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Abstract

In this thesis we present a tool for studying human behavior using agent-based modeling combined

with game theory.

With the help of the software Netlogo, and using the PECS reference model, we have implemented

a tool for studying human behaviour based on decisions done playing to Prisoner’s Dilemma, a

classical game theory paradox, by using an agent-based model.

We have summarized the personality of agents in five different types, and by a given repertoire

of possible actions, we have made agents play by using a set of rules for observing its behaviour.

The experiment consist on see how agents decide whether cooperate or defect its opponent, based

on their initial configuration and the influence of each component by assigning different weights,

and to demonstrate the feasibility of a tool that combine game theory, PECS reference model

and agent-based modelling for studying human behaviour and use it as starting point for future

studies.



Resumen

En este proyecto presentamos una herramienta para estudiar el comportamiento humano usando

un modelado basado en agentes combinado con teoŕıa de juegos.

Con la ayuda del software Netlogo y usando el modelo de referencia PECS, hemos implemen-

tado una herramienta para estudiar el comportamiento humano basándose en decisiones hechas

jugando al Dilema del Prisionero, una paradoja clásica de teoŕıa de juegos, usando un modelado

basado en agentes.

Hemos concentrado la personalidad de los agentes entre cinco tipos distintos, y dado un reperto-

rio de acciones posibles, hemos hecho jugar a los agentes entre śı, usando un conjunto de reglas

para observar su comportamiento.

El experimento consiste en ver como los agentes deciden entre cooperar o defectar a su opo-

nente, basándose en su configuración inicial y en la influencia de cada coponente sobre ellos,

asignándoles diferentes pesos, y para demostrar la factibilidad de una herramienta que combina

teoria de juegos, el modelo de referencia PECS y modelado basado en agentes para estudiar el

comportamiento humano y usarla como punto de partida en futuros estudios.



Resum

En aquest projecte presentem una eina per a la predicció del comportament humà fent ús d’un

modelatge basat en agents combinat amb teoria de jocs.

Amb l’ajut del software Netlogo i utilitzant el model de referència PECS, hem implementat una

eina per estudiar el comportament humà basant-nos en decisions presses jugant al Dilema del

Presoner, una paradoxa clàssica de teoria de jocs, usant un modelatge basat en agents.

Hem concentrat la personalitat dels agents entre cinc tipus diferents, i donat un repertori d’accions

possibles, hem fet jugar als agents entre śı, usant un conjunt de regles per a observar el seu

comportament.

L’experiment consisteix a veure com els agents decideixen entre l’opció de confiar o defectar amb

els seus oponents, basant-se en la seva configuració inicial i en la influència de cada component

sobre ells, asignant-los diferents pesos, y per a demostrar la factibilitat d’una eina que combina

teoria de jocs, el model de referència PECS i el modelatge basat en agents per a estudiar el

comportament humà, i utilitzar-la com a punt de partida en estudis futurs.
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1. Introduction

1.1 Motivation

Human behaviour is the response of individuals or group of humans to internal and external

stimulation. It is influenced by biology and the environment in which someone is immersed, and

the interaction of these two factors. But, it is possible to be predicted? Can we know why people

do what they do, even before the person itself?

Figure 1: Illustration of human behaviour prediction

This question has been asked during years by hundred of scientific and psychologist, but still we

do not have clear answers. Physics professor of Boston University Albert-László Barabási stands
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that human behaviour is 93% predictable by studying mobility patterns of anonymous cell-phone

users and concluded that [1], despite the common perception that our actions are random and

unpredictable, human mobility follows surprisingly regular patterns. But, can it be extended to

other situations?

The aim of this project is to develop a tool using agent-based modelling capable of predict

human behaviour using the PECS reference model for the construction of human-like agents by

enabling an integrative modelling of physical, emotional, cognitive and social influences within a

component-oriented agent architecture and combined with game theory.

1.2 Context

This section is about the terms and concepts related to the project. We are going to make a

description of the areas of interest as well as the stake-holders of the project: target audience,

users and beneficiaries.

1.2.1 Areas of interest

We can distinguish three main areas of interest in the project. The first area is human behaviour

and its predictability, which is related to the psychology field, the second one is about agent-

based modeling, a technique for running simulations with a set of features and the third one is

game theory field.

Predictability of human behaviour

In this project we are trying to develop a tool capable of predict human behaviour, which is the

capacity of mental, physical, emotional and social activities experienced during the five stages of

a human being’s life - prenatal, infancy, childhood, adolescence and adulthood.

For sociologists, most of this behaviour is predictable. Spontaneous individuals are largely absent

from the population and human mobility follows surprisingly regular patterns, free will is not

absolute. Suggestion plays an important role on human behaviour, because we cannot completely

control our thoughts, what makes behaviour predictable [3].

For answer this question, we are going to use the most well-know model for representing human

behaviour, and setting up its input and output functions and weighting the different components,

we are going to see how affects to agents behaviour. By using common features shared by all

person and a limited set of actions, we are going to simulate what agents will do depending on

its capacities and develop a tool for observe if they do what we think that agents will do.
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Agent-Based modeling

For developing the project, we need to generate a model for doing simulations and analyze

its results. Agent-based modeling (ABM) [4] focuses on the individual active components of a

system.

With ABM, active entities, known as agents, must be identified and their behaviour defined.

They may be people, house holds, vehicles, products, etc. whatever is relevant to the system.

Connections between them are established, environmental variables set, and simulations run.

The global dynamics of the system then emerge from the interactions of the many individual

behaviours.

ABM helps in understanding how simple micro-rules of individual behaviour emerge into macro-

level behaviour of a system. Being able to model these complex systems can lead to a better

understanding of them, thereby being able to control the course of events, just by tweaking simple

rules at the individual level.

Games Theory

Game theory is the study of mathematical models of strategic interaction between rational

decision-makers, developed during 50s, that has been applied into different fields as social science,

logic, computer science or biology [5].

It has a very general scope, encompassing questions that are basic to all of the social science. It

can offer insights into any economic, political or social situation that involves individuals who

have different goals or preferences.

From all possible game types that offers game theory, we are going to focus in the Cooperative

/ Non-cooperative games. A game is cooperative if the players, agents in our case, are able to

from binding commitments externally enforced, meanwhile a game is non-cooperative if players

cannot form alliances or if all agreements need to be self-enforcing.

This kind of games focuses on predicting which coalitions will form, the joint actions that groups

take and the resulting collective payoffs. It is opposed to the traditional no-cooperative game

theory which focuses on predicting individual players’ actions and payoffs and analyzing Nash

equilibria.

1.2.2 Stakeholders

The development of this project can draw the attention of some people from different areas.

These are the potential stakeholders and the reasons why they can be interested in our project.

3



Target audience

Our target audience can be either in business side or in an non-profitable way such in the

academical world.

In the first case, by predicting human behaviour, companies can anticipate a person needs even

before itself. Thus, it makes a competitive advantage for developing non-existing products by

learning from its future clients needs or by improving an existing product.

On the other hand, learn from people how they ’work’ can be the key for understanding spread of

epidemics, population dynamics, vegetation ecology, landscape diversity, the growth and decline

of ancient civilizations, mental diseases, or even eviscerate key concepts such love.

Users

The aim of the project is to implement a tool that can be able to predict human behaviour

and understand better how human beings make its decisions. Our project can be extrapolated

to other areas, which generate a lot of potential users. This potential users will be in fact any

company, because human behaviour condition any decision of a human being.

Beneficiaries

Besides the final users, this project can be beneficial for investigators on the topic. They can

take benefit of the investigation done during the development of this project and improve the

results or add new features using our tool as starting point.

1.3 State of the art

In this section, we are going to give information about the state of the art of the different elements

related to our project. We are going to describe the most important reference models and the

latest techniques used in our interest fields. Moreover, we are going to summarize previous studies

related with our project and discuss about them.

1.3.1 Reference models

As we have said above, there are several reference models. Coming up next, we are going to cite

the two closest to our problem.
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Physical, Emotional, Cognitive and Social Status (PECS)

PECS [6] is a reference model which makes it possible to specify and to model physical, emotional,

cognitive and social factors and their interactions. Is a multi-purpose reference model for the

simulation of human behaviour in a social environment.

PECS agent architecture grounds on the opinion that an agent must be capable of integrating

physical, emotional, cognitive and social attributes and processes in order to provide an adequate

means for modelling human behaviour.

The architecture may be divided up into three different horizontal layers. The input layer consists

of the componets Sensor and Perception and is responsible for the processing of input data coming

from the environment of the agent.

The internal layer is composed by the components Physics, Emotion, Cognition and Social Status.

This group of components models the internal state of the agent.

Finally, in the output layer, covering the components Behaviour and Actor, the behaviour of the

agent is calculated and the actions are executed.

Figure 2: PECS model reference diagram
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Belief–Desire–Intention (BDI)

BDI [7] is a software model developed for programming intelligent agents. BDI stands for Belief,

Desire and Intention, and the original principles were set by Michael Bratman during the 80s. In

essence, it provides a mechanism for separating the activity of selecting a plan from the execution

of currently active plans.

BDI as whole can be represented by the following components:

• Belief : The knowledge of the world, state of the world.

• Desire: The objective to accomplish, desired end state.

• Intention: The course of actions to achieve the desire of the agent.

Figure 3: BDI model reference diagram
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The BDI software model is closely associated with intelligent agents, but does not, of itself,

ensure all the characteristics associated with such agents. For example, it allows agents to have

private beliefs, but does not force them to be private. It also has nothing to say about agent

communication. Ultimately, the BDI software model is an attempt to solve a problem that has

more to do with plans and planning (the choice and execution thereof) than it has to do with

the programming of intelligent agents.

1.3.2 Previous studies

Starting our project, we had taken into account previous works and studies related. In the next

sections, we are going to summarize the three most relevant studies, the ones that are close

to our project, but there are also another important works, as Predicting Human Behaviour in

Normal-Form Games [8], that give to us very useful information.

PECS: Agent-Based Modelling of Human Behaviour

This work [9] from Christoph Urban and Bernd Schmidt done at University of Passau, is a base

point for understanding the used reference model PECS.

In this project it is presented the PECS reference model for the construction of human-like agents,

which enables an integrative modeling of physical, emotional, cognitive and social influences

within a component-oriented agent architecture.

Furthermore, the case study Learning Group is introduced which demonstrates the practical

application of the design methodology, and is intended to model basic social psychological mech-

anisms in the context of group formation and disbandment.

Modelling of Human Behaviour. The PECS Reference Model

In this second work [10] from the University of Passau and again done by Dr. Bernd Schmidt,

PECS model is detailed. Different components of the model are explained deeply for a better

understand of how it model an agent behaviour.

PECS is presented as a reference model for the modelling of human behaviour. The architecture

proposed claims to be universally applicable, and adaptation to individual conditions occurs by

means of filling in the empty spaces provided by the architecture.

Agents can be endowed with a varied repertoire of actions that state the external actions of which

the agent is capable. As a result, very diverse agents and agent communities develop but they

all have the same deep structure and therefore they can all be described by one and the same

reference model.
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Humans display a reduced set of consistent behavioral phenotypes in dyadic games

The article [11] questions about people behavior when play games, precisely when are exposed to

the constraint introduced in game theory designs, where people are often not ”rational” in the

sense that they do not pursue exclusively self-interested objectives .

This behavior is especially clear in the case of prisoner’s dilemma, where rational choice theory

predicts that players will always defect but empirical observation shows that cooperation often-

times occurs, even in ”one shot” games where there is no expectation of future interaction among

the parties involved.

These findings beg the question as to why players sometimes choose to cooperate despite incen-

tives not to do so, questioning if these choices are a function of a person’s identity and therefore

consistent across different strategic settings, if individuals draw from a small repertoire of re-

sponse, and if so, what are the conditions that lead them to choose one strategy over another.

For that reasons, an empirical experiment has been done over more than 500 people, with prizes

in form of incentives for assuring that people with try to do whatever to win if they are motivated

to. There are 5 phenotypes of person and it is studied differences between each phenotype from

theoretical expected results to empirical collected results.

1.4 Objectives

The main goal of the project is simulate human behaviour by building a tool based on agents

modelling, applying game theory and with PECS reference model embedded for handling its

behavior. For doing that, we are going to implement a model where agents plays a classic games

theory paradox, the prisoner’s dilemma.

We are going to bring agents with a repertoire of actions and rules, which are going to influence

its behaviour, even though sometimes they are not going to pick the best option, from a rational

point-of-view, due to the impact of emotions and cognition, which are going to be represented in

form of revenge or the best option based on previous games that the agent have played.

Hence, objectives can be divided in:

• Different phenotypes: Each agent as the representative of a human being will be endowed

with an elementary personality that will influence its behaviour. We need to have a number

of different personalities very accurate to no interfere on the experiment results.

• Set of actions: Alongside the different personalities, we need to endow to the agent with

a repertoire of possible actions of an agent. The number of actions must be kept to the

strict minimum for simplicity reasons, but the necessary ones to have realistic results.
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• Agent behaviour: By using different personalities and a limited set of actions, we have

to manifest the agent behavior. This is a key point because if we do not define well all the

possible situations and we leave some corner cases, we cannot obtain representative results.

1.5 Scope

In order to achieve the proposed objectives, we need to implement a program capable of determine

different agents depending on its personalities, able them with a set of actions and manifest it

with a coherent behaviour on each decision made.

We are going to implement this model in Netlogo [13], which will carry the simulations of the

agent over the time and develop the experiment. The program brings a visual tool for watching

on real time the simulation and also the possibility of represent the results in plots or by ’asking’

to the agents.

Also, we are going to use the previous mentioned works PECS – Agent Based Modelling of Human

Behaviour and Humans display a reduced set of consistent behavioral phenotypes in dyadic games

as starting point. Both will bring us needed information about agents phenotypes and reference

model to define its behavior.

The final result will be a set of agents with different personalities wandering in a defined universe,

interacting with other agents to achieve its internal needs and goals, and we are going to be the

observers that take notes and study how they interact for extracting conclusions about human

behaviour without interfere in the result of the experiment.

1.6 Project contribution

The contribution of this project is to develop and show the feasibility of a power tool that

combines game theory, PECS reference model and agent-based modelling that can be scaled and

tuned to predict human behaviour in a particular case, to understand better why human beings

do what they do or how they make its decisions. The results reached from our tool can be easily

extrapolated to other fields, so in fact, we want to contribute on something that is global, as can

be understand better how human brain works.

Since our tool has been done with academical purposes, all code is open source, as well as all

frameworks, packages and other software used in its development.
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2. Background

Before starting to explain the project development, it is necessary to have some background

on the related topics of the project. Therefore, in this chapter we provide a definition and the

essential knowledge of the techniques and models used during the development of the project.

2.1 Netlogo

Netlogo is a programming language adapted to the modelling/simulation of phenomenons where

appears a large number of individuals interacting between each others. It is called Netlogo

because it is a dialect of the Logo language [14], and is a multi-agent programmable modelling

environment that:

• Is adequate for modelling complex systems which evolve during the time.

• Is adequate for modelling hundred or thousands of individuals (persons, bacteria, insects,

organizations, graph nodes, etc.

• Allow explore connections between local interactions at individual level and the macroscopic

patterns that emerge from them.

It is also an easy and intuitive programming environment for create and testing new models:

• Allows open and experiment simulations.

• Allows implement models fast for checking hypothesis about decentralized systems.

• Granted with a large library of simulations in natural and social sciences, which ones can

be used and modified.

• Models are built using a simple language inspired in functional/declarative paradigm.

• Have an intuitive graphical interface.
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It has a Desktop application with the complete feature set of functionality but also has a web

version for running simulations in browsers, even though it is not available full functionality.

Figure 4: Netlogo desktop application

2.1.1 Basic concepts

Even though Netlogo language is easy to learn, it does not set limits to the sophistication of

the models that can be implemented. It has as main orientation modelling systems composite

by individuals that interact between each others and with the environment, based on the agent

modelling paradigm:
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• An agent is an synthetic individual, autonomous and doted with rules or features that

govern its behaviour and its capacity for making decisions.

• Agents interact between each others and with the environment obeying a set of rules.

• Agents are flexible and have the ability of learning and adapt its behaviour based on the

experience. This ability requires some way of memory. Agents can even have rules for

modifying its behaviour rules.

Agents

Netlogo is equiped with for types of agent:

• Mobile agents (turtles): They are the ones that are moving ’around the world’. The

world is in 2D (even though there is a 3D version) and it is divided in a mesh of patches.

• Immobile agents (patches): Every square division of the world.

• Linking agents (links): Agents that connect between each others the turtles (like edges

in a graph)

• Observer agent: It is not located and it can interact with all the elements of the world.

In a way, it represents the super agent that can control all the elements of the world.

We can control a Netlogo model by using buttons and switches. Furthermore, the system offers

the possibility of controlling the models by a command center, where it is possible execute

commands about a model and modify its parameters.

Variables

In Netlogo we can either user defined framework variables or create our own. This own-created

variables can be global when represents a global system property (i.e. number of generations

formed), variables that belongs to patches and are used for representing memory attributes for

each portion of ’universe’ (i.e. altitude, amount of food allocated in that slice of ’universe’), or

variables that belongs to the turtles and represent equally memory attributes for each one of the

turtles (i.e., type, gender or last occupied position).

We are going to show some examples of these three type of variables that can be found in Netlogo:

• Patch variables: patches-own [ altitude town ]

• Turtle variables: turtles-own [ gender last-position ]
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• Global variables: globals [ generation ]

These commands only works on Procedures tab, where it is implemented the model code.

2.1.2 Sets of agents and functions

Sets of agents

In this section we are going to use turtle’s gender for modifying its visual aspect. One way of

doing this consist on divide turtles by its gender variable. For that, we can use the command:

ask turtles with [ gender = 0 ]

[ set color pink

]

What previous command achieves is to execute a determined action over the subset of turtles

which verifies a certain property.

Netlogo bring very powerful tools for applying commands selectively over a set of agents that

verify a certain property by using ask set-of-agents [ commands ]. This is the general way of

the ask instruction, but previously we have applied to the particular case in which we consider

as set of agents from the total of turtles or patches.

Some examples of how implement set of agents are:

• turtles with [ gender = 1 ] : Turtles with gender 1.

• turtles with [ xcor > 0 ] : Turtles on the right side of the ’universe’.

• patches with [ pycor > 0 ] : Patches on the north ’hemisphere’.

• turtles-here : All the turtles in a certain patch. This form must be used by another turtle

or patch.

• other turtles: Similar to turtles, but in this case the turtle that executes the call is not

included.

Control structures

We are going to change the visual appearance of turtles with gender 1. On this case, we are

going to use control structures for illustrate its use. For that, we can execute the command
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ask turtles [

if (gender = 1) [ set color pink ]

]

Control structures offer another way for executing selectively actions in Netlogo:

• if condition [ commands ]: If the condition is verified, commands are executed:

if (gender = 1) [ set color sky ]

• ifelse condition [ commands1 ] [ commands2 ]: If the condition is verified, commands1

are executed, if not commands2 :

ifelse

(gender = 0) [ set color pink ]

[ set color sky ]

• ifelse condition1 [ commands1 ] condition2 [ commands2 ] ...: If condition-i is

verified, commands-i are executed, if not, else-commands:

ifelse

(gender = 0) [ set color pink ]

(gender = 1) [ set color sky ]

[ set color green ]

• while [ condition ] [ commands ]: Meanwhile condition is verified, commands are

executed:

ask turtles [

while [ycor < 0 ]

set ycor (ycor + 1) ]

]

]

Breeds

In the system we are not limited to the use of one and only specie of mobile agents (turtles), we

can create many as we want, each one with its own attributes and behaviours. On that way, we
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can imitate ecosystems composed by some species or sophisticated economies formed by different

types of producers and consumers.

For creating and specie, it is used the command

breed [ plural-specie singular-specie ]

On this way, we can refer to the whole specie or to one of its individuals. Some commands and

reports will use the plural name of the breed, for instance create-, meanwhile others will use

singular version, -neighbor (environment of the individual). In general, the rules that follows for

using one or another are the derived ones of the natural language.

Once defined a new breed, automatically it is generated a set of agents associated to itself, in the

way that everything that we have seen for sets of agents in general can be applicable for selecting

individuals of the same breed.

For instance, for creating two breeds (fishes and frogs) we will use commands:

breed [ fishes fish ]

breed [ frogs frog ]

Once created, all new breeds have equivalent commands to the turtles ones, that are inherited

automatically. For using them it is enough with substitute, on each command, the word turtles

by the name of the breed:

Turtles commands Breed commands

create-turtles n create-fishes n
ask turtles [ commands ] ask fishes [ commands ]
ask turtles hatch n [ commands ] ask fishes hatch n [ commands ]
count turtles count fishes
ask turtles with [ condition ] [ commands ] ask fishes with [ condition ] [ commands ]
turtles-here fishes-here
other turtles other fishes
turtles-own fishes-own

Table 1: Breed inherited commands

Moreover, each breed inherit the following primitives automatically: create-, hatch-, sprout-,

-here, -at, -on and is-?.

Even though, individuals of a breed can migrate to another breed. For instance a fish do not

must be fish the rest of its life, and it could transforms to an amphibian (supposing that we have

created both breeds), by properly modifying its breed property that all agents have:
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ask one-of fishes [ set breed frogs ]

As visual enforcement, Netlogo offers also a way of modifying the aspect of diverse turtles families

by using command:

ask turtles [ set shape name-of-shape ]

Figure 5: Netlogo possible shapes

Actions and functions

Netlogo allows the construction of our own commands. The most common use is actions, which

are like scripts that group in logic units a set of commands that is repeated commonly, which

makes it easier its execution and modification in case of necessity. The are defined in the following

way:

to name-action [ parameter1 parameter2 ... parametern ]

command-1

command-2

...

command-n

end

For calling a routine, it is used straight its name with its associated input parameters. The

methods are another way of grouping commands, with the difference that a method returns a

value.

16



to-report name-method [ parameter1 parameter2 ... parametern ]

command-1

command-2

...

command-n

report val

end

Experiments

BehaviorSpace is one of the integred tools in Netlogo that allows make experiments about

the models. Its basic function is to run the model several times, modifying systematically the

parameters of the model and recording the results of each execution.

It is common that models have a lot of parameters which depends on, each one with its range.

It is recurrent that the modification of this mentioned parameters provoke a drastic change on

the behaviour of the system which is being modeled. In complex systems it is specially hard to

know before an execution the values of the parameters that the model is going to follow.

As simple example we can take the fire propagation through a forest model. For instance, the

fire starts from the left side of the ’universe’ and it propagates by contacting with trees. In the

model we just have one parameter which is tree density in the forest (between 0 and 100) and

we check the evolution through the proportion of burnt trees. We can observe that the model

presents a very abrupt transition phase, in which, for certain values of density (above a very thigh

threshold), the fire propagation is very low, meanwhile with values above a certain threshold, the

final proportion of burnt trees is around 100%.

Of course, we can do several executions of the model modifying manually density, but this is a

tedious process when the space of parameters is too big. Is here where play an important role

this tool, which allows us to automatize this process and storing the interesting results in a file

to be analyzed later with the proper tool.
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Figure 6: Netlogo experiment setupscreen

2.2 Agent-Based Modelling

Agent-Based Modelling (ABM) [15] is a style of modelling in which we represent the interaction

between individuals and with each other environment in a program. Agents can be, for example,

people, animals, groups, or cells. They can model entities that do not have a physical basis

but are entities that can perform some tasks such as gathering information or modelling the

evolution.

ABM is a method of modelling complex systems by defining rules and behaviours for individual

components (agents) as well as the environment thy are present in. Further, we aggregate these

rules to see the general behaviour of the system. It helps in understanding how simple micro-rules

of individual behaviour emerge into macro-level behaviour of a system. Being able to model these

complex systems can lead to a better understanding of them, thereby being able to control the

course of events, just by tweaking simple rules at the individual level.
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2.2.1 Entities in Agent-Based modelling

ABM contains autonomous models called agents. These agents can be an individual, a group of

individuals, or even an organization. Each agent is defined with properties of its own along with

relationships with other agents.

Apart from agents, ABM also have environments, which is a set of conditions the agent is exposed

to. Once these entities are defined in an ABM, individual behavioral rules of how an agent would

behave in a given environment is defined.

An aggregate of these simple individual-level behaviours that lead to a complex macro level

patter. A feedback-based-learning-model is often used in ABMs to update agent actions based

on their changing relationships with other agents and their environment.

Figure 7: Fire propagation example of ABM

2.3 PECS model

PECS is a reference model which makes it possible to specify and to model these factors and their

interactions. A detailed description of the PECS reference model and its underlying methodology.
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PECS stands for: Physical conditions, Emotional state, Cognitive capabilities and Social status.

We are going to describe into five subsections the PECS reference model.

2.3.1 Structure of the agent world

The agent world of the reference model PECS consists of the following fundamental components:

• The environment component

• The connector component

• The agents

Figure 8: PECS fundamental components

2.3.2 Environment

The environment component is used to model external events and influences which are important

for the behaviour and the actions of agents. It may also include other agents.

It is also reflected in the agents’ knowledge. The environmental knowledge that an agent has and

that is represented in the model it has made of the environment may be incomplete, uncertain

and even erroneous. As the environment is generally very diverse and difficult to squeeze into

a uniform schema, PECS reference model provides little assistance in this respect. It merely

provides a frame within which the agents can move. The individual design of the environment

component is a mater for the user alone.
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2.3.3 Connector

Communication is an essential aspect of multi-agent systems. The basic principle is that all

agents must have the possibility of communicating with all other agents. For this purpose the

Connector component is introduced, which serves as a central switchboard that organizes the

exchange of information between agents. Again, its individual design is a matter for the user

2.3.4 Structure of PECS agents

The basic structure of PECS model is clearly recognizable: Based on system theory, consists of

input, internal state and output.

Figure 9: PECS structure and internal organization

The upper level with the components Sensors and Perception corresponds to the input. These

components are responsible for the reception and initial processing of information from the en-

vironment.

The middle four components Status, Cognition, Emotion and Physis contain the state variables

of the agent and their changes of state.

The components at the bottom of the diagram Behaviour and Actor, are responsible for output.

The Behaviour component determines the execution order. It contains the set of rules on the

basis of which an execution order is issued as it were automatically.
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The execution orders are passed to the Actor, who is responsible for their execution. The Actor

contains the full repertoire of actions of which the agent is capable.

2.4 Game Theory

Game theory [16] is a theoretical framework for conceiving social situations among competing

players. In some respects, game theory is the science of strategy, or at least the optimal decision-

making of independent and competing actors in a strategic setting. The key pioneers of game

theory were mathematicians John von Neumann and John Nash, as well as economist Oskar

Morgenstern.

2.4.1 Basics

The focus of game theory is the game, which serves as a model of an interactive situation among

rational players. The key to game theory is that one player’s payoff is contingent on the strategy

implemented by the other player. The game identifies the players’ identities, preferences, and

available strategies and how these strategies affect the outcome. Depending on the model, various

other requirements or assumptions may be necessary.

Game theory has a wide range of applications, including psychology, evolutionary biology, war,

politics, economics, and business. Despite its many advances, game theory is still a young and

developing science.

The Nash Equilibrium

Nash Equilibrium [17] is an outcome reached that, once achieved, means no player can increase

payoff by changing decisions unilaterally. It can also be thought of as ”no regrets,” in the sense

that once a decision is made, the player will have no regrets concerning decisions considering the

consequences.

The Nash Equilibrium is reached over time, in most cases. However, once the Nash Equilibrium

is reached, it will not be deviated from. After we learn how to find the Nash Equilibrium, take a

look at how a unilateral move would affect the situation. Does it make any sense? It shouldn’t,

and that’s why the Nash Equilibrium is described as ”no regrets.” Generally, there can be more

than one equilibrium in a game.

However, this usually occurs in games with more complex elements than two choices by two

players. In simultaneous games that are repeated over time, one of these multiple equilibrium is

reached after some trial and error. This scenario of different choices over time before reaching
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equilibrium is the most often played out in the business world when two firms are determining

prices for highly interchangeable products, such as airfare or soft drinks.

2.4.2 Types

Although there are many types (i.e. symmetric/asymmetric, simultaneous/sequential, et al.) of

game theories, cooperative and non-cooperative game theories are the most common. Cooperative

game theory deals with how coalitions, or cooperative groups, interact when only the payoffs are

known. It is a game between coalitions of players rather than between individuals, and it questions

how groups form and how they allocate the payoff among players.

Non-cooperative game theory deals with how rational economic agents deal with each other to

achieve their own goals. The most common non-cooperative game is the strategic game, in which

only the available strategies and the outcomes that result from a combination of choices are

listed. A simplistic example of a real-world non-cooperative game is Rock-Paper-Scissors.

2.4.3 Examples

There are several ”games” that game theory analyzes. Below, we will just list a few of these,

only describing the one that we use in our thesis, the Prisoners’ Dilemma

• Dictator Game

• Volunteer’s Dilemma

• Centipede Game

• Prisoner’s Dilemma

The Prisoner’s Dilemma is the most well-known example of game theory. Consider the example of

two criminals arrested for a crime. Prosecutors have no hard evidence to convict them. However,

to gain a confession, officials remove the prisoners from their solitary cells and question each one

in separate chambers. Neither prisoner has the means to communicate with each other. Officials

present four deals, often displayed as a 2 x 2 matrix.

1. If both confess, they will each receive a five-year prison sentence.

2. If Prisoner1 confesses, but Prisoner2 does not, Prisoner1 will get three years and Prisoner2

will get nine years.
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3. If Prisoner2 confesses, but Prisoner1 does not, Prisoner1 will get 10 years, and Prisoner2

will get two years.

4. If neither confesses, each will serve two years in prison.

The most favorable strategy is to not confess. However, neither is aware of the others strategy

and without certainty that one will not confess, both will likely confess and receive a five-year

prison sentence. The Nash equilibrium suggests that in a prisoner’s dilemma, both players will

make the move that is best for them individually but worse for them collectively.

2.4.4 Limitations

The biggest issue with game theory is that, like most other economic models, it relies on the

assumption that people are rational actors that are self-interested and utility-maximizing. Of

course, we are social beings who do cooperate and do care about the welfare of others, often

at our own expense. Game theory cannot account for the fact that in some situations we may

fall into a Nash equilibrium, and other times not, depending on the social context and who the

players are.
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3. Initial architecture

3.1 Overview

The goal of this initial point is to build the main system that will place our simulations. On

this incipient part of the project development, we want to setup a scalable structure for creating

agents with different personalities, with a set of variables that will rule their fate and a certain

number of actions to develop.

Also, we want to introduce game theory as the key concept to evaluate human behaviour. We

are going to make our agents play between each others randomly to the Prisoner’s Dilemma, a

standard example of a game analyzed in game theory that shows why two completely rational

individuals might not cooperate, even if it appears that it is in their best interests to do so.

We need to build an ecosystem to handle our game and agents too. The system is going to be

built using Netlogo framework, which is very accurate for agent-based modelling and brings us

all needed tools for handling our simulations. The system will be the universe that contains our

agents, and will act as an observer, giving us visual and data feedback about agents chances.

3.2 Game theory

As we have said before, game theory will be the way that we use to evaluate agents decisions.

We are going to make agents play against each other to Prisoner’s Dilemma (PD), which is a

game theory classical paradox. We use PD as a way for evaluate agent decisions and so, include

a reward in form of a payoff matrix to make agents try to maximize the number of points that

they can achieve based on its decisions.

All the data used in the project about the phenotypes, payoff matrix (scoring system) and

the dynamics of PD is based on article Humans display a reduced set of consistent behavioral

phenotypes in dyadic games [11].
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3.2.1 Prisoner’s Dilemma

In our project, we have implemented classical PD game version, but changing the payoff matrix

values. Agents will play against each other and they will have to choose between Cooperate

(C) or Defect (D), and depending on its decision and rival’s decision, they will obtain a score.

The decision is conditioned by agent personality, because it will impact in the way how to make

it. By combining different agents personalities and a changing payoff matrix every round, we are

creating a situation to check every agent strategy.

3.2.2 Payoff matrix

The payoff matrix will be crucial for making agents to change its behaviour depending on the

values that it holds. As we have pointed above, some values of the matrix are variable, meanwhile

than others are constants. This is the payoff matrix used in our tool:

Figure 10: PD Payoff matrix

This way, we have all possible combinations generated from the choices of two agents (four

possible combinations). The payoff matrix form is interpreted as the rows are agent’s strategies,

whereas columns are those of its opponent. In that way, an agent will have one of the four

possible values as score every round, stated by variables R, S, T and P .

As we have mentioned before, not all values of the payoff matrix are constant. The ones on the

main diagonal will be constant, while the ones on the secondary diagonal will be variable.

This way, will have constant values for R and P, while values for S and T are variable. These

are their assigned values:

• R: Result of both agents C has a fixed value of 10.

• P: Result of both agents D has a fixed value of 5.

• S: Result of first agent C and second agent D has a variable value in range [0,10].

• T: Result of first agent D and second agent C has a variable value in range [5,15].
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The matrix is generated each round with equal probability for each point in the S, T plane. This

variable values are chosen randomly, assuring this way there is no intention to condition the

agent’s decisions.

By having 11 options for each variable, we will have a 11 x 11 matrix of possible combinations.

We are going to use this matrix for representing the obtained results depending on variables values

and will be explain deeply in the data representation section.

3.2.3 Players phenotypes

For having different strategies, we have defined 5 different phenotypes of agents. Each phe-

notype will follow its own rules, what will determine its behaviour.

As we want to make a tool as real as possible, our goal is to assess whether individuals behave

in a highly idiosyncratic manner or whether, on the contrary, there are only a few ”phenotypes”

by which all our experimental subjects can be classified. As our goal is to make a tool for

embed game theory and PECS reference model, not to classify human beings, we have taken the

phenotypes described previously in the reference article used for developing this tool.

Coming up next, we are going to show the possible phenotypes and its heatmap. The cooperation

level is represented from 0 in blue to 1 in red:

• Optimist: The first phenotype, called Optimist cooperates wherever T < R. By using

this strategy, these subjects aim to obtain the maximum payoff without taking into

account the likelihood that their counterpart will allow them to get it.

In other words, when he feels that he can obtain a higher value that the one offered by

cooperating, it will defect its opponent.

Figure 11: Optimist phenotype heatmap
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• Pessimist: Conversely to the first, we label subjects in the second phenotype Pessimists,

because they use a maximin principle to choose their actions, cooperating only when S > P

to ensure a best worst-case scenario.

As previous phenotype, its decisions can hardly be considered rational, and are related with

different degrees of risk aversion.

Figure 12: Pessimist phenotype heatmap

• Envious: The third phenotype is called Envious, because it exclusively cooperates in the

upper-left triangle of the heatmap, when (S − T ) >= 0. Its name is given due to it takes

decisions based in preventing their counterparts from receiving more payoff than themselves,

even when, by doing so, they diminish their own potential payoff, which is far from being

a rational decision.

Figure 13: Envious phenotype heatmap
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• Trustful: The four phenotype is called Trustful, because its unconditional faith in its

opponents. It includes those players who cooperate always in almost every site of the

(S,T) plane. This phenotype is the opposite to the previous one. Its behaviour can be

associated with trust in partners behaving in a cooperative manner. They follow the formula

p(C) = 1.

Figure 14: Trustful phenotype heatmap

• Undefined: The last group are the ones who cooperate in an approximately random

manner, with a probability of 50% in any situation. For that reason, they are called

Undefined. They follow the formula p(C) = 0.5

Figure 15: Undefined phenotype heatmap
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3.3 Agents

Agents will play a key role in our system, as they are going to be the subjects of our further

experiments over which we are going to study its behaviour by setting them a personality and a

set of rules while seeing how they interact with the universe and other agents.

In this section we are going to talk about their different breeds, their internal variables that will

condition part of its behaviour, the features that an agent holds and also how we are going to

set up them at the start of each simulation.

3.3.1 Breeds

As we want to build a tool for holding simulations capable to represent real human behaviour,

we need to make our agents as real as possible. As in real world not every person thinks or act

the same, in our tool we need to have the ability of modelling different kind of agents.

For that reason, we have implemented five types of breeds, each one representing one of the

previous mentioned phenotypes:

breed [optimists optimist]

breed [pessimists pessimist]

breed [enviouss envious]

breed [trustfuls trustful]

breed [undefineds undefined]

For distinguish them on the visual simulations, we have labeled each breed with a different colour.

Also, they have the appearance of a person, because we have set ”person” as default shape for

all the breeds. This is the chosen breed representation:

• Optimist will be represented with colour green.

• Pessimist will be represented with colour red.

• Envious will be represented with colour orange.

• Trustful will be represented with colour blue.

• Undefined will be represented with colour grey.
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The number of individuals of each breed is handled by five sliders on the Netlogo interface tab.

Each one of them is related to a system variable that is used at the time of agent creation, during

setup method.

Figure 16: Slider variable number of individuals

3.3.2 Internal variables

Besides the breed, each agent have internal variables. These variables are needed to store data

about the games that they are playing, to have knowledge against which other agents it has

played during the current round or even to modelling emotions or cognition as we will see in the

next chapter.

For this base implementation where we want to reproduce a reduced set of personalities without

having any external input that can affect to its behaviour, we are going to use only one variable

called games-current-tick , which will store the id of our rivals during a certain round to

assure that we are only playing against same agent once, at most, every round, to avoid data

duplication. This agent variable is reset at the end of every round, and only works as a constraint

for limiting games between same agents.

3.3.3 Setup

For setting up the agents before each experiment, we have implemented a method that holds all

needed initialization of variables, breeds and even though, agents creation.

In this method, we define the five breeds available in our tool. Also, we assign to each one of

them the shape of person for a better understanding during the simulation on the interface tab.

Once we have defined the breeds, we define how many individuals we are going to create for each

one, based on the previous slider variable introduced.
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For each breed, we set up the previous assigned color, as well as initialize its list of agents whom

has player in current round.

3.4 System architecture

All the reported information about our tool holds over a defined architecture defined in Netlogo

framework. As we know that this implementation is just for setting up the structure for our

finale implementation, we had in mind potential scale in its design, but implemented just our

initial purpose.

We are going to explain everything on detail in next sections, but here there is an image of the

tab interface of our tool.

Figure 17: Netlogo interface of our tool initial approach
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3.4.1 Constants and variables

The system, as responsible of data result report, must hold all the data that it is created during

a simulation. Besides that, it also has to store the constants values needed for some methods

during the simulation, and variable values that are changing on each round or growing up.

Following there are reported all constant and variable values used for develop the simulations.

Constants

• payoffs: This is where there are stored the values of the payoff matrix. Even though its

values on the secondary diagonal are variable, we catalog it as a constant. It is checked

after each game for determine the score of each agent.

• C: Here there is store the value of cooperate. It is used as index for accessing into a matrix

specific value.

• D: Here there is store the value of defect. It is used as index for accessing into a matrix

specific value.

• R: Here there is store the value of the action of both cooperation. It is used for check

conditions of the agents depending on its breed and make a decision.

• P: Here there is store the value of the action of both defection. It is used for check conditions

of the agents depending on its breed and make a decision.

Variables

As a simulation is a changing phenom, we need to have several variables for capturing all the

events. This is a crucial part because it is not only needed for developing the simulation properly,

but also it is needed to hold the results to be able of representing later and reach conclusions or

discover phenoms.

These are the variables that handle all these data on this first approach:

• S: Variable that holds the random-generated every round value of the action where agent1

cooperates and agent2 defects.

• T: Variable that holds the random-generated every round value of the action where agent1

defects and agent2 cooperates.

• num-games-per-round: Variable that determines how many games are done on each

round for every agent.
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• res-sum: Matrix of 11x11 that holds the cooperation factor for a given values of S and T.

Here it is stored the result of a game by using as indexes of the matrix S and T. This is

used later for generate the heatmaps. There is on array per breed and the results of each

personality are stored in its matrix.

• res-times: Similar to res-sum. It has the same sizes, but instead of store the result, it is

stored the times that it happens for computing average once it is requested the data. Also,

there is a matrix for each breed.

3.4.2 Checks and setup

During the setup phase, started when pressed setup button, our tool have some initialization

needed for the proper development of the further simulation. Inside this setup method, we are

also doing some initial checks needed before start a simulation.

The first action done is to reset the tick counter that are associated to each iteration of the

simulation. After that, there are also cleared all the turtles.

Next methods executed inside setup are the system checks. In this part of the tool, we only have

one active check that count all initial agents distributed into different breeds for assuring that

we are not over passing the maximum agents number handled by the program.

Once we have assured the feasibility of the simulation, we set up the agents as we have explained

on agent’s section, and also we need to set up the system.

In the setup-system method we set the values of C to 1 and D to 0. Also, we generate the first

two random values of S and T, and we use it to initialize payoffs matrix with them and also

with the initialized values of R = 10 and P = 5. Finally, we initialize the five 11x11 matrix (one

for each breed) that store the results of the game for S and T values. Initially, these matrix have

all its positions equal to 0. Also the number of times matrices (res-times) are equally initialized

too.

3.4.3 Methods

We are going to show the four methods that will handle the agents fate over the simulation,

showing its pseudo-code of the implementation and explaining its behaviour. This four methods

are inside a general method called go, which is represented in the interface tab of Netlogo as a

button. Once the button is pressed, as it has marked the option forever, it will repeat it forever

or until we push the button again.
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action-rstp

This method is called inside the next method play. For each agent, and depending on its breed

and the values of S and T, it decides its final chosen action. This is the pseudo-code of the

method:

Algorithm 1 Pseudo-code of method action-rstp

Input: agentBreed
if agentBreed = optimist then

if T < R then
return C

else
return D

end if
else if agentBreed = pessimist then

if S > P then
return C

else
return D

end if
else if agentBreed = envious then

if S − T ≥ 0 then
return C

else
return D

end if
else if agentBreed = trustful then

return C
else

return random(C,D)
end if
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play

Here is where all the ’action’ is done. In this first phase, we select for each agent a set of agents

to play with in base of variable num-games-per-round. For each rival, we check that there are

not repetitions, and in case of have it any, we select randomly another opponent.

After that, for each agent and rival, we compute its decision based on its personality. Also, we

add to the list of games-current-tick the rival and do the same from the rival point-of-view.

Once we have both decisions, we update heatmap matrix of each breed involved in the game with

the chosen action. Here is the pseudo code of the method:

Algorithm 2 Pseudo-code of method play

for all agents do
rivals = getRandomRivals(num− games− per − round)
for all rivals do
agentAction = actionRSTP (agentBreed)
rivalAction = actionRSTP (rivalBreed)
agentGamesCurrentT ick.add(rivalID)
rivalGamesCurrentT ick.add(agentID)
resSumAgentBreed[S][T ] = agentAction
resSumRivalBreed[S][T ] = rivalAction

end for
end for

update-variables

This method is in charge of update system and agent variables needed for starting a new iteration

of the simulation, and for update changing data in order to have reliable results on the next

iteration. Here we have a snippet of its pseudo code:

Algorithm 3 Pseudo-code of method update-variables

T = random(5, 15)
S = random(0, 10)
payoffs[C][D] = S
payoffs[D][C] = T
for all agents do
gamesCurrentT ick = []

end for
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plots-data

This method is in charge of report breeds matrix for creating the heatmaps and evaluate the

results. It is attached to the button do-plots from the interface tab of Netlogo and returns both

res-sum-<breed> and res-times-<breed> for each breed.

We decided to report it this way (pre-processed, without compute average) because we taught

that could be interesting for our tool to report any times as we want intermediate results that

do not compromise the data. Here is the pseudo code of the method

Algorithm 4 Pseudo-code of method plots-data

return resOptimist, resPessimist, resEnvious, resTrustful, resUndefined

3.4.4 Data representation

For data representation we have chosen heatmaps because it is easier to represent the data on

a visual way, to see how it affects to the cooperation the different values that S and T can take

for each breed.

As Netlogo outputs only raw data, we have implemented a Python script that handles the matrix

and use it with the help of the matplotlib library to plot the heatmaps. This is a sample of a

resulting heatmap:

Figure 18: Heatmap sample
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4. Final tool

4.1 PECS integration

The greatest challenge of our tool is to make feasible to have inside the same tool an agent-based

modelling implementation with PECS reference model for taking part of the decision making

embedded and game theory with PD as the way of generate options to the agents.

For that purpose, we need to integrate inside our tool the PECS reference model. PECS

reference model is composed of four components: Physical, Emotional, Cognitive and Social

status. We need to develop a module for each one of the four components and embed it to the

agent for checking if they modify its behaviour to prove the feasibility of our tool

4.1.1 Physic and Social Status

For including these two modules for developing PECS model, we need to bring the capability of

movement and social interaction to our agents. In this section we are going to explain how

did we manage to bring to agents these two abilities.

Physic

On our first approach, agents were static actors that get a fixed number of opponents with the

only condition of not playing against the same agent during the same round.

For changing this, we have gave to the agents the ability of moving free over the whole universe.

Now, instead of receiving on each round a set of opponents, the agent is making a movement over

the map every round, and based on its position, he will check its eight potential neighbors.

For each neighbor patch that contains an agent, it will be added to the rivals list for that round

and our agent will compete against them.
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Figure 19: Potential opponents based on neighbors

Social status

The social status component was the easiest to embed in our tool. This is because it implies

having relation with other human beings.

As in our first approach we were playing against other agents, we have fulfilled this condition, as

the social interaction was covered yet by the act of playing to the PD against each others.

4.1.2 Emotion

The emotion component was implemented in our model in the form of revenge. We have added

to the agents the capability of having ’memory’, and now they are ’recording’ everything that

happens related to a game of the PD.

By building for each agent an array of size equal to the number of agents that are in our same

universe, we are storing the last game that we had against each one of them. So then, the first

time that we play against them, we will have no background of being potentially betrayed by

them, and this component will not affect to the occurrence of the expectations. The same as if

in the last game he did not betrayed us

But at the moment that the agent become betrayed, it store this information in the array of last

games against agents, in the index of the agent, that he defected, and commit betray.
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4.1.3 Cognition

The same way that we have used the agent’s ’memory’ for modelling emotion component of the

PECS model, for the last remaining agent’s capability we have done the same.

We have build an array with previous games done against agents for different values of T and

S, and depending of the results that gave us best chances in the past, we are going to made our

decision.

For the initial part of the cognition, as we do not have previous records, we are taking a 20% of

the total ticks of the simulation as training. We allow this ’licence’ based on trial and test sets

done in areas that requires a learning, and this learning (or training) phase should take about

10-20% of the total set, so we will assume too that the first 20% of the set of data will be our

’training’.

On the training stage we are going to made the decision in base to a formula that compute the

average of scores for the current round of choosing to Cooperate or to Defect. If the condition is

satisfied, we will choose to cooperate. Otherwise we will defect.

(R + S)/2) >= ((T + P )/2)

4.2 Tool changes

In order to make capable of make decisions not only by agent personality and embed PECS

model, we have need to make some changes on our tool.

Besides the changes on the methods (that are explained in the next section), the variables and

the interface, we have added a new check too based in the three new variables that we are

going to introduce in this section, called theoretical-percentage, emotional-percentage and

cognitional-percentage . This checks guarantees that the sum of these three variables is not

over 100 (total percentage).

4.2.1 Variables

We needed to grant agents with new set of variable for being capable of handling the previous

commented abilities. These are these variables:

• payment: This arrays stores the results of all scores in games done by an agent.

• payment-option-c: In this matrix we store the score results where we have cooperated

for each value of S and T.
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• payment-option-d: In this matrix we store the score results where we have defected for

each value of S and T.

• theoretical-percentage: Percentage (from 0 to 100) of the weight in the simulation of

’theoretical’ result.

• emotional-percentage: Percentage (from 0 to 100) of the weight in the simulation of the

emotional result.

• cognitional-percentage: Percentage (from 0 to 100) of the weight in the simulation of

cognitional result.

4.2.2 Interface

As we have commented, also the interface suffered some changes due to the introduction of the

PECS model. We had to add the capability of tuning the weight of each component that reach

to a final action for deciding our final action. We have model it in a slider way to easier its

modification:

Figure 20: Final interface of our tool
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4.3 Final methods

After building the whole tool as we wanted since the beginning of this project, here are the

final state of the methods needed to develop the whole simulation accomplishing the previous

mentioned behaviour.

4.3.1 Move

This is the first method executed during a simulation. It only has the purpose of for each

turtle, generate a random value between 0 and 359 which will be its heading, and after choosing

its heading, it set to the turtle the action of forward 1, which makes current turtle to move

forward 1 unit of space in our universe.

This is the pseudo code of the method:

Algorithm 5 Pseudo-code of method move

for all agents do
heading = random(0, 359)
setForwardMovement(agent, heading, 1)

end for

4.3.2 Possible actions

Now, instead of acting based only into one component (the theoretical, which creates the per-

sonality), we have to choose between three by using the percentages for weighting more or less

each of them.

For doing this, we are obtaining the results of each mode individually and in a independent way

of its further use.

action-emotion

This method was the easiest to implement, as we only need to store the games done against all

the agents and evaluate if we have been betrayed on the last game or not, or assume that we do

not have been betrayed if it is the first time that we play (initialized as we have cooperated in a

hypothetical first game). Here you can find its pseudo code:
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Algorithm 6 Pseudo-code of method action-emotion

Input: agentLastGame, rivalID
if agentLastGame[rivalID] = D then

return D
return D

else
return C

end if

action-cognition

For the cognition ability we have made more structural changes to our tool due to the necessity

of more structures for storing the needed data, but as we had in mind the embedding of this

component we made scalable our tool. Here is the pseudo code of the method:

Algorithm 7 Pseudo-code of method action-cognition

Input: agentLastGamesC, agentLastGamesD
if ticks/totalT icks < 0.2 then

if (R + S)/2) >= ((T + P )/2) then
return C

else
return D

end if
else
avgChoicesC = avgResult(agentLastGamesC[S][T ])
avgChoicesD = avgResult(agentLastGamesD[S][T ])
if avgChoicesC >= avgChoicesD then

return C
else

return D
end if

end if
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action-rstp

This method remains equal from our first approach. We will refresh the procedure by putting its

pseudo code.

Algorithm 8 Pseudo-code of method action-rstp

Input: agentBreed
if agentBreed = optimist then

if T < R then
return C

else
return D

end if
else if agentBreed = pessimist then

if S > P then
return C

else
return D

end if
else if agentBreed = envious then

if S − T ≥ 0 then
return C

else
return D

end if
else if agentBreed = trustful then

return C
else

return random(C,D)
end if

action-decision

On this method we are only weighting by using weight variables of each component and reaching

a consensus between the three decisions by computing a value between 0 and 1. If the computed

value is greater or equal to 0.5, it will be consider at 1. Otherwise, it will consider as 0. Here is

the pseudo code of the method:

Algorithm 9 Pseudo-code of method action-decision

Input: emotion, cognition, theoretical
return resultingAction = round(emotion ∗ emotionPercentage + cognition ∗
cognitionPercentage + theoretical ∗ theoreticalPercentage)
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4.3.3 Play

The play method also has been modified to make it capable of develop the previous mentioned

tasks. This is the final method pseudo code:

Algorithm 10 Pseudo-code of method play

for all agents do
rivals = agent.getPotentialNeighbors()
for all rivals do
agentActionRSTP = actionRSTP (agentBreed)
agentActionE = actionEmotion(agentLastGame, rivalID)
agentActionC = actionCognition(agentLastGamesC, agentLastGamesD)
rivalActionRSTP = actionRSTP (rivalBreed)
rivalActionE = actionEmotion(rivalLastGame, agentID)
rivalActionC = actionCognition(rivalLastGamesC, rivalLastGamesD)
agentDecision = actionDecision(agentActionRSTP, agentActionE, agentActionC)
rivalDecision = actionDecision(rivalActionRSTP, rivalActionE, rivalActionC)
agentGamesCurrentT ick.add(rivalID)
rivalGamesCurrentT ick.add(agentID)
resSumAgentBreed[S][T ] = agentDecision
resSumRivalBreed[S][T ] = rivalDecision

end for
end for

4.3.4 Update variables and report data

For the update of the variables we do not have suffered changes. Neither for the data reporting

method. These are the previous mentioned pseudo codes of the methods:

Algorithm 11 Pseudo-code of method update-variables

T = random(5, 15)
S = random(0, 10)
payoffs[C][D] = S
payoffs[D][C] = T
for all agents do
gamesCurrentT ick = []

end for

Algorithm 12 Pseudo-code of method plots-data

return resOptimist, resPessimist, resEnvious, resTrustful, resUndefined
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5. Experimentation and results

Once the project development has been reported, it is time to make experiments with our tool

and check the obtained results in order to evaluate the quality of the project.

As our goal is not to achieve results that reach into discover patterns on human behaviour, but

create a tool capable of integrate game theory, PECS reference model and a given theoretical

personality for being used as a starting point for develop further experiments, we have not focus

our experiments on setting up the tool and reach conclusions about human behaviour.

Our experiments have been focused in demonstrate the functionality of the whole system with

all different parts embedded working properly. For that reason, we have done four experiments.

For each one of the experiments, we are going to run the simulation during 1000 ticks, as we

have tried with several numbers of ticks for checking when we have relevant data in all of the

positions of the heatmap, and also when the data results are stable, and we have observed that

it happens after 900 ticks, so we have added around a 10% of contingency for assuring that we

are covered in corner cases.

5.1 Theoretical experiment

We have denominated to the first experiment as the theoretical experiment. With this ex-

periment we want to isolate the model for only have the results based on the personality of the

agent. For that reason, we are going to set to zero the emotion and cognition percentages.

This is the interface setup for the experiment:
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Figure 21: Interface setup for first experiment

After setting up properly and run the simulation over 1000 ticks, we have obtained the following

results:

Figure 22: Heatmap of optimist breed
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Figure 23: Heatmap of pessimist breed

Figure 24: Heatmap of envious breed
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Figure 25: Heatmap of trustful breed

Figure 26: Heatmap of undefined breed
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Figure 27: Heatmap of the aggregation of all breeds results

As we can observe from previous heatmaps, we are obtaining the same results that the theo-

retical ones showed during the explanation of the project on the initial architecture chapter.

Even though, we want to notice that there are not ’exactly’ the same, but it is the expected

behaviour. We can appreciate in the Optimist, Pessimist and consequently in Aggregation

heatmaps that are slightly different in the border between full cooperation and full no cooperation.

This is happening because we are taking strictly the formulas as are reported in the article, and

we are no taking into account the cases were T = R for the Optimist and neither the S = P

case for the Pessimist. This two cases also affect to the final ’pattern’ of the Aggregation, and so

the difference too. We can observe too that is not happening on Envious heatmap because on

its formula it is contemplated the equal case.

5.2 Irrational experiment

We have called this second experiment as the Irrational experiment. The name came from

the fact that we are only using two of the three components that we had implemented capable

of condition an act: Theoretical and Emotional .

In this experiment we have set up at 50/50 the percentage of theoretical and emotion. The

intention of this experiment is to check if the Emotion component is working properly, if it is

capable of adding ’noise’ to its behaviour, which will alter its personality.
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This is the interface initial setup for the experiment:

Figure 28: Interface setup for second experiment

After setting up properly and run the simulation again over 1000 ticks, we have obtained the

following results:

Figure 29: Heatmap of optimist breed

51



Figure 30: Heatmap of pessimist breed

Figure 31: Heatmap of envious breed
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Figure 32: Heatmap of trustful breed

Figure 33: Heatmap of undefined breed
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Figure 34: Heatmap of the aggregation of all breeds results

After show the different personalities heatmaps, we can observe that the Emotional component,

as we expected, is adding noise to the agent’s personalities. The intention of not get all the

decision based on the emotion component but be equally balanced with the theoretical, which

is the responsible of defining the personality, is precisely the main reason. We wanted to have

sufficiently marked the personality, to check easily if it is affecting over it.

In general terms, the Emotional component is reducing the cooperation level mostly in

all the personalities. The only exception can be the Trustful, which seems less affected to the

emotion noise, even though it has some areas with lesser cooperation.

Also, we can see in the Aggregation heatmap that the colors are more ’purple’, what it means

that in general, the impact of the emotion component is noticed, and it seems to decrease the

cooperation. It is also true that as we are assuming at the initial game that the agent was

not betrayed in the past, it is affecting to the ’blue’ areas, which are the zones of less or no

cooperation, which some cells of the heatmap are slightly clearer that in the theoretical, which

means noise in form of cooperation.
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5.3 Rational experiment

This third experiment is the the antithesis of the previous one. Instead of deactivating the

Cognition component, we are balancing with the same weight as the Theoretical, while we are

raising to zero the impact of the Emotional component. That is the reason why we have called to

this experiment the Rational experiment, because it is pure cognition and agent’s personality,

inhibiting the emotion component.

This is the interface setup for the experiment, where we can see the 50/50 percentage balanced

between Theoretical and Cognition components:

Figure 35: Interface setup for third experiment

Again, after running the simulation for 1000 ticks, these are the obtained results:

55



Figure 36: Heatmap of optimist breed

Figure 37: Heatmap of pessimist breed
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Figure 38: Heatmap of envious breed

Figure 39: Heatmap of trustful breed
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Figure 40: Heatmap of undefined breed

Figure 41: Heatmap of the aggregation of all breeds results

After showing the ration experiment results, we can see that cognition is affecting more clearly

than emotion. In general, cognition had a big impact over all the personalities, with the exception

of the Trustful personality, which is a singularity that clearly seems to be reinforced.
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The impact over the other personalities increases considerably the cooperation levels. We think

that this happens due to the impact of the initial training phase done during the 20% of

the ticks, at the beginning of the experiment, to feed the memory with games for later, having

enough knowledge to decide whether cooperate or not, based on its experience.

5.4 Balanced experiment

For this fourth and last experiment, we wanted to test all the components available for modifying

the agent’s behaviour available on our tool. As we want to remain the characteristicals of each

personality, again we are going to set up the half of the decision based on the Theoretical,

and an equal proportion of 25% on the other two components, the Emotional and Cognition .

As we are giving the same weight both of them, we have called it the Balanced experiment .

This is the interface setup for the last experiment:

Figure 42: Interface setup for fourth experiment

After setting up properly and run the simulation over 1000 ticks, we have obtained the following

results:

59



Figure 43: Heatmap of optimist breed

Figure 44: Heatmap of pessimist breed
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Figure 45: Heatmap of envious breed

Figure 46: Heatmap of trustful breed
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Figure 47: Heatmap of undefined breed

Figure 48: Heatmap of the aggregation of all breeds results

After this last experiment and having the background of the two previous one isolating the

components, we can clearly observe a mix of the Emotion and Cognition components over

each personality, fact that is telling us that the repeatability in the results of our tool is working

fine, and so, the components are impacting over agent’s personality.
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6. Conclusions and Future Work

The goal of our project was to build a tool in Netlogo framework capable of embed game

theory , PECS reference model and agent-based modelling simulations that can be used

in further works or investigation projects as a starting point.

By proving the feasibility of our tool by developing a set of experiments where we can observe

that we have an Agent-Based Modelling running simulation where agents are moving freely

over a defined universe and meeting opponents for playing with to the Prisoner’s Dilemma,

a well-known games theory paradox that implies cooperation between participants, with dif-

ferent agent’s personalities that have the impact of the agent’s emotions, based on previous

experiences against its rival, and also the cognition impact in form of memory, having knowl-

edge of all previous games played versus all met agents in our universe, we can conclude that we

have reached the initial goal.

Even though we have accomplished our tool goal, there is still a lot of way to be done, because

it is only the starting point of a large journey through investigation of ways for improving it.

The cognition and emotion ’formulas’ have been taken from theoretical, are not empirical facts.

As our point was not predict human behaviour, we were not focused in making several experi-

ments, also involving real people and not only simulations, to tuning up the components, Emotion

and Cognition in our case, for being as ’human-like’ as possible. It could be a good starting

point for make a new research by using our tool and improving it in that way.

Also, our agents have a very strong root to its defined personalities, which in fact was fed

by us, with the idea of having results near of its personalities to can clearly check that the tool was

modelling what it was designed for, but it will be interesting to change these root personalities

and transform it into agent’s variables, with several parameters that can personalize a starting

personality as could be an Optimistic person, but with its own features that distort it.

It would be also interesting to add more components besides the ones that PECS refer-

ence model have. Further research can lead into that direction, by studying human beings and

try to extract from them new pattern not know yet that can be out of the scope of the PECS

model, which will make our tool easier to predict real human behaviour.
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