
Received January 10, 2019, accepted January 28, 2019, date of publication February 7, 2019, date of current version February 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2897252

SeVEP: Secure and Verifiable
Electronic Polling System
AMNA QURESHI , DAVID MEGÍAS , (Member, IEEE),
AND HELENA RIFÀ-POUS , (Member, IEEE)
Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), CYBERCAT-Center for Cybersecurity Research of Catalonia, 08860 Barcelona,
Spain

Corresponding author: Amna Qureshi (aqureshi@uoc.edu)

This work was supported by the Spanish Government, in part by the ‘‘Ayudas para la excelencia de los equipos de investigación avanzada
en ciberseguridad’’ under Grant INCIBEC-2015-02491, and in part under Grant TIN2014-57364-C2-2-R ‘‘SMARTGLACIS.’’

ABSTRACT Electronic polling systems promise benefits to voters such as accessibility and convenience
that enable them to cast their votes at any time, from any Internet-connected computing device anywhere in
the world. However, unlike traditional paper-based voting systems, an e-polling system introduces several
security risks such as privacy of vote, unlinkability of a voter, voter coercion, secrecy of partial election
results, verifiability, and poll integrity. The authenticity of a voter is another security concern, i.e., a voter
must be identified through an authentication mechanism that prevents voting of unauthorized voters or
multiple voting from authorized voters. Another security concern is the manipulation of votes by an infected
(e.g., virus, malware, and so on) voting device. Since the voters use their personal devices to cast votes
in an unsupervised environment, a malware-hosted device could make unauthorized modifications to the
voter’s voting choices. Many e-voting systems have been proposed, however, to date, all these schemes either
fail to provide all the required security properties or are not practically feasible on light-weight computing
devices. In this paper, we present a secure and verifiable polling system, SeVEP, that employs well-known
cryptographic primitives to provide vote and voter’s privacy, and poll integrity, confirms the identity of voters
through a multifactor authentication scheme, enables multiple voting within the allowed polling period,
prevents double voting, and achieves verifiability and uncoercibility in the presence of untrusted voting
device. The security, performance, and comparative analysis in terms of security properties and cryptographic
costs show that SeVEP is secure, verifiable, and practical e-polling system.

INDEX TERMS Authentication, efficiency, electronic polling, malware, security, verifiability.

I. INTRODUCTION
A poll is a measurement tool that enables citizens to
express their opinions on various issues ranging from pub-
lic policies (e.g., health care, immigration, education, etc.)
to public affairs (e.g., election campaign, approval of a
political party, etc.) and private businesses (brand manage-
ment, consumer-focused marketing, etc.) by giving their
nod of approval or rejection. With a few questions with
multiple answers, a poll conducting authority can obtain
hundreds or thousands of opinions of potential stakehold-
ers to point it in the right direction. For example, in the
United States, the Agriculture department carries out online
polls occasionally to find out the opinions of citizens on
local issues [1]. Similarly, before national elections, various

The associate editor coordinating the review of this manuscript and
approving it for publication was Junggab Son.

research organizations carry out opinion polling to gauge
voting intentions [2].

Traditionally, polls were conducted face-to-face, which
required a citizen’s physical presence. With the rise and
popularity of the Internet and mobile phones, polls could
be conducted remotely. In recent years, a trend towards
electronic and Internet polls can be observed. For exam-
ple, SurveyMonkey [3] is a public-opinion poll that enables
people across the world to give their feedback on any-
thing, e.g., a recent SurveyMonkey online poll was con-
ducted in which over 2 million people participated to
either approve or disapprove the job of the United State’s
president [4].

Internet-based polls involve many components including
user’s registration and authentication, poll setup, polling
(selected options chosen by the user are sent from the user’s

19266
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-2182-8259
https://orcid.org/0000-0003-0923-0235
https://orcid.org/0000-0002-0507-7731

A. Qureshi et al.: SeVEP

connected device across the Internet to the relevant polling
authorities), tabulation, result publication, auditing, and val-
idation. Since the Internet-based polls involve three different
environments (the poll user’s computing device such as a
smartphone, a tablet, a desktop PC, etc., the Internet, and the
polling system), a security attack on any part of the system
can lead to an incorrect poll result. These three different
environments and the information shared between them are
vulnerable to various attacks [5], which must be prevented
by the poll conducting administration or authority to provide
fair, secure, accurate, and unbiased polling results. Similar
to electronic voting (e-voting) systems, Internet-based polls
are threatened by exactly the same security attacks, such
as unauthenticated voting (a non-eligible voter may cast
his/her votes), double voting (an eligible voter may cast mul-
tiple votes using his/her polling credentials), voter coercion
(a voter is put under pressure or is threatened by a coercer to
vote in a particular manner), vote buying (a voter is offered
monetary benefits by a vote buyer to vote in a particular way
or abstain from voting), vote modification by a voting device
that is either controlled by a malicious program (e.g., mal-
ware, virus, etc.) or a hacker, who may cause unauthorized
and potentially undetected alterations to voter’s selected vot-
ing choices, theft/forgery of voter’s identity (an attacker with
access to credentials of an authenticated voter could cast
votes using the identities of a legitimate voter), a coalition of
malicious participants to alter or eliminate any voter’s vote,
or cast fake ballots on the behalf of authenticated voter, and
disclosure of partial vote tally before the end of the voting
period.

In scientific community, little attention has been paid to
develop e-polling systems, i.e., low-risk or small-level public-
opinion systems, where reasonable level of security, pri-
vacy and functionality should be provided to the end user.
Instead, considerable amount of research work can be found
related to design and implementation of secure, verifiable
and practical remote voting systems for national-level or big
elections. Though the security and privacy requirements are
identical in both e-voting and e-polling systems, the former
system provides strong security guarantees than the latter
one: the national-level or regional elections require election
conducting authorities to provide strong end-to-end secu-
rity guarantees to voters with minimum trusted entities and
minimal security assumptions, and without overly impacting
voters with computational and communicational overheads.
Whereas, in small-level such as campus elections, the polling
authorities provide relaxed security properties to all eligible
voters at fair costs with as many trusted entities and security
assumptions as desired to provide a secure and practicable
system. In the following, we present the research work of the
scientific community related to the design and implementa-
tion of a secure Internet-based voting system.

Chaum proposed the use of cryptography to design secure
elections [6]. This was followed bymany voting systemswith
the aim to improve security and privacy guarantees such as
vote integrity and ballot secrecy. For example, Civitas [7]

is a coercion-resistant Internet-based voting system, which
provides openly verifiable evidence that all the votes are
correctly included and accurately tallied, but requires voters
to trust their computers for both vote integrity and privacy.
However, it does not allow voters to verify that their votes
are cast as they intended. Also, the system is not very effi-
cient due to the quadratic overhead. Several more e-voting
proposals with prototypes were developed to provide end-to-
end verifiability, which includes the following two principal
components:
• Cast-as-intended verifiability: It provides a voter with
means to make sure that the vote cast by his/her voting
device contains the intended voting option and that no
changes have been performed.

• Tallied-as-cast verifiability: It allows voters, auditors
and third party observers to check that tallied votes
correspond to the cast votes. This process can be divided
into two phases [8]:
– Recorded-as-cast: It allows voters to check that

their cast votes have been properly recorded in the
ballot box.

– Tallied-as-recorded: It allows voters, auditors and
third party observers to verify that the votes pub-
lished on the public space (such as Bulletin Board)
are correctly included in the tally, without knowing
how any voter voted.

A number of end-to-end e-voting verifiable schemes have
been implemented and deployed in real-world. For example,
Remotegrity [9] is an extension of the Scantegrity [10] sys-
tem (a paper-based voting system), and employs both paper
and electronic communications to allow remote voters to
detect whether their votes have been tampered with, and to
prove that such tampering exists without having to reveal
how they have voted. However, Remotegrity does not pro-
tect against vote coercion or vote buying. Also, Remotegrity
assumes the voter to be honest in order to ensure vote secrecy.

Haenni and Koening [11] proposed a voting system that
employs a trusted device for voting over the Internet on an
untrusted platform. In the proposed system, the platform is
responsible of generating encryptions in the form of barcodes.
The voter scans the chosen candidate’s barcode through the
dedicated trusted hardware device. Later the votes chosen
by the voter are transferred to a trusted computer using a
smart card or a USB connector. The device is complicated
and requires a camera, matrix barcode reader, and uplink
to a computer. Also, a built-in camera of the device can
record a voter’s behavior while he/she scans his/her chosen
candidate’s barcode. Additionally, the device learns voter’s
vote.

Another example of end-to-end verifiable systems is
Helios [12], which is an open-audit web-based voting sys-
tem based on cast-xor-audit technique and is designed for
low-coercion elections. The correctness of Helios elections is
guaranteed through a series of audit procedures that the voters
can perform to check all steps from the vote casting process to
the computation of the election results, thus, providing both

VOLUME 7, 2019 19267

A. Qureshi et al.: SeVEP

individual and universal verifiability. However, in Helios,
the vote integrity and the ballot secrecy are assured under the
assumption that the voting environment (i.e., the device used
to cast the vote) is trusted for privacy and verifiability. This
assumption is unrealistic because a voting device might be
controlled by an attacker or host a malicious program.

Adder [13] is a an open-source online voting system,which
is designed for both small and large-scale elections, as well
as surveys and data collection applications. In order to vote,
the voter logs to the system using his/her voting creden-
tials that identify him/her as an eligible voter, and after
successful login, obtains the election key. Then, the voter
selects his/her candidate, his/her web-browser generates and
encrypts his/her vote using the election key, computes and
appends a proof of well-formedness. All encrypted votes
received by the system are posted on an online bulletin board,
where voters can verify they have been correctly recorded.
Similar to other Internet-based voting systems [11], [12],
Adder is vulnerable to untrusted platform problem, i.e., it
is trivially easy for a malicious program on the voter’s
device to leak voter’s vote or modify the vote without voter’s
knowledge.

In literature, a few remote voting protocols exist
that use return codes to provide cast-as-intended verifiabil-
ity [14]–[18], and a Bulletin Board to provide tallied-as-
cast verifiability [19]. In these systems, before the voting
phase, a code sheet is sent to a registered voter over a
secondary channel (postal mail). These code sheets contain
pre-generated return codes and finalization codes. During
voting, when the voter selects his/her voting choices and
the voting device submits an encrypted vote to the voting
server, the voting authorities calculate or retrieve return codes
corresponding to the choices of the voter. These codes are
returned to the voter, who compares them with the printed
pre-generated return codes on his/her code sheet against the
selected choices. If the codes match, the vote casting phase is
finalized by the voter via finalization codes, which are sent to
the server. The underlying problem of these schemes is that
they assume the voting device is not compromised (trusted
for privacy), and support single vote casting. Our previous
work named VSPReP [20] supports multi-vote casting in
the presence of untrusted voting devices and provides both
cast-as-intended and tallied-as-cast verifiability to the voters.
However, VSPReP does not provide secure mechanism to
link multiple votes to a single voter, and an authentication
method that prevents non-eligible voters from casting ballots.
Also, VSPReP does not provide integrity and authenticity
of the polling code sheets that are used by the voter during
vote-casting phase. A better solution is expected.

Designing a practical remote voting system is a very chal-
lenging task as many aspects (security, authenticity, effi-
ciency) have to be considered. For example, some security
properties conflict with each other in subtle ways, result-
ing in a variety of technical challenges, e.g., vote privacy
clashes with vote verifiability: if a voter can successfully
prove his/her vote to a third party, he/she could easily sell

his/her vote or be coerced into voting for a certain candi-
date or choice. Similarly, to provide key security properties,
many remote voting systems employ complex cryptographic
methods, which in turn increase the overheads and, thus,
reduce the practicality of these schemes. Also, it is crucial to
find a trade-off between the security properties and usability.
Most verifiable systems require voters to verify their votes
through complex cryptographic protocols, which may nega-
tively impact usability [21], [22].

A. MAIN CONTRIBUTIONS
In this paper, we propose SeVEP, which is based on our pre-
vious work on remote polling system named VSPReP [20].
We improve it [20] by designing a polling system that pro-
vides flexible polling, device fingerprinting to allow multi-
factor authentication for different devices used by the voter,
zero-watermarking of polling code sheets, and generation of
polling tags. More specifically, the main contributions of this
paper are as follows:
• Unlike most of the remote voting schemes, a 3-layered
authentication scheme is designed to provide access to
an authenticated voter only. The proposed multifactor
authentication scheme employs device fingerprinting to
recognize the computing device that the voter is utiliz-
ing to login. Based on the results of the fingerprinting,
the voter is required to input his/her authentication fac-
tors (possession, biometric) to establish his/her identity.

• The polling code sheets are watermarked using
zero-watermarking scheme to provide integrity and
authenticity.

• Polling tags are generated to allow an authenticated voter
to cast multiple votes within a permitted polling time.

• Unlike return codes-based protocols [15], [16], [23],
SeVEP carries out cast-as-intended verification mech-
anism in the presence of untrusted voting devices,
and supports multiple voting within an allowed polling
period such that the voter can vote several times but only
the last one is counted to prevent double voting. This
cast-as-intended mechanism is designed in a distributed
manner, i.e., the computations performed to compute
return codes, acknowledgment and confirmation codes
are distributed in nature such that all the involved entities
(the code generator, six polling code generators, and the
printing facility) must collude in order to carry out a
successful attack on the voter.

• SeVEP provides recorded-as-cast verifiability, while
preserving the privacy of the voter. Also, SeVEP pro-
vides tallied-as-recorded verifiability to the voter, who
can check whether the random 3-digit code he/she
has chosen himself/herself when casting his/her ballot
appears in the poll result alongwith his/her voting choice
on the Bulletin Board.

• The detailed security analysis of two main phases (pre-
polling and polling) is provided w.r.t cast-as-intended
and tallied-as-recorded verifiability, coercion resistance,
fairness, poll integrity, resistance against collusion of

19268 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

voting authorities and voter authentication. The analysis
presented in Section IV-A shows that SeVEP provides
reasonable security in the presence of an untrusted vot-
ing device.

• The experimental results and evaluation of two main
phases of SeVEP in terms of computational and cryp-
tographic costs are presented in Section IV-B to show
the proposed scheme’s feasibility and practicality on
light-weight computing devices.

• A comparative analysis of SeVEPwith the most relevant
state-of-the-art e-voting systems in terms of security
properties and cryptographic analysis is provided in
Section IV-C.

B. OUTLINE OF THE PAPER
The rest of this paper is organized as follows. Section II
provides the building blocks of the proposed system.
In Section III, we discuss the design of our electronic polling
system. This section also details the threat model and three
phases of the proposed polling system. Security analysis of
the threat model is presented in Section IV-A. Also, this
section presents a performance analysis in terms of com-
putational costs (Section IV-B1), and cryptographic costs
(Section IV-B2). A comparative analysis between SeVEP and
other similar e-voting systems in terms of security properties
and cryptographic costs is also presented in Section IV-C.
Finally, Section V summarizes the conclusions and presents
future research issues.

II. BUILDING BLOCKS
SeVEP employs a distributed ElGamal cryptosystem, a pseu-
dorandom function based on Decisional Diffie-Hellman
(DDH), a keyed-hash message authentication code (HMAC),
a non-interactive zero knowledge proof (NIZKP), a verifiable
mixnet, a digital signature scheme, multifactor authentica-
tion, and zero-watermarking. This section presents a brief
overview of these building blocks.

A. DISTRIBUTED ELGAMAL
In a distributed cryptosystem, a set of agents cooperate to
perform decryption on encrypted messages so as to provide
confidentiality by preventing any single agent from decrypt-
ing messages. In SeVEP, distributed ElGamal cryptosystem
proposed in [24] is used to provide voters’ privacy. Dis-
tributed ElGamal cryptosystem is a set of three protocols: key
generation (KeyGen), encryption (Enc), and decryption(Dec).
In KeyGen algorithm, a subgroup Gp is taken on as input
which has a generator g of order q of elements in Z∗p (the
message space of the cryptosystem), where p and q are two
large numbers with p = 2kq+1 for some integer constant k >
0. KeyGen outputs ElGamal public key y = gx (global and
known to all parties), and a secret key x that is shared among
t polling organizers (PO1, . . . ,POt) using a polynomial f of
degree l overZq such that each polling organizer holds a share
xi = f (i). In Enc algorithm, a message m ∈ Gp, y, and a
randomly chosen r ∈ Zq are taken as inputs to compute a

ciphertext c: c = (c1, c2) = (gr , yr .m). For the decryption of
c, Dec algorithm requires all polling organizers to compute
decryption shares di = c1xi to output a plaintext message
m. To provide verifiability, non-interactive zero-knowledge
proofs are computed during KeyGen and Dec protocols.

B. PSEUDORANDOM FUNCTION
A pseudo-random function (PRF) is a deterministic-keyed
function F : K x X → Y (where K is the set of keys, X is
the domain, and Y is the range) guaranteeing that a computa-
tionally bounded adversary having access to PRF’s outputs
at chosen points, cannot distinguish between the PRF and
a truly random function mapping between the same domain
and range as the PRF. In SeVEP, we use a variant of PRF,
a key homomorphic PRF (FDDH based onDDH), proposed by
Naor, Pinkas and Reingold [25]. A PRF is key homomorphic
if given F(k1,m) and F(k2,m), there is a procedure that
outputs F(k1 ⊕ k2,m), where ⊕ denotes group operation on
k1 and k2. FDDH is constructed by considering a cyclic group
Gp of order q, and a hash functionH1: X→ Gp modeled as a
random oracle. FDDH is defined as: FDDH(k,m) ← H1(m)k

with the following homomorphic property,

FDDH(k1 + k2,m) = FDDH(k1,m) · FDDH(k2,m).

FDDH is a secure PRF in the random oracle model assuming
the DDH assumption holds in Gp.

C. HASH MESSAGE AUTHENTICATION CODE
A Message Authentication Code (MAC) is a cryptographic
primitive that relies on a pseudorandom function to provide
authentication and verification of received messages. A spe-
cific type of MAC, the keyed-hash message authentication
code (HMAC), is used to provide data integrity and authen-
ticity of the message. HMAC is obtained by using a cryp-
tographic hash function (e.g., MD5, SHA1, and SHA256,
etc.) over the data (to be authenticated) in combination
with a secret (symmetric) key. The cryptographic strength
of a HMAC depends on the properties of the underlying
hash function. The polling code sheets generation phase
(Section III-D4) and ballot processing phase (Section III-E2)
of SeVEP relies on the HMAC algorithm described in [26].

D. NON-INTERACTIVE ZERO KNOWLEDGE PROOF
A non-interactive zero knowledge proof (NIZKP) is a variant
of zero knowledge proof, that does not require an interaction
between the prover and the verifier. The prover computes
and sends a statement to the verifier, who either accepts or
rejects it. NIZKPs can be obtained in the random oracle using
Fiat-Shamir heuristic [27]. To provide verifiability in SeVEP,
we have used the following proofs to ensure the honesty of the
parties involved in different phases of the polling: (1) proof
of correct encryption based on Schnorr protocol [28] (polling
phase), (2) proof-of-equality of discrete logarithms based on
Chaum-Pederson protocol [29] (polling phase), (3) proof of
correct decryption of ElGamal ciphertexts (πdect) (mix and

VOLUME 7, 2019 19269

A. Qureshi et al.: SeVEP

tallying phase), and (4) proof of correct mixing (πmixt) of
ElGamal encryptions in the mixnet (mix and tallying phase).

E. VERIFIABLE MIXNET
A verifiable mixnet is used to provide an anonymous and ver-
ifiable tally in electronic voting systems. A verifiable mixnet
enables a collection of trustworthy servers to take as input an
ordered set of ciphertexts E = E1,E2, . . . ,EN generated in a
cryptosystem like ElGamal that allows an encrypted message
to be re-encrypted using a new randomization value without
changing the decryption process. The output is an ordered
set of re-randomized encryptions E ′ = E ′π(1) ,E

′
π(2)
, . . . ,E ′π(N)

(where E ′π(N)
is a re-encryption of EN , and π is a uniformly

random and secret permutation), and non-interactive zero-
knowledge proofs πmixt (where t = 1, . . . ,N) of correct
mixing. Thus, this re-randomized encryption prevents an
adversary to determine the link between the output and the
input ciphertexts. The link between elements from input and
output is only retrieved in case of conspiring mix-nodes. Ver-
ifiability is provided by πmixt , that is checkable by any party
and demonstrates thatE ′ is correctly constructed. The tallying
phase (Section III-F) of SeVEP employs the verifiable mixnet
proposed by [30].

F. DIGITAL SIGNATURE
A digital signature scheme (e.g., RSA, DSA) is used to
provide data integrity, data origin authentication and non-
repudiation. In SeVEP, we have used the RSA signature [31],
which is made up of three algorithms, (Gen, Sign, Verify),
for generating keys, signing, and verifying signatures, respec-
tively. Gen is a key generation algorithm that creates an RSA
pubic key pk (pk = (n, e)), and a corresponding RSA private
key sk (sk = d), where n is a product of two large distinct
prime numbers p and q, e is a public exponent (a randomly
generated integer with 1 < e < φ, where φ = (p−1)(q−1)),
and d is a private unique integer with 1 < d < φ. Sign is a
probabilistic signature algorithm that takes a messagem as an
input, produces a hashH ofm, and then computes a signature
S on hash value (Hs) using sk . Verify is a deterministic veri-
fication algorithm that takes pk and a signature S as inputs to
extract hashHs from S. Also, it computes hash on the received
message to generate another hash value (Hv), and compares it
withHs for verification purposes. If both hashes are identical,
S is considered valid, otherwise invalid.

G. MULTIFACTOR AUTHENTICATION
Multifactor Authentication (MFA) is a security process in
which the end user provides two or more authentication
factors to establish identity and access control. The key idea
of MFA is to sum up the security of two or more factors.
These factors include, passwords, representing ‘‘something
you know, i.e., knowledge factor’’, or physical tokens, such
as smart-cards, representing ‘‘something you have, i.e., pos-
session factor’’, or biometric traits such as face and gait,
representing ‘‘something you are, i.e., inherence factor’’,

or contextual factors such as location and ambiance.
In SeVEP, a three-factor authentication is used to identify
and verify remote voters. In the first level of authentica-
tion, the user would provide his/her password (a knowledge
factor) to gain access to the application. When the login is
successful, the user is asked to enter either of these options
depending on the voting device: if a voter is using a mobile
phone (not a smartphone), he/she is asked to enter one time
password (OTP) sent to his/her registered mobile phone via
a SMS; or if a voter is using a smartphone, he/she is asked
to reconstruct a graphical password via touch-screen; or if a
voter is using a desktop computer to cast his/her vote, he/she
is asked to reconstruct a graphical password via mouse clicks.
If the voter is successful at the second level, he/she is asked
to input his/her final factor, i.e., a third factor to complete
the authentication process. The third level of authentication
is a fusion of voice and keystroke recognition (inherence
factors) techniques. This fusionmodule determines the scores
for both types of authentication techniques, and depend-
ing on the set threshold criteria, allows the voter to access
the polling system. MFA scheme (Section III-D3) in the
pre-polling phase of SeVEP employs a graphical password
via touch-screen scheme proposed in [32], a graphical pass-
word via mouse-clicks scheme proposed in [33], and a mul-
timodal (fusion) scheme proposed in [34].

H. ZERO-WATERMARKING
Zero-watermarking [35] is a type of digital watermarking that
does not actually embed the watermark information into the
host data, instead it uses the characteristics or the properties
of the original data to construct a zero-watermark. Unlike the
traditional watermarking method, the quality of the host data
is not degraded as zero-watermarking does not insert a water-
mark physically into the original content. In SeVEP, we have
proposed a zero-watermarking algorithm (Section III-D5) to
provide authentication and tampering detection of polling
code sheets. The algorithm uses the characteristics of the
polling code sheet (PCS) to generate a zero-watermark, which
is then registered with the trusted authority, and is used in the
extraction algorithm to prove the authenticity and integrity
of the PCS. The watermarked PCS has no difference from
the original PCS, but it is protected because the constructed
zero-watermark has been registeredwith the trusted authority.

III. PROPOSED SYSTEM
This section describes the design and functionality of SeVEP.
In Section III-A, we describe the parameters used in the
SeVEP and the role of each involved entity involved.
Section III-B defines the functionality requirements and
the security assumptions. An attack model is described
for SeVEP in Section III-C. The subsequent sections
(Sections III-D, III-E and III-F) describe three key phases
of SeVEP: (1) pre-polling; (2) polling; and (3) post-polling.
Two phases of SeVEP, i.e., pre-polling and polling phases,
are described in detail here as these two processes address
the design requirements of any secure and verifiable remote

19270 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

TABLE 1. Parameters and Notations.

polling system. The post-polling phase is similar to other vot-
ing schemes in the literature that employ mixnets to preserve
anonymity of votes.

A. SYSTEM PARAMETERS AND ENTITIES
In this section, system parameters and a description of each
entity of the system are provided.

1) SYSTEM PARAMETERS
Table 1 describes the relevant terms and parameters used in
SeVEP to benefit our readers.

2) SYSTEM ENTITIES
Fig. 1 illustrates the model of SeVEP that contains the fol-
lowing basic entities:

1) Voter: The voter (Vk) is a user who obtains valid
credentials from the credential issuer to cast a vote
(k = 1, . . . ,N , where N is equal to maximum voters
allowed in polling). Vk use these credentials in the first
level of MFA scheme to get an access to SeVEP.

2) Voting device: The voting device (VDS) is a computing
device that is selected by Vk to cast a ballot. Vk can use
as many as S computing devices to cast his/her vote.
Besides VDS , Vk uses another computing device as
a validation device to receive return and confirmation
codes.

3) Polling organization: The polling organization (PO)
is a trusted entity that is responsible of setting up
the poll (poll questions and their corresponding voting
options, etc.), tallying the votes and publishing the
results of the poll. PO consists of t polling organizers:

PO1 . . . POt . It is assumed that out of t POs, there is
one main PO who manages the remaining POs. Also,
in a scenario where a voter complaints about receiving
a damaged or manipulated PCS, the main PO performs
zero-watermarking extraction algorithm.

4) Credential issuer: The credential issuer (CI) is a
trusted party that is in-charge of registering and authen-
ticating the voter via MFA scheme.

5) Bulletin board: The bulletin board (BB) is a publicly
verifiable entity where the results of various steps of
the polling process including the final polling result are
published by the authorized entities. After the polling
phase is completed, a voter obtains access to the BB
to verify that his/her vote is included in the final tally,
and view all the results of the polling and post-polling
phases published on the BB by the involved entities.
All the entities of SeVEP have read-only access to BB,
whereas some parties have write-only and append-only
access to BB. No party is allowed to delete the existing
data.

6) Polling server: The polling server (PS) verifies the bal-
lots cast by the authenticated voters, updates, records
and stores these ballots into the ballot box.

7) Code generator: The code generator (CG) is an entity
responsible of managing multiple polling code genera-
tors (PCG). SeVEP assumes six PCGX (X = 1, . . . , 6)
responsible for generating return codes, acknowledg-
ment and confirmation codes to be used in the polling
phase. Also, a mapping table is generated by each
PCG to map long-length return codes to small-length
return codes. By adding more PCGs, the computational

VOLUME 7, 2019 19271

A. Qureshi et al.: SeVEP

FIGURE 1. Overview of SeVEP.

costs associated with the generation of the codes can be
reduced considerably.

8) Printing facility: The printing facility (PF) manages
the printing of polling code sheet (PCS) that con-
tains voting options along with their corresponding
return codes, polling code sheet identity (PCSID),
acknowledgment and confirmation codes, and a bar-
code. Additionally, PF is responsible for embedding a
zero-watermark into each PCS. PF then encloses three
watermarked PCSs into a sealed envelope, places a
unique polling tag onto that envelope, and delivers it
to the authenticated voter only in cooperation with CI.

B. DESIGN REQUIREMENTS AND ASSUMPTIONS
In this section, the design requirements, and general and
security assumptions of SeVEP are described.
• Authenticity: The voter must provide his/her authen-
tication factors (knowledge, possession and inherence
factors) required in a three-roundmultifactor authentica-
tion scheme to get authenticated. Only authorized voters
are provided with an access to the polling page.

• Flexibility:The poll should contain a variety of question
formats. Also, a voter may receive different number of
voting options from other voters.

• Multi-voting: The authenticated voter can use any
light-weight computing device as a voting device to
cast his/her votes for a maximum of three times. Only
the last cast vote (within an allowed polling period)
is considered valid. A voter is prohibited from double
voting.

• Privacy: Once the voter has cast his/her vote, it should
not be linked with his/her identity.

• Voter coercion: During polling, a coercer should not be
able to coerce a voter to cast a vote for a specific voting
option.

• Authenticity of polling code sheets: A mechanism
should be provided that guarantees integrity and authen-
ticity of the polling code sheets sent to the voter during
poll registration phase.

• Fairness: No entity can gain any knowledge about the
partial ballot before the end of the polling.

• Cast-as-intended verifiability: After casting a vote,
there should be mechanism that allows a voter to verify
that the vote cast by his/her untrusted voting device
indeed corresponds to what he/she cast in the polling
phase, and it has not been modified.

• Tallied-as-recorded verifiability: After completion of
the tallying phase, the poll results should be published
on the BB by the POs such that the voter, auditors or
any third party observers are able to verify that the votes
tallied correspond to the cast votes. Also, a voter should
be able to verify that his/her vote was correctly included
in the tallying phase.

• Cost effectiveness: The polling system should be effi-
cient (decreased computational overheads) and scalable
(should be able to support 100 to 10 million voters).

1) SYSTEM ASSUMPTIONS
The general design assumptions of SeVEP are as follows:

19272 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

• Each poll question (in any available format) consists
of multiple options, and the voter should select only
one option per question. The selected options must be
ordered sequentially.

• A voter is allowed to cast his/her vote three times within
the allowed polling period (tp) using his/her voting
device.

• The polling phase of SeVEP assumes that the voter has
two computing devices, i.e., one to cast his/her vote
(a voting device), and another to open an email contain-
ing return and confirmation codes (a validation device).

• The return, acknowledgment and confirmation codes are
composed of 6, 6 and 8 alphanumeric digits, respec-
tively. Each digit is encoded with extended ASCII val-
ues, thus, allowing upper-case (A–Z) and lower-case
letters (a–z), digits (0–9) and special symbols.

• Each PCS contains return codes corresponding to 5 fixed
voting options for each poll question.

• PCSs are assumed to be cooperatively generated before-
hand by CG, six PCGX, and PF, i.e., it is an offline
process that is carried out before the start of the polling.

• For a proof-of-concept, it is assumed that each PCGX
has an access to a database of 50 pre-generated keys of
length 1024-bits to assist ten million users.

• Each voter has access to the general parameters and the
public keys, which are made available by PS, POs, PF,
CG and six PCGX.

• During registration with SeVEP, it is assumed that each
voter provides his/her phone number and email address
to CI.

• Six PCGX are assumed in generation of the polling code
sheets to achieve efficiency. With an increase in the
number of PCGs, the computational costs incurred in
generation of temporary cryptographic keys for gener-
ating return codes is reduced.

2) SECURITY ASSUMPTIONS
In this section, we define the security assumptions of SeVEP.
• CI is a trusted entity that is responsible of authenti-
cating a voter via a 3-layer multifactor authentication
scheme. It is assumed that CI does not form a coali-
tion with any other party to break voter’s privacy by
revealing his/her personal details (email, phone number,
etc.). Also, CI generates a random number and shares
it with an authenticated voter for the generation of a
pseudo-identity using an interactive protocol [36], [37].

• A polling tag is used during the polling phase that allows
PS to identify different votes (maximum 3) sent by a
voter within tp.

• The same pseudo-identity (issued by CI at the time of
registration) should be used by the voter in all three
rounds of the poll.

• During polling, a TLS channel is assumed between a
voting device and PS.

• Three polling code sheets, watermarked and sealed in an
envelope, are provided to an authenticated voter through

a postal mail by PF. Optionally, the voter could collect
the envelope from a specific delivery point (a locker
pickup) by inputing his/her username and password into
the locker machine.

• A semi-passive device fingerprinting mechanism is car-
ried out by CI to determine the type of voting device
used by the voter. In semi-passive device fingerprinting,
it is assumed that after the voter is authenticated in the
first layer of MFA, a connection is established between
him/her and CI, who estimates a device’s clock skew to
fingerprint it.

• After the delivery of PCSs, PF destroys all the informa-
tion (digital or paper) related to these sheets such that
only the voter knows the contents of PCSs.

• The existence of a PKI is assumed such that any entity
who uses the public key of another participant knows
that this key belongs to a legitimate party. The RSA and
ElGamal key generation is performed offline to generate
key pairs.

• Cryptographic primitives and constructions used in
SeVEP are secure and verifiable.

• During a polling phase, the confirmed ballots published
by PS on the BB remain secret. After the mixing and
tallying phase is completed, a voter gets an access to the
BB to verify that his/her vote is included in the final tally.

C. THREAT MODEL
This section describes themain attacks that may be performed
on three key phases of SeVEP. These attacks can be aimed
to break either the security or the privacy properties of the
system.

1) VOTER COERCION
Under this type of attack, the coercer may persuade a voter
into voting for his/her chosen voting options. This attack is
possible if a voter provides any form of voting receipt, which
is sent to him/her by the polling organizers to allow individual
verifiability.

2) DOUBLE VOTING
Remote polling is vulnerable to electoral fraud due to the pos-
sibility of double voting, i.e., an authenticated but a malicious
voter may attempt to cast multiple ballots in the same poll in
a way where all his/her votes are counted in the final tally.

3) VOTE MODIFICATION BY A MALICIOUS VOTING DEVICE
Remote polling is an attractive option to the voters since
it allows them to cast their votes through their computing
devices in their homes without going to a polling booth. How-
ever, the voting devices that are used to cast ballots in such
systems may affect the final outcomes of the polling due to
two possibilities: either the device is affected with a malware,
or is controlled by a malicious entity (hacker). In either case,
the voting options selected by a voter can be covertly modi-
fied before these are submitted to the polling organizers, and

VOLUME 7, 2019 19273

A. Qureshi et al.: SeVEP

FIGURE 2. Pre-Polling Phase.

thus, falsely recorded and counted by the polling organizers
undetectably (without the voter’s knowledge).

4) COALITION OF MALICIOUS ENTITIES
In the following, possible coalition attacks betweenmalicious
participants of SeVEP are presented:

• VDS and PS may collude to affect vote’s privacy.
• PS and CG may form a coalition to infer the voting
options selected by the voter.

• After the completion of the ballot processing phase,
i.e., the voter has received a confirmation code, PS may
collude with CG to replace the voter’s confirmed ballot
in the ballot box with the colluded vote.

• POs, PF and CI may collaborate to de-anonymize the
voter.

5) MODIFICATION OF A PCS
An authorized but a malicious voter may attempt to cast votes
more than the allowed limit (3) within the polling period
by modifying the content of PCS, and then, registering a
complaint to the polling organizers of receiving an impaired
PCS from PF.

6) ATTACKS ON STORED BIOMETRIC SAMPLES
The following problems can undermine the security of bio-
metric templates (voice and keystrokes pattern) stored at CI’s
end:

• If biometric templates are stored in a database in plain
format and an attacker gains access to that database,
those biometric templates can be assumed to be com-
promised forever.

• Database records containing biometric templates could
be stolen or modified by an attacker to create spoofs, and
thereby fraudulently enroll him/her into the system as an
authorized user.

The security of the system against these attacks is dis-
cussed in Section IV-A.

D. PRE-POLLING PHASE
Fig. 2 shows the pre-polling phase of SeVEP. In this initial
phase, the following tasks are executed: (1) POs of SeVEP
configure the poll by generating the poll site, cryptographic
keys and system parameters; (2) A flexible poll setup is
provided by POs; (3) A voter gets registered to SeVEP after
getting authenticated via a 3-layer multifactor authentication
scheme; (4) Only the authenticated voters receive PCSs from
PF onCI’s request; (5) PCSs sent to the voter arewatermarked
by PF using zero-watermarking; and (6) A polling tag is
generated by PF to identify different votes of a same voter.

1) POLL CONFIGURATION
In this phase, the polling cryptographic parameters (p, q, g)
to be used in ElGamal cryptosystem and homomorphic PRF
are defined and published. A cyclic Gp ⊆ Z∗p of quadratic
residues modulo a safe prime p = 2q + 1 is chosen as a
common group for all the cryptographic operations used in
SeVEP. The key pairs of PF (KpPF ,KsPF), PS (KpPS ,KsPS),
CG (KpCG,KsCG), and PCGs are generated. Also, a joint
public encryption key (KpPCG) and a shared secret decryption
key (KsPCG) are created by six PCGs using distributed cryp-
tosystem. Similarly, POs create a joint public encryption key
and a shared secret decryption key for ElGamal cryptosystem.
Each PO creates its share of the key and posts the public
part along with the proofs at BB. BB checks the proofs and
combines the shares to form a public election key (KpPO) to
be used by the voters to encrypt their votes before casting
them. A vote encrypted under KpPO can only be decrypted
by KsPO if all POs collaborate. POs and PS are provided with
‘‘write’’ and ‘‘append’’ access to the BB. CG is provided with
‘‘write-only’’ access to the BB. The voters are provided with
‘‘read-only’’ access to the BB.

19274 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

FIGURE 3. Multifactor authentication scheme.

2) FLEXIBLE POLL SETUP
A poll site is generated by POs that contains a unique poll
identifier, poll questions (in various formats), voting options
(represented by small bit-length prime numbers ∈ Gp) for
each poll question, polling time period (tp), and public elec-
tion key (KpPO). CI sends the link of this poll site to the voters
after a successful authentication.

In SeVEP, a flexible poll setup is provided in the sense
that POs may choose different formats for the poll questions,
e.g. rate the best option (1–5), choose the best option from
the given range (A–E), and choose the preference (Yes/No/No
Comment/Partial Yes/Partial No), etc. Additionally, the vot-
ers may receive poll questions with varying voting options,
e.g., 3 instead of fixed 5 options. Also, there may be a
scenario, where the voters receive shuffled polling options for
each poll question.

3) MULTIFACTOR AUTHENTICATION
SeVEP employs MFA scheme that requires three authentica-
tion factors from the voter in order to establish his/her identity

and provide access control. Fig. 3 illustrates the MFA scheme
to identify and verify remote voters.

When a voter sends a registration request to SeVEP,
CI sends him/her a url of web-page containing instructions
to join SeVEP. During the first step of registration, the voter
must choose his/her credentials (username and password),
inputs a graphical password (either through a touch-screen
interaction or with a mouse), and records a voice sample
(a passphrase chosen by the voter) and a typing pattern
(a word typed either through a mobile keypad or a desktop
keyboard). All these factors along with the mobile number
of the voter are registered with CI, who then sends him/her a
link of a login page, where he/she can input these credentials
(in three levels) to gain access to the polling site of SeVEP.
In the first step, the voter inputs his/her credentials (username
and password) as a first authentication factor to login into
SeVEP. If the given credentials are verified, semi-passive
device fingerprinting [38] is performed to recognize the com-
puting device that the voter is utilizing to log in, e.g., it can be
a mobile phone, or a smartphone/tablet, or a desktop PC, etc.

VOLUME 7, 2019 19275

A. Qureshi et al.: SeVEP

FIGURE 4. Generic authentication scheme.

In case of a mismatch, the voter is asked to re-enter the correct
username and password. In SeVEP, we have considered three
possible scenarios of voters based on the results of device
fingerprinting: (1) a voter uses his/her mobile phone to cast
votes; (2) a voter has a smartphone or a tablet to cast his/her
votes; and (3) a desktop PC is used as a voting device by the
voter.

In first scenario, the voter is required to enter an additional
second-factor password, i.e., a one-time password (OTP).
The OTP is a security token that consists of a string of
numbers (numeric) or a combination of alphabets and num-
bers (alphanumeric) characters. This OTP is delivered by
the CI as a text message (SMS) on the voter’s registered
mobile number. For security purposes, the OTP received
on the mobile phone will be valid for 1 hour only after
which the voter would have to obtain a new OTP. The
codes are uniquely generated for each voter and can be
used only once. After the voter inputs the OTP into the
desired password field, it is forwarded to CI, who verifies
the received OTP. If verified, the voter will be required to
enter multimodal biometric features via a fusion module,
where the voter will be authenticated based on voice and
keystrokes recognition, else the voter is required to repeat
this step.

The second scenario requires a voter to enter a graphical
password for second-factor authentication. The voter gets
authenticated from his/her multitouch interactions, i.e., draw-
ing behavior through extraction of touch characteristics.
A graphical password uses images, graphics or colors instead
of letters, numbers or special characters. In SeVEP, a pure
recall-based graphical password technique is considered in
which the voter has to reproduce his/her password without
being given any hint related to his/her registered password.
Fig. 4 shows the working flow of a graphical password
technique.

The following steps are followed in the graphical password
technique:
• Data acquisition: During registration phase, a voter is
prompted to input his/her gesture, i.e., draw a random
password (a combination of three items: text (A–Z),
numbers (0–9), and ASCII characters) 3–5 times on a
screen.

• Features extraction: Touch events such as x and y
coordinates of the touch point, size of the touch area,
time-stamp of the touch event, and pressure (how hard
the finger was pressed on the screen) are extracted from
the input. Pressure and size are in the range of [0, 1],
whereas, x and y coordinates are in the range of screen
resolution.

• Template Generation & Storage: The extracted fea-
tures are then processed (positioning, sampling, and
min-max normalization) and stored as authentication
template for the voter. To model the user’s touch charac-
teristic, Dynamic Time Wrapping (DTW) [39] or Guas-
sian Mixture Module (GMM) [40] or Hidden Markov
Model (HMM) [41] can be used.

• Pattern matching: In the testing mode, first the system
recognizes the individual items and verifies the com-
binational password. If it is correct, the system then
verifies the drawing behavior by calculating the distance
between the input sample and the stored authentication
template using DTW or GMM or HMM.

• Decision logic: Depending on the results obtained in
pattern matching, a decision is made that either the
identity of the voter is verified successfully or not.

After the voter’s reconstructed password matches with the
stored graphical password, he/she is required to enter his/her
biometric features through a fusion module, in which he/she
will be authenticated based on his/her voice sample and
keystroke dynamics. In case there is not a successful match

19276 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

between the input and stored password sample, the voter is
required to repeat this step.

Finally, in the last scenario, the voter is authenticated
from his/her interactions with the graphical user interface
on his/her PC through extraction of characteristics of the
mouse input device. SeVEP uses a pure recall-based graphi-
cal password technique, likewise in the second scenario. The
graphical password technique [33] employed by SeVEP for
the authentication of a desktop voter consists of the following
steps (illustrated in Fig. 4):
• Data acquisition: In the registration phase, a voter
is requested to input his/her gestures in a uni-stroke
manner, i.e., draw a random password (a combination
of three items: text (A–Z), numbers (0–9), and ASCII
characters) 3–5 times using mouse clicks.

• Features extraction: Mouse events such as horizon-
tal and vertical coordinates, elapsed time starting from
the origin of the gesture till the voter enters his/her
password, horizontal velocity, vertical velocity, tangen-
tial velocity, tangential acceleration, tangential jerk,
slope angle of the tangent, curvature and curvature rate
of change are extracted from the sample. These fea-
tures exhibit strong reproducibility and discriminative
capabilities.

• Template Generation and Storage: The extracted fea-
tures are then processed (positioning and min-max nor-
malization) and stored as authentication template for this
voter. Edit distance (DTW) or nearest-neighbor distance
technique can be used to model user’s mouse input
characteristics.

• Pattern matching: During the first stage of the testing
mode, the system recognizes the individual items and
verifies the password. If it is correct, the system then
verifies the drawing behavior by calculating the distance
between the input sample and the stored authentica-
tion template using DTW or nearest-neighbor distance
technique.

• Decision logic: The output of the pattern matching mod-
ule is a similarity score (indicating the proximity of
train sample with the test sample), which is used by the
decision logic module to make the final decision of the
voter’s identity.

Upon successful verification by CI, the last step of MFA
is performed in which the voter gets authenticated based on
his/her voice sample and keystroke dynamics. In case of an
unsuccessful match between registered (trained) and current
input samples (tested), the voter is required to repeat this step.

In our proposed MFA scheme, fusion is used to combine
information frommultimodal modules (such as voice (Fig. 4)
and keystroke recognition (Fig. 4)) to improve accuracy,
robustness, precision, and efficiency of SeVEP. All the phases
of voice and keystroke recognition modules are similar to
the ones used in graphical password techniques except for
the pattern matching stage, where the resulting similarity
scores of each module (voice and keystroke) are combined
to obtain a single fused score, which is known as score-level

fusion, that asserts the level of the claimed identity. Since
the scores obtained from two different modules may not
belong to the same distribution or range, therefore, the scores
are transformed to a common domain before they can be
combined. This process is called score-normalization. Here,
min-max normalization is used to normalize the score within
the range [0, 1]. The scores are then fused using either sum
fusion, product fusion or weighted average fusion [34]. If the
calculated score exceeds the set threshold value, the voter
is authenticated and is given an access to SeVEP polling
site, else the voter is directed to the login page, i.e., the first
level of MFA scheme. In case the voter exceeds the criteria
set for possible MFA attempts (3), he/she gets blocked from
SeVEP by CI.

A security analysis of MFA scheme is provided
in Section IV-A.

4) GENERATION OF POLLING CODE SHEETS
The code generator (CG), six polling code generators
(PCGX), and the printing facility (PF) cooperatively gen-
erate polling code sheets (PCS) by employing numerous
cryptographic operations (e.g., encryption, hmac, etc.) based
on their respective key pairs and unique session keys. For
generation of PCS, as a proof-of-concept, we have assumed
that the main PO generates 4 polling questions (Qi with
i = 1, . . . , 4) with each Qi having fixed (5) voting
options (vj with j = 1, 2, 3, 4, 5) that are represented
by small bit-length prime numbers. Before initiating the
process of generating PCS, the main PO sends these vot-
ing options to each polling code generator (PCGX) of
SeVEP. As an example, the following voting options (repre-
sented by prime numbers) for 4 poll questions are assumed:
v1j = {11, 13, 37, 19, 2}, v2j = {7, 29, 31, 41, 47}, v3j =
{43, 53, 5, 59, 71}, and v4j = {23, 61, 67, 17, 83} .

A key is randomly selected by PCGX from a database
of 50 pre-generated cryptographic keys (l = 1, . . . , 50).
Also, a unique symmetric key (KsessX) of length 256-bits is
generated by each PCGX. Fig. 5 illustrates the generation
of PCSs.

Following steps are performed between CG, PCGX and PF
to generate a PCS for the authenticated voter of SeVEP.
• Using PRF based on DDH assumption and a selected
secret key, each PCGX calculates partial return codes
(RCij(PCGX)) for each voting option vj of Qi:

RCij(PCG1) = FDDH(Ksal , vij),

RCij(PCG2) = FDDH(Ksbl , vij),

RCij(PCG3) = FDDH(Kscl , vij),

RCij(PCG4) = FDDH(Ksdl , vij),

RCij(PCG5) = FDDH(Ksel , vij),

RCij(PCG6) = FDDH(Ksfl , vij),

where FDDH(K , vij) = H1(vij)K . Each PCGX sends
RCij(PCGX) to CG.

• CG computes a product (RRCij) of the received par-
tial return codes, e.g., a product of the voting option

VOLUME 7, 2019 19277

A. Qureshi et al.: SeVEP

FIGURE 5. Generation of Polling Code Sheets.

‘‘1’’ of Q1 (RRC11) is computed as: RRC11 =∏6
X=1 RC11(PCGX). CG sends RRCij to each PCGX.

• Using the received codes RRCij and the unique symmet-
ric key, each PCGX computes a full return code in the
following way:

fRCij(PCGX) = hmac(RRCij,KsesX).

• Each PCGX encrypts fRCij(PCGX) with the joint pub-
lic key (KpPCG) to obtain encrypted return codes
(efRCij(PCGX)) that are sent to PF.

• Random codes sRCij(PCGX) of small length (64-bits)
are generated by each PCGX. Each sRCij(PCGX) cor-
responds to the long return codes efRCij of length
1024-bits:

sRCij(PCGX)← efRCij(PCGX).

• Both these codes (sRCij(PCGX) and efRCij(PCGX)) are
encrypted by each PCGX using the public key (KpPF) of
PF. The encrypted codes are then sent to PF.

• Each PCGX encrypts its secret key (that was used in
the computation of partial return codes) with KpPF , and
sends the encrypted keys to PF.

• In the meanwhile, CG generates a random 6-digits
Acknowledgment (ACK) code of length 64-bits (each
digit is encoded with Extended ASCII). ACK is used by
a voter in the polling phase to provide confirmation of
the received return codes. CG encrypts ACK with KpPF ,
and sends EncKpPF (ACK) to PF.

• Upon receiving the sets of the return codes (both long
and short), the encrypted keys, and the encrypted ACK
code, PF performs decryption on these items with KsPF
to compute the following:

– DecKpPF (Enc(Ksal ,Ksbl ,Kscl ,Ksdl ,Ksel ,Ksfl)) is
performed to obtain cryptographic keys, which are
used to generate a PCS ID (PCSID):

PCSID =
∑

(Ksal ,Ksbl ,Kscl ,Ksdl ,Ksel ,Ksfl).

– DecKpPF (Enc(ACK)) to obtain plaintext ACK .
– DecKpPF (Enc(efRCij(PCGX))) is performed to com-

pute a long code (LCij) for each voting option:

LCij =
6∏

X=1
efRCij(PCGX).

19278 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

– DecKpPF (Enc(sRCij(PCGX))) is performed to obtain
plaintext short return codes SCij(PCGX), which are
permuted with a random permutation key ρ to gen-
erate permuted codes S̃Cij(PCGX).

– PF randomly selects S̃Cij(PCGX), and pairs each
permuted code with the encrypted long return code
such that it obtains i × j pairs of return codes
to create a mapping table, e.g., in our proof-of-
concept, 4 × 5 = 20 pairs of codes are generated:
(LCij, S̃Cij(PCGX)).

– PF encrypts each entry of the mapping table with
KpPCG, and sends it to each PCGX.

• PF is also responsible for generating a confirmation
number (Confirm) that is used as a proof of a vote been
confirmed by the voter:

Confirm = H (PCSID,ACK , nonce).

Confirm is encrypted with KpCG and is sent to CG.
• The short return codes (S̃Cij(PCGX)) along with
the corresponding voting options (depending on
the poll format, following options are possible:
{Yes,No,NoComment,PartialYes,PartialNo} or {A,B,
C,D,E} or {1, 2, 3, 4, 5}), PCSID, ACK , and Confirm
are printed by PF as a PCS.

• Upon receiving the mapping table containing encrypted
long codes and short return codes from PF, each PCGX
performs distributed decryption on the encrypted table
(one time to decrypt the pair, and a second time to
decrypt LCij to obtain long return codes (dLCij)).

• CG encrypts S̃Cij(PCGX) with the corresponding long
return codes dLCij to obtain EncdLCij(S̃Cij(PCGX)),
which is then paired with the plaintext S̃Cij(PCGX) to
create a mapping table containing i × j pairs of return
codes:

enSCij = (EncdLCij (S̃Cij(PCGX)), S̃Cij(PCGX)).

This mapping table is shared between CG and PCGX.
• CG computes the hash of each pair in the mapping table,
and publishes it on BB as commitments to the return
codes.

• Also, CG computes commitments to ACK and Confirm,
and publishes these values on the BB. Since SeVEP
allows a voter to cast his/her votes at most three times
(1 ≤ z ≤ 3), he/she is provided with three PCSs. This
implies that there would be 3 tables of commitments
to the return codes, and 3 values of CommitACKz and
CommitConfirmz for each voter on the BB.

5) ZERO-WATERMARKING OF A PCS
PCS is considered a text file that is printed by the PF.
CI requests PF to send three PCSs to the authenticated user
only. In SeVEP, we have proposed a novel zero-watermarking
algorithm for authentication of PCS, which is performed
by PF before sending PCSs to the eligible voters. The pro-
posed algorithm utilizes structural components in PCS to
watermark it. PF logically embeds the watermark in PCS

and generates a watermark key, which is registered with
the polling organizer. Here PCS is not modified to embed
the watermark, rather the characteristics of PCS are used
to generate a watermark key. The algorithm provides secu-
rity against content-preserving modifications, and simultane-
ously detects malicious tampering. PF embeds a watermark
(a combination of polling authority’s logo, a pseudo-identity
of the user (issued by CI), and a numeric barcode printed
on the PCS) into each PCS using zero-watermarking. Once
the PF performs zero-watermarking of each PCS, it seals
these watermarked PCSs into an envelope and sends it to the
authenticated user only.

a: EMBEDDING ALGORITHM
The embedding algorithm is performed by PF in which PCS,
a logo of the polling authority, a PI of the user, and a parame-
ter GS (group size) are considered as inputs, and a secret key
(SK) is obtained as an output, as shown in Algorithm 1.

Algorithm 1 (Zero-Watermark Embedding Algorithm)
for each PCS do
Convert the logo: logoPO← Norm(logo).
Generate a zero-watermark (WM): WM=
XOR(logoPO,BC,PI) {BC is the barcode of the
PCS.}
Identify colons (:) in each row (from the start of PCS
till the end).
Generate text partitions (TP) using the colons obtained
in Step 1.
Generate groups using GS: GroupNO = TP

GS , where
GroupNO is a row or column vector containing TP

GS
strings.
for each GroupNO do
Count occurrence of ASCII values in the group.
LISTGN← [ASCII value, No. of occurrences, Posi-
tion in GroupNO]

end for
LIST← Combine LISTGN of all groups.
for each character c of WM do
if c ∈ LIST then
PF looks for LISTGN that contains c.
PF extracts GN and Position from LISTGN.
SK [i]← 0
SK [i+ 1]← (GN,Position)

else
SK [i]← 1
SK [i+ 1]← EncASCII95(c)

end if
Set: i = i+ 2

end for
end for
RETURN SK

In Algorithm 1, the logo of the polling authority is con-
verted into ASCII values within the range 33–127 using the
min-max normalization (Norm). This range contains 10 digits

VOLUME 7, 2019 19279

A. Qureshi et al.: SeVEP

(0–9), 33 special symbols, 26 capital alphabets (A–Z), and
26 small alphabets (a–z). Afterwards, colons are used as the
separators to generate text partitions (TP). These partitions
are then combined together to form groups based on group
size(GS), where GS is selected by PF. A GroupNO is gen-
erated in either a row or column vector form that contains
TP
GS strings containing ASCII values. Then, occurrence of
each ASCII character is counted in string of GroupNO. A list
LISTGN is created that is populated with frequently occurring
ASCII character along with its position in a row or column
vector, and number of times it has occurred. Along with the
most frequent occurring character, this list also contains the
characters that have occurred at least two times. The rest are
not included in the list. Afterwards, a final list is created by
combining LISTGN of all the groups. A secret key (SK) is
generated by using characters of a watermark and LIST as
described in the embedding algorithm. SK is registered atPO,
along withWM , logo, current date and time,GS, poll ID, and
encrypted barcode of the PCS.

In Algorithm 1, PF performs the following steps to perform
ASCII95 encryption on the characters ofWM :

• Using 8-bit ASCII encoding, the ASCII value of the
character is coded to a binary string. This string is then
filled with zeros to obtain a 32-bit binary string.

• The binary string is converted to Base 10, i.e., (X)10.
• The number obtained is converted to Base 95, i.e., (X)95.
• Each value in (X)95 is replaced by an ASCII character
of code (value+33) to obtain the encrypted value.

b: EXTRACTION ALGORITHM
The extraction of zero-watermark is performed by the PO,
who uses this algorithm to resolve conflicts such as com-
plaint received by the voter of receiving a tampered or
damaged PCS. The algorithm takes the altered or damaged
PCS, a secret key SK , length of WM and a parameter GS
(group size) as inputs, and extracts the watermark (WM ′),
as described in Algorithm 2.

Likewise Algorithm 1, Algorithm 2 uses colons as the
separators to generate text partitions (TP′), which are then
combined together to form groups based on GS. Each gen-
erated Group′NO is either a row or column vector containing
TP
GS strings of ASCII values. After creating groups, for each
group, PO counts the occurrence of each ASCII character
in all the strings. Then, PO populates a list (LIST ′GN) with
frequently occurring ASCII character, its position in a row
or column vector, and times it has occurred. LIST ′GN contains
themost frequent occurring character as well as the characters
that have occurred at least two times. Then, LIST ′GN of all the
groups are combined to form a LIST ′ as done previously in
Algorithm 1. A watermark is extracted by using the contents
of SK and LIST ′ as described in the extraction algorithm.
After performing Algorithm 2, the PO sends WM ′,

an encrypted barcode, and a poll ID to the PF, who performs
decryption on the received encrypted barcode (DBC), and then
calculates XOR (WM ′, logoPO,DBC) to obtain credentials of

Algorithm 2 (Zero-Watermark Extraction Algorithm)
for each PCS do
Identify colons (:) in each row (from the start of PCS
till the end).
Generate text partitions (TP′) using the colons
obtained in Step 1.
Generate groups using GS: Group′NO =

TP
GS , where

Group′NO is a row or column vector containing TP
GS

strings.
for each Group′NO do
Count occurrence of ASCII values in the group.
LIST′GN← [ASCII value, No. of occurrences, Posi-
tion in Group′NO]

end for
LIST′← Combine LIST′GN of all groups.
Set: L = Length(WM), index = 1, i = 1, and k = 1.
while index < L do

if SK [i] == 0 then
{where, i = 1, 3, 5...}
Extract the value stored in SK [i + 1],
i.e., (GN,Position).
Against GN , PO looks into LIST ′GN , and extracts
the character placed at Position from LIST ′GN , i.e.,

WM ′[i + 1] ← c′ placed at (GN,Position) of
LIST ′GN .

else
WM ′[i+ 1]← DecASCII95(c) stored in SK [i+ 1]

end if
Set: i = i+ 2, k = k + 1, and index = index + 1

end while
end for
RETURN WM ′

the user (IDVk). The credentials are then sent to the PO,
who can then take an appropriate action against the user in
cooperation with CI.

In Algorithm 2, PO performs the following steps to
perform ASCII95 decryption on the characters stored in
SK [i+ 1]:

• For each character, obtain an ASCII code and subtract
33 from it.

• Convert the number to Base 10, i.e., (X)10.
• The decimal number is converted to Base 2, i.e., a binary
string.

• Adecrypted character is obtained by encoding the binary
code with the 8-bit ASCII encoding.

6) GENERATION OF A POLLING TAG
SeVEP allows a voter to cast three votes within a permitted
polling timewhile preventing double voting by him/her. To do
so, PF generates a polling tag (tagPoll) to identify different
votes (1 ≤ z ≤ 3) sent by a single voter.

19280 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

FIGURE 6. Overview of Polling Phase.

After the voter is authenticated by CI, it sends a request
to PF to deliver three PCSs to the authenticated voters only.
During a PCS generation process, PF encodes the PCSID
of each PCS, time-stamp, and a voter’s pseudo-ID (IDVk)
into a numeric barcode, which is then printed on the PCS as
an identifier. After receiving the PCS delivery request from
CI, PF performs zero-watermarking for each PCS, computes
tagPoll by generating a hash of three barcodes, and seals these
watermarked PCSs into a single envelope. Then, PF prints
tagPoll on the envelope and sends it to the voter via a postal
mail. Also, PF sends tagPoll to the PS, who stores it against
the user’s IDVk . In three (allowed) voting attempts, the voter
must attach tagPoll to his/her vote, which is then verified by
the PS.

E. POLLING PHASE
After the completion of the pre-polling phase, each Vk may
cast his/her ballot using his/her VDS . VDS generates a ballot
with the selected voting options of each polling question (Qi),
and submits it to PS. Vk can cast his/her ballot at most three
times (1 ≤ z ≤ 3). Following are the steps followed by each
Vk to casts his/her ballot (as illustrated in Fig. 6):

• VDS sets up a TLS connection with PS, who authen-
ticates VDS upon successful verification of his/her
credentials from CI. Once authenticated, PS sends a
time-stamp (ts) with the current time to VDS .

• Vk selects one option for each poll question, i.e., he/she
inputs vj of each Qi into his/her VDS .

• VDS computes a partial ballot as a product of
options (vij) selected by Vk :

BVk =
4∏
i=1

vij.

VDS encrypts BVk with the joint public key of POs
(KpPO) to obtain the ElGamal ciphertext:

(c1, h1) = EncKpPO (BVk).

Also, VDS generates NIZKP (πenc) to prove knowledge
of the randomness used for computing the encryption
of BVk .

• Additionally, a 3-digit (alphanumeric) random number
is entered by Vk into his/her VDS for each voting option
(γ1, γ2, γ3).

• VDS concatenates three digits to create γVk :

γVk = γ1||γ2||γ3.

Then, VDS encrypts γVk withKpPO to generate the ElGa-
mal ciphertext:

(d1, e1) = EncKpPO (γVk).

Both the ciphertexts are then concatenated by VDS :
(c1, h1)||(d1, e1). Also, a NIZKP (πenccon) is generated
by VDS to prove that (c1, h1)||(d1, e1) is equivalent to
the concatenation of two ElGamal encrypted ciphertexts
under KpPO. VDS then signs (c1, h1)||(d1, e1), and ts:

SignKsVK ((c1, h1)||(d1, e1), ts, πenc, πenccon).

• In addition to voting options and random alphanumeric
codes, Vk also inputs tagPoll and PCSID into VDS .Using
PCSID, VDS computes partial codes corresponding to
voter’s voting options (vij) using a pseudorandom func-
tion (PRF) based on DDH assumption with homomor-
phic properties. Each computed partial return code is
then encrypted with the public key of CG (KpCG). Also,
NIZKPs (πPCSi) are generated for each computed partial
return code by VDS .

• The final ballot submitted to PS by VDS consists of the
following items:

ballotVk
= EncKpPS (IDVk), (c1, h1)||(d1, e1), πenc,

tagPoll, ts, πenccon , tVk ,EncKpCG (FDDH(PCSID, v1j)),

πPCS1 ,EncKpCG (FDDH(PCSID, v2j)), πPCS2 ,

EncKpCG (FDDH(PCSID, v3j)), πPCS3 ,

EncKpCG (FDDH(PCSID, v4j)), πPCS4 ,

VOLUME 7, 2019 19281

A. Qureshi et al.: SeVEP

SignKsVK ((c1, h1)||(d1, e1), ts, tagPoll, πenccon),

where tVk is the time of voting according to the system
clock of VDS .

1) VOTE VALIDATION
After the ballot (ballotVk) is cast by VDS , a vote verification
process is initiated by PS to validate the received vote before
processing it.

• PS performs decryption on EncKpPS (IDVk) to obtain the
plaintext identity of the voter, i.e., IDVk .

• PS looks into its database for a possible entry of ballot
ballotVk for Vk . If found, then PS checks the value of the
flag (FL) that indicates the number of entries of Vk .

• If FL = 0, i.e., ballotVk is not found against Vk ’s
record, PS continues the validation process by verifying
the digital signature, proofs (πenc, πenccon), and tagPoll
contained in ballotVk .

• Also, PS verifies that ts used in ballotVk is equal to the
one sent to Vk . If verified, PS creates a new entry for Vk ,
stores his/her ballotVk , and sets FL = 1.

• A case FL = 3 implies that there are already three
entries of Vk (i.e., the voter has cast his/her vote three
times). In this case, PS halts the polling process.

• If PS finds that there is already an entry of Vk and
FL < 3, it updates ts, checks that the new time is more
recent than that of an old entry, and verifies that same
tagPoll is being used by Vk to cast the vote.

2) BALLOT PROCESSING
Once the votes are validated by PS, the following steps are
performed to process the validated ballots:

• After creating or updating Vk ’s voting record,
PS encrypts pseudo-identity of the voter (IDVk) with
KpCG (EncKpCG (IDVk)). PS sends this encrypted identity,
encrypted partial return codes (EncKpCG (FDDH(PCSID,
vij)), and NIZKPs (πPCS1 , πPCS2 , πPCS3 , πPCS4) to CG.

• CG performs decryption on the received encrypted items
with its secret key (KsCG) to obtain the plaintext of
voter’s identity (IDVk) and the clear-text of partial return
codes.

• CG sends partial return codes and NIZKPs to
each PCGX.

• NIZKPs are verified by eachPCGX, and upon successful
verification, full return codes are computed using the
keyed-PRF and a symmetric key (the same key used to
compute the return codes during pre-polling generation
of PCS):

NRCij(PCGX) = hmac(FDDH(PCSID, vij),KsesX).

Each PCGX encrypts NRCij(PCGX) with KpPCG to
obtain eNRCij(PCGX):

eNRCij(PCGX) = EncKpPCG (NRCij(PCGX)).

Each eNRCij(PCGX) is sent to CG.

• CG computes long return codesNLCij using the received
eNRCij(PCGX):

NLCij =
6∏

X=1
eNRCij(PCGX),

and sends these long codes to each PCGX.
• Upon receiving the long codes, each PCGX performs
lookup on its stored mapping table (sent by PF during
pre-polling PCS generation) to extract the correspond-
ing short return codes. These short return codes are
encrypted by each PCGX with NLCij, and is then sent
to CG.

• CG extracts the short return codes (S̃Cij(PCGX)) corre-
sponding to the received encrypted codes by looking into
its stored mapping table (shared with PCGX).

• Upon finding the matching entries, CG encrypts the
corresponding S̃Cij(PCGX) with KpPS , and sends the
encrypted short return codes to PS.

• PS performs decryption on EncKpPS (S̃Cij(PCGX)) to
obtain the plaintext short return codes, which are
then sent to the voter’s email address in the form of
self-destructing email.

• Upon receiving an email from PS, Vk opens it in his/her
validation device, and verifies whether the received short
codes correspond to the printed short return codes of the
PCS (used by Vk in the polling phase to cast the ballot).

• If all the received codes match with the printed ones, Vk
inputs ACK into VDS to finalize the ballot processing
phase.

• VDS encrypts ACK withKpCG and sends encrypted code
(EncKpCG (ACK)) to PS.

• PS sends the encryptedACK to CG, who decrypts it with
KsPS to obtain a clear-text ACK .CG checks ACK to con-
firm whether it is a valid opening for the CommitACKz .
If valid, CG checks the index of CommitACKz since
there are three published commitments for each voter.
CG checks the number corresponding to index ‘‘z’’ of
CommitConfirmz and extracts the corresponding Confirm
code. CG encrypts Confirm with KpPS , and sends it
to PS.

• PS decrypts EncKpPS (Confirm) and sends the plaintext
Confirm code to Vk via an email. Vk checks on his/her
validation device whether the received Confirm code
matches with the printed one on his/her PCS. If matched,
the vote confirmation process is deemed successful.

• PS adds ballotVk as a confirmed ballot into its ballot box.
Only the validated votes with ‘‘confirmed’’ codes are
considered in the tallying phase.

After the completion of the ballot processing phase,
PS generates a hash of a ballot and publishes it on the BB.
Till the publishing of the final results on the BB, the hashes
of the ballots remain hidden from the voters.

F. POST-POLLING PHASE
After the polling phase is completed, i.e., the polling period
(tp) is expired, PS no longer accepts the votes from the voters.

19282 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

FIGURE 7. Overview of Post-Polling Phase.

Fig. 7 illustrates the post-polling phase of SeVEP. The list of
ciphertexts mathcalCk = (ck , hk)||(dk , ek), which are stored
in the ballot box with ‘‘Confirmed’’ status, is sent by PS
to the main PO, who is responsible for mixing and tallying
the received votes. The main PO initiates the mixing process
to anonymize the votes such that it is impossible to link
ciphertexts with the voters.

The mixing phase is carried out before the tallying process
because the former provides vote’s privacy whereas the later
posts the polling results on the BB. A verifiable mixnet based
on ElGamal encryption with the shuffle size equal to the num-
ber of POs, i.e., t , is instantiated to mix Ck . Permutations (ρ′)
and re-encryption randomizations (ϕ) are selected at random
by each PO in the mixing phase. Here, ρ′ is used to only
change the order of the ciphertexts contained in Ck without
changing its content, whereas ϕ is used in re-encryption of
the ciphertexts to make them unlinkable. In order to provide
the proof of correctness of the mixing, each of these values
(ρ′ and ϕ) must be generated explicitly. Each PO performs
mixing by permuting and re-encrypting the ballots (Ctk =
(ck , hk)||(dk , ek)), and forwarding it to the next mixer (PO).

MIXING AND TALLYING PHASE
The following steps are performed by POs in the mixing and
tallying phase:

• C1
k is input to the first PO1, who selects a random secret

permutation value (ρ′(t1)) to permute the input list to
obtain a following new list:

C1
k =

{
(c1
ρ′(t1)k

, h1
ρ′(t1)k

)||(d1
ρ′(t1)k

, e1
ρ′(t1)k

)
}
.

• PO1 re-encrypts the new list using a randomization value
(ϕ1) to obtain C

′1
k .

• PO1 generates the NIZKP of correct mixing (πmix1) and
submits it along with the mixing result to the BB.

• BBverifies the received proof (πmix1) and, upon success-
ful verification, posts the mixed vote list for the next PO
to mix.

• C
′1
k is input to the next PO2, who performs permu-

tation and re-encryption on C
′1
k to obtain a new list

of ciphertexts. This process is continued by each PO
involved in the mixing phase.

• The mixing phase is completed when the last PO,
i.e., POt outputs its list of ciphertexts and the corre-
sponding proof to the BB.

• Upon the completion of the mixing phase, BB verifies
all the proofs (πmix1 , . . . , πmixt) provided by the POs.

• After successfully verified by the BB, each PO can
download an anonymized list of mixed ciphertexts to
perform decryption using its share of a secret key.

• A list of plaintext ballots (BVk) is obtained after the
joint-decryption performed by t POs.

• In joint-decryption process, each PO generates a NIZKP
of correct decryption (πdect) and publishes it on the BB.

• The received NIZKPs of correct decryption shares
(πdect) are validated by the BB.

• Upon successful verification, the main PO performs
prime factorization on the plaintext ballots (BVk) to
output the factors vij.

• Each factor is evaluated by the main PO to obtain the
corresponding voting option.

• The voting options and the associated 3-digit number
(γVk) are published on the BB against each polling
question.

IV. RESULTS AND DISCUSSION
In this section, we provide an analysis of SeVEP in terms of
security, privacy, and performance.

A. SECURITY AND PRIVACY ANALYSIS
This section analyzes the security and privacy properties of
SeVEP, and details how it addresses the design requirements
and the threat model presented in Sections III-B and III-C,
respectively.

1) VOTER COERCION RESISTANCE
In SeVEP, coercers are unable to determine if the coerced
voter has obeyed his/her instructions or not due to the fact
that SeVEP allows multiple voting within tp, i.e., only
the last ballot cast by the voter is considered valid. Also,
SeVEP provides multiple PCSs to the authenticated vot-
ers before the polling period. Thus, enabling the voters to
always update their votes by using a different PCS, and

VOLUME 7, 2019 19283

A. Qureshi et al.: SeVEP

embedding a new time-stamp and a constant polling tag
(tagPoll) in the updated ballot before the poll is closed.
Therefore, the coercer has no way of knowing if the vote
cast in his/her presence and the return codes shown to
him/her represents the ballot that was actually counted for that
voter.

Alternatively, it can be assumed that the coercer is com-
municating with the voter during polling, and forces the
coerced voter to hand over his/her PCSs to be ensured that
the coerced voter voted for his/her voting choices. In this
scenario, a coerced voter can generate a ballot that would
contain a ciphertext of his/her choice of voting options and
partial return codes corresponding to those options. Upon
receiving the return codes from PS, the coerced voter can
forge the received codes that would satisfy the coercer,
e.g., by swapping the received return codes (corresponding
to their intended choices) with the return codes of the options
demanded by the coercer. Since the coerced voter receives
these codes via self destructing email, he/she cannot be forced
by a coercer to show him/her the received return codes. Upon
successful matching between the codes (received codes and
the printed codes on the PCS), the coercer would provide
ACK to the coerced voter, who would send it to PS. Upon
verification, PS sends Confirm code to the coerced voter,
who sends the code to the coercer. Thus, coercer would be
satisfied that his/her vote is recorded-as-intended in the ballot
box at PS’s end. After the completion of the tallying and
mixing phase, if a coercer checks for his/her cast vote and
does not find it, he/she may make a complaint to POs about
missing vote. In such a case, POs would request him/her
to give his/her polling credentials, e.g., polling tag, digital
signature, pseudo-identity, time-stamp, NIZKPs, etc. Since
the coercer only has PCSs of the coerced voter and no other
information, he/she would be unable to submit the required
polling credentials to prove that his/her vote is not included
in the final tally.

Furthermore, if the three-attempt vote casting possibility
is not considered enough to prevent vote coercion, then the
polling system could be designed to allow the coerced voter
to cast another vote after a temporary ban (e.g., one hour).
In such a scenario, the polling system would enable the voter
to obtain a new polling card sheet after passing through
a multifactor authentication scheme and providing valid
polling credentials (polling tag (tagPoll), pseudo-ID (IDVk),
and PCSID of the three polling card sheets that were used
in previous three attempts under a coercion attack). Upon
successful multifactor authentication, the polling server will
then check the voter’s polling credentials in its database, and
the status of the corresponding flag (FL), i.e., it verifies if
FL = 3 or not.

2) DOUBLE VOTE PREVENTION
In SeVEP, double voting by a single authenticated voter is
prevented by a polling tag (tagpoll), which allows PS to iden-
tify different votes (≤ 3) of that voter. During vote validation

phase, after the verification of voter’s credentials such as
his/her pseudo-identity (IDVk), digital signature (Sign) and
NIZKPs, PS verifies that tagpoll embedded in the ballot
matches with the one sent to the voter in the poll registration.
Since SeVEP allows the voter to cast his/her ballot three
times within tp, the valid ballot must always contain the same
tagpoll as described in assumptions (Section III-B2). Upon an
unsuccessful match of tagpoll , PS halts the polling process
even if all other credentials (IDVk , Sign, and NIZKPs) are
verified.

Alternatively, it can be assumed that the authenticated voter
is malicious, and he/she may attempt double voting by using
different identity. SeVEP prevents this possible attack by
restricting the use of a constant pseudo-identity during three
rounds of polling, i.e., if the voter is using IDVk to cast his/her
vote, then IDVk remains constant in all three rounds of polling.
However, in case the voter requests for a new pseudo ID, all
his/her previous votes (≤ 3) shall be revoked by PS on CI’s
request.

3) CAST-AS-INTENDED VERIFIABILITY
SeVEP provides vote integrity through a verifiable mecha-
nism that prevents vote’s manipulation or modification by
the malware-affected or controlled voting device. In the pro-
posed cast-as-intended mechanism, return codes are used that
enable a voter to detect whether his/her voting device is
infected withmalware or controlled by a hacker. For example,
a possible attempt made by a malicious voting device to mod-
ify the ballot contents, and submit it on voter’s behalf would
be unsuccessful due to the fact that when the voter receives
the return codes from PS, those codes would not match with
the voter’s intended voting options. Furthermore, the voter
uses his/her validation device to open the email (containing
the return codes corresponding to voter’s intended voting
options) sent by PS during ballot processing phase, thus, pre-
venting the malicious voting device to obtain any information
about these received return codes. Due to mismatch between
the received and printed return codes (on a PCS), the voter
will cast his/her vote using a different voting device.

4) TALLIED-AS-RECORDED VERIFIABILITY
In SeVEP, POs publish the output of the mixing and tallying
phase (voting options along with three-digit random codes,
associated NIZKPs, and hashes of the confirmed ballots) on
the BB so that a voter, any other participant, or an auditor
can check whether the votes are counted correctly or not. The
voters can verify the votes by generating hashes of their sub-
mitted ballots, and then compare them to the ones displaying
on the BB. Moreover, the published three-digit random code
(only known by the voter) on the BB confirms to the voter
that his/her vote has been recorded correctly.

5) FAIRNESS
The final tally of the polling and the partial polling results are
published by the BB after the completion of the mixing and
tallying phase as described in assumptions (Section III-B2).

19284 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

After the completion of the polling phase (when PS no longer
accepts any votes from the voters), no one is able to compute
a partial tally except the POs, who are assumed to be a trusted
entity (Section III-A2). Even though POs are assumed to be
trusted, distributed decryption is employed such that all POs
compute their decryption shares to output a plaintext ballot.
Upon completion of the mixing and tallying phase in collab-
oration with the BB, the plaintext votes and all NIZKPs are
published on the BB. Hence, fairness is achieved in SeVEP
as long as the BB correctly follows the polling procedure.

6) INTEGRITY OF A PCS
A possible attempt by an authenticated voter to cast multiple
votes by manipulating contents of PCS is unsuccessful due
to the following reasons: (1) three polling card sheets are
sent to the voter in a paper form. In case a PCS is smudged
with printing ink, or there are printed marks (black vertical
or horizontal line defect), PF discards this PCS; and (2) the
text-based PCSs are watermarked using zero-watermarking
in which the contents of PCS (6-digit return codes, 6-digit
ACK , 8-digit Confirm, and 16-digit PCSID), PI of the voter
along with other information (a logo of PO) are considered
as inputs; and (3) a secret key SK based on the text of
PCS is constructed by PF, who sends this SK along with
the related information (zero-watermark WM , logo, current
date and time, GS, poll ID and encrypted barcode) to PO,
who stores all the received information to be used in case of
extracting the zero-watermark from PCS. Upon receiving a
complaint from a voter that his/her one or all three PCS(s)
are damaged either due to an ink spread, or overlapping
characters, PO requests that voter to send his/her impaired
PCS(s) and poll ID to it, so that an appropriate action can
be taken w.r.t the complain. A damaged PCS due to an ink
spread is not considered by PO, who discards the complaint
of the voter. In the later case, PO performs an extraction
algorithm to extract WM ′. Then, PO compares the extracted
WM ′ with the storedWM . If during the embedding procedure,
there would have been an overlapping of characters, theWM
would have been constructed using those characters. Thus,
upon mismatch between WM and WM ′, PO requests PF to
send him/her the PI of that voter, whowould then be penalized
by PO in cooperation with CI.

7) PRIVACY AND SECURITY ATTACKS
This section discusses several attack scenarios presented in
Section III-C4, whichmay occur during the execution of three
phases of SeVEP.

• A possible coalition between VDS and PS to manipulate
voter’s voting choices could not affect vote’s privacy
due to the fact that even if a malicious PS verifies
the manipulated encrypted vote in the vote validation
phase (Section III-E1), at the next stage, i.e., the ballot
processing phase (Section III-E2), the voter would get to
know about the malicious activity by finding a mismatch
between the received return codes and the printed codes

as the received codes would not correspond to his/her
intended voting choices. VDS cannot know about the
received return codes by any chance due to the fact
that the voter opens the received return codes on his/her
validation device.

• A possible collusion attack by PS and CG/PCGs to infer
the voter’s selected voting options cannot be successful
for three reasons: (1) the voting options are encrypted
with the joint public key of the polling organizers; (2) the
security of the PRF function computed over the voting
options to generate the partial return codes is based
on the hardness of DDH assumption [25]; and (3) the
relation between the return codes and the voting options
is only known to the voter due to the fact that the
process of PCS generation is distributed among different
participants (PF, CG, PCG), and not a single entity has
a complete knowledge about the contents (return codes,
ACK , Confirm, PCSID) of PCS. A mapping table stored
at CG and PCGX’s end only contains short and long
return codes without any information about the voting
options. Also, after delivery of PCS to the authenticated
voter, PF destroys all PCSs (as described in the security
assumptions (Section III-B2)).

• When the confirmation code is sent to the voter, PS may
attempt to form a coalition with CG/PCG to replace the
confirmed vote with the colluded vote, i.e., by replacing
the encrypted voting options with their chosen options
(voting options along with 3-digit random number), and
partial return codes computed by brute forcing. How-
ever, this attack is infeasible due to two reasons: (1) at
the end of the post-polling phase, when the polling
results are published by the BB, the voter could compute
the hash of the published vote, and in case of mis-
match, complain to the POs of vote manipulation; and
(2) instead of performing hash of the published vote,
the voter searches for 3-digit (alphanumeric) random
numbers that he/she used for each voting option, and
upon not finding these numbers on the BB, he/she could
complain to the POs of malicious activity.

• During zero-watermarking of PCS, PF uses IDVk to con-
struct a zero-watermark. While performing extraction of
the zero-watermark, POs obtain IDVk from PF. Thus,
PF and POs may attempt to de-anonymize the voter.
IDVk is generated using a one-way cryptographic hash
function H (). An attempt of de-anonymization attack
by any malicious entity is withstood by the collision
resistance of the hash function, i.e., it is computationally
infeasible to find a pair (x, y) such that H (x) = H (y).
Moreover, for a hash function with w-bit hash values,
2w/2 calculations are required to find a collision with
probability 1/2, which is infeasible for w ≥ 128.
In SeVEP, we have considered SHA-1withw = 160 bits
for high security such that it is computationally infeasi-
ble for an attacker to compute 280 calculations to find a
real identity from a pseudo ID. Furthermore, a malicious
entity does not know the secret number r shared by the

VOLUME 7, 2019 19285

A. Qureshi et al.: SeVEP

voter with CI, who is assumed to be a trusted entity of
SeVEP, and thus, would not break the privacy of the
voter by forming a coalition with PF and POs.

8) BIOMETRIC PROTECTION
It is assumed that biometric samples (voice samples and
keystroke patterns) stored at CI’s end are protected using
hybrid template protection method, which aims to combine
the benefits of both feature transformation and biometric
cryptosystem approaches.

• In feature transformation method, the unprotected bio-
metric template (T) of a voter to be enrolled in the
system is transformed into a protected template (T ′) via
a transformation function (F). The transformation func-
tion is characterized by a set of voter-specific parame-
ters, which are normally derived from a random external
key or password (K). Thereafter, only the protected
template, F(T ,K), is stored in the system database. Dur-
ing authentication, the same transformation function,
F, and its governing parameters, K, are applied to the
unprotected query feature set Q, such that matching
between the enrolled and query templates occurs in
the transformed space, i.e., F(T ,K) is matched against
F(Q,K). The main advantage of this approach is that
the key is voter-specific, which incorporates diversity
into the protected biometric templates, i.e., in case a pro-
tected template is compromised, it can easily be revoked
and replaced with a new one by applying a different
voter-specific key to the same unprotected biometric
data. Furthermore, matching can be done in the trans-
formed domain, which means that biometric templates
can remain secure even during authentication.

• Biometric cryptosystems are based on cryptographic
security mechanisms that allow cryptographic privacy
protection for biometric reference data. A biometric
cryptosystem is a key-generating system, where a key is
generated directly from the biometric data itself. Error
correcting codes are used to deal with the intra-class
variance inherent in multiple samples of the same bio-
metric characteristic, and hash functions are used to
impart security to the protected biometric templates.

This hybrid biometric template protection scheme
addresses the security attacks described in Section III-C6:

• In case an attacker gains an access to the template,
the compromised template can be cancelled and replaced
with a different protected template from the same origi-
nal template.

• In the event that a user’s protected template is stolen
from the database, that stolen template cannot be used
to recover the corresponding original template.

B. PERFORMANCE ANALYSIS
In this section, the performance evaluation of pre-polling and
polling phases of SeVEP is provided in terms of computa-
tional and cryptographic overheads.

1) COMPUTATIONAL COSTS OF PRE-POLLING AND
POLLING PHASES
The pre-polling phase (Section III-D) and the polling phase
(Section III-E) of SeVEP are implemented inMatlab and Java
programming languages on a workstation equipped with an
Intel i-7 processor at 3.5 GHz and 8 GB of RAM to compute
the costs of involved cryptographic operations.

In the pre-polling phase, poll configuration, generation of
a PCS and a polling tag are implemented in Java, whereas
zero-watermarking of PCS is performed in Matlab. The com-
putational costs associatedwith themultifactor authentication
have been left for the future work. The results presented
in Table 2 correspond to the average of 100 runs of each
operation of the pre-polling phase.

TABLE 2. Computational costs of pre-polling phase.

The poll configuration process is performed by PO, who
performs the following operations in almost 6.50 seconds:
generation of safe primes, RSA key pairs for PS, PF, CG, and
PCGX, a unique poll ID, a poll public key, four poll ques-
tions and corresponding five voting options (small bit-length
unique prime numbers), and ElGamal key pair using dis-
tributed ElGamal (Section II-A). The pseudo-identity of the
voter, generated by a voter with the help of CI using the proto-
col of [37], is computed in 0.20 seconds. A single PCS con-
taining return codes, ACK , Confirm, PCSID, and a barcode
(1-D) is generated by CG, six PCGS and PF in 4.10 seconds.
In order to compute these codes, a joint El-Gamal public key
is computed by six PCGs using ElGamal key distribution.
Also, each PCG is assumed to have an access to a pool of
50 pre-generated keys of length 1, 024-bits. A polling tag is
generated by PF in 0.005 seconds by taking hash of three
barcodes printed on three PCSs. Here, we have only consid-
ered the computational cost of computing hash and excluded
the costs of generation of two PCSs. After the generation of
PCS, a zero-watermark is embedded into the PCS by PF in
0.90 seconds using the zero-watermarking (Algorithm 1).

The vote validation and ballot processing processes of the
polling phase are implemented in Java programming lan-
guage to compute the computational costs. The overheads
presented in Table 3 correspond to an average of 100 runs
of each cryptographic operation (PRF with DDH assumption
with 1024-bits key, hmacwithSHA256, AES-256, ElGamal
and RSA encryption/decryptionwith 1024-bits) of the polling
phase. For the calculation of these costs, it was assumed that
the voter has cast his/her vote only once during tp.
It can be seen from the results presented in Tables 2 and 3

that on average, a voter requires less than 6.50 seconds to

19286 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

TABLE 3. Computational costs of the polling phase.

get registered to SeVEP (excludingmultifactor authentication
process), and 4.00 seconds (excluding the costs of processes
involved in pre-poll registration, i.e., computing safe primes,
ElGamal key distribution, RSA keys generation etc., and the
costs of communication between the involved entities) to
cast his/her vote, thus, demonstrating the practicality of the
proposed system.

2) CRYTOGRAPHIC COSTS OF PRE-POLLING
AND POLLING PHASES
In the poll configuration process of the pre-polling phase,
generation of a RSA key pair requires 2 modular exponentia-
tions, thus, resulting in 18 exponentiations for total 9 key pairs
(PF, CG, six PCGs, and PS). Similarly, generation of ElGamal
public key requires 1 modular exponentiation, which sums
up to 2 exponentiations (one for t POs and other for six
PCGs). The generation of voter’s pseudo-identity in coopera-
tion with CI takes 1 modular exponentiation. In PCS genera-
tion, the cryptographic costs are calculated for the following
operations: (i) each PCG computes a partial return code,
which requires 1 exponentiation and M -modular multiplica-
tions of each voter selection to a secret (pre-generated) key,
thus, resulting in 6 exponentiations; (ii) six full return codes
are encrypted with ElGamal encryption algorithm (with the
joint public key of PCG) that requires 2 exponentiations each,
which sums up to 12 exponentiations; (iii) the short and the
encrypted long return codes, the secret key of each PCG, and
ACK are encrypted with RSA encryption algorithm (with the
public key of PF) that requires 1 exponentiations to generate
a ciphertext, thus, resulting in 19 modular exponentiations.
Similarly, RSA decryption algorithm requires 1 exponentia-
tion to decrypt the ciphertext, thus, resulting in 19 exponenti-
ations. PCSID is generated by summing up six secret keys of
PCGs, which result in 1 modular exponentiation; (iv) each
pair of the mapping table, and Confirm code is encrypted
with ElGamal encryption algorithm (with the joint public key
of PCG and public key of CG, respectively) that requires
2 exponentiations, thus, resulting in total 42 exponentiations;
and (v) the entries of the mapping table, the encrypted long
return codes, and Confirm code are decrypted using ElGamal
decryption that requires 1 modular exponentiation, which
results in total 41 exponentiations.

In the pre-polling phase, the PCS generation is an expen-
sive process in terms of cryptographic costs, but this process
is performed by CG, six PCGs and PF in an offline mode,
thus, these costs are not included in the total overheads of the
voter.

In the polling phase, the product of selected voting options,
a three-digit random number, and the long and short return
codes are encrypted with ElGamal encryption algorithm,
which requires 2 exponentiations each, thus, resulting in
20 modular exponentiations. The voter’s pseudo-identity,
the partial codes, the short return codes, ACK , and Confirm
codes are encrypted with the RSA encryption algorithm
that requires 1 exponentiation to generate a ciphertext,
thus, resulting in total 11 exponentiations. Similarly, RSA
decryption algorithm requires 1 exponentiation to decrypt
the ciphertext and, therefore, sums up to 11 exponenti-
ations. The computation of partial return codes requires
1 exponentiation and M -modular multiplications of each
voter selection (to PCSID), which sums up to 4 exponen-
tiations (with one option per 4 questions). VDS computes
two following NIZKPs: (1) Schnorr identification protocol;
and (2) Chaum-Pederson protocol. The generation of first
proof requires 1 modular exponentiation (total of 2 exponen-
tiations for generating ElGamal ciphers) and its verification
requires 2 exponentiations, which sum up to 4. Generation
of Chaum-Pederson proof requires 2 modular exponentia-
tions, which implies that it takes 8 exponentiations for 4
partial return codes. The verification of Chaum-Pederson
protocol requires 4 exponentiations, which result in total
16 modular exponentiations. The RSA algorithm used to
digitally sign the ballot contents requires 1 modular expo-
nentiation for signature generation and 1 modular expo-
nentiation for signature verification, thus resulting in total
2 exponentiations.

It can be observed from the given cryptographic costs
of the polling phase that VDS does not need to perform
the most expensive cryptographic operations, i.e., ElGamal
Enc of long and short return codes (total 16 exponentia-
tions), and NIZKP verification (total 20 exponentiations),
which demonstrates the feasibility of implementation of the
polling phase on the light-weight computing devices such as
smartphones.

VOLUME 7, 2019 19287

A. Qureshi et al.: SeVEP

TABLE 4. Comparison with other e-voting schemes.

C. COMPARISON WITH STATE-OF-THE-ART
E-VOTING SYSTEMS
This section carries out a comparative analysis of SeVEP
with state-of-the-art e-voting systems that provide similar
security properties of e-voting as SeVEP. The comparison is
performed in terms of security properties and cryptographic
costs.

1) COMPARISON IN TERMS OF SECURITY PROPERTIES
The security properties of SeVEP are compared against rele-
vant e-voting systems [11], [12], [16]–[18]. The comparison,
summarized in Table 4, considers the desirable properties
described in Section III-B. In Table 4, a cell contains ‘‘No’’
when the corresponding security property is not guaranteed
by the voting system.

From Table 4, the following observations can be made with
respect to security properties:

• In terms of authentication, all the systems except [17]
and SeVEP, consider the traditional password-based
authentication technique to authenticate a user, which
is vulnerable to guessing, brute-force, and phish-
ing attacks. In [17], an authentication platform (com-
monly used for online services) is employed that
uses two-factor authentication (2FA), i.e., password
and OTP to authenticate the voter. Though OTP used
in 2FA provides security against traditional security
attacks, it is vulnerable to malware and session replay
attacks. SeVEP mitigates this vulnerability by adding
a third layer of authentication based on biometric
recognition.

• All the voting systems except SeVEP, [12] and [17]
allow single voting only. In [12], the voter has an option
to either audit or submit his/her votes. If the voter
chooses to audit, he/she can review the displayed cipher-
text to verify that the voting platform correctly saved
his/her votes. The voter can select different options
until he/she decides to cast his/her ballot by sealing it
using a different ciphertext. The system proposed in [17]
provides its voters an alternative vote casting channel
such as postal mail or a local polling station to cast a
vote if they had encountered any problem during online
voting. The other voting systems based on return codes
do not offer multiple votingwhereas SeVEP that is based
on return-codes allows the voter to vote three times
within the allowed polling period. In [15], multi-voting

is assumed by the authors such that the voter can choose
to cast his/her vote from a different voting device com-
puter) in case of incorrect generation of the return codes.

• Vote privacy is provided by all the voting systems except
for [11] and [12]. In [12], the attackers may copy and
re-cast previously cast votes, and a corrupted author-
ity may distribute identical receipts to different voters
while modifying their actual votes undetected. In [11],
the trusted hardware device can learn about the voting
choices made by the voter.

• Except for [18] and SeVEP, the remaining voting sys-
tems do not offer coercion resistance. The scheme
in [18] is based on oblivious transfer, where the security
of the mechanism is provided by the fact that the voting
authorities (though they may know all the codes) do
not know which codes are actually transfered to the
voter, thus, providing somewhat protection against vote
buying. SeVEP offers coercion resistant by allowing the
voter to vote three times using a different code sheet
within an allowed polling period (the security against
coercibility is discussed in Section IV-A1).

• All the systems except [18] provide cast-as-intended
verifiability by either employing voting cards or return
codes. Haenni et al. [18] have proposed cast-as-intended
verification mechanism based on oblivious transfer pro-
tocol, however, Brelle and Truderung [23] discovered a
serious flaw in the proposed scheme: an attacker can
cast invalid ballots and provide valid return codes to the
voters. These invalid ballots are accepted by the voting
server, tallied, and only discovered and rejected after
tallying, when the link between the ballot and the voter
has been closed. This flaw can be removed by adding
NIZKPs in ballot formation.

• All voting systems except [11] satisfy recorded-as-cast
and tallied-as-recorded verifiability.

• Security of a voter and the voting system against mali-
cious attacks (either by external or internal attackers) is
provided by all the voting systems except [12] and [11],
which pose a range of vulnerabilities, e.g., [12] is sus-
ceptible to a vote stealing attack that may allow an
attacker to surreptitiously cast a ballot on voter’s behalf.
In [11], voters must trust the hardware device for vote
privacy. In case of a tampered device, voters would have
no means of verifying the cast votes.

• Except for SeVEP, all systems assume that the device
used for voting is either trusted or uncompromised.

19288 VOLUME 7, 2019

A. Qureshi et al.: SeVEP

TABLE 5. Comparison in terms of cryptographic costs with other e-voting
schemes.

2) COMPARISON IN TERMS OF CRYPTOGRAPHIC COSTS
In Table 5, comparison between SeVEP and the three most
relevant e-voting systems is presented. In this comparison,
we have selected only those voting systems that provide
verifiability based on the return codes or voting codes. Table 5
compares the cryptographic costs (in terms of modular expo-
nentiations) of each system’s vote casting phase (polling
phase) that involves a voting platform (device) and the voting
authorities.

In the light of the results presented in Table 5, the over-
all cryptographic costs of [16], [17] and SeVEP are similar.
The voting system in [18] incur a few cryptographic costs
both at the voting device and the authorities end. However,
the cast-as-intended mechanism can easily be attacked due to
missing NIZKPs in the vote casting phase. The security flaw
can be prevented by adding NIZKPs, which would degrade
the protocol’s performance (it would require quadratic time
computations).

Among the analyzed systems, the proposed system, SeVEP
is the one that satisfies the desirable security properties
and offers computationally feasible solution for light-weight
devices.

V. CONCLUSIONS AND FUTURE WORK
This paper described SeVEP, an electronic polling system
for small to medium sized Internet-based public opinion sys-
tems that provides privacy of vote, voter’s anonymity, voter’s
authentication, auditability, poll integrity, security against
coalition of malicious parties, double-voting prevention, fair-
ness, and coercion resistance, and prevents malware-infected
voting device from manipulating the authenticated voter’s
voting choices. In addition, SeVEP provides cast-as-intended
verifiability based on cryptographic primitives, which are
used to design a complex voting interaction between the
voting device, the polling server, the code generator and
six polling code generators during the polling phase. Com-
pared to the other state-of-the-art e-voting systems, SeVEP
ensures voter’s authenticity via multifactor authentication
scheme, supports multiple voting, prevents double voting
through a polling tag, offers verifiability in the presence of
an untrusted voting device, requires less trust assumptions on
involved entities, and offers computationally feasible solution
for implementation on portable communication devices.

As future work, we intend to develop a working proto-
type of SeVEP, and evaluate its scalability and usability in
real-world deployment. Since the polling phase of SeVEP

requires voter’s participation, real feedback from usability
tests could help in improving the design of SeVEP. In addi-
tion, the voters will be provided a poll containing more than
4 questions (≤ 10) will be designed to evaluate the perfor-
mance in terms of the response time during the polling phase.

REFERENCES
[1] Association Headquarters. (2018). What are Public Opinion Polls?

Accessed: Jan. 31, 2019. [Online]. Available: https://www.historians.
org/about-aha-and-membership/aha-history-and-archives/gi-roundtable-
series/pamphlets/em-4-are-opinion-polls-useful-(1946)/what-are-public-
opinion-polls

[2] A.Wells.UKPolling Report. Accessed: Jan. 31, 2019. [Online]. Available:
http://ukpollingreport.co.uk/

[3] R. Finle and C. Finley. (1999). Survey Monkey. Accessed: Jan. 31, 2019.
[Online]. Available: https://www.surveymonkey.com/

[4] M. Blumenthal. (2018). Trump Approval Poll. Accessed: Jan. 31, 2019.
[Online]. Available: https://www.surveymonkey.com/curiosity/trump-
approval-poll/

[5] A. Schneider, C. Meter, and P. Hagemeister. (2017). ‘‘Survey on remote
electronic voting.’’ [Online]. Available: http://arxiv.org/abs/1702.02798

[6] D. L. Chaum, ‘‘Untraceable electronic mail, return addresses, and digital
pseudonyms,’’ Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[7] M. R. Clarkson, S. Chong, and A. C. Myers, ‘‘Civitas: Toward a secure
voting system,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2008,
pp. 354–368.

[8] J. Benaloh, R. Rivest, P. Y. A. Ryan, P. Stark, V. Teague, and P. Vora.
(2013). End-to-End Verifiability. Accessed: Jan. 31, 2019. [Online].
Available: https://www.microsoft.com/en-us/research/publication/end-
end-verifiability/

[9] F. Zagórski, R. T. Carback, D. Chaum, J. Clark, A. Essex, and P. L. Vora,
‘‘Remotegrity: Design and use of an end-to-end verifiable remote voting
system,’’ in Applied Cryptography and Network Security, M. Jacobson,
M. Locasto, P. Mohassel, and R. Safavi-Naini, Eds. Berlin, Germany:
Springer, 2013, pp. 441–457.

[10] D. Chaum et al., ‘‘Scantegrity II: End-to-end verifiability for optical scan
election systems using invisible ink confirmation codes,’’ inProc. Electron.
Voting Technol., 2008, pp. 1–13.

[11] R. Haenni and R. E. Koenig, ‘‘Voting over the Internet on an insecure
platform,’’ in Design, Development, and Use of Secure Electronic Voting
Systems, D. Zissis and D. Lekkas, Eds. Hershey, PA, USA: IGI Global,
2014, pp. 62–75.

[12] B. Adida, ‘‘Helios: Web-based open-audit voting,’’ in Proc. Secur. Symp.
(SS), 2008, pp. 335–348.

[13] A. Kiayias, M. Korman, and D. Walluck, ‘‘An Internet voting system
supporting user privacy,’’ in Proc. Annu. Comput. Secur. Appl. Conf., 2006,
pp. 165–174.

[14] J. P. Allepuz and S. G. Castelló, ‘‘Cast-as-intended verification in Nor-
way,’’ in Proc. 5th Conf. Electron. Voting, 2012, pp. 49–63.

[15] J. P. Allepuz and S. G. Castelló, ‘‘Internet voting system with cast
as intended verification,’’ in E-Voting and Identity, A. Kiayias and
H. Lipmaa, Eds. Berlin, Germany: Springer, 2012, pp. 36–52.

[16] D. Galindo, S. Guasch, and J. Puiggalí, ‘‘2015 Neuchâtel’s cast-
as-intended verification mechanism,’’ in E-Voting and Identity,
R. Haenni, R. E. Koenig, and D. Wikström, Eds. New York, NY,
USA: Springer-Verlag, 2015, pp. 3–18.

[17] K. Gjøsteen, ‘‘The norwegian Internet voting protocol,’’ in E-Voting and
Identity, A. Kiayias and H. Lipmaa, Eds. Berlin, Germany: Springer, 2012,
pp. 1–18.

[18] R. Haenni, R. E. Koenig, and E. Dubuis, ‘‘Cast-as-intended verifica-
tion in electronic elections based on oblivious transfer,’’ in Electronic
Voting, R. Krimmer, M. Volkamer, J. Barrat, J. Benaloh, N. Goodman,
P. Y. A. Ryan, and V. Teague, Eds. Cham, Switzerland: Springer, 2017,
pp. 73–91.

[19] R. Joaquim, C. Ribeiro, and P. Ferreira, ‘‘VeryVote: A voter verifi-
able code voting system,’’ in E-Voting and Identity, P. Y. A. Ryan and
B. Schoenmakers, Eds. Berlin, Germany: Springer, 2009, pp. 106–121.

[20] A. Qureshi, D. Megías, and H. Rifà, ‘‘VSPReP: Verifiable, secure and
privacy-preserving remote polling with untrusted computing devices,’’
in Future Network Systems and Security, R. Doss, S. Piramuthu, and
W. Zhou, Eds. Cham, Switzerland: 2018, pp. 61–79.

VOLUME 7, 2019 19289

A. Qureshi et al.: SeVEP

[21] C. Z. Acemyan, P. Kortum, M. D. Byrne, and D. S. Wallach, ‘‘Usability
of voter verifiable, end-to-end voting systems: Baseline data for Helios,
Prêt à voter, and scantegrity II,’’ in Proc. Electron. Voting Technol. Work-
shop/Workshop Trustworthy Electron. (EVT/WOTE), 2014, pp. 26–56.

[22] F. Karayumak, M. M. Olembo, M. Kauer, and M. Volkamer, ‘‘Usability
analysis of Helios—An open source verifiable remote electronic voting
system,’’ in Proc. Electron. Voting Technol./Workshop Trustworthy Elec-
tron. (EVT/WOTE), 2011, p. 5.

[23] A. Brelle and T. Truderung, ‘‘Cast-as-intended mechanism with return
codes based on PETs,’’ in Electronic Voting, R. Krimmer, M. Volkamer,
N. B. Binder, N. Kersting, O. Pereira, and C. Schürmann, Eds. Cham,
Switzerland: Springer, 2017, pp. 264–279.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Secure distributed
key generation for discrete-log based cryptosystems,’’ J. Cryptol., vol. 20,
no. 1, pp. 51–83, 2007.

[25] M. Naor, B. Pinkas, and O. Reingold, ‘‘Distributed pseudo-random func-
tions and KDCs,’’ in Advances in Cryptology—EUROCRYPT, J. Stern, Ed.
Berlin, Germany: Springer, 1999, pp. 327–346.

[26] H. Krawczyk, M. Bellare, and R. Canetti. (1997). HMAC: Keyed-Hashing
for Message Authentication. Accessed: Jan. 31, 2019. [Online]. Available:
https://tools.ietf.org/html/rfc2104

[27] A. Fiat and A. Shamir, ‘‘How to prove yourself: Practical solutions to iden-
tification and signature problems,’’ in Advances in Cryptology—CRYPTO,
A. M. Odlyzko, Ed. Berlin, Germany: Springer, 1987, pp. 186–194.

[28] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’ J. Cryptol.,
vol. 4, no. 3, pp. 161–174, 1991.

[29] D. Chaum and T. P. Pedersen, ‘‘Wallet databases with observers,’’ in
Advances in Cryptology—CRYPTO, E. F. Brickell, Ed. Berlin, Germany:
Springer, 1993, pp. 89–105.

[30] B. Terelius and D. Wikström, ‘‘Proofs of restricted shuffles,’’ in Progress
in Cryptology—AFRICACRYPT, D. J. Bernstein and T. Lange, Eds. Berlin,
Germany: Springer, 2010, pp. 100–113.

[31] J. Bäck. (2011). RSA-PSS—Provable Secure RSA Signatures and
Their Implementation. Accessed: Jan. 31, 2019. [Online]. Available:
https://rsapss.hboeck.de/rsapss.pdf

[32] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D. Rubin,
‘‘The design and analysis of graphical passwords,’’ inProc. USENIX Secur.
Symp. (SSYM), vol. 8, 1999, p. 1.

[33] C. Shen, Z. Cai, X. Guan, Y. Du, and R. A. Maxion, ‘‘User authentication
through mouse dynamics,’’ IEEE Trans. Inf. Forensics Security, vol. 8,
no. 1, pp. 16–30, Jan. 2013.

[34] J. R. M. Filho and E. O. Freire, ‘‘Multimodal biometric fusion—Joint
typist (keystroke) and speaker verification,’’ in Proc. Int. Telecommun.
Symp., Sep. 2006, pp. 609–614.

[35] H. Ishizuka, I. Echizen, K. Iwamura, and K. Sakurai, ‘‘A zero-
watermarking-like steganography and potential applications,’’ in Proc.
10th Int. Conf. Intell. Inf. Hiding Multimedia Signal Process., Aug. 2014,
pp. 459–462.

[36] A. Qureshi, D. Megías, and H. Rifà-Pous, ‘‘Framework for preserving
security and privacy in P2P content distribution systems,’’ Expert Syst.
Appl., vol. 42, no. 3, pp. 1391–1408, 2015.

[37] A. Qureshi, D. Megías, and H. Rifà-Pous, ‘‘PSUM: Peer-to-peer multime-
dia content distribution using collusion-resistant fingerprinting,’’ J. Netw.
Comput. Appl., vol. 66, pp. 180–197, May 2016.

[38] T. Kohno, A. Broido, and K. Claffy, ‘‘Remote physical device fingerprint-
ing,’’ IEEE Trans. Dependable Secure Comput., vol. 2, no. 2, pp. 93–108,
Apr./Jun. 2005.

[39] D. J. Berndt and J. Clifford, ‘‘Using dynamic time warping to find patterns
in time series,’’ in Proc. Knowl. Discovery Data Mining (AAAIWS), 1994,
pp. 359–370.

[40] D. A. Reynolds, ‘‘Gaussian mixture models,’’ in Encyclopedia Biometrics.
New York, NY, USA: Springer, 2009.

[41] L. Rabiner, ‘‘A tutorial on hiddenMarkovmodels and selected applications
in speech recognition,’’ Proc. IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

AMNA QURESHI received the Ph.D. degree in
network and information technologies from the
Universitat Oberta de Catalunya, in 2014, where
she joined the Internet Interdisciplinary Institute,
in 2015, as a Researcher. Her research interests
include intellectual property protection of multi-
media content in peer-to-peer networks (content
distribution), privacy preservation of the users of
these networks, security of the cloud infrastructure
operations for the purpose of achieving an end-to-

end confidentiality, and design and analysis of security and privacy tech-
niques for smart cities.

DAVID MEGÍAS is currently an Associate Pro-
fessor with the Universitat Oberta de Catalunya
(UOC), Barcelona, Spain, and also the current
Director of the Internet Interdisciplinary Institute,
UOC. He has authored many research papers in
international conferences and journals. He has par-
ticipated in different national research projects
both as a Contributor and as a Principal Inves-
tigator. He has also experience in international
projects, such as the European Network of Excel-

lence of Cryptology of the 6th Framework Program of the European Com-
mission. His research interests include security, privacy and protection of
multimedia contents, privacy in decentralized networks, and information
security.

HELENA RIFÀ-POUS received the Ph.D. degree
in telecommunications engineering from the Uni-
versitat Politècnica de Catalunya, in 2008. From
2000 to 2007, she was with Safelayer Secure
Communications as a Research Project Manager,
focused on PKI projects mainly for the public
administration. She has been an Associate Profes-
sor with the Computer Science Department, Uni-
versitat Oberta de Catalunya (UOC), since 2007.
She has been the Director of the Master Pro-

gramme in Security of Information and Communication Technologies, UOC,
since 2011. Her research interests include network security and privacy in
distributed and mobile networks, key management, information hiding, and
security and privacy in multimedia content distribution.

19290 VOLUME 7, 2019

	INTRODUCTION
	MAIN CONTRIBUTIONS
	OUTLINE OF THE PAPER

	BUILDING BLOCKS
	DISTRIBUTED ELGAMAL
	PSEUDORANDOM FUNCTION
	HASH MESSAGE AUTHENTICATION CODE
	NON-INTERACTIVE ZERO KNOWLEDGE PROOF
	VERIFIABLE MIXNET
	DIGITAL SIGNATURE
	MULTIFACTOR AUTHENTICATION
	ZERO-WATERMARKING

	PROPOSED SYSTEM
	SYSTEM PARAMETERS AND ENTITIES
	SYSTEM PARAMETERS
	SYSTEM ENTITIES

	DESIGN REQUIREMENTS AND ASSUMPTIONS
	SYSTEM ASSUMPTIONS
	SECURITY ASSUMPTIONS

	THREAT MODEL
	VOTER COERCION
	DOUBLE VOTING
	VOTE MODIFICATION BY A MALICIOUS VOTING DEVICE
	COALITION OF MALICIOUS ENTITIES
	MODIFICATION OF A PCS
	ATTACKS ON STORED BIOMETRIC SAMPLES

	PRE-POLLING PHASE
	POLL CONFIGURATION
	FLEXIBLE POLL SETUP
	MULTIFACTOR AUTHENTICATION
	GENERATION OF POLLING CODE SHEETS
	ZERO-WATERMARKING OF A PCS
	GENERATION OF A POLLING TAG

	POLLING PHASE
	VOTE VALIDATION
	BALLOT PROCESSING

	POST-POLLING PHASE

	RESULTS AND DISCUSSION
	SECURITY AND PRIVACY ANALYSIS
	VOTER COERCION RESISTANCE
	DOUBLE VOTE PREVENTION
	CAST-AS-INTENDED VERIFIABILITY
	TALLIED-AS-RECORDED VERIFIABILITY
	FAIRNESS
	INTEGRITY OF A PCS
	PRIVACY AND SECURITY ATTACKS
	BIOMETRIC PROTECTION

	PERFORMANCE ANALYSIS
	COMPUTATIONAL COSTS OF PRE-POLLING AND POLLING PHASES
	CRYTOGRAPHIC COSTS OF PRE-POLLING AND POLLING PHASES

	COMPARISON WITH STATE-OF-THE-ART E-VOTING SYSTEMS
	COMPARISON IN TERMS OF SECURITY PROPERTIES
	COMPARISON IN TERMS OF CRYPTOGRAPHIC COSTS

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	AMNA QURESHI
	DAVID MEGÍAS
	HELENA RIFÀ-POUS

