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Abstract

Automatic image captioning, the task of automatically producing a natural-language descrip-
tion for an image, has the potential to assist those with visual impairments by explaining images
using text-to-speech systems. However, accurate image captioning is a challenging task that re-
quires integrating and pushing further the latest improvements at the intersection of computer
vision and natural language processing fields

This work aims at building an advanced model based on neural networks and deep learning
for the automated generation of image captions.

Keywords: Deep Learning, Artificial Neural Networks, Automated image captioning
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Resumen

El subtitulado automático de imágenes, la tarea de producir automáticamente una descripción
en lenguaje natural para una imagen, tiene el potencial de ayudar a las personas con discapaci-
dades visuales a explicar las imágenes mediante sistemas de conversión de texto a voz. Sin
embargo, el subtitulado preciso de imágenes es una tarea desafiante que requiere integrar y
avanzar en la intersección de los campos de procesamiento de lenguaje natural y visión por
computador.

Este trabajo pretende desarrollar un modelo basado en redes neuronales y aprendizaje pro-
fundo para la generación automática de descripciones de imágenes.

Palabras clave: Aprendizaje Profundo, Redes Neuronales Artificiales, Descripción au-
tomática de imágenes
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Chapter 1

Introduction

1.1 Motivation

The web provides a vast amount of information, including a lot of text, but it is increasingly

dominated by visual information, both static (pictures) and dynamic (videos). However, much

of that visual information is not accessible to those with visual impairments, or with slow in-

ternet speeds that prohibit the loading of images. Image captions, manually added by content

providers (typically by using the Alt-text HTML tag), is one way to make this content more

accessible, so that atext-to-speechsystem can be applied to generate a natural-language de-

scription of images and videos. However, existing human-curated image descriptions are added

for only a very small fraction of web images. Thus, there is great interest in developing methods

to automatically generate image descriptions.

Automatic image description, also known in the research community as image captioning,

can be de�ned as the task of automatically generating a description of an image using natural

language. It is a very challenging problem that encompasses two kinds of problems: the problem

of understanding an image, which is aComputer Vision (CV) task and the problem of

generating a meaningful and grammatically-correct description of the image, which is a kind of

Natural-Language Processing (NLP) task. Therefore, to tackle this task it is necessary

to advance the research in the two �elds, CV and NLP, as well as promoting the cooperation

of both communities to address the speci�c problems arising when combining both tasks.

Figure 1.1 shows an example of the automatic image generation tasks addressed by this

project.

There are other use cases in which automatically generated image captions may help. Gen-

erally speaking, any domain in which images need to be interpreted by humans, but human

availability is scarce, or the task at hand is tedious, may surely bene�t from algorithms able to

automatically generate textual image descriptions.

3



4 Introduction

Figure 1.1: Image captioning can help millions with visual impair-
ments by converting images captions to text. Image by Francis Val-
lance (Heritage Warrior), used under CC BY 2.0 license.

A vast area of application is that ofConcept-Based Image Retrieval . This kind of task,

also named as "description-based" or "text-based" image indexing/retrieval, refers to retrieval

from text-based indexing of images that may employ keywords, subject headings, captions, or

natural language text. The main problem with this approach to image retrieval is the scarcity

of image descriptions, since having humans manually annotate images by entering keywords

or descriptions in a large database can be very tedious and time consuming1. Therefore,

automatic image description may be of great utility, and it can be applied to many areas

requiring image indexing and retrieval, such as biomedicine, education, digital libraries, etc., as

well as general web search. In addition, there is an extra bene�t in using captions vs keywords:

image captions are semantically richer and more sophisticated, thus allowing for more complex

queries to improve the precision of the search.

Another area where automatic image captioning may be of great utility is the analysis

and extraction of information from videos. Some video monitoring tasks are very boring and

tedious. An automated mechanism to describe scenes in video footage will be of great utility

for creating summaries or monitoring speci�c situations and events.2.

Image captioning can also be used to improve image indexing since it provides a more so-

phisticated and semantically rich description that image classi�cation or simple image tagging.

This kind of semantic indexes would be very very useful for any kind of Content-Based Image

Retrieval application, which would help improve any king of Content-Based Image Retrieval.

This kind of Having images automatically generated captions for images that originally hasn't

been described, would help to �nd images based on a complex description rather than a simple

1This is one of the reasons explaining the upswing ofContent-Based Image Retrieval, which uses content de-
rived from the visual properties of the image, like color, textures, and shape, instead of semantic and descriptive
data such as keywords and captions

2As an interesting example, Shell is conducting a pilot study using deep-learning to automatically monitor
video footage in order to identify safety hazards and generate alerts (link)
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collection of tags.

1.2 Goals

This project aims at advancing in the task of automatically generating image descriptions.

That is the ultimate goal of the project. However, in order to achieve such an abstract goal,

we decompose it into various subgoals, as follows:

1. Get a solid understanding of the problem at hand and review the state-of-art solutions

to it

2. Get practical knowledge on the technologies required to solve this problem

3. Develop a model using a benchmark dataset like the Flickr30K

4. Scale the model to a larger benchmark dataset such as the COCOLin et al. (2014) dataset

or the more recent Conceptual Captions Dataset by Google Sharma et al. (2018) (see

Fig. 1.2).

5. Evaluate the model, ideally partaking in some challenge or competition, like the ones

using the COCO dataset or the Conceptual Captions dataset.

1.3 Methodology

This project is mainly an academical, research-oriented project, so it follows a process model

which is common for this kind of projects. For instance, it includes an extensive survey of

the state of the art and proposes a model to solve the target problem. However, this project

will also include the development of a software artifact to implement the proposed model using

real data. As such, this project can bene�t from a data-analytic model as the well known and

widely adopted CRISP-DM . CRISP-DM, which stands forCross-Industry Standard Process

for Data Mining, is an open standard process model and an industry-proven methodology to

guide data mining projects.

As a methodology, it includes descriptions of the typical phases of a project, the tasks

involved with each phase, and an explanation of the relationships between these tasks.

As a process model, CRISP-DM provides an overview of the data mining life cycle.

Figure 1.3 depicts the relationships between the di�erent phases of the CRISP-DM model.

The sequence of the phases is not strict and moving back and forth between di�erent phases is

often required. The arrows in the process diagram indicate the most important and frequent
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Figure 1.2: Illustration of images and captions in the Conceptual
Captions dataset.Clockwise from top left, images by Jonny Hunter,
SigNote Cloud, Tony Hisgett, ResoluteSupportMedia. All images
used under CC BY 2.0 license.
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dependencies between phases. The outer circle in the diagram symbolizes the cyclic nature of

data mining itself. A data mining process continues after a solution has been deployed. The

lessons learned during the process can trigger new, often more focused business questions and

subsequent data mining processes will bene�t from the experiences of previous ones.

Figure 1.3: Process diagram showing the relationship between the
di�erent phases of CRISP-DM. Image by Kenneth Jensen, used under
CC BY-SA 3.0 license..

The process model consists of six major phases:

� Business Understanding : Includes in-depth analysis of the business objectives and

needs. The situation is assessed and the goals of the project are de�ned. This should

follow the setting up of a plan to proceed.

� Data Understanding : Conduct initial or exploratory data analysis to become familiar

with data and identify potential problems. Examine the properties of data and verify its

quality by answering questions concerning the completeness and accuracy of the data.

� Data Preparation : After the data sources are completely identi�ed, proper selection,

cleansing, constructing and formatting should be done before modeling.

� Modeling : Modeling is usually conducted in multiple iterations, which involves running

several models using the default parameters and then �ne-tune the parameters or revert

to the data preparation phase for additional preparation. Usually, there are di�erent ways

to look at a given problem, so it is convenient to build multiple models,
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� Evaluation : The results of models are evaluated in the backdrop of business intentions.

New objectives may sprout up owing to the new patterns discovered. This is, in fact, an

iterative process, and the decision whether to consider them or not has to be made in this

step before moving on to the �nal phase

� Publication . The �nal information gathered has to be presented in a usable manner to

the stakeholders. This has to be done as per their expectations and business requirements.

1.4 Planning

This section brie�y describes the initial planning established to accomplish this Final Master's

Thesis.

1.4.0.1 Original planning

Table 1.1: Main tasks and milestones.

Phase End Description

1 3/3/2019 De�nition and planning
2 24/3/2019 State of the Art
3 19/5/2019 Development
4 9/6/2019 Complete this report
5 16/6/2019 Presentation

Table 1.1 sums up the original planning for this project. It consisted of 5 phases:

Phase 2 is devoted to surveying the state of the art. This phase will encompass the following

tasks:

� Reviewing relevant bibliography

� Studying the problem domain (business understanding), and becoming familiar with the

data. At this stage, we would also start preparing the data for the modeling stage

Phase 3 is intended to design and develop a software artifact. It is the longest phase, and

includes the following tasks:

� Preparing the data. Although data preparation could be started during phase 2, de-

pending on the chosen models it could be necessary to conduct some additional data

preparation operations
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� Generating one or various models. We plan at creating at least two models, one that

would replicate existing work, and another one to explore new ideas and try to beat the

baseline model.

� Evaluating the models, and very speci�cally, compare our model against the replicated

model.

� Publication: We consider two courses of action: a) participating in the Microsoft COCO

Image Captioning Challenge, and b) delivering some product to the �nal user, although

it would be a very basic prototype given the time available.

Phase 4 is conceived for completing this report. This phase would probably overlap with

some of the tasks in phase 3 that will require additional time, like the evaluation of the models

and the participation in challenges.

Phase 5 is the last one. At this phase, the results of the project should be published, including

both the report and any code and documentation. Finally, the project has to exposed and

defended publicly, to be evaluated by an academic board.
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Chapter 2

State of the Art

Recently there has been an upsurge of interest in problems that require a combination of

linguistic and visual information. Besides, the rise of social media in the web has made available

a vast amount of multimodal information, like tagged photographs, illustrations in newspaper

articles, videos with subtitles, and multimodal feeds on social media. To tackle combined

language and vision tasks and to exploit the large amounts of multimodal information, the CV

and NLP communities have been increasingly cooperating, for example by organizing combined

workshops and conferences. One such area of research in the intersection of both worlds is

automatic image description.

Automatic image description can be de�ned as the task of automatically generating a

description of an image using natural language. It is a very challenging problem that combines

two di�erent problems into a single task: on the one hand, there is the problem of understanding

an image, which belongs to theComputer Vision (CV) �eld, one the other hand, there is also

the problem of generating a meaningful and grammatically-correct description of the image,

which belongs to theNatural-Language Processing (NLP) �eld, and to be more precise,

it belongs to the class ofNatural-Language Generation (NLG) problems.

Both CV and NLP are challenging �elds themselves. While both �elds share common

techniques rooted in arti�cial intelligence and machine learning, they have historically developed

separately, with little interaction between their scienti�c communities. Recent years have seen

considerable advances in both �elds, to a great extent thanks to the application of deep-learning

techniques and the recent advances in this area. This chapter presents a brief survey of the

recent literature on this topic, including some antecedents, but focusing primarily on the recent

advances coming from the application ofDeep Learning technology since this is our main

interest.

The chapter is organized in various sections. The �rst section is devoted to further delimiting

the task at hand as well as introducing a classi�cation schema for the di�erent approaches to the

11
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problem. Subsequent sections review relevant publications organized according to the provided

classi�cation scheme. Finally, there is a section describing the datasets used by the community

to benchmark their models and a short discussion on the evaluation metrics for this kind of

tasks.

2.1 Task de�nition and classi�cation of methods

We have already de�ned the task of automatic image description as the task of automatically

generating a description of an image using natural language generation. However, this de�ni-

tion is too generic to precisely characterize the task we are interested in. For example, when

presented with certain image, an algorithm may generate a list of labels describing di�erent el-

ements of the image, or it may describe technical features of the image, such as the dimensions,

the predominant colors, brightness, etc. Therefore, we need a more concrete de�nition of the

task.

When talking about automatic image description , we refer to descriptions that meet

three properties:

� Descriptions that are relevant, that is descriptions that talk about the elements of the

image.

� Descriptions that are expressed as natural language, using grammatically correct sen-

tences

� Descriptions that are comprehensive but concise at the same time, that is, the description

should aim at summing up the important elements of the image, not just describing it.

From the CV point of view, this task requiresfull image understanding : the description

should demonstrate or pretend a good understanding of the scene, far beyond simply recognizing

the objects in the image. This means that the description is able to capture relations between

the objects in the scene, and the actions happening there.

From the NLP point of view, this task requiressophisticated natural language gener-

ation (NLG), which involves: selecting which aspects to talk about (content selection), sorting

and organizing the content to be verbalized (text planning), and �nally generating a semanti-

cally and syntactically correct sentence (Surface realization).

Intuitively, descriptions should be easy to understand by a person, and that person should

be able to grasp the essence of the image, to create a mental model of the image without actually

seeing it. The description task can become even more challenging when we take into account

user-speci�c tailored descriptions. For instance, when describing the paintings available in a

museum, a tourist may require a di�erent description than a librarian or an art critic.
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Since 2011 there has been a considerable advance in challenging CV tasks, to a great extent

fostered by the application of deep learning models and the availability of large corpus of data

available to researchers. More recently, a similar process seems to be occurring in the NLP

�eld. Not surprisingly, these advances in both CV and NLP have also propelled a new wave of

interest in cross-disciplinary research problems involving both areas of research, and automatic

image description is a very good example. As a consequence, the CV and NLP communities

have increased cooperation, for example by organizing joint workshops over the past few years.

These e�orts have resulted in a surge of new models, datasets and evaluation measures, which

is re�ected in the increase of publications, especially from 2014.

In order of ease of review, understanding, and comparison of the growing amount of research

on the topic, existing surveys have proposed various schemes to classify the models being used.

One the one hand, the survey by Bernardi et al. (2017) proposes a classi�cation system

based on two dimensions and only three categories. On the other hand, Bai and An (2018)

organize the existing research according to the kind of architecture or framework used, resulting

in a more �ne-grained classi�cation with 8 categories.

After comparing both approaches to classify the existing research, we prefer the approach

adopted by Bai and An (2018) as we consider it more precise and descriptive, resulting in a

�ner granularity; while the classi�cation by Bernardi et al. (2017) is more abstract, resulting in

a coarser granularity. A more recent survey by Hossain et al. (2019) takes the same approach

found in (Bai and An, 2018) with a more focused review of deep-learning based models and

references to the most recent work published so far.

Below we provide a short overview of the publications covered in this survey organized into

categories and sorted by publication year:

2.2 Early work: methods that are not based on deep learn-

ing

This section reviews the initial attempts to solve the image captioning problem. All these

methods have in common that they do not use deep learning techniques. We divide them into

two groups: retrieval based approaches and template-based approaches.

2.2.1 Retrieval-based

Early work on the topic was often based on the use of retrieval-based approaches, also referred

to as transfer-based approaches. These approaches usually follow a two steps process. During

the �rst step, given a query image, a candidate set of similar images is retrieved using content-
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Table 2.1: Summary of published research on the automatic image
description problem.

Approach Representative research

Retrieval-based Farhadi et al. (2010); Ordonez et al. (2011); Gupta et al. (2012);
Kuznetsova et al. (2012); Hodosh et al. (2013); Kuznetsova et al.
(2014); Mason and Charniak (2014); Hodosh and Hockenmaier
(2013)

Template-based Yang et al. (2011); Kulkarni et al. (2011); Li et al. (2011); Mitchell
et al. (2012); Ushiku et al. (2015)

Earlier Deep Models Socher et al. (2014); Karpathy et al. (2014); Ma et al. (2015); Yan
and Mikolajczyk (2015); Lebret et al. (2015a); Yagcioglu et al.
(2015)

Multimodal learning Kiros et al. (2014a); Mao and Yuille (2015); Karpathy and Fei-Fei
(2015); Chen and Zitnick (2015)

Encode-Decoder framework Kiros et al. (2014b); Vinyals et al. (2015); Donahue et al. (2015);
Jia et al. (2015); Wu et al. (2016); Pu et al. (2016b); Gan et al.
(2017a); Hao et al. (2018)

Compositional architectures Fang et al. (2015); Tran et al. (2016); Ma and Han (2016); Oruganti
et al. (2016); Wang et al. (2016); Fu et al. (2017); Gan et al. (2017b)

Attention-guided Xu et al. (2015); You et al. (2016); Yang et al. (2016); Zhou et al.
(2017); Khademi and Schulte (2018); Anderson et al. (2018b);
Jiang et al. (2018)

Describing novel objects Mao et al. (2015); Hendricks et al. (2016)
Other deep learning meth-
ods

Pu et al. (2016a); Dai et al. (2017); Shetty et al. (2017); Ren et al.
(2017); Rennie et al. (2017); Zhang et al. (2017); Anderson et al.
(2018a); Feng et al. (2018); Gu et al. (2018); Li et al. (2018); Li
and Chen (2018); Lindh et al. (2018)

based image retrieval techniques, which are based on global image features extracted from the

image. During the second step, a re-ranking of the retrieved images is computed using a variety

of methods. Finally, the caption of the top image is returned, or a new caption is composed of

the captions of the top-n ranked images.

Farhadi et al. (2010) use a meaning space consisting of<object, action, scene> triplets to

link images and sentences. Their model takes an input image, map it into the meaning space

by solving a Markov Random Field, and use Lin's information-based similarity measure (Lin,

1998) to determine the semantic distance between the query image and the pool of available

captions. Finally, the semantically closest sentence is used as the image description.

The IM2TEXT model by Ordonez et al. (2011) uses the scene-centered descriptors of the

GIST model (Oliva and Torralba, 2006; Torralba et al., 2008) to retrieve a set of similar images

as a baseline, then these images are ranked using a classi�er trained over a range of object
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detectors and scene classi�ers speci�c to the entities mentioned in the candidate descriptions.

Finally, the caption of the top-ranked image is returned.

Kuznetsova et al. (2012) take on the work by Ordonez et al. (2011) with some notable

twists: instead of retrieving a candidate set of images using content �visual� features, their

model start by running the detectors and scene classi�ers used in the re-ranking step of the

IM2TEXT model to extract and represent the semantic content of the query image. Then,

instead of performing a single retrieval step to get neighbors of the query image, their model

carries out a separate retrieval step for each visual entity detected in the query image. The result

of this step is a collection of phrases of di�erent type (noun and verb phrases and prepositional

phrases). Finally, a new sentence is composed from a selected set of phrases using a constraint

optimization approach. A re�nement of the former approach is presented in Kuznetsova et al.

(2014), based on the use of tree structures to improve the sentence generation process.

Gupta et al. (2012) combine the image features of the GIST model with RGB and HSV color

histograms, Gabor and Haar descriptors, and SIFT (Lowe, 2004) descriptors for the retrieval

step. Then, instead of using the visual features for the ranking step, their model relies on the

textual descriptions of the retrieved images, which are segmented to obtain phrases of a di�erent

type. This model takes the phrases associated to the retrieved images, rank them based on

image similarity, and integrate them to get triples of the form( ((attribute1, object1), verb),

(verb, prep, (attribute2, object2)), (object1, prep, object2) ). Finally, the tree top-n triplets are

used to generate an image description.

Hodosh and Hockenmaier (2013) employ a Kernel Canonical Correlation Analysis (KCCA)

(Bach and Jordan, 2003) technique to project images and text items into a common space,

where training images and their corresponding captions are maximally correlated. In the new

common space, cosine similarities between images and sentences are calculated to rank the

sentences, which are then used to select the top-n captions. This work is highly focused on the

problems associated with existing benchmarks datasets and the evaluation metrics, and as a

result, the authors introduce a new dataset composed of 8000 images annotated with 5 captions

per image and propose a new metric based on binary judgments of image descriptions.

Mason and Charniak (2014) use visual similarity to retrieve a set of candidate captioned

images. Second, a word probability density conditioned on the query image is computed from

the retrieved captions. Finally, the candidate captions are scored using the word probability

density and the one with the highest score is selected.

A detailed analysis of the literature reviewed here reveals at least two dimensions that may

further help in understanding and organizing the research: on the one hand, some approaches

simply select one of the retrieved sentences as the image caption, while others compose a new

caption by combining elements from several sentences; on the other hand, some approaches use
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visual detectors to �nd similar images (Content-Based Image Retrieval), while other approaches

use conceptual information (Concept-Based Image Retrieval), or use a combination of visual

and conceptual information for the retrieval step. Table 2.2 sums up the various dimensions

used to classify retrieval-based methods to the image captioning problem.

Table 2.2: Classi�cation of retrieval-based image captioning.

Approach Representative research

Information modality Select one caption Compose caption
Visual Farhadi et al. (2010); Mason and

Charniak (2014)
Gupta et al. (2012)

Conceptual Ordonez et al. (2011) Kuznetsova et al. (2012, 2014)
Hybrid Hodosh and Hockenmaier (2013)

The main disadvantage of Retrieval-Based approaches comes from the reuse of existing

images. The sentences used to describe images in the past may be completely inadequate

for describing a new image. Although some of the proposed models are able to compose

new sentences rather than just returning one of the stored sentences, these are still based on

previously used sentences, so the result may still be unsuited for describing the query image.

This limitation was strikingly evident with the use of small datasets, therefore, perhaps the

problem would be alleviated with the use of very large datasets as the ones that have appeared

recently Lin et al. (2014); Sharma et al. (2018).

2.2.2 Template-based approaches

Another group of early attempts to solve the automatic image captioning problem takes some

kind of template-based approach. Unlike retrieval based approaches, template-based approaches

analyze the query image to generate concepts and then use some kind of constraining mechanism

to compose a sentence. The constraints typically adopt the form of a template, but can also

be speci�ed as grammar rules.

For example, Yang et al. (2011) use a quadruplet consisting of<Noun-Verb-Scene-Preposition>

as template for generating image descriptions. The process starts with the execution of detec-

tion algorithms to estimate objects and scenes in the image, and then apply a language model

trained over the Gigaword corpus1 to compute nouns, verbs, scenes and prepositions that might

appear in the caption. Finally, they apply Hidden Markov Model Inference to compute prob-

abilities for all the elements and use the elements with the highest probabilities to �ll the

template and generate a new sentence.

1https://catalog.ldc.upenn.edu/LDC2003T05
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Kulkarni et al. (2011) employ Conditional Random Field (CRF) to determine image con-

tents, which results in a graph with nodes corresponding to objects in the image, object at-

tributes, and spatial relationships between objects. Unary potential functions are computed

for nodes in the graph, while pairwise potential functions are obtained on a collection of ex-

isting descriptions. Afterward, CRF inference is used to determine the image contents to be

described, and �nally, a sentence template is applied to generate a sentence using the selected

content.

Li et al. (2011) use visual models to detect objects, attributes and spatial relationships,

and. Then, they resort to web-scale n-gram data to compute frequency counts of possible n-

gram sequences to �ll a triplet de�ned as<(adj1, obj1), prep, (adj2, obj2)>. Finally, dynamic

programming is applied to �nd an optimal set of phrases that constitute the description of the

query image.

Mitchell et al. (2012) apply algorithms that are able to represent an image as an <objects,

actions, spatial relationships> triplet. Syntactically informed word co-occurrence statistics are

computed and used by a sentence generator to �lter and constrain the output of the image

processor using tree structures.

The aforementioned works in this section produce new sentences based on individual words

(nouns, adjectives, verbs, prepositions, etc.) that generated in a piece-wise manner from the

query image, and these words are later connected according to certain grammar model. To

improve on this approach, some authors have proposed the use of phrases instead of individual

words. In particular, Ushiku et al. (2015) present a method named Common Subspace for Model

and Similarity (CoSMoS). CoSMoS obtains a subspace in which all feature vectors associated

with the same phrase are mapped as mutually close, classi�ers for each phrase are learned,

and training samples are shared among co-occurring phrases. Phrases estimated from a query

image are connected by using multi-stack Beam search to generate a description.

Template-based approaches to automatic image captioning may improve the relevance of

the resulting captions when compared with retrieval based approaches, template-based captions

tend to be too rigid, thus resulting in a lack of naturality when compared to human-written

sentences.

2.3 Deep-learning approaches

Convolutional Neural Networks (CNN) were �rst introduced by Yann LeCun in 1998 (Lecun

et al., 1998), but it was not until more than a decade later than they started to shine. In 2012,

a large, deep CNN (Krizhevsky et al., 2012) was used to win, by an incredibly wide margin, the

2012 ImageNet Large-Scale Visual Recognition Challenge. From that turning point, the �eld



18 State of the Art

has attracted the attention of researchers from various �elds and gained howling popularity.

The success of CNN and other deep learning models was due to a great extent to its impressive

results in many challenging problems, prominently in the �elds of Computer Vision and Natural

Language Processing, where deep-learning models have become the current state-of-the-art.

Not surprisingly, researchers have attempted to apply deep neural networks to solve problems

in the interstice of both �elds, CV and NLP, includes the problem of automatically generating

image descriptions.

Recent advances in the �eld have been achieved with the introduction of new architec-

tures and frameworks, accompanied by increasingly larger datasets to feed those deep neural

networks. Therefore, there is a wide repertoire of methods for tackling the image captioning

tasks. This section presents the contributions to the �eld organized according to the kind of

architecture or framework utilized, with one subsection per category

2.3.1 Earlier Deep Models

Encourage by the success of CNN to solve image classi�cation tasks, researchers began incor-

porating deep models into their image captioning methods, yet still in�uenced by the retrieval-

based and template-based methods. Image captioning was formulated as a multi-modality

embedding Frome et al. (2013) and ranking problem.

Socher et al. (2014) use dependency-tree recursive neural networks (DT-RNN) to represent

phrases and sentences as compositional vectors. Another deep neural network (Le et al., 2011)

is used to extract visual features from the images. Both types of features are mapped into a

common space by using a max-margin objective function. After training, sentence retrieval is

performed based on similarities between representations of images and sentences in the common

space.

Karpathy et al. (2014) introduce a twist in the previous model by working at a �ner level,

that is, instead of modeling full images, they work on a �ner level by embedding fragments

of images as well as fragments of sentences fragments into a common space. A structured

max-margin objective is used to explicitly associate these fragments across modalities. Image

fragments are obtained by means of a Region CNN (Girshick et al., 2014). Sentence fragments

are modeled as typed dependency tree relations (De Marne�e et al., 2006). At last, a retrieval

task is performed by computing image-sentence similarities that combine both a global term

and a fragment-aligned term. Experimental evaluation showed that reasoning on both the

global level of images and sentences and the �ner level of their respective fragments improves

performance on the image-sentence retrieval task.

Ma et al. (2015) take into consideration di�erent levels of interaction between images and

sentences in order to compute similarities. Their architecture combines two di�erent deep
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neural networks to tackle the multimodal space: an image encoding CNN (Simonyan and

Zisserman, 2015) to encode visual data, and a matching CNN (Hu et al., 2014) to learn the

joint representation of images and sentences. The matching CNN composes words to di�erent

semantic fragments and learns the inter-modal relations between image and the composed

fragments at di�erent levels.

Yagcioglu et al. (2015) propose a query expansion approach for improving transfer-based

automatic image captioning. The core idea of this method is to translate the given visual

query into a distributional semantics based form, which is generated by the average of the

sentence vectors extracted from the captions of images visually similar to the input image.

It is a data-driven approach, that extracts image features using the Ca�e architecture (Jia

et al., 2014), a Region-CNN pipeline trained on the ImageNet dataset. The original query is

expanded as the average of the distributed representations of the captions associated with the

retrieved descriptions (Mikolov et al., 2013), weighted by their similarity. Finally, they transfer

the closest caption as the description of the input image.

Devlin et al. (2015) also utilizes CNN activations as the global image descriptor, and perform

k-NN retrieve images in the training set that are similar to the query image. Then their model

selects a description from the candidate descriptions associated with the retrieved, just like

the approaches by Mason and Charniak (2014) and Yagcioglu et al. (2015). Their approach

di�ers in terms of how they represent the similarity between description and how they select

the best candidate over the whole set. Speci�cally, they propose to compute the description

similarity based on then-gram overlap F-score between the descriptions. The model returns

the description with the highest mean n-gram overlap with the other candidate descriptions,

that is the one associated with the k-NN centroid.

2.3.2 Multimodal learning

Retrieval-based and template-based methods to image captioning impose limitations on the

capacity to describe images in the form of templates, structured prediction, and/or syntactic

trees. Thanks to the advances in neural networks, new approaches emerged that were able to

surpass those limitations. These methods can yield more expressive and �exible sentences with

richer structures. Multimodal neural language models constitute one way of approaching the

problem from a learning perspective. In general, these models are bidirectional, that is, they

are able to generate new captions for an image, but they can also be applied in retrieval tasks

for both images and sentences.

The general structure of multimodal neural-based learning is shown in Fig. 2.1. First, image

features are extracted using a feature extractor, typically a CNN. Then, the extracted features

are forwarded to a neural-based model, which maps the image features into a common space
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