generated simply by applying a multi-round approach with respect to

each objective (t ∈ T ). This approach is detailed in Section 4.3.2. A dominance rule is applied to

the |T | generated solutions to determine the initial set of non-dominated solutions. Contrary to

MDLS and IMDLS, at each iteration, α neighbour solutions, so-called Fα, are explored with regard

to each of the T objectives. It should be noted that a random solution is selected to be explored at

the first iteration. The procedure to determine the number of solutions to explore at each iteration

is explained in Section 4.2.1. Moreover, we take advantage of the crowding distance to identify α

less crowded solutions Fα, which is explained in more detail in Section 4.2.2. After computing an

adaptive direction for each solution f ∈ Fα using the approach explained in Section 4.2.3, EMDLS

performs a local search on all the solutions Fα for the adaptive direction.

All the neighbourhood solutions are entered to a set G, which is used to update F . The neighbour

solution is obtained using the LNS framework. If the size of F exceeds Fmax then the crowding

distance is employed to identify more-crowded solutions to be eliminated. The number of solutions

remaining in F must not be greater than Fmax after eliminating the more-crowded solutions. As

Lian et al. (2016) mentioned, the resizing helps EMDLS to guide the search through less-crowded

areas of the non-dominated set and therefore obtain a more diverse set of non-dominated solutions.

4.2.1. Number of solutions to explore

The number of solutions to explore at each iteration influences the convergence speed. Selecting

one solution to explore at each iteration may result in a slow convergence speed as well as a poor

diversity of the final approximated Pareto frontier (Lian et al., 2016). On the other hand, exploring

all non-dominated solutions at each iteration might not be efficient. Particularly, in the early

iterations of the search, there is a high chance that a non-dominated solution is dominated in the

next iterations. We believe that the number of solutions to explore should be determined depending
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Algorithm 1 EMDLS
Require: a set of non-dominated solutions F and its size limit Fmax
1: while the termination criterion is not satisfied do
2: G ← ∅
3: α← number of solutions to be explored
4: Fα ← select α number of solutions
5: for every solution f ∈ Fα do
6: for objectives 1 to T do
7: G ← G ∪ LSt(f)
8: end for
9: for the adaptive direction do

10: compute the relative weight of each direction
11: G ← G ∪ LSadaptive(f)
12: end for
13: end for
14: update(F ,G)
15: compute crowding distance for f ∈ F
16: determine the number of solutions to be explored α
17: select α less crowded solutions Fα
18: if |F| > Fmax then
19: truncate(F)
20: end if
21: end while
22: return Pareto set approximation (F)

on the quality of the current set of non-dominated solutions. In essence, fewer solutions should be

selected if there is a high chance of finding new non-dominated solutions. We benefit from the

search procedure of the variable neighbourhood search method to select the number of solutions α

to explore at each iteration, with α set from 1 to Fmax. Suppose iteration k begins with alpha = c,

where c is an integer number ranging from 1 to Fmax. If an improvement of the approximated

Pareto frontier is not possible then α = c + 1. Note that if α = Fmax, then α does not change. If

an improvement of the approximated Pareto frontier is found then α = 1 at iteration k + 1.

4.2.2. Selection of solutions to explore

The selection of solutions from F to explore may lead to a better diversity of the non-dominated

solutions. To this end, we benefit from the crowding distance introduced by Deb et al. (2002) to

order the non-dominated solutions from the least crowded one to the most crowded one. Then, we

perform local searches on α less crowded solutions to find efficient solutions. The biased roulette

wheel selection principle described in Algorithm 2 selects α less crowded solutions. The biased

roulette wheel selection method will allow diversifying the search. Hence, the solutions are first

sorted in non-increasing order based on their crowding distance values L. Then, a solution is

10



selected giving a higher probability to the first ones. The Parameter ι ≥ 1 determines the level of

randomness: a low value of ι corresponds to higher randomness (Eskandarpour et al., 2017). In our

experiments, ι = 10. This process is repeated α times and all the α solutions are stored in Fα.

Algorithm 2 Biased roulette wheel selection principle
Require: A list L of solutions, sorted in non-increasing order.
Require: ι ≥ 1: a randomness parameter
Require: Fα ← ∅
1: while α > 0 do
2: Generate a random number ρ according to a continuous uniform distribution in [0, 1)
3: Choose the solution N at position dρι|L|e in L
4: Fα ← Fα ∪N
5: α = α− 1
6: delete the solution N from L
7: end while
8: return Set of solutions to be explored (Fα)

4.2.3. Adaptive direction

The important measures frequently used to describe how good is a Pareto set approximation are

closeness to the Pareto-optimal set and coverage of a wide range of diverse solutions (Zitzler et al.,

2003). As mentioned before, IMDLS performs a local search on all solutions in Fα to find efficient

solutions. However, there is a high chance to find other efficient intermediate solutions between

those efficient solutions (Caballero et al., 2007). The idea is similar to the concept of path relinking

method, which attempts to make the link between a guiding solution and an initial solution via

some intermediate solutions. These intermediate solutions might be Pareto-optimal if both initial

and guiding solutions are good enough (Glover et al., 2000). To improve both intensification and

diversification, EMDLS computes an adaptive direction for a number of less crowded non-dominated

solutions. To do so, for each objective, we use the objective value of the neighbourhood solution

obtained by applying a single objective local search to calculate the closeness of the neighbourhood

solution to the ideal point, and eventually to compute the adaptive direction.

Overall, we perform local searches for all the objective directions as well as the adaptive direction.

Figure 1 illustrates the principle with an example of an bi-objective minimisation problem. S(f1),

S(f2) and S(f1, f2) represent the relevant portions of efficient neighbourhood solution spaces around

the given solutions in favour of the cost objective, environmental objective, and a compromise

solution space, respectively.

In the proposed method, the adaptive direction for each solution (for instance, solution a in

Figure 1) is determined as follows: Z =
∑I

i=1wif
normal
i , where fnormali represents the normalised
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S(f2)

S(f1, f2)
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Adaptive direction

Ideal point
(fmin1 , fmin2 )

obj
1

obj
2

Figure 1: Relevant portions of efficient solution space

fitness of objective function i and is calculated as follows: fnormali =
fi

fmini

. It should be noted

that fi is the objective value of the neighbourhood solution obtained by applying local search on

the respective solution (e.g., solution a) for objective/direction i and fmini is the minimum value of

objective function i at the current iteration. The weight of each objective is calculated in equation

10:

wi =
di∑S
s=1 ds

i = 1, . . . , n (10)

where di is the normalised distance between the ith objective and the ideal point, computed in

Equation 11:

di =
fi − fmini

fmini

i = 1, . . . , n (11)

The weights will ensure that more importance is given to the objective with further distance to the

ideal point in order to avoid fast convergence for one specific objective, which could result in poor

diversity.
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4.3. Single objective local search method: Large Neighbourhood Search (LNS)

EMDLS uses a single objective local search method to find a set of non-dominated solutions.

We propose to use LNS as a single objective local search method due to its effectiveness in solving

several combinatorial optimisation problems such as VRP (Pisinger and Ropke, 2007) and facility

location (Eskandarpour et al., 2017). Its primary principle is to destroy and repair the current

solution to find a neighbouring solution. In the destroy phase, a number of customers are targeted

to be removed from the current solution based on some specific criteria. In the repair phase the

removed customers are placed back into the solution with regard to some other criteria.

Algorithm 3 details the proposed LNS method for an iteration, with three destroy operators

and a repair operator. The algorithm starts with a given solution to be minimised. Then, a destroy

operator is selected randomly to choose a ratio P of the routes to be removed from S, which results

in S ′. The remaining 1−P are saved as partial solutions in S ′′. After realising the associated nodes

of S ′ and storing them in ns′ , the repair operator is applied to ns′ to obtain a set of routes denoted

by S∗. If the objective of the new generated routes is better than the removed ones, we merge the

new routes S∗ and S ′′ to obtain a complete solution.

Algorithm 3 LNS
Require: solution S and its desired objective function
1: select a destroy operator randomly τ
2: S ′ ← apply τ on S to get a ratio P of the routes
3: S ′′ ← remaining 1− P routes
4: ns′ ← release the associated nodes of S ′
5: S∗ ← apply repair operator on ns′ to get some partial solutions
6: Let ZS∗ and ZS′ denote the objective values of solutions S∗ and S ′, respectively
7: if ZS∗ < ZS′ then
8: S ← Merge(S ′′ , S∗)
9: end if

10: return solution S

4.3.1. Destroy operators

Given a complete solution, the aim of the destroy operators is to first select a ratio P of the

routes in the current solution to be discarded, and then release the associated customers (nodes)

of the selected routes. Therefore, unlike the most destroy operators applied in the literature, we

propose to destroy the solution based on the route specification rather than the customer node.

Three destroy operators proposed are as follows:

• Random subset of routes: This operator randomly discards P routes of the current solution

in order to diversify the search.
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• Expensive subset of routes: This operator discards the routes with the highest cost/environmental

impact. Thus, the routes are ranked in non-increasing order of the respective objective func-

tion value, then the first P routes are selected.The aim is to replace the expensive routes with

the better ones.

• Clustered subset of routes: This operator discards the routes which are geographically located

in the same regions. We first obtain the geographical center of route r consisting of Nr nodes

as follows: (Cxr , C
y
r ) = (

∑
n∈Nr x

n
r

|Nr|
,

∑
n∈Nr y

n
r

|Nr|
). We then calculate the Euclidean distance

between the geographical centres of each pair of routes, which represents the distance between

each pair of routes. We rank the routes in a non-decreasing order of the Euclidean distance

values and discard the first P routes.

4.3.2. Repair operator

The outcome of destroy operators are two sets: partially destroyed solution and released nodes

ns′ . The aim of the repair operator is to rebuild a complete solution by generating new routes

using the set ns′ and then adding them to the partial solution. To this end, we use a multi-round

approach inspired by the successive approximation method proposed by Juan et al. (2014a).

Given a set of nodes and ν types of vehicles, the multi-round approach splits the HeVRPMD into

ν homogeneous VRPMD. Therefore, each round is subject to a homogeneous VRPMD consisting

of a subset of nodes and an unlimited number of vehicles of the same type. Each vehicle type has

its own driving range and loading capacity. Then, a routing algorithm is called at each round to

generate routes for each homogeneous CVRP with a specific route length restriction. The driving

range of the vehicle used at each round is set as a route length restriction. We employ the SR-

GCWS-CS algorithm which is extensively tested on a set of CVRP standard benchmarks in Juan

et al. (2011) as a routing algorithm. SR-GCWS-CS makes use of biased-randomization (Juan et al.,

2013; Grasas et al., 2017) to enhance the behaviour of the classical savings heuristic (Clarke and

Wright, 1964) by including randomness. The solution of each round is a set of routes which cover

all the nodes. Eventually, a superior solution regarding the desired objective is added to the partial

solutions.

5. Computational experiments

In this section, we describe the benchmark instances, the computational experiments, and the

indicators used to assess the performance of the proposed bi-objective optimisation model and

solution method against the state of the art ones.
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5.1. Benchmark instances and experimental design

To evaluate the performance of the proposed model and solution method, we have used the 20

mid-size CVRP instances between 22 to 135 nodes proposed by Juan et al. (2014b) ; and 5 other

instances between 151 to 420 nodes. We have selected instances, which provide detailed information

on routes for the optimal or pseudo-optimal solution. In addition, the distance between the furthest

node to the depot and the depot must be less than the maximum driving range of the vehicles. This

will allow all nodes to be visited by at least one type of vehicle. Moreover, we have considered a

variety in specifications such as the vehicle capacity, the location of the depot with regard to the

customer nodes (in a corner or in the centre) and the topology of the customer nodes. Table 1

provides an overview of the test instances used in the experiments. It should be noted that the last

column shows the distance between the furthest node and the depot for each instance.

Table 1: Test instances used in our experiments

Instance # nodes Capacity Minimum # of Depot’s Nodes’ Maximum
name vehicles needed location topology distance

A-n32-k5 32 100 5 Corner Randomly 101
A-n38-k5 38 100 5 Not Center Randomly 75
A-n65-k9 65 100 9 Not Center Randomly 74
A-n80-k10 80 100 10 Corner Randomly 126
B-n50-k7 50 100 7 Center Cluster 65
B-n52-k7 52 100 7 Not Center Cluster 71
B-n57-k9 57 100 9 Corner Cluster 111
B-n78-k10 78 100 10 Not Center Cluster 90
E-n22-k4 22 6000 4 Center Randomly 49
E-n30-k3 30 4500 3 Center No clear pattern 69
E-n51-k5 51 160 5 Center Randomly 87
E-n76-k10 76 140 10 Center Randomly 43
E-n76-k14 76 100 14 Center Randomly 43
F-n135-k7 135 2210 7 Not center Real case data 147
Golden-17 240 200 22 Center Concentric pointed star 20
Golden-19 360 200 33 Center Concentric pointed star 31
Golden-20 420 200 38 Center Concentric pointed star 38
M-n101-k10 101 200 10 Center Cluster 59
M-n121-k7 121 200 7 Corner Cluster 99
M-n151-k12 151 200 12 Center Randomly 50
M-n200-k17 200 200 17 Center Randomly 50
P-n50-k10 50 100 10 Center Randomly 37
P-n55-k15 55 70 15 Center Randomly 37
P-n70-k10 70 135 10 Center Randomly 43
P-n76-k5 76 280 5 Center Randomly 43

Three types of vehicles are considered in the experiments: (i) 2018 Ford Transit Connect Wagon

LWB FWD, ICEV vehicle L and have an autonomy of 348 mile distance units, capacity of 243.936

in3, total (fixed and variable) cost per mile of 0.64$ and variable emission of 404 grams of CO2

per mile; (ii) 2017 Toyota Chrysler Pacifica , PHEV vehicle M and have an autonomy of 570 mile

distance units, capacity of 200.922 in3, total (fixed and variable) cost per mile of 0.90$ and variable
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emission of 220 grams of CO2 per mile; and (iii) 2012 Azure Dynamics Transit Connect Electric

Van, an electric vehicle S and have an autonomy of 96 mile distance units, capacity of 185.973 in3,

total (fixed and variable) cost per mile of 1.14$ and variable emission of 190 grams of CO2 per mile.

The total range that each vehicle could drive with full gasoline tank or battery is obtained

from (Fueleconomy.gov). The loading capacity of vehicles are obtained through each manufacturer

website. The total cost (fixed and variable) and CO2 emissions of each vehicle are calculated

from the websites provided by (Financial mentor, 2018) and (Union of Concerned scientists, 2018),

respectively. Accordingly, to set up the loading capacity coefficient of the vehicles, we suppose that

the fixed capacity in VRP instances, Q0, corresponds to a vehicle of type M. We also assume that

a vehicle of type S has a lower loading capacity than a vehicle of type M. Accordingly, a vehicle

of type M has a lower loading capacity than a vehicle of type L. In order to calculate the capacity

coefficient of all vehicle types, we assume that the capacity coefficient of vehicle type M is equal to

1 and the other coefficients are calculated with respect to Q0. Therefore, the capacity coefficient

associated with vehicles of types S and L is set to 0.925 and 1.214, respectively.

The performance of EMDLS is compared to MDLS, IMDLS, two state-of-the-art population-

based approaches NSGAII and NASGAIII, and two classical multi-objective optimisation methods ε-

Constraint and Weighted Sum. MDLS and IMDLS employ the LNS already explained in Subsection

4.3. For these methods, the P parameter which indicates the portion of routes to be removed from

the current solution is set to 0.4 based on numerous computational experiments. NSGAII and

NASGAIII use the classical Ordered Crossover proposed by Koç et al. (2015) and the generalised

mutation operator proposed by Matei et al. (2015) for the heterogeneous VRP. Both crossover and

mutation operators are applied to the parent solutions with probability 1. The population size in

NSGAII is set to 100, and the population size for NSGAIII is determined by the size of the reference

point set defined by the user (Deb and Jain, 2014). The size of the reference point set is highly

related to the desired number of non-dominated solutions. Hence, both reference point set and

population size are set to 31.

Regarding the ε-Constraint and Weighted Sum methods, we use the Multi-Round heuristic

introduced by Juan et al. (2014a) to find a set of non-dominated solutions. The P parameter

is set to 0.6 for these methods. For ε-Constraint method, we convert the second objective into

a constraint by imposing an upper bound ε. For the Weighted Sum method, the objective is to

minimise the sum of a normalised weighted bi-objective function. Fmax is set to 30 in NSGAII,

NSGAIII, IMDLS and EMDLS in order to allow the algorithms to have a fair balance between

exploring the search space and the computational time. To conduct a fair comparative analysis, the

ε-Constraint and Weighting Sum methods are run 30 times with different values for ε and objective
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weights, respectively. The same approach used by Demir et al. (2014) is employed to find the value

of ε and objective weights for each run. The time limit is set to 1000 seconds as a stopping criteria

for NSGAII, NSGAIII, MDLS, IMDLS and EMDLS. In practice, 1000 should be a reasonable time

to solve an operational problem such as VRP. For the ε-Constraint and Weighting Sum methods, the

time limit is set to 40 for each ε and a set of weights. For all methods, we conduct ten runs for each

instance using different seeds for the random number generation. All methods are implemented

using the Java programming language and run on an Intelr CoreTMi5-4430 CPU 3.00GHz with

8GB RAM.

5.2. Solution quality assessment indicators

In the computational experiments, we make use of four classical performance quality indicators.

Each quality assessment indicator is explained below;

• Hypervolume: The hypervolume Ihv is the area of the union of all hypercubes formed by each

non-dominated solution i ∈ A and a reference point r, which can be formulated as follows

(Lwin et al., 2014): Ihv = volume(
⋃|A|
i ci), where ci represents a hypercube from solution i

and the reference point r. It is necessary to normalise the objective values if their scales are

not the same (Lian et al., 2016). The larger the value of the indicator, the better is the set of

non-dominated solutions.

• Epsilon: The unary epsilon indicator introduced by Zitzler et al. (2003) provides a value

indicating how far are two sets of non-dominated solutions from each other. For a min-

imisation problem with k objectives, a non-dominated solution with the objective vector

z1 = (z11 , z
1
2 , . . . , z

1
k) ∈ Z is said to ε−dominate another non-dominated solution with objec-

tive vector z2 = (z21 , z
2
2 , . . . , z

2
k) ∈ Z, if and only if, there exists an ε > 0 such that z1i ≤ ε× z2i ,

∀1 ≤ i ≤ k. With this indicator, the smallest value is 1, and smaller values are better than

higher ones.

• Ratio: The Ratio of a set of non-dominated solutions, A, refers to the solutions from set A

not dominated by any solution in B (Zitzler et al., 2000). This ratio IR(A,B) is computed as

follows: IR(A,B) = |A−{X∈A|∃Y ∈B :Y�X}|
|A| , where Y � X means solution X is dominated by

solution Y . The largest value is 1 and larger values imply better performance. It should be

noted that IR(A,B) is not necessarily equal to 1− IR(B,A).
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• Inverted Generational Distance (IGD): Let R be a reference set and let A be a set of non-

dominated solutions obtained by an algorithm. The average distance fromR to A is calculated

as follows: IIGD(A,R) =
∑

v∈R d(v ,A)

|R| , where d(v ,A) represents the minimum Euclidean dis-

tance between each solution in R and the nearest solution in A. A lower value of IGD suggests

the good convergence of solutions to the Pareto front as well as a good diversity over the Pareto

front (Rakshit and Konar, 2015). For a fair comparison over all instances, we use normalised

values of the objectives for this indicator.

5.3. Computational results

This section presents a comparative analysis of the methods developed with the ones from

the literature using the assessment indicators mentioned in the previous section. Concerning each

assessment indicator, the result of each method is compared with a reference set R for each instance,

which is the union of replications of the methods and removing all dominated solutions.Each method

is replicated 10 times and the average overall replications is reported for each assessment indicator.

Table 2 shows the number of Pareto solutions. The first column represents the instance number.

The next columns indicate the average number of Pareto solutions over 10 runs for each method,

respectively. There are three instances (B-n57-k9, E-n30-k3 and M-n121-k7) for which all the

methods have failed to generate a considerable amount of non-dominated solutions. MDLS produces

the maximum average number of Pareto solutions since the Fmax is infinite. However, the weighting

method produces the minimum number of Pareto solutions with an average of 2.9. This is due to

the fact that the weighting method is able to produce only supported solutions, which can be found

by solving the associated single-objective projected problem using a weight vector (Tricoire, 2012).

The ε-Constraint produces more Pareto solutions than the Weighting method but most of them are

dominated by those provided by the other methods.

Table 3 shows the comparison between the ratios provided by each method. EMDLS yields the

best performance compared to the other solution methods with an average of 0.49. NSGAII, NS-

GAIII, IMDLS and MDLS provide relatively similar results with an average of 0.35. The Weighting

method yields the worst performance due to the fact that it is not able to provide as many good

non-extreme Pareto solutions.

Table 4-5 present the results of hypervolume and epsilon indicators for all the instances, re-

spectively. The first column indicates the instance name and the next columns show the average

hypervolume and epsilon indicators over 10 runs for all the methods. Table 4 illustrates that most of

the methods have achieved relatively the same results, except the epsilon constraint and weighting

methods. MDLS yields slightly better performance in terms of the hypervolume indicator with an
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Table 2: Comparison of the number of non-dominated solutions of the different methods

Instance ε-Constraint Weighting Sum NSGAII NSGAIII MDLS IMDLS EMDLS

A-n32-k5 2 2.4 3.8 4.2 3 3.4 3
A-n38-k5 2.9 3 17.3 20.8 12.8 12.5 11.4
A-n65-k9 2.8 2.2 30 30 25.5 26.1 22.3
A-n80-k10 2 2 13.2 16.4 8.4 8.3 8.9
B-n50-k7 4.8 2.8 11.1 7.6 5.3 5.5 5
B-n52-k7 4.6 3.1 30 30 38.9 30 30
B-n57-k9 2 2 2 2 2 2 2.1
B-n78-k10 2.7 2 30 30 44.9 30 30
E-n22-k4 6 2.2 18.6 21.8 10.8 13.5 10
E-n30-k3 2 2 2 2 2 2 2
E-n51-k5 7.8 4.1 30 30 54.7 30 30
E-n76-k10 7.9 3.6 30 30 164.8 30 30
E-n76-k14 8 3.3 30 30 205.5 30 30
F-n135-k7 4 3.2 30 30 62.6 30 30
Golden-17 7.4 4 30 30 245.1 30 30
Golden-19 6.7 4.2 30 30 321.9 30 30
Golden-20 7.4 4.1 30 30 296.7 30 30
M-n101-k10 6.6 2 30 30 69.5 30 30
M-n121-k7 2 2 3.5 3.3 3.2 3.3 3.2
M-n151-k12 4.8 2.3 30 30 112.6 30 30
M-n200-k17 3.4 2 30 30 145.8 30 30
P-n50-k10 8 3.5 30 30 172.5 30 30
P-n55-k15 7.3 4.4 30 30 350.2 30 30
P-n70-k10 8.5 2.7 30 30 159.9 30 30
P-n76-k5 8.5 3.3 30 30 56.8 30 30

Average 5.2 2.9 23.2 23.5 103.0 22.3 21.9

Table 3: Comparison of the ratios of the different methods

Instance ε-Constraint Weighting Sum NSGAII NSGAIII MDLS IMDLS EMDLS

A-n32-k5 0.55 0.13 0.31 0.20 0.33 0.38 0.33
A-n38-k5 0.35 0.15 0.26 0.43 0.54 0.63 0.51
A-n65-k9 0.43 0.37 0.24 0.48 0.33 0.35 0.07
A-n80-k10 0.50 0 0.46 0.25 0.09 0.21 0.35
B-n50-k7 0.21 0.37 0.16 0.33 0.81 0.76 0.86
B-n52-k7 0.30 0.00 0.45 0.43 0.69 0.71 0.78
B-n57-k9 0.60 0.50 0.50 0.50 0.50 0.50 0.50
B-n78-k10 0.28 0.36 0.55 0.44 0.61 0.66 0.65
E-n22-k4 0.48 0.27 0.10 0.31 0.91 0.95 0.99
E-n30-k3 0.30 0.45 0.50 0.50 0.50 0.50 0.50
E-n51-k5 0.28 0.08 0.36 0.29 0.60 0.58 0.52
E-n76-k10 0.05 0.06 0.28 0.50 0.45 0.24 0.48
E-n76-k14 0.08 0.03 0.31 0.46 0.26 0.16 0.54
F-n135-k7 0 0.03 0.41 0.25 0.09 0.08 0.16
Golden-17 0.05 0.13 0.20 0.50 0.10 0.09 0.30
Golden-19 0 0 0.30 0.23 0.11 0.00 0.44
Golden-20 0.04 0 0.27 0.18 0.11 0.01 0.15
M-n101-k10 0.20 0.13 0.41 0.38 0.62 0.57 0.87
M-n121-k7 0 0 0.46 0.19 0.18 0.17 0.35
M-n151-k12 0.12 0 0.47 0.19 0.10 0.11 0.33
M-n200-k17 0 0 0.38 0.46 0.10 0.11 0.67
P-n50-k10 0.03 0 0.25 0.51 0.47 0.29 0.59
P-n55-k15 0.04 0 0.50 0.16 0.33 0.11 0.46
P-n70-k10 0.04 0 0.11 0.43 0.43 0.29 0.38
P-n76-k5 0 0 0.30 0.33 0.24 0.32 0.37

average 0.20 0.12 0.34 0.36 0.38 0.35 0.49
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average of 0.495 over all instances. EMDLS produces the second best performance with an average

of 0.485. MDLS outperforms EMDLS due to the large number of Pareto solutions generated by

MDLS. In essence, if the Pareto frontiers of two given methods are close enough, the one with more

Pareto solutions yields a better result regarding hypervolume. With respect to the epsilon indicator,

the average results provided by the methods are very close to each other. Surprisingly, in contrast

to the other indicators, the weighting method performs slightly better than the other methods due

to its capability to produce good extreme solutions. However, NSGAII and NSGAIII provide the

worst results due to their limitation in producing very good extreme solutions. Lastly, table 6

presents the results for the IGD indicator. EMDLS provides the best results with an average of 0.03

over all instances. This proves that the set of non-dominated solutions provided by EMDLS are

spread all over the approximated Pareto frontier. NSGAII, NSGAIII and MDLS obtain relativity

the same performances. As expected, epsilon constraint and weighting methods did not provide

good results as the set of non-dominated solutions generated by these methods were not be able to

truly approximate Pareto front.

Table 4: Comparison of the hypervolumes of the different methods

Instance ε-Constraint Weighting Sum NSGAII NSGAIII MDLS IMDLS EMDLS

A-n32-k5 0.336 0.274 0.479 0.356 0.441 0.362 0.440
A-n38-k5 0.389 0.307 0.529 0.383 0.491 0.411 0.491
A-n65-k9 0.324 0.258 0.391 0.563 0.436 0.356 0.434
A-n80-k10 0.328 0.262 0.474 0.434 0.446 0.366 0.435
B-n50-k7 0.367 0.296 0.347 0.439 0.459 0.379 0.459
B-n52-k7 0.359 0.297 0.436 0.586 0.460 0.380 0.459
B-n57-k9 0.323 0.262 0.532 0.471 0.412 0.332 0.398
B-n78-k10 0.343 0.262 0.424 0.513 0.460 0.380 0.460
E-n22-k4 0.361 0.267 0.375 0.403 0.455 0.380 0.461
E-n30-k3 0.323 0.280 0.562 0.398 0.395 0.315 0.395
E-n51-k5 0.473 0.368 0.431 0.499 0.574 0.494 0.567
E-n76-k10 0.428 0.333 0.572 0.457 0.553 0.471 0.536
E-n76-k14 0.439 0.336 0.557 0.406 0.563 0.480 0.536
F-n135-k7 0.346 0.277 0.582 0.440 0.465 0.384 0.455
Golden-17 0.430 0.373 0.537 0.409 0.576 0.493 0.550
Golden-19 0.422 0.376 0.339 0.489 0.564 0.475 0.543
Golden-20 0.428 0.375 0.577 0.333 0.560 0.472 0.542
M-n101-k10 0.357 0.284 0.398 0.405 0.453 0.372 0.449
M-n121-k7 0.310 0.279 0.421 0.504 0.407 0.327 0.407
M-n151-k12 0.354 0.276 0.354 0.586 0.494 0.414 0.489
M-n200-k17 0.333 0.264 0.450 0.422 0.487 0.404 0.469
P-n50-k10 0.429 0.327 0.447 0.598 0.548 0.464 0.528
P-n55-k15 0.428 0.331 0.525 0.399 0.548 0.462 0.520
P-n70-k10 0.432 0.297 0.578 0.350 0.553 0.470 0.532
P-n76-k5 0.485 0.388 0.579 0.515 0.582 0.503 0.571

average 0.382 0.306 0.476 0.454 0.495 0.414 0.485

Overall, it can be seen from the comparative analysis that EMDLS outperforms the other meth-

ods with regard to the ratio and IGD indicators. On the other hand, the weighting method and

epsilon constraint yield the worst performance. Regarding IGD indicator, the size of the reference set
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Table 5: Comparison of the epsilons of the different methods

Instance ε-Constraint Weighting Sum NSGAII NSGAIII MDLS IMDLS EMDLS

A-n32-k5 1.797 1.797 2.040 2.279 1.818 1.818 1.818
A-n38-k5 1.800 1.800 1.939 2.105 1.801 1.801 1.801
A-n65-k9 1.814 1.814 2.195 2.061 1.814 1.814 1.814
A-n80-k10 1.885 1.885 2.086 2.103 1.890 1.890 1.890
B-n50-k7 1.836 1.836 2.235 1.946 1.837 1.837 1.837
B-n52-k7 1.803 1.803 2.094 1.906 1.815 1.815 1.815
B-n57-k9 1.958 1.958 2.284 2.084 1.959 1.959 1.959
B-n78-k10 1.862 1.862 2.060 2.218 1.862 1.862 1.862
E-n22-k4 1.764 1.778 1.908 1.861 1.764 1.764 1.764
E-n30-k3 1.662 1.662 2.203 2.004 1.743 1.743 1.743
E-n51-k5 2.093 2.096 2.295 2.134 2.093 2.093 2.093
E-n76-k10 2.034 2.040 1.885 2.165 2.033 2.033 2.032
E-n76-k14 2.111 2.109 2.280 2.111 2.108 2.109 2.110
F-n135-k7 1.768 1.763 2.033 2.079 1.789 1.789 1.789
Golden-17 2.197 2.214 2.213 2.061 2.145 2.116 2.113
Golden-19 2.175 2.198 1.929 2.048 2.162 2.157 2.118
Golden-20 2.182 2.206 1.997 1.971 2.172 2.163 2.139
M-n101-k10 1.698 1.680 2.265 2.116 1.689 1.689 1.690
M-n121-k7 1.695 1.695 1.875 2.174 1.727 1.727 1.727
M-n151-k12 1.857 1.856 2.030 2.071 1.863 1.863 1.863
M-n200-k17 1.820 1.820 2.055 2.225 1.830 1.830 1.830
P-n50-k10 2.075 2.067 2.065 1.882 2.065 2.065 2.065
P-n55-k15 2.192 2.195 1.919 2.244 2.191 2.191 2.191
P-n70-k10 2.034 2.037 2.288 2.183 2.023 2.020 2.031
P-n76-k5 2.269 2.151 2.181 1.878 2.256 2.256 2.256

average 1.935 1.933 2.094 2.076 1.938 1.936 1.934

Table 6: Comparison of IGD values of the different methods

Instance ε-Constraint Weighting Sum NSGAII NSGAIII MDLS IMDLS EMDLS

A-n32-k5 0.21 0.28 0.07 0.13 0.03 0.02 0.02
A-n38-k5 0.17 0.25 0.06 0.07 0.04 0.04 0.04
A-n65-k9 0.11 0.30 0.01 0.03 0.01 0.03 0.02
A-n80-k10 0.27 0.32 0.05 0.13 0.10 0.14 0.06
B-n50-k7 0.03 0.22 0.01 0.01 0.01 0.01 0.01
B-n52-k7 0.14 0.21 0.01 0.02 0.01 0.07 0.01
B-n57-k9 0.09 0.24 0.10 0.36 0.09 0.25 0.09
B-n78-k10 0.11 0.16 0.01 0.01 0.01 0.01 0.01
E-n22-k4 0.09 0.22 0.05 0.02 0.02 0.01 0.07
E-n30-k3 0.23 0.36 0.31 0.23 0.19 0.19 0.19
E-n51-k5 0.15 0.25 0.09 0.08 0.02 0.11 0.01
E-n76-k10 0.11 0.27 0.03 0.03 0.02 0.07 0.01
E-n76-k14 0.10 0.28 0.01 0.04 0.04 0.06 0.01
F-n135-k7 0.32 0.25 0.03 0.08 0.03 0.11 0.03
Golden-17 0.20 0.28 0.03 0.03 0.03 0.07 0.01
Golden-19 0.23 0.35 0.06 0.02 0.03 0.08 0.01
Golden-20 0.19 0.35 0.06 0.03 0.04 0.08 0.01
M-n101-k10 0.13 0.23 0.01 0.03 0.02 0.05 0.01
M-n121-k7 0.37 0.21 0.02 0.04 0.04 0.04 0.03
M-n151-k12 0.18 0.23 0.04 0.02 0.03 0.06 0.02
M-n200-k17 0.14 0.27 0.03 0.02 0.02 0.03 0.01
P-n50-k10 0.10 0.28 0.03 0.03 0.03 0.06 0.01
P-n55-k15 0.17 0.23 0.05 0.04 0.03 0.06 0.01
P-n70-k10 0.08 0.19 0.01 0.01 0.02 0.02 0.01
P-n76-k5 0.11 0.20 0.03 0.02 0.03 0.07 0.02

Average 0.16 0.26 0.05 0.06 0.04 0.07 0.03
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may affect the outcome. It is more likely to obtain smaller IGD when the size of the approximated

Pareto frontier matches the reference set size (Bezerra et al., 2017). In the experiments, reference

sets are composed of all the non-dominated solutions obtained by all the algorithms. Therefore,

the size of the reference sets could be large. That could justify why MDLS with larger set sizes

obtains the second best performance for IGD. Regarding the hypervolume and epsilon indicators,

although all the methods produce nearly similar results, MDLS and weighting methods yield slightly

better results, respectively. As mentioned earlier, hypervolume can be affected by the number of

non-dominated solutions. If the approximated Pareto front values of two given methods are close

enough, the one with more non-dominated solutions obtains a greater volume and therefore yields a

better hypervolume. Among all the indicators, the epsilon indicator is more sensitive to the quality

of two extreme points of an approximated Pareto front. When the endpoint is closer to the ideal

point, the outcome of this indicator is better.

Figure 2 shows the approximated Pareto frontier found by EMDLS for instance E-n51-k5. In

this instance, the customer nodes are randomly scattered within a square of side 75 and the depot

is located in the centre of the square. The approximated Pareto frontier contains 30 non-dominated

solutions ranging from the extreme cost solution to the extreme environmental impact solution.

While the extreme cost solution (A) uses 5 vehicles of type L (ICEs) to meet all customer demands,

the extreme environmental impact solution (C) utilises 8 vehicles of type S (short-range EVs).

The results show that the neighbouring non-dominated solutions use the same fleet configuration.

However, there is only one non-dominated solution which uses the vehicles of type M (PHEVs)

within its fleet configuration. Although PHEVs produce relatively lower CO2 emissions than ICEs,

EVs and ICEs are preferred in the fleet configuration of almost all the non-dominated solutions.

Table 7 investigates in more detail the usage of greener vehicles within a set of non-dominated

solutions provided by EMDLS for each instance. Columns 2-3 provide information on the location of

the depot and the way customer nodes are scattered. Columns 4-6 display the percentage utilisation

of each type of vehicle through the entire number of non-dominated solutions of each instance.

Column 7 shows the percentage difference between the best and worst cost solutions. It should be

noted that the worst cost solution provides the greener fleet with the highest number of EVs used.

Column 8 represents the same information concerning the environmental objective. The average

percentage usage of the vehicle type S is 40% through all sets of non-dominated solutions. The

results show that the location of the depot can have an impact on the usage of EVs. The average

percentage of vehicle type S used in the instances, where the depot is located in the centre, is 0.46%;

while the value is 30% for the other instances. Regarding the data pattern, the results do not show

any significant differences among different types of geographical patterns of the customer nodes.
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Figure 2: EMDLS approximated pareto front for instance E-n51-k5

For instances where the data is randomly generated, the average percentage usage of vehicle type

S is 41% against 38% for the other patterns.

The average difference between the minimum and maximum values of cost and environmental

impact over all instances are 92% and 67%, respectively. This means that deploying a fleet config-

uration of green vehicles can be considerably expensive. Another issue is that vehicle type M has

been rarely deployed, although it has some competitive specifications such as the longest driving

range. This proves that decreasing cost is still as important as increasing the driving range. For-

tunately, there are ongoing advancements in the technology of electric vehicles and more precisely

their battery charges. For example, Tesla recently introduced the longest-range consumer electric

vehicle in the world with a range of 335 miles on a full charge (Snyder, 2017). Therefore, having

electric vehicles with longer driving ranges could lead to a greener and meanwhile less costly fleet

configurations.
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Table 7: Fleet configuration analysis in terms of the greener vehicles usage and environmental impact

Instance Depot’s Data % usage of Gap %
name location pattern S M L Cost Environmental

A-n32-k5 Corner Randomly 0.15 0 0.85 76.47 61.88
A-n38-k5 Not Center Randomly 0.26 0.03 0.71 80.24 53.59
A-n65-k9 Not Center Randomly 0.31 0.03 0.66 81.41 58.30
A-n80-k10 Corner Randomly 0.14 0.03 0.84 87.68 52.78
B-n50-k7 Center Cluster 0.25 0.05 0.70 83.78 56.13
B-n52-k7 Not Center Cluster 0.28 0.05 0.67 81.47 58.07
B-n57-k9 Corner Cluster 0.44 0.06 0.50 96.09 46.44
B-n78-k10 Not Center Cluster 0.23 0.05 0.72 86.26 53.64
E-n22-k4 Center Randomly 0.35 0.05 0.60 63.03 76.36
E-n30-k3 Center Not clear 0.40 0 0.60 74.43 64.12
E-n51-k5 Center Randomly 0.50 0.04 0.45 108.13 82.30
E-n76-k10 Center Randomly 0.48 0.05 0.46 101.41 87.96
E-n76-k14 Center Randomly 0.51 0.04 0.45 110.56 79.96
F-n135-k7 Not center Real case 0.34 0.13 0.53 78.82 60.05
Golden-17 Center Star shape 0.56 0.05 0.39 109.93 80.55
Golden-19 Center Star shape 0.49 0.05 0.46 115.72 75.70
Golden-20 Center Star shape 0.53 0.05 0.42 114.56 76.63
M-n101-k10 Center Cluster 0.36 0.05 0.58 68.98 68.94
M-n121-k7 Corner Cluster 0.55 0.05 0.40 72.61 65.81
M-n151-k12 Center Randomly 0.42 0.09 0.49 85.32 54.32
M-n200-k17 Center Randomly 0.46 0.06 0.49 81.12 57.95
P-n50-k10 Center Randomly 0.52 0.04 0.44 103.16 81.73
P-n55-k15 Center Randomly 0.53 0.07 0.40 119.40 72.84
P-n70-k10 Center Randomly 0.53 0.09 0.38 102.45 87.46
P-n76-k5 Center Randomly 0.53 0.15 0.32 125.82 64.08

average 0.40 0.06 0.54 92.35 67.10

6. Conclusion and future work

This paper proposes a bi-objective optimisation model and a new EMDLS method to minimise

the total monetary cost (including both fixed and variable costs) along with CO2 emissions, consid-

ering hybrid fleets of traditional and electric vehicles with limited driving range. The primary goal

of this study is to provide decision-makers with a set of different fleet alternatives, ranging from

those with low cost to the most environment-friendly ones. To the best of our knowledge, this is

the first time that the Pareto frontier has been explicitly approximated.

The proposed EMDLS method aims at finding a set of mutually non-dominated solutions, and

presents the following novel concepts: (i) devising an approach based on the variable neighbour-

hood search metaheuristic, which allows to determine the number of solutions to be explored; (ii) a

selection mechanism of less crowded solutions to explore with the aim of obtaining a better approxi-

mation of the Pareto frontier; and (iii) the use of an adaptive weighted method to find non-supported

efficient solutions. A comparative analysis has been conducted to compare the performance of the
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EMDLS with MDLS, IMDLS, NSGAII, NSGAIII and the weighting and the epsilon-constraint

methods. The computational results show that EMDLS provides competitive results in terms of

several indicators. For instance, it outperforms the other methods with regard to the ratio and IGD

indicators. Furthermore, the weighting and epsilon-constraint methods yield relatively the worse

performance compared to the other methods inspired by MDLS.

The numerical results also show that there is a significant difference between the least and most

environment-friendly fleets in terms of distance-based cost and environmental cost. On one hand,

the average percentage difference between the minimum and maximum values of cost over all in-

stances is 92%. On the other hand, the average difference between the maximum and minimum

values of CO2 emissions is 67%. However, the results for the hybrid vehicles show the viability of

employing electric vehicles within the fleet configurations subject to the data used in the experi-

ments. Interestingly enough, the most environment-friendly fleets utilise only short-range electric

vehicles in some instances, which proves that it is viable to use electric vehicles in the fleet con-

figuration. In those instances, the average difference between the minimum and maximum values

of distance-based cost is 100%. As a promising fact, the technology of electric vehicles and more

precisely their battery charges is noticeably progressing, which may lead to greener and meanwhile

less costly fleet configurations.

One of the main future research directions of this work is to study the stochastic variants of the

heterogeneous vehicle routing problem with multiple driving-range limitations. Environmental data

could be a source of uncertainty because of the lack of historical data and inherited uncertainties

of measuring environmental costs. Due to problem complexity and lack of benchmark solutions, an

exact method could be used to obtain optimal solutions or lower bounds in small-scale scenarios.

Finally, applying a more comprehensive method to measure the environmental impact through the

entire life cycle of a vehicle could also be a promising research area.
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Erdoğan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research

Part E: Logistics and Transportation Review, 48(1):100–114.

Eshtehadi, R., Fathian, M., and Demir, E. (2017). Robust solutions to the pollution-routing prob-

lem with demand and travel time uncertainty. Transportation Research Part D: Transport and

Environment, 51:351–363.
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