

Automated Similarity Detection:
Identifying Duplicated Requirements

Author Quim Motger de la Encarnación
Studies Master in Informatics Engineering
Department Artificial Intelligence Department

Thesis Supervisor Cristina Palomares Bonache
Chief of Department Carles Ventura Royo

December 2019

This work is published under an
Attribution-NonCommercial-NoDerivs license 3.0
Unported Creative Commons

2

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Master Thesis Report

Thesis title: Automated Similarity Detection: Identifying
Duplicated Requirements

Author: Quim Motger de la Encarnación

Advisor: Cristina Palomares Bonache

PRA: Carles Ventura Royo

Submission date: 12/2019

Studies: Master in Informatics Engineering

Master Thesis Department: Artificial Intelligence (subject: IAA)

Language: English

Keywords: requirements engineering, similarity detection,
duplicated requirements

 Abstract (English):

Machine-Learning (ML) and Natural-Language-Processing (NLP) are two of the most
known areas of Artificial Intelligence (AI). ML is a general-purpose technology which
uses data to learn real-world knowledge and to improve the reliability of a specific
action - typically to extract autonomous predictions about partial data observations. On
the other hand, NLP applies to the task of developing representations of features of
natural language based on its textual information.

One area of application of NLP and ML is the Requirements Engineering (RE) field. RE
is the set of processes of Software Engineering (SE) focused on the management of a
set of requirements that describes a system. Between the challenges of RE, it is
highlighted the detection of duplicated requirements. If ignored, these duplicities may
lead to redundancy in the textual information of a project and therefore this may lead to
the duplicity of tasks. Moreover, the automation of this process and the standardized
usage of specific, accurate tools are still at a state-of-the-art stage.

This master thesis is a state-of-the-art analysis to apply automated requirements
similarity detection, using AI techniques, for the detection of duplicates between project
requirements. Based on a literature review, this thesis must be a practical evaluation
and a development proposal of duplicate detection in SE project requirements.

This work is developed within the OpenReq project, an EU-Horizon-2020 project
whose goal is "to build an intelligent decision system for community-driven RE". This
collaboration allows the usage of real requirements data to evaluate the algorithms
developed in this project.
Abstract (Catalan):
Machine-Learning (ML) i Natural-Language-Processing (NLP) són dues de les
principals àrees del camp de la Intel·ligència Artificial (IA). ML és una tecnologia de
propòsit genèric que utilitza l’anàlisi de dades per extreure coneixement del món real i
millorar la fiabilitat d’un procés, generalment aplicable a extreure prediccions
autònomes basades en observacions parcials de dades. Per altra banda, NLP

3

consisteix en el desenvolupament de representacions computacionals i el
processament de característiques del llenguatge natural.

Una de les seves principals àrees d’aplicació és l’Enginyeria de Requisits (RE), que
consisteix en el conjunt de processos de l’Enginyeria Software (SE) relacionats amb la
gestió del conjunt de requisits d’un sistema. Entre els reptes de la RE destaca la
detecció de requisits duplicats. Aquestes duplicitats, si no es gestionen, poden
comportar una redundància en la informació textual d’un projecte, i en conseqüència,
la duplicitat de tasques. Tot i així, l’automatització d’aquest procés i l’ús d’eines
estandaritzades es troba encara en fase de desenvolupament.

L’objectiu d’aquesta tesi és analitzar l’estat de l’art de la detecció automàtica de
similitud entre requisits d’un projecte utilitzant tècniques d’AI. D’acord amb aquesta
recerca, es planteja una avaluació pràctica i una proposta de desenvolupament d’un
sistema per la detecció de duplicats entre requisits d’un projecte de SE.

Aquesta tesi s’enmarca en el projecte OpenReq del programa EU-Horizon-2020.
L’objectiu d’aquest és “implementar un sistema de decisió intel·ligent basat en la
comunitat de RE”. Aquesta col·laboració permet l’ús de dades reals de requisits per
avaluar els algoritmes desenvolupats en aquest projecte.

4

Index

Acknowledgements 8

List of figures 9

List of tables 10

1. Introduction 11
1.1. Project description and motivation 11
1.2. General and specific objectives 12

1.2.1. Objectives prioritization 13
1.3. Approach and methodology 14

1.3.1. Development methodology 14
1.4. Work plan 15

1.4.1. Stage description and tasks 16
1.4.2. Risk management 18
1.4.3. Time plan deviations and mitigation techniques 19

1.5. Summary of obtained products and results 20
1.6. Thesis organization 20

2. State-of-the-art review 22
2.1. Definition of the research method 22
2.2. Planning the review 22

2.2.1. Identifying the need for a review 22
2.2.2. Specifying the review questions 24
2.2.3. Developing a review protocol 25

2.3. Conducting the review 27
2.3.1. Conducting the research 27
2.3.2. Selection of primary studies 28
2.3.3. Data extraction & synthesis 30

3. Systematic literature review results 31
3.1. General algorithmic approaches 31
3.2. Technologies in text-similarity evaluation 34

3.2.1. Natural Language Processing in requirements data 34
3.2.2. Machine Learning classification techniques 37

3.3. Data results and evaluation 37
3.4. Algorithm selection and technical analysis 39
4.1. System design and description 42

4.1.1. General overview 42
4.1.2. Requirements data: OpenReq schema 44

4.2. Software architecture 46
4.2.1. Controller-Service-Repository architecture 46

5

4.2.2. Technical specifications 47
4.3. Service integration 48

5. BM25F approach: an extension of an Information Retrieval algorithm 49
5.1. Algorithm analysis 49
5.2. Process development depiction 50

5.2.1. Requirements textual data preprocessing 50
5.2.2. BM25Fext algorithm 52
5.2.3. Similarity evaluation with metadata integration 52
5.2.4. Free parameters optimization 52

5.3. BM25F controller 54

6. FE-SVM approach: a feature extraction process with data classification 56
6.1. Algorithm analysis 56
6.2. Process development depiction 57

6.2.1. Requirements textual data preprocessing 57
6.2.2. Feature Extraction process 59
6.2.3. Support-Vector-Machine classification 60

6.3. FESVM Controller 62

7. Empirical experimentation: Qt’s use case 63
7.1. Use case description: duplicate detection in an issue repository 63
7.2. Technical experimentation preparation 64
7.3. BM25F experiments 65

7.3.1. Free parameters optimization process 65
7.3.2. Quality evaluation: recall-rate@k 65
7.3.3. Duplicate discernment: threshold evaluation 67

7.4. FE-SVM experiments 67
7.4.1. SVM classifier optimization process 67
7.4.2. Quality evaluation: lexical & syntactic cross-validation 68

7.5. Comparative evaluation between algorithms 69
7.5.1. Accuracy and solution quality 69
7.5.2. Performance: execution time 70

8. Conclusions 73
8.1. Objectives achievement 73
8.2. General project evaluation 75
8.3. Future work 75

A. Glossary of terms 77

B. Bibliography 78

C. Annexes 81
A. JSON OpenReq Schema 81
B. SVM configuration optimization results 83

6

7

Acknowledgements

This project has been developed in cooperation with the Software and Service

Engineering Group (GESSI) at Universitat Politècnica de Catalunya (UPC). The work

and results presented in this paper have been conducted within the scope of the

Horizon 2020 project OpenReq, which is supported by the European Union under the

Grant Nr. 732463.

Particularly, I would like to thank the Qt Group, a global software company involved as

a partner in the OpenReq project, for allowing the access and the use of the data used

in this dissertation.

Special thanks to Cristina Palomares Bonache, Jordi Marco Gomez and Xavier Franch

Gutiérrez for the opportunity to cooperate in this project and for the dedicated guidance

and counselling during the complete development process of this master thesis.

8

List of figures

Figure 1. Gantt diagram for the thesis work plan 16

Figure 2. Final Gantt diagram after applying the risk mitigation techniques 18

Figure 3. Summary of the Systematic Literature Review process 28

Figure 4. Requirements Similarity system general overview 42

Figure 5. Requirements Similarity modules (class diagram) 46

Figure 6. Basic NLP pipeline tasks 50

Figure 7. Basic NLP pipeline tasks result - requirement example 50

Figure 8. Syntactic NLP pipeline tasks 56

Figure 9. Syntactic NLP pipeline tasks result - requirement example 57

Figure 10. Recall-rate@20 experiment results 65

Figure 11. Requirements Similarity system tasks (generic representation) 70

9

List of tables

Table 1. Data extraction template for document reviewal 25

Table 2. General features analysis 32

Table 3. Text-similarity specific evaluation techniques features 36

Table 4. Data results and evaluation features 38

Table 5. Selection criteria & data synthesis evaluation 40

Table 6. Requirements data schema (with examples) 44

Table 7. Requirements Similarity technical specifications 46

Table 8. List of free parameters for the BM25F approach 52

Table 9. Summary of experimentation data 63

Table 10. Free parameter optimization results 64

Table 11. Recall-rate@k experiment set-up 65

Table 12. Cross-validation results (BM25F) with threshold 66

Table 13. SVM configuration optimization parameters 67

Table 14. SVM configuration optimization results (summary) 67

Table 15. Cross-validation results (FE-SVM) with k=10 68

Table 16. Algorithm qualitative results comparative analysis 68

Table 17. Execution time experimentation results (BM25F and FE-SVM) 71

10

1. Introduction
This section is an introductory description of the topic, the scope and the work
methodology plan for this master thesis, which is titled “Automated Similarity Detection:
Identifying Duplicated Requirements”.

1.1. Project description and motivation
Artificial Intelligence (AI) is a wide-known computer science area that has experienced
exponential growth both in the research field and in real use-case applicability. This
computational representation of human cognitive knowledge can be used in many
different areas of application, according to the features and the main goals of these
fields. Two of the most known areas of AI are Machine Learning (ML) and Natural
Language Processing (NLP).

On the one hand, ML is a “general-purpose technology” [1] that uses data and
information to learn real-world related knowledge and to improve the reliability of a
specific action. Its main application is to use this acquired knowledge to extract
autonomous predictions about partial observations of this data. In essence, these
systems or algorithms differ from traditional programming schemes due to the results’
accuracy improvement based on their own experience.

On the other hand, NLP has a large potential in different applications involving
automated, computational processes of all kinds of documents and textual items. This
technology applies to the task of developing partial representations of features and
rules of natural language based on its textual information, which includes both syntactic
and semantic knowledge [2]. The main purpose of this technology is to use this
representative knowledge in order to apply automated analysis and generation of text
units, such as comprehensive sentences or full documents.

One of the areas of application of AI - and more specifically, NLP and ML - is the
Requirements Engineering (RE) field. RE is the set of activities and processes of
Software Engineering (SE) focused on the development, analysis, communication, and
management of a set of requirements that describes the features of a system [3].
Software development experience in recent years proves that managing and
maintaining large sets of requirements have become critical issues. This problem is
even more challenging due to the management of a large amount of data and the
dimensions that these projects are dealing with nowadays. Whether the analysis and
the evaluation of requirements is a tedious, time-consuming task, it is critical that they
are carried out with both accuracy and efficiency in any software development project.

Between the main problems of RE, the detection and management of duplicated
requirements [4] is highlighted. If ignored, these duplicated items may lead to
redundancy in the textual information of a project and therefore this may lead to the
duplicity of tasks, which are critical issues from the project management perspective.
Moreover, the automation of this process and the standardized usage of specific,

11

accurate tools are still at a state-of-the-art stage. It is difficult to find open source tools
and frameworks providing generic, adaptive solutions for duplicate detection and most
of them are addressed to a very specific casuistic or use case (UC) [5]. In addition to
that, similarity detection algorithms are highly tightened to the quality of the data used
for the detection process [6].

This is the starting point of this master thesis: an analysis of the state-of-the-art of
automated requirements similarity detection, using artificial intelligence techniques,
for the detection of duplicates between project requirements. Based on a research of
the state-of-the-art, this master thesis is not only a practical evaluation of real duplicate
detection algorithms and scenarios in software engineering project requirements. It is
also a software development proposal which integrates different similarity
detection techniques and tunes them based on the defined use case, which is the
subject of study of this master thesis.

This thesis will be developed within the OpenReq project [7], an EU Horizon 2020
project whose main goal is “to build an intelligent recommendation and decision system
for community-driven requirements engineering”. This collaboration allows the usage of
real requirements data to evaluate the similarity detection algorithms developed in this
project.

The details about the scope and the goals of the project are depicted in the following
sections.

1.2. General and specific objectives
Based on the motivations and the field of study introduced so far, the global objectives
of the project are listed below.

[O1.] To research the state-of-the-art of the requirements similarity detection
field. This document must include a summary of the collected information
related to the application of similarity detection in the RE field. The achievement
of this goal guarantees the necessary input knowledge to propose and develop
the algorithmic tool to evaluate a real duplicated requirements detection
scenario.

[O2.] To develop a requirement similarity-detection multi-algorithm tool. The
main core of the developed software must be the technical implementation of
the algorithms selected to be evaluated. This development must satisfy usability
and evaluation requirements so that it is possible to analyze and to extract
conclusions from the achieved work.

[O3.] To define and to evaluate a real application use case for duplicated
requirements detection. As part of the Horizon 2020 European project
OpenReq, this thesis will be tested against a real use case dataset from a
company - a set of requirements including duplicated and not duplicated items.
Therefore, one of the main goals must be to set up the experiment and data
preprocessing, so the data can be tested with the developed tool. The execution

12

of the experiments must provide tools and techniques to extract empirical
results to evaluate at the end of the project, allowing to conclude the thesis with
considerations and valid knowledge on the performance and accuracy of the
algorithms.

From these general objectives, it is necessary to apply a refinement and a prioritization
that leads to the future definition of specific tasks. For this purpose, the list of specific
objectives is listed below.

[O1.1.] To study the current status of similarity detection in the RE field from a
general point of view.

[O1.2.] To review and to enumerate similarity detection techniques/algorithms,
and specifically the ML and NLP techniques that represent the state-of-the-art of
the field.

[O1.3.] To identify potentially suitable algorithm candidates for the master thesis
and the use case to be validated with.

[O2.1.] To elaborate a development proposal for the implementation of the
selected algorithms.

[O2.2.] To integrate the algorithms with a unique tool to use and to test the
different similarity detection scenarios.

[O3.1.] To evaluate the requirements input data of the algorithms, in order to
guarantee a comprehensive analysis of the results.

[O3.2.] To optimize and adapt the algorithms based on the requirements of the
use case.

[O3.3.] To analyze and to prepare a use case dataset for all scenarios (i.e., all the
different similarity detection algorithms).

[O3.4.] To carry out the experiments using the developed algorithms.

[O3.5.] To perform a comparative analysis between algorithms.

[O3.6.] To extract conclusions in terms of the reliability of the results and the
performance of the algorithms.

1.2.1. Objectives prioritization
The above specific objectives describe the required achievements to be completed
during the development of this thesis in order to guarantee the satisfaction of the three
main goals. Therefore it is necessary to ensure that all of them are achieved by the end
of this master thesis. For this purpose, a prioritization is defined based on a refinement
of those objectives that can be adapted and prioritized to be partially achieved. For
each one of these objectives, a high priority achievement status and a medium priority
achievement status are proposed.

13

[O2.1.] “To elaborate a development proposal for the implementation of the selected
algorithms.”

a. High priority: to develop a minimum number of two algorithms, which
must represent different approaches of the state-of-the-art similarity
detection proposals.

b. Medium priority: given the situation when the required amount of time to
analyze and develop the first two algorithms is more than enough, it can
be considered to add a third algorithm to the developed system.

[O3.6.] “To extract conclusions in terms of the reliability of the results and the
performance of the algorithms.”

a. High priority: to extract reliability results that allow the analysis of the
accuracy of the algorithm, without considering the performance or the
execution time of the algorithm.

b. Medium priority: to extract both reliability and performance results,
performing a complete analysis that evaluates a balance between the
efficacy of the algorithms and its efficiency.

1.3. Approach and methodology
The general and specific objectives of this master thesis are oriented to base the
development in three main edges. The first one is a state-of-the-art review, which is
documented and presented in this thesis document. The second one is the
development of a RE system which handles the management of requirements data and
the similarity evaluation for the identification of duplicated requirements. The third one
is an experimentation stage for a qualitative, comparative analysis between the
algorithms.

This document is a report of all the work developed as part of the thesis. Additionally,
the software system developed is published on a public Github repository, which is
available here: https://github.com/quim-motger/tfm.

The commit history log of the repository can be additionally used to follow the
development and the tasks that have been completed. Moreover, the repository
includes documentation for developers such as a README file with technical
information.

1.3.1. Development methodology
This thesis has been developed following a Kanban-based methodology with some
general influences from Scrum, which has been proven to be a good approach for
projects of this kind of nature (in terms of size and effort) [8]. This decision is justified
by three main reasons.

First of all, it seems suitable to propose an agile software development methodology to
achieve the goals depicted in this document. Although this project starts from a clear,

14

https://github.com/quim-motger/tfm

specific stage, and the objectives are detailed enough, the research of the
state-of-the-art phase will deeply condition the specific tasks that will be done during
the technical implementation and the evaluation process (i.e., the number and nature of
algorithms to be integrated into the tool and that will be afterwards evaluated). It is
necessary to handle certain flexibility in terms of requirements and tasks during the
project's development.

Second of all, this methodology aims to provide results in short-term cycles by
scheduling fine-grained tasks that guarantee the success of the project's objectives.
Following one of the main guidelines of Kanban, which is the visibility and traceability of
the tasks, it is intended to provide a dynamic framework that will allow to complete
tasks in a short period by identifying, detailing and scheduling them according to the
general schedule planning of the master thesis (see section 1.4.1).

Finally, and following with this last criterion of cyclic and iterative results, one of the
main goals of this methodology is to hold weekly retrospective and plan meetings,
comparable to analogue meetings from the Scrum methodology, with the thesis
director. These meetings will allow not only a constant review of the work that has been
done but an iterative review of the remaining tasks and the different potential lines of
work that might arise during the development of the project.

For achieving and applying the previous methodology plan, it is required to identify and
describe the two main artefacts or activities that will guide the project's development.

● Tasks backlog maintenance. Based on the Scrum task backlog artefact and
the task workflow suggestions from Kanban, a project tasks backlog will be
used to identify, classify and organize the development of each of the tasks
raised during the development of the project. The specific workflow
implementation for this project will be as follows:

To-Do → Analyzing → Doing → Review → Done

● Retrospective and plan meeting. A regular weekly meeting with the thesis

director is proposed to keep track of the general progress of the project. This
meeting must include some of the general activities of both the retrospective
meeting and the sprint plan meeting from SCRUM [9]. Therefore, the length of
each sprint is set to 1 week - which is a short period but will be useful to
guarantee the achievement of goals and deadlines as scheduled.

1.4. Work plan
To achieve the specific objectives of this thesis, this section introduces the details of
the list of tasks to carry out and a proposal of the schedule for its achievement
according to the deadlines of the project. For this purpose, risk identification and
mitigation proposals are also introduced.

15

1.4.1. Stage description and tasks
The work plan is based on a 4-stage plan where each task is defined and assigned with
a specific effort estimation. This effort takes into consideration the total number of
hours of the project (~300h) and the number of weeks from the beginning of the project
(September 16th) to the last submission deadline (January 8th). Consequently, the plan
is based on 17 weeks between the beginning and the end of the project. It is necessary
to try to keep a balance between the amount of effort required in each week, which
must be a value between 15h and 20h.

1. Plan. The main goal of these tasks is related to defining a project proposal and
to define the main features of its development before starting to develop the
core part of the master thesis.

Tasks
[P1.] To perform an initial, generic research about the area of interest of the

master thesis (25h).
[P2.] To define the topic and scope of the project (5h).
[P3.] To identify generic and specific goals (5h).
[P4.] To describe and to justify a work methodology (5h).
[P5.] To elaborate a schedule planning, according to deadlines and available

resources (12h).
[P6.] To identify risks and to propose mitigation plans (3h).
[P7.] To structure the thesis document and the periodical deliverables (5h).

Total number of hours = 60 hours

2. Research. Includes all the tasks related to the state-of-the-art review, as well as

the study and the analysis of ML/NLP techniques, algorithms and technologies
for the similarity detection field.

Tasks
[R1.] To define a methodology to conduct the research (15h).
[R2.] To research the state-of-the-art literature of the automated similarity

detection field (20h).
[R3.] To study and analyze a selected subset of algorithms and techniques of

interest (15h).
[R4.] To identify a set of potential similarity detection algorithms to be

developed (8h).
[R5.] To analyze and to compare the set of pre-selected algorithms (10h).
[R6.] To select those similarity detection algorithms or techniques for

duplicated requirements to be implemented and evaluated (8h).

Total number of hours = 76 hours

3. Development. Having the knowledge and the information extracted as a result
of the Research phase, it is possible to start all the tasks related to the technical

16

development and implementation of the algorithms and the final software
project.

Tasks
[D1.] To identify and to study the specific NLP/ML technologies and

frameworks used in the different algorithms (15h).
[D2.] To implement a Proof-of-Concept (PoC) software for each algorithm

and its techniques (30h).
[D3.] To validate and to test the scalability of the algorithms for the general

use case scenario (8h).
[D4.] To implement stable, usable versions of the algorithms (20h).
[D5.] To integrate the implementation of each algorithm within a tool for

usage and evaluation purposes (8h).

Total number of hours = 81 hours

Figure 1. Gantt diagram for the thesis initial work plan

4. Experimentation. Finally, the tool resulted from the Development stage must
be used to run experiments based on a real use case scenario and to extract
useful information about the performance of each algorithm.

Tasks
[E1.] To define a set of experiments (i.e., a set of requirements) to test the

algorithms (8h).
[E2.] To describe the measures and statistics to use for comparison analysis,

which should be useful for both an accuracy and a performance analysis
(4h).

[E3.] To run experiments and to collect results (10h).

17

[E4.] To analyze collected data and to extract final conclusions (10h).

Total number of hours = 32 hours

Additionally, there are two tasks related to non-technical tasks of the project: the Thesis
writing (40h) and the Presentation (10h) elaboration. Together with the 4-stage work
plan depicted above, the total effort planned to dedicate to the project is 299 hours.

The schedule plan of the stages and tasks detailed in the previous paragraphs is
presented in Figure 1, which is a Gantt diagram representation of the schedule plan per
week, from the beginning of the project until the deadline of the project. For
simplification purposes, its granularity is defined at week level. However, the work plan,
the distribution of tasks and the number of hours required for each task consider weeks
with 5 working days and the distribution of workload considering holidays, like
Christmas time period.

Notice that the submission deadline for the master thesis is on December 31st. The
writing of the final document is planned to be done simultaneously and progressively
during the development of the project.

1.4.2. Risk management
In this section, potential risks that might arise during the development of the project are
identified, as well as a proposal of mitigation activities for reducing the impact of these
risks in the achievement of the goals described in section 1.2.

[R1.] Deviation of the original schedule. It is possible that the estimated time
resources for each task may not always be accurate enough, leading to a delay
in the completion of tasks and as a consequence a delay on finishing stages on
time to keep the project on track.

○ Mitigation. As a preventive measure, to elaborate a stage plan
assigning timing resources in a preventive way, dedicating a ratio of
extra hours per task and a time period at the end of the project to correct
possible delays with respect to the original plan. If this is not enough, a
prioritization of specific tasks that will not compromise the achievement
of the main goals of the project will be proposed.

[R2.] Unexpected obstacles in developing a similarity detection algorithm.
The most critical part of the project is all problems related to the implementation
and development of the similarity detection algorithms identified and selected
during the Research phase. Some of these algorithms may be complex to
develop due to different causes, like a lack of knowledge of a specific
technology, or the raise of issues or requirements not identified during the
state-of-the-art analysis.

18

○ Mitigation. To analyze in iterative cycles (i.e., during retrospective
meetings) the algorithms development viability and evaluate if necessary
the possibility to discard or to change the requirements of the project.

[R3.] Unexpected results or difficulties in the use case evaluation. It is
possible that an algorithm's execution leads to unexpected problems for
evaluation purposes, such as a bad estimation of the required resources for its
execution. These resources can be conceived as technical resources (i.e.,
enough RAM) or human/time resources (i.e., its development is more complex
than expected, or a single execution requires too much time to be evaluated).

○ Mitigation. As a preventive measure, to dedicate specific effort during
the state-of-the-art analysis to understand the nature of the algorithms
and to identify the requirements for its execution. If this is not enough
and the risk is materialized, an alternate approach would be to reduce
the size of experimentation and try to apply a scalar analysis for the real
use case application.

1.4.3. Time plan deviations and mitigation techniques
During the final stage of the development of this master thesis, it has been necessary
to extend 1 week the Experimentation stage to finish task E4. This has led the project
to an extension of the Thesis writing stage until the deadline of the thesis submission
(December 31st) and an extension of the Presentation stage until the deadline of its
submission (January 8th).

During the Plan stage, it was proposed to design a preventive schedule as a mitigation
technique for the possible risk materialization of a delay in the achievement of some of
the tasks. This preventive schedule was designed to finish the whole master thesis
project by December 16th - 2 weeks before the real deadline of the project. It was
decided to apply this preventive mitigation technique to avoid that a small schedule
deviation could lead to unaccomplished tasks or goals, which would have been a major
impact on the thesis development. Figure 2 shows the performed schedule according
to this minor deviation.

Therefore, thanks to this preventive mitigation risk technique, and based on the
analysis of these minor time deviations, it can be concluded that the satisfaction of
goals has not been compromised and the thesis has been successfully finished by the
time of submission.

19

Figure 2. Final Gantt diagram after applying the risk mitigation techniques

1.5. Summary of obtained products and results
In this section, a brief summary of the obtained products and results during the
development of this master thesis are provided. Notice that this section does not refer
to the organization of this results in this document. This is addressed in section 1.6.

● Project task backlog. A Trello board used for task administration and task
refinement, following the Kanban guidelines described in the work plan report.

○ Reference: https://trello.com/b/4q7jVgd5/master-thesis

● Literature review results. After a data synthesis and extraction process, a
comparative analysis with general state-of-the-art considerations is presented.

● Requirements Similarity system. Published in a Github repository that
includes all source code of the Requirements Similarity system and
requirements data artefacts used for the system development.

○ Reference: https://github.com/quim-motger/tfm

● Experimentation results. Experimentation data including reliability and
performance results, both qualitative and quantitative, to evaluate and to
compare the implemented similarity detection algorithms.

1.6. Thesis organization
Based on the organization of this document, a general overview of its content and
structure is provided.

20

https://trello.com/b/4q7jVgd5/master-thesis
https://github.com/quim-motger/tfm

Chapter 2. - Literature research process. Depiction of a systematic literature
review process, including a protocol description and the report of the research
process itself.

Chapter 3. - Algorithm evaluation & selection. The report of the results
obtained during the data extraction & synthesis steps, using the information of
the literature review. This leads us to the algorithm comparative analysis and
the selection process for future development.

Chapter 4. - Requirements Similarity system overview. A depiction of the
requirements and the features of the Requirements Similarity system design
and development.

Chapter 5. - BM25F algorithm development. A description of the BM25F
approach for duplicated requirements detection and the development process.

Chapter 6. - FE-SVM algorithm development. A description of the FE-SVM
approach for duplicated requirements detection and the development process.

Chapter 7. - Experimentation & comparative analysis. It includes the
experimentation set-up and the analysis results of the execution of each
algorithm.

Chapter 8. - Conclusions. Final conclusions of the thesis development, including
a proposal of future lines of work.

More details about each section are provided in each chapter of this thesis.

21

2. State-of-the-art review
In the following sections, the details about the research method used to describe the
state-of-the-art of the similarity detection techniques in duplicated text detection are
introduced.

2.1. Definition of the research method
First of all, it is necessary to define a protocol to carry on the research. In order to avoid
a vague research methodology that could lead to poor results, it is aimed to define a
review method based on a systematic review. Using this guidance, it is ensured a
thorough literature review of the field of interest (i.e., similarity detection in natural
language texts) of significant scientific value, which is used in this thesis as the
foundations for the main developed work.

For this purpose, it is proposed to follow the guidelines of B. Kitchenham's
systematic review methodology [10], which is focused on applying this review
process in the software engineering research field. These guidelines include a series of
well-defined stages and processes for planning, conducting and reporting the review.

Therefore, it is proposed to design and implement the following steps for the systematic
review, based on Kitchenham's proposal.

1. Planning the review (see section 2.2)
a. Identifying the need for a review
b. Specifying the review questions
c. Developing a review protocol

2. Conducting the review (see section 2.3)
a. Identification of the search
b. Selection of primary studies
c. Quality assessment study
d. Data extraction and data synthesis

3. Reporting the review (see section 3)

2.2. Planning the review
The following subsections describe the three main steps of the systematic review
planning. In this stage, the scope of the research is refined based on the scope of this
project by establishing the general requirements of this task (i.e., what was to be
researched about or where it is going to be looked for the required knowledge) and all
related details about how to perform this review.

2.2.1. Identifying the need for a review
As a first step, it is necessary to justify the need for a systematic review in the similarity
detection field for this master thesis. This can be related to the objective O1:

[O1.] To research the state-of-the-art of the textual similarity detection field.

22

Although this state-of-the-art research could be executed following alternative methods
to the systematic review, this approach is justified for two reasons.

The first one is related to the requirements and specific objectives of this project. The
purpose of developing and evaluating specific similarity detection algorithm
implementations is to provide empirical demonstrations of the most important proposals
in identifying paraphrase textual units. Furthermore, and as a contribution to the field, it
is important to evaluate how these approaches behave in the requirements similarity
detection field. It is required to ensure that this review is thorough enough to provide a
general overview of the main proposals considered as suitable for solving this problem.
This output can then be used as an input to choose specific implementations to
develop and to evaluate in the scope of this master thesis.

The second one is related to the available literature in textual duplicate detection.
Kitchenham's methodology states the importance of looking for any systematic reviews
available on the field, which in case of existing would undermine the need for
performing a systematic review for this master thesis. Therefore, the first step is to
focus on looking for already available state-of-the-art reviews.

This research is focused on looking for any review related to the similarity detection
field using Natural Language Processing, Machine Learning or general Artificial
Intelligence techniques. To increase the results of the research, it is not only focused
on systematic reviews but in any kind of research regardless of the methodology.

The following databases are used to look for literature review of the field of study:

● Scopus [11]
● ACM Digital Library [12]
● IEEE Xplorer [13]
● Science Direct [14]

Based on the target of the literature review, a search string composed of three blocks
of data or information is proposed. These blocks include the following topics:

1. Similarity detection field. Any match with “similar*”, “duplicat*” or “paraphras*”
is used. These are three of the main synonyms used to refer to a pair of texts
which may be considered as equivalent.

2. Artificial Intelligence technologies. The search must be restricted to the
detection of similar textual items using AI technologies, with a special emphasis
in NLP and ML techniques, which represent the main approaches for this issue.

3. State-of-the-art review. In this stage of the systematic review, it is necessary
to focus only on papers and publications which contribute to providing a detailed
state-of-the-art analysis. Therefore, it is important to use terms such as “review”
or “state-of-the-art” and “state of the art” as part of the search. This will
guarantee that one of the main goals of the results in the search is focused on
providing this state-of-the-art as an output of the publication.

23

Consequently, the following search string is proposed:

(similar* OR duplicat* OR paraphras*) AND ("natural language"
OR "machine learning" OR "artificial intelligence" OR "AI" OR

"NLP" OR "ML") AND (review OR "state of the art" OR
“state-of-the-art”)

This search is applied to the title and the keywords of the publications - this will ensure
a minimum noise on the results which are not specifically focused on these three main
blocks.

These are the results:

● Scopus - 1 result.
● ACM Digital Library - 1 result.
● IEEE Xplorer - 0 results.
● Science Direct - 0 results.

The publication reported by Scopus [15] is related to automated text generation
focused on the summarization of user reviews. On the other hand, the publication
reported by ACM Digital Library [16] is focused on a state-of-the-art analysis for
sentiment scoring via a paraphrase text generation algorithm. Both publications are out
of the scope of this thesis.

After a general overview of these results, it is possible to conclude that none of the two
results is related to the paraphrase detection field in natural language texts and hence
they can be excluded.

As a conclusion, there are no publications providing a detailed, structured analysis of
the state-of-the-art techniques for similarity detection between natural language text
pairs. Therefore, it is confirmed the need for a systematic review as the first step of this
master thesis.

2.2.2. Specifying the review questions
Kitchenham's methodology states the need for defining three elements of the research
to help to design and to define the review scope. Applied to the software engineering
field, these items are:

● Population. It refers to groups or agents (subjects) that are affected by the
intervention of the review question. This thesis, and due to the fact that natural
language paraphrase detection is a wide application area, is generally focused
on Software Engineering teams (developers, team managers...), which are the
agents interested in using this automated techniques for solving the problem
addressed in this master thesis.

● Intervention. It applies to the technologies used to address a specific issue.
The research is focused on the automated similarity detection techniques and
the algorithmic approaches using machine learning, natural language
processing and artificial intelligence techniques in general.

24

● Outcome. It relates to factors and output data which are relevant to evaluate
the quality of a specific solution and to compare them. For evaluating the quality
of the developed algorithms, the research is focused on the accuracy and the
performance of these solutions.

Using these three elements as an input, the systematic review is focused on solving
two related research questions:

1. How does the software engineering community handle automated similarity
detection between natural language text pairs using AI (i.e., NLP and ML)?

2. Which are the results of these general approaches in terms of accuracy and
performance and which are considered as the best approaches from a
qualitative point of view using these indicators?

2.2.3. Developing a review protocol
Once the basis of the review has been established, the next step is to define a practical
review protocol to be applied when conducting the search. This synthesizes which data
to look for, the filters to apply to the result data, and how to extract and analyze the
information of each publication from a practical point of view.

2.2.3.1. The search strategy: search & selection procedures
As it has been done to justify the need for a systematic literature review, the search
strategy focuses on answering the questions what (i.e., which data does the research
aim to look for) and where (i.e., which databases are going to be used).

● The selected databases are the same ones used in section 2.2.1: Scopus, ACM
Digital Library, IEEE Xplorer and Science Direct. These are publicly well-known
databases which cover a significant amount of conferences, journals and other
publications, with a special emphasis in the computer science field.

● The search string is composed of two of the three main blocks of the one used
in section 2.2.1, removing the part related to the state-of-the-art review:

(similar* OR duplicat* OR paraphras*) AND ("natural language"

OR "machine learning" OR "artificial intelligence" OR "AI" OR

"NLP" OR "ML")

Once the required input data for the research has been selected, a review protocol can
be refined to look for and to filter the research results. This protocol is proposed to
follow three steps:

1. To search in the databases using the search string defined above.

2. To merge the documents into a single repository and to remove duplicates (i.e.,
publications found in more than one database). For this purpose, and for future
management tasks related to the literature documentation, it is proposed to use
the Mendeley tool [17], a research documentation reference manager.

25

3. To filter the documents following a study selection criteria. This procedure is
proposed to follow the next stages.

3.1. First, to filter publications by title, removing all results that are clearly out
of the scope of this research.

3.2. Second, to filter by reading the abstract of the publication.

3.3. Third, to filter by giving a general overview of the document, also known
as skimming. This includes reading some of the main important sections
(i.e., introduction and conclusions) or evaluating the general structure of
the paper.

3.4. Fourth, to give a full reading to the document

2.2.3.2. Data extraction & synthesis strategies

Topic Questions

The domain of the
proposal

Is it a domain-specific proposal? If it is, which domain does it apply
to?

Objects of similarity
detection

Which are the subjects of the similarity detection (full documents,
short texts, sentences...)? Does the proposed methodology apply to
a specific textual entity?

Similarity algorithm
description

Does it include a sequential description of the technical process? Is
it detailed enough to reproduce?

NLP preprocessing Does the algorithm include an NLP preprocessing step? Which are
the tasks related to natural language preprocessing of the data?

Similarity functions Are any word-to-word similarity functions used? If so, which ones?

Machine learning
classification process

Does the algorithm include a classification process? Which kinds of
features are used (semantic, lexical, syntactical…)?

Output results Is a similarity score available for each pair of compared text items?
Is there an implicit/explicit classification result (i.e., are duplicates
retrieved by the algorithm itself, or a threshold score must be used)?

Frameworks and
external tools

Is there a list/reference to NLP/ML frameworks and third-party tools
used for the similarity detection process? Are they free-to-use?

Experimentation Is the algorithm tested with real-data experiments? Is data available?
Which kind of data is used (type, volume…)?

Results Is there any reference to results in terms of accuracy? Reliability?
Execution time? Used hardware resources?

Evaluable tools Is the proposal distributed as a tool or piece of code which can be
tested?

Table 1. Data extraction template for document reviewal

26

A data extraction template (see Table 1) is proposed to fulfil for each document of the
systematic review. The purpose of this template is to provide a general, structured
analysis of the most relevant issues of each publication.

2.3. Conducting the review
This section describes the process of the conducted review and all the decisions that
have been made along this process, in correlation with the previous systematic review
plan. It also collects the problems and difficulties found during the systematic review
process.

2.3.1. Conducting the research
This section relates to steps 1 and 2 of the review protocol: “To search in the
databases using the search string defined above” and “To merge the documents into a
single repository and to remove duplicates”.

Two main problems were faced during the search:

● Due to the complexity of the search string, which uses a logical combination of
union and intersection logical operations between terms, it was required to
adapt the search string to each consulted database. Each document search
engine uses its own syntax to define searches and these logical operations
between strings and hence it was necessary to adapt and test each one to
guarantee the results were applying to the defined criteria.

● As introduced in section 2.2.3, it is necessary to identify and remove duplicated
results from the search in order to avoid redundancies. Sometimes publications
metadata or document variations present some anomalies making it difficult to
automatically detect these duplicates. However, using the previously mentioned
Mendeley tool, it is also possible to detect documents which are not exact
duplicates but have a high probability of being replicates. This feature was used
to solve this issue.

After facing the first issue, the search was conducted, retrieving the following results:

● Scopus - 193 results
● ACM Digital Library - 121 results
● IEEE Xplorer- 38 results
● Science Direct - 6 results

The previous list only indexes individual results for each database. The second step of
the review protocol was to use the reference manager to remove duplicates and nearly
duplicates, which relates to the second problem faced during this step.

● Total nº documents = 358
● Duplicates = 48
● Almost duplicates = 11
● Final nº documents = 358 - (48 + 11) = 299

27

At the end of step 2, the research has achieved a total number of 299 publications to
be reviewed in the following stages.

2.3.2. Selection of primary studies
This section relates to step 3 of the review protocol: “To filter the found documents
following a study selection criteria”. This phase is composed of 4 sub-steps where each
one acts as a filter to reduce the number of documents based on non-relevant research
studies identification.

The first step is to filter by the title of the publication. After this filter, the number of
documents is reduced from 299 to 74, which means a total of 225 papers are removed
from the manager tool. The main reasons for discarding these documents are covered
in the following list:

● An important number of papers are focused on the medical field - specifically,
they address detecting similarities and replication patterns using artificial
intelligence techniques, such as parallel patients, or disease diagnosis by
medical recognition. All papers focused on different areas than natural language
similarity are rejected.

● Some of the publications are focused on grammar and syntax knowledge of
non-romance languages like Hindi or Chinese. The rules and techniques of
natural language are highly coupled to the main characteristics of the language
itself. Therefore, these publications are excluded and the research is focused
on those using techniques for the English language.

● Although matching the search string and none of the above restrictions, some
titles suggested that some of the works were focused on solving different
problems that are out of the scope of this master thesis - for instance, language
translation. These works are also removed from the article repository.

All works which title does seem to focus on the research field and do not satisfy any of
the restriction criteria commented above are passed to the next step.

The second step is to filter by the abstract by reading it carefully and acquiring a
deeper understanding of the subject that the information provided by the title, which
sometimes might be vague or imprecise. In this second step, the number of works is
reduced from 74 to 34, discarding a total of 40 works due to reasons like the ones listed
below:

● Some abstracts give a deeper knowledge on some of the filtering criteria used
on the previous step, like out of field subjects (i.e., an abstract introduced that
the work was focused on web-service similarity) or the use of different
languages (i.e., Turkish).

● Some works that study the text-similarity are not focused on the semantic
dimension, but on other criteria such as the authorship of a piece of text.
Therefore, they target the study of properties and other criteria which are of no
interest for the scope of this thesis

28

The third step is based on applying a skimming or general overview evaluation of the
whole work, reading some of the main parts and studying the general structure and
main features of its contributions. In this step, the number of documents is reduced
from 34 to 15. Listed below are some of the filter criteria used in this stage:

● Non-relevant contributions or out-of-date approaches that are outdated by more
recent works are removed. By applying this simplification, redundancy is
decreased.

● Works claiming poor results or a lack of achievement of their main goals.
● Some works are focused on studying and analyzing the word-to-word similarity

evaluation. Technical details and the study of word-to-word similarity are
assumed to be already acknowledged and this master thesis focuses on
providing solutions for the similarity detection between text pairs, specifically NL
requirement pairs.

● Some of the general approaches are ontology-based, which means they require
an explicit, modelled knowledge of the domain of the input data to detect
similarities. It is decided to discard this kind of solutions from the scope of this
thesis. This is justified due to the fact that the data of the validation use case of
this project does not contain any kind of explicit ontology-based domain
knowledge, and it was not possible to achieve it.

● Solutions and algorithm proposals with a clear lack of details for analyzing and
reproducing the solutions by developing them are also removed.

Finally, a full reading filter is applied for each publication. As a final result, 12 of the
last 15 works are selected. The last removals are justified below:

● A paper was too focused on plagiarism and it was more an index of tools and
frameworks than a proposal or a technical description of a similarity process.

● A paper was too focused on a tool portfolio and although it provided results and
an overview of different algorithms and tools, it did not introduce further details
that were necessary to the research.

● A paper required a first process in which training data required chunk
identification. Moreover, it did not include enough detail for all features used in
the feature extraction process (a total nº of 247 features).

Figure 3 provides a general overview of the systematic literature review process, from
the search of the identified databases to each one of the filters applied in this step.

Figure 3. Summary of the Systematic Literature Review process

29

The following list enumerates the publications extracted from the systematic literature
review whose algorithms are going to be evaluated.

● P1. “Sentence similarity based on support vector regression using multiple
features” [18]

● P2. “An approach to detecting duplicate bug reports using natural language and
execution information” [19]

● P3. “Towards more accurate retrieval of duplicate bug reports” [20]
● P4. “Statistical Analysis of ML-Based Paraphrase Detectors with Lexical

Similarity Metrics” [21]
● P5. “Machine Learning Based Paraphrase Identification System using Lexical

Syntactic Features” [22]
● P6. “FBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning

Approach for Interpretable Semantic Textual Similarity” [23]
● P7. “Paraphrase identification on the basis of supervised machine learning

techniques” [24]
● P8. “Learning Term-weighting Functions for Similarity Measures” [25]
● P9. “Robust semantic text similarity using LSA, machine learning, and linguistic

resources” [26]
● P10. “A grammar-based semantic similarity algorithm for natural language

sentences” [27]
● P11. “Detection of duplicate defect reports using natural language processing”

[28]
● P12. “Paraphrase Recognition via Dissimilarity Significance Classification” [29]

2.3.3. Data extraction & synthesis
The previous steps of the systematic literature review lead us to an output of 12
relevant documents to answer the research questions. To complete this stage of the
master thesis, it is needed to extract all required data using the data extraction
template described in Table 1. These questions and topics will allow us to analyze and
structure all the acquired knowledge from the literature review in a systematic,
organized way.

The results of this last step are introduced in the following section as a similarity
detection state-of-the-art report.

30

3. Systematic literature review results
The following sections provide a thorough depiction of the state-of-the-art of natural
language similarity detection processes using NLP and ML technologies.

First of all, a general overview of the different algorithmic approaches is presented. The
topic is introduced by analyzing how the most up-to-date solutions try to solve the
evaluation of the similarity between two pairs of texts. This includes understanding
what kind of data do they work with, what are the results, and what kind of technologies
are used to evaluate this similarity.

Second of all, NLP and ML technologies mentioned in these contributions are
introduced, and it is analyzed how do they apply in paraphrasing detection. For the
general algorithmic solutions, it is studied which kind of NLP techniques are used and
how do they help in this process. Additionally, those solutions that require a
classification process for duplicate/not-duplicate discernment are highlighted

Third of all, it is important to understand which kind of metrics are used for evaluating
the efficacy and the efficiency of these solutions.

Finally, an analysis of the algorithm is provided and the selection of the final algorithms
to be developed is justified.

3.1. General algorithmic approaches
The first step to understanding how the Software Engineering community is handling
paraphrasing detection is to try and classify the different algorithmic solutions in
general categories. From this general structure, it is possible to depict the details, the
context and the technical specifications of each of these approaches.

After a full reading of the documents, it is proposed a classification in 3 main general
approaches for evaluating the similarity between natural language text units. This
classification is similar to the one proposed by Fu et al. in [18], but it is intended to
provide a more abstract proposal which can be understood without specifically referring
to sentence-similarity, as [18] does. Additionally, further details related to the
information from other contributions are provided.

1. Align-based similarity. Generally, alignment approaches analyze pairs of
documents or sentences individually, as isolated pairs of text units. From this
analysis, an alignment approach is carried out: words and extracted features
from each text unit are aligned and compared with the other pair, and for each
comparison, a score or a quality coverage is assigned. According to these
results, it is possible to determine whether a pair of texts is similar or not.

2. Vector-based similarity. These approaches transform each document or
sentence into a bag-of-words vector. This unidimensional data structure allows
analyzing a text unit as a set of words or tokens, where each word has a
frequency and a position in the text unit. The global representation of all text

31

units, which is usually called the corpus, can then be analyzed as vector-space
representations. As a consequence, vectors representing each text unit are
used for computing a similarity measure for each pair of documents or
sentences.

3. Feature extraction with supervised classification. These machine learning
approaches define a two-step process. First, for each pair of text units, a series
of features are extracted using different NLP techniques. These features usually
include both lexical and syntactic analysis (see section 3.2.2 for more detail).
Second, these featured pairs of text units are used to apply a supervised
classification process. In this process, a set of labelled data (i.e., pairs of
documents/sentences labelled as duplicate or not-duplicate) is used to train a
classifier, which after training can be used to predict whether a new pair of text
units are duplicates or not.

The solutions described above share a significant amount of processes and
techniques, especially those related to NLP, similarity measures and feature extraction
processes. These techniques are analyzed in section 3.2.1.

From this general classification, the first feature to use as a criterion to classify and
select the algorithms to be developed is defined as follows:

❖ F1: algorithm type. Algorithm classification in 3 general categories: align-based
algorithms (AB), vector-based algorithms (VB) and feature extraction with
supervised classification algorithms (FE). This criterion is not used to exclude
but to classify and encourage a comparative analysis between different
algorithmic approaches

Another noticeable detail from a general point of view is that similarity detection
between text units is highly coupled with the context of the similarity evaluation
problem it is required to solve. This context can be expressed in terms of which kind of
data is evaluated and what kind of similarity is explored.

With respect to the data, the main contributions in the field mostly focus on similarity
detection between isolated, individual pairs of sentences. This implies that the similarity
evaluation result will not depend on the global dataset or corpus used for the analysis.
In some situations, this might be an advantage, as the quality of the algorithm does not
depend on the quality or the amount of available data - which is also one of the
requirements for supervised classification processes. However, ignoring the context
and the implicit knowledge of the domain of the documents can also reduce the quality
of results, especially when working on a very specific domain.

Context also determines how the similarity detection problem is applied to a specific
use case. Some approaches like [19] or [20] are focused on retrieving duplicate issues
(i.e., requirements) in a bug repository. These repositories usually contain large
amounts of data, and the duplication retrieval problem applies to evaluate whether a
new issue may be a duplicate to another one already reported. In these situations, it is
additionally required to provide a specific evaluation algorithm for the described use

32

case. Therefore, quality results and execution time of the proposed solutions must be
suitable for the use case.

Two features are defined from these observations:

❖ F2: sentence / full-text. Whether the algorithm is focused on comparisons
between pairs of sentences (S) or full texts or documents (D).

❖ F3: requirement focused. The contribution is focused on a specific text entity
based on a real use case from the RE field.

With respect to the kind of similarity, this relates to understanding what similarity
means. Some approaches focus exclusively in similarity as the level of paraphrase
between two sentences or texts. This means at which level two text units are
expressing the same idea. Other approaches focus on analyzing if two text units are
talking about the same topic, with almost no differences. This can be summarized as
the difference between lexical and syntactic similarity. An example can easily illustrate
the difference between these two approaches. Let’s consider a pair of sentences:

S1 : My cat is following your dog.

S2 : Your dog is following my cat.

If focusing on the semantic meaning of each sentence, it can be easily concluded that
S1 and S2 are describing exactly opposite situations. A syntactic analysis would easily
reflect that in S1 ‘my cat’ is the subject and ‘your dog’ is the object of the ‘following’
verb, while in S2 is exactly the opposite. Therefore, it could be concluded that S1 and S2
are not duplicated. This would be considered a syntactic similarity analysis.

However, if focusing on a lexical analysis, it would be recognized that S1 includes two
nouns/entities (‘my cat’, ‘your dog’) and one verb/action (‘following’), which are a
perfect match with S2. As a conclusion, from this point of view, it could be considered
that S1 and S2 are duplicates. This would be considered a lexical similarity analysis.

Some approaches like [21] focus exclusively on lexical similarity. Other contributions
like [22] consider both lexical and syntactic analysis in their evaluations. It is relevant to
differentiate these two similarity approaches and how they affect the quality of the
results in the different proposals.

Based on these differences, two additional features are extracted:

❖ F4: lexical similarity. The algorithm uses lexical analysis techniques as part of
the similarity evaluation.

❖ F5: syntactic similarity. The algorithm uses syntactic analysis techniques as
part of the similarity evaluation.

To conclude with this general analysis, it is necessary to state that in order to develop
and analyze a specific algorithm, it is required that the publication it is based on
provides enough details with respect to its process and the specific technologies used
so it can be reproduced and adapted. For this purpose, an additional feature is added:

33

❖ F6: reproducible algorithm. The algorithm is detailed enough to replicate and
develop it step by step.

Table 2 summarizes how the criterion mentioned above match with each of the
publications extracted from the literature review.

feature / Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

F1 AB+
VB

VB VB FE AB+
FE

FE FE AB FE AB VB VB

F2 S D D S S S S S S S D S

F3 ✓ ✓ ✓

F4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F5 ✓ ✓ ✓ ✓

F6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. General features analysis

After a general overview of the similarity detection problem, further details about the
technologies used in these algorithm proposals are provided.

3.2. Technologies in text-similarity evaluation
The three main approaches described in the previous sections are general descriptions
of a set of processes that basically include processing sentences and transforming
them into data structures that can be computationally analyzed. Additionally, these data
structures can be used in a supervised classification process in some approaches. This
section aims to provide technical details about the processes used in these solutions.

3.2.1. Natural Language Processing in requirements data
Generally, all algorithms studied for this master thesis include some basic
preprocessing of the textual data of each text unit, which is later used in the similarity
evaluation formula. These basic techniques include some of the most common NLP
processes mainly focused on lexical analysis:

● Tokenization. The process of breaking a sentence or text into an ordered list of
words, elements or tokens.

● Stop word removal. The process of iterating over a list of words or tokens and
remove those that are meaningless for future data processing. These stop
words include articles, prepositions and pronouns, among others, and are
usually removed as they do not provide significant meaning to the NLP
techniques.

● Part-Of-Speech (POS) Tagging. Each token is marked with a POS tag, which
is the category of words to which the token belongs to. There are different POS

34

tags which might be more or less exhaustive, but essentially they classify
tokens into nouns, verbs, adjectives, adverbs, etc.

● Stemming. It corresponds to the process of identifying the root of the word or
token. This process removes suffixes and prefixes of each word, keeping only
the root or stem of each word. It allows reducing variability between words
deriving from the same root.

● Lemmatization. It identifies the lemma, i.e., the lexeme, of a specific keyword.
Lemmatization looks for the original word from where the analyzed derivative
comes from. As it is more expensive from a computational point of view, some
approaches like [20] or [21] limitate to using stemming in their data
preprocessing, while others like [22] or [23] are based on using lemmas for the
similarity analysis.

After the lexical analysis, some algorithms like [22] or [23] apply an additional syntactic
analysis, which applies to identify the roles and relations of the different elements that
compose each sentence (subjects, objects, direct-object, indirect-object...).

● Sentence boundary disambiguation (SBD). Although it is only applied in
those algorithms where the input data are not sentences but full texts, SBD is
the technique of identifying the boundaries of a sentence inside a text (i.e., its
starting and its ending position). This is required when a syntactic analysis is
needed, as the algorithm must process sentences individually to apply a
dependency analysis.

● Dependency parsing. The process of generating a dependency tree of a
sentence which is the representation of its grammatical structure. Each node of
the tree is a word or a member of the sentence, and the edges are the
grammatical relationships between these members.

The output of these processing techniques allows to calculate similarity measures or
alignment features, based on the intersection of tokens/stems/lemmas, and the
syntactic elements of sentences, among others.

In [22] they provide an exhaustive proposal of both lexical and syntactic alignment
features that are used in other publications like [23]. Some of these features include
matching n-grams between text units. N-grams are subsequences of size N of a set of
words, i.e., of a sentence or text. Matching proposals include computing the
intersection between the uni-grams or bi-grams between two text units. This approach
is essentially focused on the lexical similarity between two sentences.

On the other hand, syntactic alignment features can also be used in some approaches.
These alignments require a sentence-per-sentence comparison. Some examples
include a subject-subject comparison or object-object comparison. The premise is to
compare and match the grammatical structure of a sentence with its pair.

35

With respect to vector-space representations, approaches like [20] or [25] use specific
similarity measures using this bag-of-words representation as an input.

One of the most common vector-space representations is the inverse document
frequency (IDF). IDF is a numerical statistic from Information Retrieval (IR) which
focuses on emphasizing the relevance of a given word inside a set of documents or
corpus. Given a set of documents D, a specific document d that belongs to D, a term t
of D, and the set of documents dt that contain t, the IDF of t is defined as follows:

DF (t) log()I = N
N d

A high value of IDF is reached by a low frequency of the term t in the corpus D. This
can be understood as a lowly used topic or keyword that only appears in very specific
text units, meaning that its appearance is probably significant for that specific text. The
result of this process is a vector-space representation where each word is not only
represented by its appearance on document d but also according to the importance of
its frequency in the whole corpus.

There are several functions used for calculating the similarity between these
vector-based representations. Two of the most important are:

● Cosine similarity. From a mathematical perspective, the cosine similarity is a
metric that calculates the angle between a pair of vectors projected in a
multi-dimensional space. If applied to the natural language field, these
dimensions are the words, and the vectors describe the appearance and
occurrence of these words in this vector. The cosine similarity then describes
the similarity between documents based on this vector-space representation.
The main advantage of this measure in comparison with others like the
Euclidean distance is that it does not take into account the size of the
document, which might not be meaningful for document similarity.

● Jaccard similarity. The Jaccard similarity is a set theory formula based on the
intersection between two different sets. Given a pair of sentences and their
vector-space representations V1 and V2, the Jaccard similarity is defined as:

 | V ∩ V | / | V ∪ V | J = 1 2 1 2
As a result, a normalized, size-independent value between [0..1] is obtained.
This can easily be used to evaluate the level of similarity between the two
vector-space representations.

Some contributions elaborate a deeper proposal by defining an optimization process
for this vector-based representations. In [20] they define a weighted variance of the IDF
approach with a set of free parameters, which can be optimized using a genetic
algorithm or another optimization process. For this purpose, it is necessary to prepare a
dataset with explicit knowledge about the level of real similarity between pairs of texts
(i.e., labelled duplicate/not-duplicate pairs of text units).

Two additional features are defined based on the extracted knowledge analyzed above:

36

❖ F7: similarity measure. The algorithm uses a specific similarity measure to
provide a score.

❖ F8 optimization process. The algorithm includes an additional optimization
process to the similarity measure.

3.2.2. Machine Learning classification techniques
Beyond the natural language preprocess of the previous sections, some proposals are
focused on an alignment and feature extraction process between pairs of text units and
a classification algorithm. It is important to mention that all studied classification
techniques focus on supervised classification, meaning that it is necessary a labelled
dataset with a set of pairs of text units and its class - in this case, D (duplicate) or ND
(not duplicate).

The first step of these approaches is based on the feature extraction process.
Literature shows a discrepancy between the relevance of using only lexical features,
syntactic features or both of them. Proposals like [22] claim that syntactic features do
not improve the results concerning using only lexical features. In fact, they claim to get
even worse results. However, other contributions like [27] demonstrate the need for
using syntactic features to improve the classification quality results.

Additionally, there are also different considerations with respect to the kind of classifiers
to use for this purpose. There seems to be a general consensus among the
Support-Vector Machine (SVM) classifiers, to which some contributions focus on (e.g.,
[24]). Furthermore, some proposals introduce a multi-classifier approach in which
classification is done via a voting-based approach (where the most frequent prediction
between the different classifiers is the one reported as correct). This set of classifiers
includes Naive Bayes, SVMs and neural networks [22], among others.

Therefore, it is necessary to define an additional feature related to these approaches:

❖ F9: supervised classification process. The algorithm requires labelled data and
requires a supervised classification process to detect duplicates.

Table 3 summarizes the feature-matching process based on the information of this
section.

feature / Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

F7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

F8 ✓ ✓

F9 ✓ ✓ ✓ ✓ ✓

Table 3. Text-similarity specific evaluation techniques features

3.3. Data results and evaluation
The evaluation of the results of each algorithm can be analyzed from an accuracy
perspective and a performance perspective.

37

If focusing on the accuracy dimension, two ways of providing results data can be
differentiated. The first one relates to the alignment and vector-space approaches. For
these proposals, the result of each comparison between a pair of documents or texts
{d1, d2} is a similarity score, independently on the way this score is calculated. Higher
values of this score represent a higher level of similarity between these documents.

In order to calculate the accuracy of these results in identifying duplicates, there are
different proposals based on this output score. In [20], they discuss the usage of the
recall-rate@k measure. Given a set of documents D, and a set of known duplicate
pairs {di,dj}, for each d in D the top-k list of the most similar documents to d is computed
(i.e., those with a higher score). This experiment is repeated with different values of
k=1,2,3...N. Then, for each value of k, it is calculated how many of the {di,dj} appear on
these top lists, which can be translated to an accuracy score at a given k value. The
main advantage of this measure is that it does not require any other decision-making
process, like a classification step. However, it is computationally expensive, as it
requires an all-to-all comparison between all the requirements of the corpus.

Other proposals like [21] discuss deciding a threshold value used to split the data.
This threshold is used to separate the two classes or predictions: those pairs with a
value lower than the threshold are considered not duplicates, while those pairs with a
value equal or higher are considered duplicates. This, however, faces the challenge of
deciding a threshold, which can be done using different quality criteria.

This approach leads to the second approach: providing a confusion matrix about the
classification between duplicates and not duplicates. This matrix computes:

● True Positives (TP): duplicate pairs predicted as duplicate.
● True Negatives (TN): not-duplicate pairs predicted as not-duplicate.
● False Positive (FP): not-duplicate pairs predicted as duplicate.
● False Negative (FN): duplicate pairs predicted as not-duplicate.

From these metrics, the following statistics can be used to calculate the quality of the
results of each algorithm:

● accuracy = (TP + TN) / (TP + TN + FP + FN)
○ Computes the overall proportion of correct labelled pairs vs. the total

number of comparisons.
● precision = TP / (TP + FP)

○ Computes how many of the duplicate pairs detected are indeed
duplicates.

● recall = TP / (TP + FN)
○ Computes how many of the real duplicate pairs have been detected by

the algorithm.
● f-measure = 2 * precision * recall / (precision + recall)

○ Computes the harmonic mean between precision and recall.

The metric to focus on depends on the use case and the context of the problem to
solve. For instance, in [20] they focus on maximizing the precision of their algorithm.

38

This is due to the fact that they are evaluating the existence of any duplicate candidate
when a new issue is submitted to a bug repository, with large amounts of data.
Therefore, their goal is to reduce the number of false positives (i.e., wrong duplicates).
On the other hand, in [22] they focus on recall, as they carry out an evaluation based
on a public dataset from Microsoft developed by [30] with a set of duplicate and
not-duplicate pairs of sentences.

A feature related to the accuracy metrics is necessary to perform an analysis and
compare the obtained results:

❖ F10: efficacy results. Accuracy metrics are provided.

Concerning performance metrics, most of the reviewed contributions do not provide
any kind of efficiency measure to evaluate the execution time or the required resources
to run the algorithms. The main reason for this is that most of the contributions focus on
individual text-to-text pair similarity, which usually is a very low time-consuming task.
This kind of metrics is only provided when the algorithmic approach includes a
classification process or when the algorithm is designed based on a use case which
works with large amounts of data.

However, even in these reports, only execution time metrics are provided. More
specifically, they publish the required execution time for a specific number of
comparisons, which can be converted into the number of text-to-text comparisons per
second.

Nevertheless, the following feature is proposed:

❖ F11: efficiency results. Execution time metrics (i.e., a subtype of performance
metrics) are provided.

Table 4 summarizes the feature-matching process of the data results and evaluation
features.

feature / Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

F10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F11 ✓ ✓ ✓

Table 4. Data results and evaluation features

Chapter 7 focuses on experimentation and the metrics used for accuracy and
performance evaluation for each algorithm.

3.4. Algorithm selection and technical analysis
Based on the data extraction and synthesis template described in chapter 1 and the
reported knowledge in the previous sections, a set of features are proposed to evaluate
each algorithm. This approach will help to evaluate a systematic, structured strategy for

39

algorithm selection, as well as to clearly define each contribution and its interest in the
field.

First of all, it is necessary to define how each feature is going to be used to select the
algorithms to be developed. Generally, each feature is used either to classify the
algorithms, to prioritize them, or to remove them. The list below depicts this analysis:

❖ F1: algorithm type. Algorithm type is used to classify between the most
representative approaches for finding similarity between natural language text
pairs. It is necessary to avoid comparing very similar approaches that do not
represent the state-of-the-art of the field.

❖ F2: sentence / full-text. Similar to F1, F2 is used to classify similarity detection
processes. Although solutions based on full documents are more suited to this
thesis scenario, it is not necessary to remove or prioritize these solutions
regarding those based on sentence similarity. Sentence-based solutions can be
easily adapted to document scenarios.

❖ F3: requirement focused. This feature is used to prioritize those algorithms
which validation domain is focused on software engineering environments and,
to be specific, in the management of requirements.

❖ F4: lexical similarity. It is used to classify the different solutions, as it is not
necessary to focus on a specific kind of similarity. Nevertheless, as stated with
F1, it is necessary to encourage diversity among the selected algorithms
regarding the kind of similarity.

❖ F5: syntactic similarity. Analogue to F4, it is used to classify the different
solutions and to provide diversity in the comparative analysis.

❖ F6: reproducible algorithm. This feature is used to remove publications from
the candidate list. Although algorithms will be adapted and tuned to the defined
scenario, it is necessary to have enough details to develop them. Therefore, it is
necessary to exclude those that are not detailed enough to replicate.

❖ F7: similarity measure. Used to classify those approaches based on providing
a specific similarity measure or score that can be used to compare different
similarity evaluations.

❖ F8 optimization process. Used to prioritize those solutions that propose a
specific optimization process using available labelled data, which is an indicator
of potential improvement based on the use case or scenario (i.e., data) used for
validation.

❖ F9: supervised classification process. As labelled data is available for the
validation of this master thesis, this feature is used to classify algorithms, and
not to discard them.

❖ F10: efficacy results. It is not required that the publications provide efficacy
results, but this feature is used to prioritize publications. If efficacy results are
available, it is possible to both validate and compare the developed algorithm
with the version reported by the publication.

❖ F11: efficiency results. Used to prioritize different approaches analogously to
F10 and using the same criteria.

40

The results of this comparison are collected and summarized in Table 5, which
summarizes the feature-matching process depicted in Table 2, 3 and 4.

feature / Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

F1 AB+
VB

VB VB FE AB
+FE

FE FE AB FE AB VB VB

F2 S D D S S S S S S S D S

F3 ✓ ✓ ✓

F4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F5 ✓ ✓ ✓ ✓

F6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

F8 ✓ ✓

F9 ✓ ✓ ✓ ✓ ✓

F10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F11 ✓ ✓ ✓

Table 5. Selection criteria & data synthesis evaluation

Based on these selection criteria, and analyzing the results presented in Table 5, it has
been decided to select, analyze and develop two similarity algorithms based on the
following proposals.

[A1] P3 - BM25F approach: an extension of an Information Retrieval
algorithm. This similarity detection proposal is focused on detecting duplicates
in public issues repositories, which is a common scenario in RE. Their solution
is based on an Information Retrieval (IR) measure called BM25F (based on
TF-IDF), which they extend with additional lexical metrics and a custom weight
optimization process. They claim to improve BM25F traditional results, both in
accuracy and performance. This solution is a very good candidate that
represents the vector-based approaches, including an optimization process and
a focus-oriented solution to requirements similarity evaluation.

[A2] P5 - FE-SVM approach: a feature extraction process with data
classification. This proposal is a representation of both align-based and
supervised classification approaches. They combine lexical and syntactic
knowledge, which are obtained by an align-based evaluation process of
different lexical and syntactic features. Additionally, they propose and evaluate
the comparison between these sets of features, providing both efficiency and
accuracy results of the classification process.

Further details of these algorithms are provided in chapters 5 and 6.

41

4. Duplicated requirements detection system
This chapter analyzes and describes the requirements similarity detection system to be
developed for this master thesis. The architecture, the model and the technical
specifications described below are fundamentally based on two edges.

The first one is intrinsically coupled to the research carried out in this thesis. This
includes the selected algorithms, which will be developed in chapters 5 and 6, as well
as the goals of providing comparative results to evaluate these approaches as
representations of the state-of-the-art of similarity detection.

The second one is linked to the OpenReq project, which has already been introduced
in section 1.1. In this thesis, a general structure and development requirements are
used to apply the research and development work to a specific real use case. This
contribution leads to some specifications which are needed to be satisfied in order to
apply the results to the available dataset. These specifications, both from a technical
and an architecture perspective, are detailed in this section.

4.1. System design and description
The requirements similarity detection system is focused on serving three main
features:

1. Requirements data management. Especially interesting when working with
large datasets of requirements, this system must essentially decouple the
management of data (i.e., storing, updating and retrieving requirements
information) from the comparative and similarity evaluation itself. It is required to
provide an infrastructure capable of storing and managing requirements data
according to the similarity process requirements.

2. Requirement pair similarity evaluation. Each algorithm provides different
approaches on how to find duplicates between a set of requirements. However,
and focusing on the first research question (see section 2.2.2), functionalities
that allow developers to ask for the similarity between two specific requirements
are provided, using each one of the selected algorithms.

3. Optimization, experimentation and comparative analysis. In alignment with
the second research question, it is needed to provide tools and features to
perform experiments and to extract qualitative results for each algorithm.

Features 1 and 2 are focused on providing a system that can be used for the final
users, i.e., software engineers. Feature 3 is focused on providing results for this master
thesis.

4.1.1. General overview
Figure 4 is a general abstraction overview of the different components intervening in
this master thesis and the system to be designed and developed. Specific software
architecture and technical details are given in section 4.2.

42

Figure 4. Requirements Similarity system general overview

A general depiction of these components is provided below:

● Qt’s public JIRA issue repository. The Qt Bug Tracker is a public tool from
the Qt Company which allows users to report, look for and discuss bugs, feature
improvements or other issues in Qt products [31]. It is built upon Jira , an 1

Atlassian development software tool that allows the management and
traceability of different kinds of requirements [32]. More details are given in
section 7.1.

From this master thesis perspective, the Qt’s issue repository will be handled as
a black box in the system from which to get all necessary data to evaluate the
algorithms and to carry out the experiments. For this purpose, it is only
necessary to evaluate and communicate with the RESTful API, which allows full
access to web server data.

● Import/export Python scripts. As part of the project requirements, it is
necessary to communicate to the Qt’s JIRA RESTful API to download
requirements data, which will be imported to the system. For this purpose, a set
of Python scripts that communicate with the API to export the required
information have been developed. More details about this data are given in
section 4.1.2.

● Software Engineering client. The client in this system is the host machine that
uses the Requirements Similarity system. For this thesis, its role is to act as a
communication bridge between the data extraction process from Qt’s Bug
Tracker and the Requirements Similarity system. It is responsible for sending
the data and asking for the evaluation of the algorithms.

● Requirements Similarity system. This is the core result of the master thesis
development stage. A documented, usable tool that allows software engineers

1 https://www.atlassian.com/software/jira

43

to import requirements data and to evaluate different similarity detection
algorithms is provided. This evaluation is demonstrated by both experimentation
features and evaluation features for specific pairs of requirements.

An abstraction of the system is provided to identify 3 main layers:

○ RESTful API. The interface of the tool deployed as a web service
exposing a RESTful API documented with Swagger UI . This API 2

includes all requests the system exposes and the necessary information
to use it by any software client via HTTP requests. This interface
provides a unique, uniform layer to access the two main sets of features
of the service: the Data Management module features and the Similarity
Detection module features.

○ Domain modules. Submodules of the system handling main business
logic, oriented to the different main features of the system.

○ Data Management module. Implements all services and domain
logic regarding the management of requirements data. This
includes all CRUD functionalities (Create, Read, Update, Delete).
Additionally, some first natural language preprocessing steps are
run in this stage.

○ Similarity Detection module. Implements all services and
domain logic regarding the similarity detection algorithms,
including the natural language processes and techniques, as well
as the similarity functions and the classification process.

This architecture is intended to isolate the management of domain data
(i.e., requirements data in the Data Management module) with the logic
and similarity evaluation of the service (i.e., algorithms implementation in
Similarity Detection module). The main motivation for this design is to
achieve a scalable system which easily allows the integration of new
algorithms or techniques. This development will be completely
decoupled from the requirements of data management.

○ Requirements DB. A relational database storing all requirements data.

More details about the software architecture and the technical specifications are
provided in section 4.2.

4.1.2. Requirements data: OpenReq schema
The OpenReq project approach is designed to deploy a series of tools or services
focused on “intelligent recommendation and decision system for community-driven
requirements engineering” [7]. As part of this proposal, one of the main features of the
designed system is a flexible, scalable environment build upon a microservice

2 https://swagger.io/tools/swagger-ui/

44

architecture where each tool or service can be deployed in an isolated workspace,
without major dependencies between them.

One of the main requirements for this architecture is to provide a uniform, adaptive
interface that allows an easy integration process for any software developer, as well as
a comprehensive, standardized communication system that facilitates the usage of
these services. This goal is materialized in two software design practices. The first one
is related to the RESTful API exposure of each microservice, which is depicted in
section 4.3. The second one is related to a shared data communication format between
all the tools of the system.

The OpenReq project defines a JSON Schema in order to map the most relevant
requirements data inside a unique JSON object that handles all the information related
to requirements, projects, stakeholders, and other entities which are common in the RE
field and used between the OpenReq microservices. For this reason, this JSON
schema is used as the data communication format to use as input and output of the
service.

Field Type Description Example

id string A unique identifier of the
requirement

“QTCREATORBUG-17803”

name string Short summary or title of the
requirement

“Debugger shows wrong address for
pointer treated as array”

text string Long description of the
requirement

“Take a pointer and try to Change the
Local Display Format to show it as an
Array of 10 items. Instead of
dereferencing the pointer and
displaying 10 consecutive items at that
memory address, [...]”

project string The identifier of the project
the requirement belongs to

“QTCREATORBUG”

components list A list of components to
which the requirement refers
to

[“Debugger”]

type string The type of the requirement “Bug”

version list A list of versions to which
the requirement applies to

[“Qt Creator 4.2.1”]

priority string The priority level of the
requirement

“NE”
(Not Evaluated)

Table 6. Requirements data schema (with examples)

The JSON OpenReq schema is available at Annex A. For simplification purposes, it
only includes the relevant part of the schema that the system developed in this thesis is
going to use. Table 6 summarizes the schema of the “requirement” data instance,
which contains the main fields and attributes used for the similarity detection

45

algorithms. For further details about how to build a JSON OpenReq requirements
dataset, please refer to Annex A and the REST API documentation of the service.

4.2. Software architecture
In this section, the software architecture of the service and its modules are depicted.
Additionally, the technical specifications of the tool are enumerated.

4.2.1. Controller-Service-Repository architecture
A basic 3-layer architecture design is proposed, which is composed of controllers,
services and repositories. The role of each component is briefly depicted below:

● Controller. Defines the specification of the actions (requests) that the service
exposes to external systems. It is completely decoupled from the logic of the
system, and it is used to deploy the RESTful API (see section 4.3).

● Service. Handles all business logic and answers to controller requests. They
act as a gateway between the controllers and the repositories (see below).

● Repository. Implements access to the database, acting as a gateway layer
between the service and the relational database access.

As introduced in Figure 4, the service is designed as two different modules that
vertically integrate this architecture. A general depiction of each one of them is
provided below.

Data Management module

The Data Management module implements all features regarding the requirements
management data operations. All read, delete, write and update operations are
processed in this module. Additionally, and as depicted in section 5.2.1, the insert of
new requirements is used to apply a basic initial NLP preprocess, which will be used by
all the algorithms.

Developers can use this module as a black box to handle their requirements data,
without requiring further knowledge or implementation modifications.

Similarity Detection module

The Similarity Detection module develops all domain logic handling the evaluation of
requirements similarity algorithms. There are two main components: the BM25FService
and the FESVMService. Each one of them implements the features required for each
algorithm. Additional classes are designed to extract and decouple some additional
features required by each algorithm from the logic of the services.

Figure 5 represents the class diagram of the Data Management Module and the
Similarity Module. It includes the integration and the access between these two
modules, as well as the application of the 3-layer architecture defined above.

46

Figure 5. Requirements Similarity modules (class diagram)

Software developers that might be interested in extending the system with new
algorithms would only require to do the following steps:

1. Implement a new controller class similar to BM25FController and
FESVMController, exposing all available features for the new algorithm.

2. Implement a new service class similar to BM25FService and FESVMService
which uses the RequirementService to read requirements data. This service
class will include all domain-specific logic required by the algorithm.

4.2.2. Technical specifications
Name Version Role

Java 1.8 The main programming language used to develop the
service [34].

SpringBoot 2.2.0 It allows to create and manage stand-alone web
applications with embedded web services [35].

SpringFox 2.9.2 A framework to automatically generate documentation
for the API built with Spring [36].

MySQL 8.0.18 A JDBC driver for managing MySQL databases [37].

Apache Lucene 7.4.0 It provides basic NLP open-source techniques like
tokenization and stop-word removal [38].

Extended Java
WordNet Library

2.0.2 A Java-based API for creating, reading and updating
dictionaries in WordNet format. Used for handling
synonyms in syntactic features [39].

OpenNLP 1.9.1 It provides basic NLP open-source techniques like
advanced sentence boundary disambiguation [40].

StanfordNLP 3.6.0 It provides advanced NLP techniques like a
dependency parser [41].

SMILE 1.5.3 It provides basic classification techniques like support
vector machine (SVM) classifiers [42].

Table 7. Requirements Similarity technical specifications

47

Table 7 is a reference list of the technical specifications used in the Requirements
Similarity system. Each entry of the list provides the name, the version of the
technology, and the role it plays in the domain logic.

Concerning the quality of the software and the code of the system, it is proposed to
use a code quality analysis tool that automatically detects all issues inside the source
code of the project which might not satisfy high-quality standards of software
development. For this purpose, the CodeFactor tool is integrated into the Github 3

repository of the Requirements Similarity system.

This tool pulls an automated analysis after each commit or change in the project that
looks for any kind of issue related to the software quality. These issues include, among
others, duplicated code, security vulnerabilities, highly complex methods, coding style,
bugs and documentation. After the evaluation, all issues are raised and indexed so
they can be consulted using the tool Dashboard. According to the number and the
severity of the issues, a grade between F and A is given to each file and to the
repository itself.

The Requirements Similarity system is delivered with an A grade in all files and in the
repository.

4.3. Service integration
As it has been mentioned before, the Requirements Similarity service must be
deployed and accessible as an isolated web service via HTTP protocol communication,
using a RESTful API that deploys all required features and handles the data
representation format proposed in the OpenReq JSON Schema.

This interface is deployed using Spring Boot and Spring Fox. Spring Boot allows
software developers to easily deploy stand-alone web applications with embedded web
servers. This means that the service can be deployed in any environment as a
runnable file without any previous web server configuration. Spring Fox is used to
generate a formatted Swagger documentation file which includes all required
information for using the API deployed by the service.

3 Quality report of the repository is available at
https://www.codefactor.io/repository/github/quim-motger/tfm

48

https://www.codefactor.io/repository/github/quim-motger/tfm

5. BM25F approach: an extension of an
Information Retrieval algorithm
The first selected algorithm for requirements similarity evaluation is based on the one
described in “Towards more accurate retrieval of duplicate bug reports”, a proposal by
Sun et al. [20]. This work is an update of their previous publication “A discriminative
model approach for accurate duplicate bug report retrieval” [43], where they already
addressed similarity detection between requirements in an issue repository.

In this latter work, they migrate from a supervised classification technique using SVM to
a new approach in which additional metadata features of the requirements are used to
calculate similarity. Between these features, they evaluate an extended version of the
BM25F measure, which is the main method used to calculate textual similarity.

5.1. Algorithm analysis
BM25F is a similarity measure from the IR field used for finding relevant documents
inside a large dataset of documents or corpus given a relatively short text query. This
measure is based on two components.

The first one is the inverse document frequency (IDF) (see section 3.2.1 for the IDF
definition). The second one is the term frequency (TFD), which is the local importance
measure of a term t inside a document D. Consider a document d with a set of fields,
where each field has its own natural language content. This TFD measure is defined as
follows,

F (d,) T D t = ∑
K

f = 1 1 − b + f avglengthf

b lengthf * f

w occurrences(d[f], t)f *

where wf is the weight of the field; occurrences(d[f], t) is the number of occurrences of t
in the field f of d; lengthf is the size of the bag of keywords of the field f of d; avglengthf
is the average size of the bag of keywords of the f field across all documents D; and bf
is a parameter 0 <= b <= 1 which applies to the scaling by document length: b=1
applies to full-length normalization, while b=0 applies to no length normalization at all.

Based on these two components, the BM25F score of a query q (which can be another
document or requirement) given a document d is defined as follows,

BM25F (d,) DF (t) q = ∑

t ∈d ⋂ q
I *

TF (d, t)D
k + TF (d, t)1 D

where t is each keyword or term shared between d and q, and k1 is a tuning parameter
to control the effect of the local term frequency.

In the extended approach, the original measure model is extended to better fit long text
queries, which is a more suitable approach for the use case of an issue repository,
where each query q is another bug or issue.

49

For this purpose, Sun et al. propose a BM25Fext approach in which the term frequency
of the query q (i.e., the issue or requirement to which compare the original issue) is
also considered in the formula. Hence, the proposed formula is defined as follows,

BM25F (d,) DF (t) ext q = ∑

t ∈d ⋂ q
I *

TF (d, t)D
k + TF (d, t)1 D * k + TF (q, t)3 Q

(k + 1) TF (q, t)3 * Q

F (q, t) ocurrences(q[f], t) T Q = ∑
K

f = 1
wf *

where the tuning parameter k3 allows controlling the effect of the query term weighting,
analogously to k1.

BM25Fext allows the algorithm to evaluate the textual similarity between textual
elements of the issues, like the title or the description. These natural language
attributes can be used to estimate the level of duplicity between two different issues.
However, additionally to this measure, Sun et al. consider additional metadata like the
project the issue belongs to, the component it is referring to, or even the version to
which it is addressed to.

This set of features are integrated using an optimized, weighted formula giving a final
score between two different documents, i.e., two different issues. This measure is
defined as follows,

im(d, q) eature s = ∑
F

i = 1
wi * f i

where wi is the weight of each defined feature.

5.2. Process development depiction
Section 5.1 provides a theoretical, mathematical analysis of the BM25Fext information
retrieval algorithm and the similarity function proposed by Sun et al. In this section,
details about the development process of this algorithm are provided, as well as the
adaptation to the developed system.

5.2.1. Requirements textual data preprocessing
Before developing the BM25Fext score measure, it is necessary to understand the
available data and how it is suitable for this algorithm.

When analyzing the available data of each requirement exported from the Qt repository
and the OpenReq JSON schema (see section 4.1.2), it is possible to identify two
natural language fields per requirement: name and text. These fields are easily
relatable to the summary and description fields that Sun et al. used for the BM25Fext
similarity score evaluation.

Given two requirements R1 and R2, and two fields f = {name, text}, the first step to
evaluate the similarity is to preprocess these natural language fields. For this purpose,
a basic natural language pipeline is applied, which is depicted in Figure 6.

50

Figure 6. Basic NLP pipeline tasks

As discussed in the FE-SVM approach evaluation (see section 6.1), this basic NLP
pipeline is necessary for both algorithm implementations for the Requirements
Similarity system. Therefore, a uniform design in which this pipeline is applied when
importing requirements to the system is proposed, so that it is not necessary to
duplicate work between different algorithms development.

A real requirement from the experimentation dataset defined in chapter 7 is used as an
example of the result of applying each one of these techniques. Figure 7 shows each
step result of the Basic NLP pipeline for the name field, for simplification purposes.

Figure 7. Basic NLP pipeline tasks result - requirement example

The result of each requirement preprocess is two bag-of-words sets, one for each
relevant natural language field: name (summary) and text (description).

51

5.2.2. BM25Fext algorithm
The next step is to evaluate the BM25Fext score between R1 and R2 for each field f.

Sun et al. propose to evaluate the BM25Fext as two different features in the sim(d, q)
function defined in section 5.1:

➔ feature1 (Unigram score). The BM25Fext score value using requirement name
and text unigrams.

➔ feature1 (Bigram score). The BM25Fext score value using requirement name
and text bigrams.

The default output of each requirement preprocessing pipeline is a bag of words
formed by unigrams, where each element is a single term. To evaluate feature2, it is
necessary to build the bigrams of each field. This is achieved by concatenating in
subsets of 2 elements the terms of each field. Notice that for this purpose it is
necessary to use the SBD knowledge extracted in the basic NLP pipeline - this way it is
avoided to build bigrams between two keywords that do not belong to the same
sentence.

5.2.3. Similarity evaluation with metadata integration

In addition to natural language features (i.e., feature1 and feature2) it is required to add
to the sim function all requirements metadata features that are suitable to improve the
similarity score reliability between R1 and R2. Based on Sun et al. proposal and in the
OpenReq data model, the following features are proposed:

➔ feature3 (Project score). Set to 1 if R1 and R2 belong to the same Qt project; 0
otherwise.

➔ feature4 (Type score). Set to 1 if R1 and R2 are of the same type; 0 otherwise
➔ feature5 (Components score). Computed by the Jaccard similarity between R1

and R2 sets of components
➔ feature6 (Priority score). Reciprocal distance between the priority of R1 and R2

mapped to numerical values
eaturef 6 = 1

1 + |R .priority − R .priority|1 2

➔ feature7 (Versions score). Reciprocal distance between the latest version of R1
and R2 mapped to numerical values

eaturef 7 = 1
1 + |max(R .versions) − max(R .versions)|1 2

This approach defines a total number of 7 features that computes and im(R , R) s 1 2
weights accordingly to provide a final similarity score for each pair of requirements.

5.2.4. Free parameters optimization
By analyzing the and the functions, it can be noticed that M25Fext(R , R) B 1 2 im(R , R) s 1 2
this algorithm introduces a total number of 19 tuning parameters, which are listed in
Table 8.

52

These tuning parameters include both the weighting of features1-7 and specific term
weighting configuration parameters in the formula. The values used for M25Fext B
each free parameter to achieve high-quality results are highly tightened to the data and
the use case in which the similarity evaluation is applied to. Therefore, it is necessary
to apply an optimization process of the algorithms to automatically compute the best
values for each free parameter.

Param Description Param Description Param Description

 w1 weight of feature1
(BM25F unigram)

 w name
unigram

 weight of name in
feature1

 w name
bigram

 weight of name in
feature2

 w2 weight of feature2
(BM25F bigram)

 w text
unigram

weight of text in
feature1

 w text
bigram

 weight of text in
feature2

 w3 weight of feature3
(project)

 b name
unigram

 b of name in
feature1

 b name
bigram

 b of name in
feature2

 w4 weight of feature4
(component)

 b text
unigram

b of text in
feature1

 b text
bigram

 b of text in
feature2

 w5 weight of feature5
(type)

 k 1
unigram

k1 in feature1 k 1

bigram
 k1 in feature2

 w6 weight of feature6
(priority)

 k 3
unigram

k3 in feature1 k 3

bigram
 k3 in feature2

 w7 weight of feature7
(version)

Table 8. List of free parameters for the BM25F approach

This optimization process can be summarized in two steps.

The first one is to build a training dataset. For this purpose, it is necessary to have a set
of requirement pairs which have been manually classified as duplicates by expert
reviewers. Given this set of duplicated requirements as input, Sun et al. propose an
algorithm based on building triplets of requirements {R1, R2, R3}, where {R1, R2} are
instances of the duplicate dataset, and R3 is a randomly selected requirement from the
requirements repository that satisfies that {R1, R3} are not members of the duplicate
dataset.

With this algorithm, a training set of triplet requirements instances is obtained. In each
triplet, R1 and R2 are duplicates and R1 and R3 are almost certainly not.

To apply an optimization process, it is necessary to define a cost or objective function
based on this similarity algorithm. This cost function C is defined below.

({R , R , R }) log(1), where Y sim(R , R) − sim(R , R) C 1 2 3 = + e Y = 3 1 2 1

Lower values of the C function imply higher accuracy of the sim() function.

53

For this optimization process, and as suggested by Sun et al., a gradient descent
optimization process is applied. For each free parameter, the manual derivative of C is
manually calculated with respect to each tuning parameter. Next, these free
parameters are initialized with default values (i.e., the ones proposed by Sun et al.).

Once the optimization process has been set up, a specific number of limited iterations
are run. At each loop, a very small variation of one parameter value is applied, which is
directly proportional to the partial derivative with respect to that parameter. Thanks to
this process, each parameter tends to its optimal value. The number of iterations is
used as the stop criteria.

Sun et al. provide their own free parameter optimization results, based on public issue
repository data. Nevertheless, it is decided to apply a custom optimization process to 7
of the 19 free parameters - specifically to the weight of the features, i.e., w1 - w7
parameters. This decision is based on two main reasons:

1. Although there are available results concerning the optimization process of
these algorithms, these results could be highly coupled with the dataset used
for its validation. This is especially critical with the weight of each feature of the
algorithm - the relevance of each attribute or field in the process of detecting
duplicates may vary significantly between different datasets. Moreover, it has
been necessary to adapt the proposed algorithm to the OpenReq data model to
fit differences between some attributes and metadata fields.

2. The analytical and mathematical complexity of manually derive for each free
parameter the cost function is very high, especially for those parameters not
related to feature weighting. Additionally, when comparing the results obtained
by only optimizing the feature weights with the ones reported by Sun et al., it
can be concluded that the potential gain of accuracy is not worth the required
effort and the schedule deviations risks of dedicating too much time to this task.
Therefore, for the rest of the free parameters, it is decided to use those
provided by Sun et al.

In section 7.3.1 further details about the optimization process, the free parameters
values obtained by the optimization step are provided. Additionally, a comparison
between the results of the algorithm for different values is depicted.

5.3. BM25F controller
This section briefly introduces the different functionalities deployed by the BM25F
controller. These features include all similarity evaluation and experimentation
techniques required to both use the similarity detection algorithm and to extract results
to evaluate the accuracy of the algorithm.

The BM25F controller exposes the following functionalities:

54

● Find top K most similar requirements. Given a specific requirement R of a
set of requirements and a value K, the system computes the similarity score
against all other requirements. The result is an ordered list with the top K most
similar requirements to R.

● Compute similarity between two requirements. Given two requirements R1
and R2, the system returns the similarity score between R1 and R2.

● Compute recall-rate@k. Given a set of requirements, a dataset of duplicate
requirement pairs and a k value, the service performs an all-to-all comparative
analysis based on the recall-rate@k metric (see section 3.3). The result is the
duplicate detection accuracy for each value i in the interval 1 <= i <= k.

● Free parameter optimization process. Given a set of requirements and a
dataset of duplicate requirement pairs, the optimization process depicted in
section 7.3.1 is performed. As a result the free parameters internal values are
updated.

For a more detailed, exhaustive depiction of each function and the technical
specifications, please refer to the API documentation. It is available through the
deployment of the Requirements Similarity service or at the api/swagger.yaml file in the
Github repository of the project.

55

6. FE-SVM approach: a feature extraction process
with data classification
The second algorithm developed for this master thesis is based on a feature extraction
process with a supervised classification step to automatically label pairs of
requirements as duplicates or not duplicates.

The development of this approach is mainly based on the proposal by Mahajan and
Zaveri [22]. However, the lexical and syntactic features used for this process have been
selected across the features studied during the systematic literature review process.
The selection process has been carried out accordingly to the most representative and
useful features to the defined use case.

6.1. Algorithm analysis
Supervised classification approaches for similarity detection are based on solving the
task of classifying a given pair of texts or documents as D (duplicates) or ND
(not-duplicates). Mahajan and Zaveri focus on applying this technique to evaluate
sentence paraphrasing. Therefore, this section only refers to similarity at a sentence
level. Section 6.2 depicts the details and the adaptation process to requirements
similarity.

This duplicate detection system is based on submodules or steps. These modules are
defined as Mahajan and Zaveri:

1. Preprocessing module. Given two input sentences A and B, the first step is to
apply an NLP pipeline process to the natural language text, in order to
transform this natural language to a bag of words or tokens without noise or
ambiguous tokens to use as input for the Feature Extraction module. This
pipeline includes the following techniques: tokenization, stop-word removal,
POS tagging, lemmatization, and dependency parsing.

2. Feature Extraction (FE) module. The preprocessing module produces two
different outputs: the first one is the bag of words or tokens for each sentence;
the second one is a dependency tree for each sentence. The bag of words of A
and B are used to extract lexical features for the A-B pair. These lexical features
include matching between tokens or keywords between the two sentences,
independently of the role these tokens play in each sentence.

On the other hand, the dependency tree is used to extract syntactic features.
Each term or node of the dependency tree is labelled with a specific syntactic
role. Based on this identification and the relations between these terms, the
syntactic features are computed by looking for grammar patterns shared
between sentences A and B. These include, for instance, two sentences
sharing the same subject or two sentences whose predicate share the same
direct object.

56

Section 6.2.2 provides further details about the lexical and syntactic features
selected and developed for the feature extraction process.

3. Classification module. Mahajan and Zaveri propose a classification module
that implements a set of classifiers which include: SVM, Naïve Bayes, Voted
Perceptron and Multilayer Perceptron. They use these classifiers to provide
different predictions for the classification of the A-B pair. Finally, they use a
voting system (i.e., the most frequent predicted label) to decide the system
prediction.

There are two critical decisions to consider in the development of this algorithm. The
first one is the set of features to extract during the FE process. For this purpose, a total
number of 14 features have been chosen (see section 6.2.2) which are the most
frequent features used for this kind of approaches between the systematic literature
review results.

The second one is the type of classifier to use for the supervised classification process.
By taking a look at the contributions analyzed in the literature review process, there
seems to be a general consensus in the usage of SVM classifiers for natural language
similarity detection, including the analysis of Mahajan and Zaveri. Therefore, it is
decided to exclude the classifier selection process of the scope of this thesis.

6.2. Process development depiction
This section describes the development process and the implementation of the
FE-SVM algorithm. In this section, the algorithm is applied to the requirements data
domain, and further details about the specific features and the classification process
are provided.

6.2.1. Requirements textual data preprocessing
The NLP pipeline for the natural language fields preprocessing of the requirements is
depicted in figure 8.

Figure 8. Syntactic NLP pipeline tasks 4

4 Basic NLP pipeline depicted in Figure 6

57

As mentioned in section 5.2.1, and for design and efficiency reasons, the basic, lexical
natural language preprocessing output is exploited in the syntactic natural language
process necessary for the syntactic feature set. The steps executed during this NLP
steps are necessary for the subsequent steps of the syntactic NLP pipeline, except for
the stemming step. If stemming was applied before the POS tagger step, the tags
would not be based on the original words, and therefore results would be
compromised. Additionally, this Syntactic NLP pipeline handles lemmatization after the
POS tagging, which is a deeper step than stemming itself.

The output of this pipeline is a dependency tree for each sentence inside the name and
the text fields of each requirement. Notice that this is one of the first differences with
respect to the Mahajan and Zaveri proposal. While the originally described algorithm
evaluates paraphrasing at a sentence level, requirements name and text fields are not
limited to be single-sentence texts. Therefore, it is required to handle a dependency
tree for each sentence in each field.

The same requirement name field as in Figure 7 is used as an example to demonstrate
how the syntactic preprocess is handled by the developed system. The results of this
Syntactic NLP pipeline are shown in Figure 9.

Figure 9. Syntactic NLP pipeline tasks result - requirement example

58

Each dependency tree node provides the information of the lemma and the POS tag
assigned to each token in the original bag-of-words input of the pipeline. This
information is necessary for the feature extraction process defined in the next section.

6.2.2. Feature Extraction process
The first step of this stage is to define which features are going to be extracted using an
align-based approach to define each requirement pair instance. A set of 14 features is
proposed: 6 lexical features and 8 syntactic features.

Given a pair of requirements R1 and R2, each feature must be defined as a numerical
value or score based on the level of alignment between R1 and R2 according to that
feature.

Notice that if the implementation was based on the original algorithm described by
Mahajan and Zaveri, it is not only important to adapt these features to generic texts
with multiple sentences. The requirements data is composed of two natural language
fields: name and text. Therefore, each one of the features proposed by this and other
sentence-similarity contributions must be translated into 2 features: one for the name
field and another for the text field.

6.2.2.1. Lexical features
The 6 lexical features proposed by the FE-SVM algorithm are introduced below. Notice
that each feature is identified by an i-i+1 subindex, as each feature must separate the
name attribute score from the text attribute score for the feature extraction process.

➔ feature1-2 (Word overlap). Computes the ratio of overlapping words or tokens
between the R1 and R2 original texts. This intersection is expanded using
synonyms found using the WordNet synonym dictionary. The score is computed
using the Jaccard similarity function.

➔ feature3-4 (Unigram match). Computes the Jaccard similarity between the
bag-of-words sets of R1 and R2.

➔ feature5-6 (Bigram match). Analogue to F2, but using bigrams as the elements
to match between R1 and R2 bag-of-words sets. Similar to the bigram extraction
process in the BM25F approach, sentence boundary information is used to
avoid creating false bigrams belonging to different sentences.

Notice that this set of features does not require any of the output information generated
by the Syntactic NLP pipeline described in Figure 8. This means that, when evaluating
the results of the FE-SVM using only lexical features, it is not necessary to run the
Syntactic NLP pipeline. This is significantly important because the dependency parser
process is time-consuming. Therefore, the algorithm must avoid executing unnecessary
work for efficiency purposes.

59

6.2.2.2. Syntactic features
The 8 syntactic features proposed for the FE-SVM algorithm are introduced below. The
same criterion is used for the enumeration: each feature is enumerated for the name
attribute and the text attribute.

➔ feature7-8 (Subject match). For each requirement in the pair, the subject of
each sentence is extracted: i.e., the algorithm looks for the node in the
dependency tree whose tag matches the *sub* regexp pattern. A set of subjects
is obtained for R1 and another one for R2. To these sets, the Jaccard similarity is
applied to get a match score.

➔ feature9-10 (Subject-verb match). The algorithm looks in each sentence for all
grammar patterns matching a dependency relation between a subject and a
verb, and the dependency label is kept. For all instances found in R1 and R2, the
Jaccard similarity is applied to get a match score, where a match is found when
two instances share the same subject, the same verb and the dependency label
value.

➔ feature11-12 (Object-verb match). Similar to F5, but the governor of the
relationship must be an object instead of a subject. Jaccard similarity score and
matching criteria are computed analogously.

➔ feature13-14 (Noun match). For all nn (i.e., compound nouns) dependency
relationships found in each text field, the Jaccard similarity is applied to the set
of node pairs joined by this relationship.

These features require the dependency parsing process defined in the Syntactic NLP
pipeline, which includes POS tagger, lemmatization and the dependency parsing itself.
The first two techniques are required to correctly build the dependency tree, so each
node is identified by the original term, the lemma, and the POS tag assigned to it.

The result of each feature extraction process is a set of requirement pairs {R1, R2} for
each instance of the collection with a total number of 14 features. As mentioned before,
for experimentation purposes, the FE-SVM tool must provide functionalities to apply
only a specific set of features.

6.2.3. Support-Vector-Machine classification
The dataset of featured instances extracted from the FE process is ready to be sent to
the classification module. This classification process is represented by two main tasks:

1. Training. The classifier receives a dataset of labelled requirement pairs, where
each pair is labelled as D (duplicate) or ND (not-duplicate). This data is used to
train the model of the classifier, which will be used for future requirement pair
predictions.

2. Prediction. Using an already trained classification model, new not-labelled
requirement pairs are sent to obtain a class prediction. This prediction will be

60

based on projecting the featured requirement pair in the multidimensional model
space and identifying in which part of the model (i.e., which class) it is placed.

Previous tasks are a simplification of typical classification processes applied to the use
case. Section 6.3 develops the features exposed by the developed system regarding
testing, optimization and evaluation purposes.

The literature review has proven that SVM is the most commonly used classifier in NLP
feature extraction processes with paraphrase detection based on supervised
classification techniques. This master thesis focuses on developing and optimizing the
configuration of this classifier.

6.2.3.1. Classifier configuration optimization
SVM classifiers must be tested and optimized with the most appropriate configuration
to achieve the best possible results given a specific domain or dataset. For this
purpose, during the experimentation stage, it is necessary to use the labelled data of D
and ND pairs of requirements to look for the best parameter configuration. Details
about the experimentation process for this purpose are detailed in chapter 7.

There are 3 configuration parameters which need to be evaluated:

1. Kernel function. The set of mathematical and analytical functions that are used
during an SVM classification process to find the optimal hyperplane equation to
separate the classification data is defined as the kernel function. The most basic
and easy to understand for binary classification tasks is the linear kernel.
However, usually, datasets are not linearly separable, and therefore this kernel
function is not the most suitable.

Although the features seem to be linearly separable, it is not possible to be sure
without deep data analysis. For this purpose, two different kernel functions are
evaluated: linear and RBF (Gaussian radial basis function).

2. C parameter. The C parameter is a configuration variable that states which
level of misclassifications are allowed by the hyperplane defined by the kernel
function.

Large values of C imply a very small margin between the hyperplane and the
nearest data instances (i.e., the nearest requirement pairs), which means that
most of the instances are correctly classified, as the hyperplane is very coupled
to the distribution of the training dataset.

Low values of C imply a wider margin between the hyperplane and the nearest
data instances, which means that some instances might be wrongly classified,
but the hyperplane is a more generic solution.

3. sigma (γ) parameter. It is only used in the RBF kernel. This parameter affects
the classification process in a similar way that C does. It configures the
sensitivity on the hyperplane definition. Higher values imply an overfitted

61

approach to the training data, with low misclassifications. Lower values imply a
more generic approach, but with more misclassified requirement pairs.

The details and results of this optimization process are described in section 7.4.1.

6.3. FESVM Controller
Once the algorithm is fully developed, it is necessary to design the features and
specific actions that will be exposed as REST API requests for software developers to
use and test the system. Similar to the BM25F approach, it is necessary to design
these features based on providing a useful similarity detection system and on defining
experimentation and evaluation tools for study purposes.

These features are defined as follows:

● Train classifier. Given a set of requirements and a set of labelled requirement
pairs, the system builds and trains an SVM classifier. This dataset of labelled
pairs must be significantly balanced to provide minimum quality results, so a
minimum representation of both duplicate and not-duplicate pairs is necessary
to avoid overfitting one of the classes.

● Test classifier. The previously trained classifier can be used to predict new
requirement pairs classifications. For each pair, the algorithm applies the
feature extraction process. After this step, it sends this data to the SVM
classifier and provides a class prediction, returning this result to the user.

● Train and test (cross-validation). Given a set of requirements, a set of
labelled requirement pairs, and a k value, the system performs a
k-cross-validation process with the dataset of labelled requirement pairs.

The result is the aggregated confusion matrix of this cross-validation. Notice
that it has been decided to provide the original output data (i.e., TP, TN, FP, FN
values) instead of already computed metrics like the accuracy, the precision or
the recall of the validation process. This approach allows software developers to
compute their own quality metrics, according to their needs.

● Configuration optimization. Functionalities to calculate the most optimal SVM
configuration are provided. This feature is run as a cross-validation process, but
with additional input data: the kernel to be evaluated (LINEAR or RBF); the C
values to be tested; and the sigma values to be tested.

All features have additional parameters which allow developers to decide whether to
apply lexical features, syntactic features or both set of features to each process. By
default, all sets of features are used. Additionally, all features allow SVM configuration
by request (i.e., kernel, C value and sigma value). If they are not sent, the system uses
default parameters, which are stated based on the experimentation results.

For a more detailed, exhaustive depiction of each function and the technical
specifications, please refer to the API documentation available in the repository.

62

7. Empirical experimentation: Qt’s use case
This chapter provides an analysis of the quality results of the Requirements Similarity
system. For this purpose, and as it has been referred to across this document, a real
use case validation is applied using one of the OpenReq partners scenarios and data
to study the accuracy and the performance of the algorithms, as well as to compare
and conclude which is the most suitable solution for this use case.

This chapter starts by providing a general overview of Qt’s scenario. After the use case
requirements have been set, the experimentation details are developed: the
configuration, the features of the system to be used, and the obtained results.

7.1. Use case description: duplicate detection in an issue
repository
The Qt Company is an international software development company which focuses on
providing cross-platform software frameworks for the development of apps and devices
[45]. Their main goal is to provide integrative, easy-to-use environments for users and
developers to build and develop their own applications. This goes from desktop and
embedded end-user applications to business-critical processes.

As part of their business vision based on providing open-source solutions, they
additionally work on creating and maintaining a global network of users and developers
working and using their products. Between some of these tasks, they provide a public
issue repository based on JIRA. This bug tracking system allows users to report,
discuss and work on issues reported by end-users across the different projects that the
Qt company manages.

As one of the main problems identified in RE, managing and identifying duplicated
issues reported by different users is a time-consuming problem. This duplicated
requirement detection process can be solved by the solution developed in the
Requirements Similarity system.

The developed system must be capable of handling responsive requests regarding the
evaluation of duplicated requirements. This means that, in addition to reliable and
accurate results, the system must be able to run comparisons between a new
requirement and a set of already existing requirements almost instantaneously.
Consequently, performance and efficiency are important dimensions to evaluate from
the developed solution.

Qt’s available data in their public issue repository consists of a large dataset of
requirements with more than 110,000 reported issues across 20 projects or software
products.

63

7.2. Technical experimentation preparation
Once the scenario has been defined, it is necessary to import and build the required
data for validation purposes. This data is based on two different kinds of information
that the developed system requires.

The first one is the requirements dataset itself. These are imported using the REST API
of their web service (see section 4.1.1). The second one is the duplicate/not-duplicate
dataset of requirement pairs. BM25F optimization process and FESVM model training
process both require labelled information, i.e., a set of requirement pairs validated as
duplicates and another set labelled as not duplicates.

The set of duplicate pairs has been exported from the Qt’s JIRA issue repository. This
system allows the manual identification of duplicated reported issues, marking a
specific requirement as a duplicate of another one. For this purpose, it was necessary
to look for issues with an existing duplicate relation. The set of not duplicate pairs has
been built randomly between non-related requirements with a later review by an expert.

Table 9 summarizes the details about the available experimentation data.

total requirements 111,143

projects 20

requirements per project

QTSOLBUG 179 QTWEBSITE 657 QTSYSADM 246

QTBUG 72,976 QTCOMPONENTS 1,065 QTPLAYGROUND 15

QTVSADDINBUG 620 QTIFW 1,275 AUTOSUITE 1,145

QTCREATORBUG 20,380 QDS 1,011 QTWB 26

QTJIRA 270 QBS 1,378 QT3DS 3,532

QTQAINFRA 2,813 COIN 378 QSR 480

QTMOBILITY 1,781 PYSIDE 916 - -

labelled duplicates 1,436

labelled not-duplicates 1,499

training set instances 2,935

Table 9. Summary of experimentation data

All requirements data is imported to the Requirements Similarity system using the Data
Management module. Once this process has finished, the system is ready to begin with
the optimization and evaluation experiments.

64

7.3. BM25F experiments
The experimentation stage of the BM25F algorithmic approach is classified in 3 steps.
First of all, it is necessary to apply the optimization process to the tuning parameters
using the dataset of labelled duplicates. Second of all, a general quality evaluation
measure with the recall-rate@k metric is applied, which will allow us to compare the
developed solution with the results reported by the original publication this development
has been based on. Finally, an evaluation technique is introduced to compute results
data which can be used to be compared with the FE-SVM approach.

7.3.1. Free parameters optimization process
Using the set of 1,436 labelled duplicated requirements, a triplet training set of
requirements is built. These requirements are used to optimize the weights of
features1-7 as described in section 5.2.4. For each tuning parameter, Table 10 reports
the initial value, the reported value by Sun et al., and the optimized value obtained by
the algorithm using this training data.

param initial reported optimized param initial reported optimized

w1 0.9 1.163 0.352 w5 0.7 0.772 0.970

w2 0.2 0.013 0.004 w6 0.0 0.381 0.012

w3 2.0 2.285 2.049 w7 0.0 2.427 0.111

w4 0.0 0.032 0.047

Table 10. Free parameter optimization results

There are significant differences among some of the parameters, especially between
the weights of feature1 (BM25F with unigrams) and feature2 (BM25F with bigrams). The
most logical explanation for this phenomenon is the natural language data of Qt’s
dataset (i.e., how the requirements are written there). The score provided by the
BM25F algorithm is directly proportional to the length of the natural language texts.
Therefore, a corpus with larger documents will provide greater scores for these
features. Smaller values for w1 and w2 probably imply that, from a global perspective,
documents in Qt’s dataset are larger than documents in the datasets used by Sun et al.

Furthermore, when comparing the results, it can be observed that the relation between
w1 and w2 is almost identical. The reported w1 value is ~4 times greater than the
optimized w1 value. The same proportion is applied to w2. Therefore, the proportional
weights of both features are very similar, although their absolute values are not.

7.3.2. Quality evaluation: recall-rate@k
As a first evaluation of the BM25F approach, a recall-rate@k test is run. As reported by
Sun et al., this is a very high time-consuming task, which can take days of execution
time to be finished in large project datasets (i.e., projects with tens of thousands of
requirements). However, it is important to run this evaluation to compare the results
with the ones reported by Sun et al. before this algorithm can be compared with the

65

FE-SVM approach. Hence, a recall-rate@k experiment is run with the details depicted
in Table 11.

K-value 20

Projects QTQAINFRA
PYSIDE
QTIFW

Nº requirements 5,004

Nº duplicates 57

Table 11. Recall-rate@k experiment set-up

This experiment is repeated with 3 sets of parameter configurations: the 1st experiment
is run with the initial parameter values, without any optimization process; the 2nd
experiment is run with the parameters reported by Sun et al. in their publication; the 3rd
experiment is run with the optimization parameter values.

Figure 10 shows the recall-rate@20 results. By comparing the results after the
optimization process with the ones obtained without any optimization or with the values
of the tuning parameters reported by Sun et al., it is possible to observe a clear
improvement that demonstrates the importance of the optimization process. This
improvement is translated into K points concerning the number of duplicates found.

Figure 10. Recall-rate@20 experiment results

Additionally, if the recall-rate@20 analysis is compared with the results reported by Sun
et al., very similar results are observed. They do not provide quantitative data, but the
plots reported in their publication estimate a ~0.70 value at k=20, which is very similar
to the results reported in Figure 10.

66

7.3.3. Duplicate discernment: threshold evaluation
After a quality evaluation based on state-of-the-art comparison with up-to-date
developments of the BM25F algorithm approach, it is necessary to focus on evaluation
in an analytical comparison between both developed approaches.

The main challenge to provide comparative results is adapting two different solutions to
a unique, uniform format in which to use quality metrics like the ones described in
section 3.3. BM25F approach is based on solving the situation in which, given a
populated issue repository, a new requirement entry is compared against all existing
requirements to provide suiting duplicate candidates of the new entry. In this approach,
there is no specific classification process in which to discern between duplicate and not
duplicate pairs of requirements. On the other hand, the FE-SVM approach is a typical
supervised classification problem in which each pair of requirements is evaluated as a
duplicate candidate, and a specific category (D or ND) is provided.

In order to compare the accuracy and other quality metrics of both algorithms, it is
proposed to use a threshold evaluation technique for the BM25F solution. By
estimating a threshold score to the sim(R1, R2) function of this approach, data can be
split between two classes (D or ND) based on the score given to a pair of requirements.

The main task of this challenge is identifying the optimal score or threshold to consider
a pair of requirements as duplicates. However, this task can be achieved using the
duplicate and not-duplicate sets of pairs. This set of merged requirement pairs (~3000
instances) is sent to the BM25F algorithm and a score for each pair is obtained. With
this information, a cross-validation process is applied using the BM25F score as the
only feature of the dimension.

Table 12 summarizes the best threshold results, the confusion matrix and the accuracy
metrics used for evaluation.

threshold TP TN FP FN Accuracy Precision Recall F-measure

3.50 1297 1434 44 100 94.99% 96.72% 92.84% 94.74%
Table 12. Cross-validation results (BM25F) with threshold

7.4. FE-SVM experiments
In the second part of the experimentation stage, the FE-SVM approach is optimized
and the reliability results are analyzed. The main difference concerning the previous
scenario is the lack of additional work to provide quality results. As being part of the
supervised classification solution family, cross-validation provides us with the confusion
matrix and the quality metrics of the classification process.

7.4.1. SVM classifier optimization process
As introduced in section 6.3, a feature in the FE-SVM controller has been defined
which handles an optimization process based on cross-validation with 3 sets of
parameters: the kernel function, the C parameter, and the sigma parameter (only used
for RBF kernel). Based on the literature review, it is proposed to apply cross-validation

67

to all combinations between the values described in Table 13. Notice that, for the linear
kernel, the sigma value is not required.

param values param values param values

kernel LINEAR
RBF C

0.001
0.01
0.1

1
10

100
1000

sigma

0.001
0.01
0.1

1
10

100
1000

Table 13. SVM configuration optimization parameters

A 10-cross validation analysis is run to the merged datasets of duplicate and
not-duplicate pairs of requirements (~3000 requirement pairs). For simplification
purposes, this optimization process is applied with both syntactic and lexical features,
leaving the analysis of these set of features to the quality evaluation analysis once the
SVM classifier has been configured optimally.

Annex B expands all results for each possible configuration of the classifier. This
includes a total number of 7 configurations for the linear kernel and 49 configurations
for the Gaussian RBF kernel. Table 14 summarizes the best configuration results.

Kernel RBF

C value 1

sigma value 0.01

TP TN FP FN Accuracy Precision Recall F-measure

1303 1242 249 116 87,46% 83,96% 91,83% 87,71%
Table 14. SVM configuration optimization results (summary)

As stated in the table above, the RBF kernel gives better results in the classification
process that the linear one. However, by taking a look at Annex B results, it can be
observed that the maximum accuracy reached by the linear kernel is only 3 points
lower than the best result with the RBF kernel. This means that the dataset is linearly
separable, but an RBF kernel is more suitable to optimize the results of the defined
scenario. The other parameters are suited accordingly to the maximum accuracy.

7.4.2. Quality evaluation: lexical & syntactic cross-validation
The optimal configuration reported in the optimization process is used to apply
cross-validation with k=10 and to compare 3 different scenarios using the FE-SVM
approach. These scenarios relate to the usage of only lexical features, only syntactic
features, or both sets of features. The datasets are the same ones used in the previous
optimization process. Table 15 summarizes these results.

68

 TP TN FP FN Accuracy Precision Recall F-measure

Lexical 1284 1322 169 135 89,55% 88,37% 90,49% 89,42%

Syntactic 623 1389 102 796 69,14% 85,93% 43,90% 58,12%

both 1303 1242 249 116 87,46% 83,96% 91,83% 87,71%
Table 15. Cross-validation results (FE-SVM) with k=10

Based on these results, the maximum accuracy is achieved when using only the lexical
set of features. The usage of only syntactic features provides very poor results. In fact,
a very low recall is obtained when using only syntactic features. This means that a lot
of real duplicate instances are wrongly labelled as ND.

The most logical explanation to this phenomenon is that considering only grammatical
structures when identifying duplicates between requirements is not the best approach.
Different circumstances like the writing style of a user may affect the capacity of the
algorithm of comparing grammatical structures and finding a resemblance between
actual duplicated requirements.

Furthermore, if lexical and syntactic features are combined, the results are highly
improved, but not as much as in the scenario with only lexical features. From these
metrics, it can be concluded that syntactic features do not seem to contribute to
improving the FE-SVM approach, as some contributions in the literature review
suggested. Therefore, these are discarded from the algorithm evaluation.

7.5. Comparative evaluation between algorithms
After the experiments have been run, it is time to apply a comparative, qualitative
analysis between the BM25F-based approach and the FE-SVM approach. This
analysis is based on two dimensions. The first one is related to the accuracy and the
quality of the results provided by each algorithm, which has been the focus of this
thesis. The second one is based on the performance and, to be specific, the execution
time required by each algorithm to perform the same processes.

7.5.1. Accuracy and solution quality
As depicted in section 3.3, 4 quality indicators are used for each algorithm: accuracy,
precision, recall, and f-measure. In this section, the results obtained by each algorithm
are compared.

For the BM25F algorithm, the optimization values of the free parameters depicted in
Table 10 are used as the default configuration. For the FE-SVM algorithm, the kernel
and the configuration values defined in Table 14 are used to run the crossover
validation.

 Accuracy Precision Recall F-measure

BM25F 94.13% 96.27% 91.64% 93.90%

FE-SVM 89,55% 88,37% 90,49% 89,42%
Table 16. Algorithm qualitative results comparative analysis

69

As it can be easily analyzed from table 16, the BM25F approach provides the best
results in all the metrics. The accuracy, which estimates the number of correctly
identified pairs (whether they are duplicates or not duplicates) is almost 5 points higher
in the BM25F approach.

However, a significantly higher distance is observed between the precision metrics of
both algorithms (>8 points) rather than in the recall metrics (~2.5 points). This means
that the BM25F approach is especially better than the FE-SVM approach in avoiding
misclassifying not-duplicates as duplicates. On the other hand, the difference is lower
when focusing on how well the algorithms identify all existing duplicates in a dataset.

The f-measure metric provides the harmonic mean between the precision and recall
values. In this case, as both input values are higher in the BM25F approach, the
f-measure is also better.

Despite the fact that the BM25F approach provides better results when using a
threshold evaluation, it is important to remark the high-quality results obtained by the
FE-SVM approach. Both accuracy and f-measure are very close to a 90% value, which
are very good qualitative results.

The differences between the approaches are not that high, and the most appropriate
conclusion would be that, even though for this scenario the BM25F seems to provide
more accurate results, both solutions should be tested in any new scenario. The nature
of the dataset, such as the length of natural language fields or the type of users
introducing new issues, might change what is the best option for duplicate
requirements detection.

7.5.2. Performance: execution time
Although the literature review does not provide a lot of information regarding the
performance and efficiency of the algorithms, it is important to evaluate the execution
time required to perform the main actions from this scenario.

An execution time evaluation based on a horizontal and vertical analysis is proposed.
From the vertical perspective, it is necessary to evaluate and compare the total amount
of time required by each algorithm to complete the same use case action. From the
horizontal perspective, it is required to evaluate and compare the different steps of
each algorithm one by one, in order to understand which tasks are the most
time-consuming. To better understand this proposal, this process evaluation is depicted
in Figure 11, which provides a generic abstraction of the main tasks involved in the
duplicated requirements detection scenario for each algorithm.

70

Figure 11. Requirements Similarity system tasks (generic representation)

Each path or branch of the tree defines a specific action. Cross-validation paths define
the process of using all duplicate and not-duplicate dataset instances used during the
experimentation stage. The ‘Compute score’ and ‘Train+Predict’ branches are the
specific features of each algorithm to evaluate 1 pair of requirements.

The next step is to focus on evaluating and measuring the different intrinsic steps of
each similarity detection technique. For this purpose, those tasks that are not related
directly to the algorithm itself but to the software architecture design or the used
technologies are ignored. These include, for instance, read/write DB operations.

Each experiment is run 5 times in an Intel Core i7 (8th generation) with 16GB RAM,
and the average execution time of these 5 executions is used. The results are
summarized in Table 17.

Some important considerations are raised by analyzing vertically and horizontally the
execution time results. These are summarized as follows:

1. By analyzing from scratch each algorithm process (i.e., including pre-evaluation
and evaluation stages), it can be observed that the approach requiring the less
amount of time to preprocess requirements data and provide an evaluation
between 2 requirements is the BM25F approach (~26 seconds).

However, this observation neglects a very important feature of the BM25F
approach. A compute score evaluation without a previous cross-validation does
not provide us with a threshold score that allows us to evaluate whether a
requirement is a duplicate or not. Furthermore, if the algorithm is replicated as
suggested by the original publication, a single requirement-to-requirement
comparison does not provide useful information, as the potential of this
approach is to compare results with other requirements and to obtain the most
similar existing requirements of an existing one.

71

2. In the FE-SVM algorithm, using syntactic analysis requires a lot of execution
time, while as demonstrated in the previous section it does not improve quality
results. Both observations are a clear indicator that using syntactic data in this
algorithm is not recommended.

3. The FE-SVM approach requires more time to apply the pre-evaluation stage but
provides very good results during the cross-validation step (~6 seconds for
almost 3,000 requirement pairs) and during the prediction step (<1 ms). The
prediction task (which only includes the feature alignment between 2
requirements and the prediction by the SVM) is extremely efficient.

Algorithm BM25F FE-SVM

Stage Action

NLP
preprocessing

Basic NLP pipeline

20,886 ms

- With Syntactic NLP
pipeline

Without Syntactic NLP
pipeline

132,009 ms 0 ms

Algorithm Data
Structures

Compute document
frequency

Feature Alignment Feature Alignment

23,624 ms 17,012 ms

5,498 ms Train Train

868 ms 781 ms

Pre-evaluation
(total)

26,384 ms 177,387 ms 38,766 ms

Evaluation Cross-
validation

Compute
score

Cross-
validation

Predict Cross-
validation

Predict

33,044 ms 9 ms 7,813 ms < 1 ms 6,216 ms < 1 ms

Total 59,428 ms 26,391 ms 185,200 ms 177,387 ms 44,982 ms 38,766 ms

Table 17. Execution time experimentation results (BM25F and FE-SVM)

Therefore, it can be concluded that from a performance perspective, the FE-SVM
approach gives better results than the BM25F approach.

72

8. Conclusions
This final chapter provides a general overview of the project, its development and its
results. This includes an evaluation from the thesis management development
perspective and an analysis of the goals and the generated results.

8.1. Objectives achievement
This section enumerates and justifies the satisfaction and the achievement of each one
of the specific goals depicted during the work plan, according to the work presented in
this thesis final document.

[O1.1.] To study the current status of similarity detection in the RE field from a
general point of view.

A systematic literature review has been depicted in chapters 2 and 3, including
all the steps that have been performed and the data extraction and synthesis
techniques that have been used as input information for the development of this
thesis.

[O1.2.] To review and to enumerate similarity detection techniques/algorithms,
and to be specific the ML and NLP techniques that represent the state-of-the-art
of the field.

Chapter 3 is a general, summarized overview of the different approaches and
techniques reviewed during the systematic literature review. This review is
presented as a synthesized depiction of the most representative techniques and
the algorithmic evaluation used to decide the algorithms to be developed.

[O1.3.] To identify potentially suitable algorithm candidates for this master thesis
and the use case with which it will be validated.

Section 3.4, and to be specific Table 5, report the results of these candidate
algorithms evaluation and comparative analysis to select those approaches to
be developed as part of this master thesis. The selection criteria and the
justifications are depicted in this section.

[O2.1.] To elaborate a development proposal for the implementation of the
selected algorithms.

Chapters 5 and 6 are structured with two main report sections. The first one of
each chapter is a theoretical, analytical depiction of the technical details of each
algorithm. The second section of each chapter is a depiction of the development
process, the adaptation of the algorithm to the defined use case, and the
different steps and techniques used.

[O2.2.] To integrate the algorithms with a unique tool to use and to test the
different similarity detection scenarios.

73

Section 4.1.1, and to be specific Figure 4, provide a general overview of the
Requirements Similarity system. This includes the analysis of integrated
features between both algorithms (i.e., the requirements data management), as
well as the features deployed by each algorithm using this interface tool, as
depicted in sections 5.3 and 6.3, where each algorithm features are developed.

[O3.1.] To evaluate the requirements of the input data of the algorithms, in order
to guarantee a comprehensive analysis of the results.

The depiction of the Requirement Similarity system in Figure 4 includes how the
developed system manages the export of requirements data. Additionally, and
as part of the OpenReq project, the requirements data schema is depicted in
section 4.1.2, in alignment with the available data in the Qt’s issue repository,
which is used to validate the algorithms.

[O3.2.] To optimize and adapt the algorithms based on the use case requirements.

As depicted before, sections 5.2 and 6.2 provide all development details
regarding the adaptation of each algorithm, previously described, to the dataset
and the validation use case.

[O3.3.] To analyze and to prepare a dataset of the use case for all scenarios (i.e.,
all the different similarity detection algorithms).

In chapter 7, where the Experimentation stage is developed, the details about
the use case and the experimentation dataset details are presented.

[O3.4.] To carry out the experiments using the developed algorithms.

A set of experiments are designed and reported in section 7.5. Additionally,
some additional results are included in Annex B, especially for those
optimization processes requiring large amounts of data to be processed.

[O3.5.] To perform a comparative analysis between algorithms.

A comparative analysis is developed from two perspectives: accuracy or
reliability, and performance or efficiency. A comparative schema is built by
adapting the results of each algorithm so that they can be compared in section
7.5.

[O3.6.] To extract conclusions in terms of the reliability of the results and the
performance of the algorithms.

The reliability comparison is presented in section 7.5.1, while the performance
analysis is presented in section 7.5.2. They are developed separately to
evaluate the benefits and disadvantages of each algorithm from different
perspectives. A general conclusion is provided in section 8.2.

74

The results presented in this memory and the Requirements Similarity system justify
the achievement of all planned objectives.

8.2. General project evaluation
After the achievement of the previous objectives, it can be justified that this master
thesis development has generated three main results:

1. A systematic literature review which analyzes the state-of-the-art of the
similarity detection field in RE. This review includes the most common NLP and
ML techniques used for processing natural language information and other
metadata fields. Furthermore, some of the most frequent general approaches
for duplicate detection have been presented and analyzed, including
vector-based approaches using TF-IDF variations (BM25F) and align-based
approaches with feature extraction and supervised classification processes
(FE-SVM approach).

2. The development of a Requirements Similarity system which exposes and
provides a strong infrastructure for the analysis of different algorithm
approaches and the development and usage of some of the most
representatives techniques of the field.

3. A comparative, qualitative analysis in accuracy and performance of the two
developed algorithms, including a real use case scenario and detailed data
about the reliability of the results and the performance thanks to the availability
of training and validation data.

The experimentation results depicted in chapter 7 prove that the selection of one
algorithm or another will depend on the use case and the requirements of the software
engineering scenario. In terms of reliability, the BM25F approach has proven to be the
most accurate solution in detecting duplicate pairs of requirements for the given use
case. However, if the analysis is focused on performance and efficiency, the FE-SVM
provides better results.

To choose an algorithm for a specific use case is as important as its development.
Software engineers must be able to identify the requirements of their scenarios and to
select the algorithm that suits better.

8.3. Future work
After the development and the conclusions depicted in this master thesis, there are
some ideas and future work lines that could be exploited to improve the Requirements
Similarity system. These include:

● To improve the DB access management by providing better
read/update/write/delete functionalities. Some minor design considerations, like
the creation of a database index, have already been addressed. However, as
RE requires the management of large amounts of data, it seems accurate to
explore different approaches and techniques to improve

75

● To allow concurrency between similarity evaluation techniques. The
system is not currently designed to fully handle concurrent requests for all
features, especially when working with subsets of the requirements data (i.e.,
data belonging to specific projects). A significant improvement, especially to be
applied and used in real scenarios as a component and not a research tool,
would be to provide and develop the required features to successfully run all
kinds of parallel executions.

● To extend the current execution with new algorithms and evaluation
techniques. The design and the development of the system have been focused
on providing an adaptive, extensive structure to reuse and extend new features
and algorithms using different NLP and ML techniques. It would be interesting
to maintain this component with up-to-date solutions and new approaches that
could improve the current state-of-the-art in the similarity detection field.

These lines of work would not affect the results provided in this master thesis, but they
would improve the performance and the usage of the Requirements Similarity system,
which is the main software result delivered as part of the work that has been developed
in this document.

76

A. Glossary of terms

AI Artificial Intelligence

ML Machine Learning

NLP Natural Language Processing

SE Software Engineering

RE Requirements Engineering

IR Information Retrieval

TF Term Frequency

IDF Inverse Document Frequency

SVM Support Vector Machine

FE Feature Extraction

PoC Proof-of-Concept

RS Requirement Similarity

POS Part-of-Speech

SBD Sentence Boundary Disambiguation

UC Use Case

D Duplicate

ND Not-Duplicate

77

B. Bibliography

[1] Brynjolfsson, Erik, and Tom Mitchell. “What Can Machine Learning Do? Workforce
Implications.” Science. American Association for the Advancement of Science.
https://science.sciencemag.org/content/358/6370/1530.

[2] Collobert, Ronan, Jason Weston, Leon Bottou, Michael Karlen, Pavel Kuksa, and Koray
Kavukcuoglu. “Natural Language Processing (Almost) from Scratch.” arXiv.org.
https://arxiv.org/abs/1103.0398.

[3] Jeremy Dick, Elizabeth Hull, Ken Jackson, Requirements Engineering, Springer, pp. 7–9,
ISBN 978-3-319-61073-3

[4] Natt och Dag, J., Regnell, B., Carlshamre, P. et al, A Feasibility Study of Automated
Natural Language Requirements Analysis in Market-Driven Development - Requirements
Eng (2002) 7: 20, https://doi.org/10.1007/s007660200002

[5] Tung Khuat, Nguyen Hung and Le Thi My Hanh. A Comparison of Algorithms used to
measure the Similarity between two documents. International Journal of Advanced
Research in Computer Engineering \& Technology (IJARCET).
https://pdfs.semanticscholar.org/43f8/027780d2694331ca373c57f9a2ace509a7b6.pdf

[6] Yu Huang and Fei Chiang. Refining Duplicate Detection for Improved Data.
http://ceur-ws.org/Vol-2038/paper3.pdf

[7] Requirements Engineering - Tools and Solutions Offered by OpenReq. OpenReq.
https://openreq.eu/.

[8] Kniberg, Henrik, Mattias Skarin, and David Anderson. "Kanban y Scrum–obteniendo lo
mejor de ambos." Prólogo de Mary Poppendieck \& David Anderson. ESTADOS UNIDOS
DE AMÉRICA: C4Media Inc (2010).

[9] Schwaber, Ken, and Jeff Sutherland. “The Scrum Guide.” Scrum.org.
https://www.scrum.org/resources/scrum-guide.

[10] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S.
(2008). Systematic literature reviews in software engineering – A systematic literature
review. Information and Software Technology, 51, 7–15.
https://doi.org/10.1016/j.infsof.2008.09.009

[11] Elsevier. “What Is Scopus Preview?” What is Scopus Preview? - Scopus: Access and use
Support Center.
https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tips.

[12] “ACM Digital Library.” ACM Digital Library. https://dl.acm.org/.

[13] IEEE Xplore Help.
https://ieeexplore.ieee.org/Xplorehelp/#/overview-of-ieee-xplore/about-ieee-xplore.

78

https://science.sciencemag.org/content/358/6370/1530
https://arxiv.org/abs/1103.0398
https://doi.org/10.1007/s007660200002
https://pdfs.semanticscholar.org/43f8/027780d2694331ca373c57f9a2ace509a7b6.pdf
http://ceur-ws.org/Vol-2038/paper3.pdf
https://openreq.eu/
https://www.scrum.org/resources/scrum-guide
https://doi.org/10.1016/j.infsof.2008.09.009
https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tips
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplorehelp/#/overview-of-ieee-xplore/about-ieee-xplore

[14] “Explore Scientific, Technical, and Medical Research on ScienceDirect.”
ScienceDirect.com | Science, health and medical journals, full text articles and books.
https://www.sciencedirect.com/.

[15] Tarasov, D. S. (2015). Natural language generation, paraphrasing and summarization of
user reviews with recurrent neural networks. Komp’juternaja Lingvistika i Intellektual’nye
Tehnologii, 1(14), 595–602. Rossiiskii Gosudarstvennyi Gumanitarnyi Universitet.

[16] Jingjing Liu and Stephanie Seneff. 2009. Review sentiment scoring via a
parse-and-paraphrase paradigm. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 1 - Volume 1 (EMNLP '09), Vol. 1.
Association for Computational Linguistics, Stroudsburg, PA, USA, 161-169.

[17] Elsevier. “Reference Manager and Academic Social Network - Mendeley Database:
Elsevier Solutions.” Reference Manager and Academic Social Network - Mendeley
Database | Elsevier Solutions. https://www.elsevier.com/solutions/mendeley.

[18] Fu, C., An, B., Han, X., & Sun, L. (2016). ISCAS-NLP at SemEval-2016 task 1: Sentence
similarity based on support vector regression using multiple features. SemEval 2016 -
10th International Workshop on Semantic Evaluation, Proceedings, 645–649.

[19] Xiaoyin, W., Lu, Z., Tao, X., Anvik, J., & Sun, J. (2008). An approach to detecting
duplicate bug reports using natural language and execution information. Proceedings -
International Conference on Software Engineering, 461–470.
https://doi.org/10.1145/1368088.1368151

[20] Sun, C., Lo, D., Khoo, S. C., & Jiang, J. (2011). Towards more accurate retrieval of
duplicate bug reports. 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2011, Proceedings, 253–262.
https://doi.org/10.1109/ASE.2011.6100061

[21] El-Alfy, E.-S. M. (2014). Statistical analysis of ml-based paraphrase detectors with lexical
similarity metrics. ICISA 2014 - 2014 5th International Conference on Information Science
and Applications. https://doi.org/10.1109/ICISA.2014.6847467

[22] Mahajan, R. S., & Zaveri, M. A. (2017). Machine learning based paraphrase identification
system using lexical syntactic features. 2016 IEEE International Conference on
Computational Intelligence and Computing Research, ICCIC 2016.
https://doi.org/10.1109/ICCIC.2016.7919721

[23] Magnolini, S., Feltracco, A., & Magnini, B. (2016). FBK-HLT-NLP at SemEval-2016 task
2: A multitask, deep learning approach for interpretable semantic textual similarity.
SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings,
783–789.

[24] Kozareva, Z., & Montoyo, A. (2006). Paraphrase identification on the basis of supervised
machine learning techniques. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

[25] Yih, W. (2009). Learning Term-weighting Functions for Similarity Measures. Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2
- Volume 2, 793–802. Retrieved from http://dl.acm.org/citation.cfm?id=1699571.1699616

[26] Kashyap, A., Han, L., Yus, R., Sleeman, J., Satyapanich, T., Gandhi, S., & Finin, T.
(2016). Robust semantic text similarity using LSA, machine learning, and linguistic
resources. Language Resources and Evaluation, 50(1), 125–161.
https://doi.org/10.1007/s10579-015-9319-2

79

https://www.sciencedirect.com/
https://www.elsevier.com/solutions/mendeley
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1109/ICISA.2014.6847467
https://doi.org/10.1109/ICCIC.2016.7919721
http://dl.acm.org/citation.cfm?id=1699571.1699616
https://doi.org/10.1007/s10579-015-9319-2

[27] Lee, M. C., Chang, J. W., & Hsieh, T. C. (2014). A grammar-based semantic similarity
algorithm for natural language sentences. The Scientific World Journal, 2014.
https://doi.org/10.1155/2014/437162

[28] Runeson, P., Alexandersson, M., & Nyholm, O. (2007). Detection of duplicate defect
reports using natural language processing. Proceedings - International Conference on
Software Engineering, 499–508. https://doi.org/10.1109/ICSE.2007.32

[29] Qiu, L., Kan, M.-Y., & Chua, T.-S. (2006). Paraphrase Recognition via Dissimilarity
Significance Classification. Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, 18–26. Retrieved from
http://dl.acm.org/citation.cfm?id=1610075.1610079

[30] B. Dolan, C. Quirk, and C. Brockett, “Unsupervised Construction of Large Paraphrase
Corpora: Exploiting Massively Parallel News Sources,” in Proceedings of the 20th
International Conference on Computational Linguistics, 2004.

[31] System Dashboard - Qt Bug Tracker. https://bugreports.qt.io/secure/Dashboard.jspa.

[32] Atlassian. “Jira: Issue & Project Tracking Software.” Atlassian.
https://www.atlassian.com/software/jira.

[33] “Swagger UI.” Swagger. https://swagger.io/tools/swagger-ui/.

[34] “Java SE Runtime Environment 8 Downloads.” Java SE Runtime Environment 8 -
Downloads.
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.htm
l.

[35] “Spring Projects.” Spring. https://spring.io/projects/spring-boot.

[36] “SpringFox.” SpringFox by springfox. http://springfox.github.io/springfox/.

[37] MySQL. https://www.mysql.com/.

[38] Apache Lucene Core. https://lucene.apache.org/core/

[39] Extended Java WordNet Library. http://extjwnl.sourceforge.net/

[40] Team, The Apache OpenNLP. “Welcome to Apache OpenNLP.” Brand.
https://opennlp.apache.org/.

[41] “The Stanford NLP Group.” The Stanford Natural Language Processing Group.
https://nlp.stanford.edu/.

[42] Statistical Machine Intelligence & Learning Engine. https://github.com/haifengl/smile.

[43] Sun, C., Lo, D., Khoo, S. C., & Jiang, J. (2010). 2010 ACM/IEEE 32nd International
Conference on Software Engineering. https://ieeexplore.ieee.org/document/6062072

[44] Company, The Qt. “The Qt Company.” The Qt Company. https://www.qt.io/company.

80

https://doi.org/10.1155/2014/437162
https://doi.org/10.1109/ICSE.2007.32
http://dl.acm.org/citation.cfm?id=1610075.1610079
https://bugreports.qt.io/secure/Dashboard.jspa
https://www.atlassian.com/software/jira
https://swagger.io/tools/swagger-ui/
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://spring.io/projects/spring-boot
http://springfox.github.io/springfox/
https://www.mysql.com/
https://lucene.apache.org/core/
http://extjwnl.sourceforge.net/
https://opennlp.apache.org/
https://nlp.stanford.edu/
https://github.com/haifengl/smile
https://ieeexplore.ieee.org/document/6062072
https://www.qt.io/company

C. Annexes

A. JSON OpenReq Schema
{
 "requirement": {
 "$schema": "http://json-schema.org/draft-06/schema#",
 "title": "Requirement",
 "description": "A requirement within the OpenReq framework",
 "type": "object",
 "properties": {
 "id": {
 "description": "The unique identifier of a Requirement. Not a null value or an empty string.",
 "type": "string"
 },
 "name": {
 "description": "The name or title of a Requirement.",
 "type": "string"
 },
 "text": {
 "description": "The textual description or content of a Requirement. Note that Attachments
(see below) can be used for other than plain text format descriptions.",
 "type": "string"
 },
 "requirementParts": {
 "description": "Aggregation of RequirementParts out of which the requirement consists of.
This aggregation provides a mechanism for specifying requirement fragments or additional
information for the Requirement.",
 "type": "array",
 "items": {
 "type": {
 "$ref": "#requirementPart"
 }
 }
 }
 }
 },
 "project": {
 "schema": "http://json-schema.org/draft-06/schema#",
 "title": "Project",
 "description": "A set of interrelated activities, carefully planned usually by a project team, to
be executed over a fixed period of time and within certain cost and other limitations of
resources, to implement a certain software system.",
 "type": "object",
 "properties": {
 "id": {
 "description": "The unique identifier of a Project. Not a null value or an empty string.",
 "type": "string"
 },
 "specifiedRequirements": {

81

 "description": "The set of Requirements that have been specified for the project.",
 "type": "array",
 "items": {
 "$ref": "#requirement"
 }
 }
 }
 },
 "dependency": {
 "$schema": "http://json-schema.org/draft-06/schema#",
 "title": "Dependency",
 "description": "A relationship between Requirements. All relationships are binary relations
between two Requirements.",
 "type": "object",
 "properties": {
 "dependency_type": {
 "description": "The type of the Dependency.",
 "type": "string",
 "enum": [
 "duplicates"
]
 },
 "dependency_score": {
 "description": "An estimation of the reliability of the Dependency. The estimation is needed,
e.g, when dependency is extracted by automation, such as natural language processing.",
 "type": "float"
 },
 "status": {
 "description": "The state of the Dependency in its life cycle.",
 "type": "string",
 "enum": [
 "proposed",
 "accepted",
 "rejected"
]
 },
 "fromid": {
 "description": "The requirement from which the Dependency originates.",
 "type": {
 "$ref": "#requirement"
 }
 },
 "toid": {
 "description": "The requirement to which the Dependency points to.",
 "type": {
 "$ref": "#requirement"
 }
 }
 }
 }
}

82

B. SVM configuration optimization results
kernel C sigma TP TN FP FN AccuracyPrecisionRecall F-measure

RBF 0,001 0,001 1236 488 987 159 60,07% 55,60% 88,60% 68,33%

0,01 1390 70 1406 4 50,87% 49,71% 99,71% 66,35%
0,1 818 572 904 576 48,43% 47,50% 58,68% 52,50%
1 1254 147 1329 140 48,82% 48,55% 89,96% 63,06%
10 779 737 738 616 52,82% 51,35% 55,84% 53,50%
100 553 881 595 841 49,97% 48,17% 39,67% 43,51%
1000 560 889 588 833 50,49% 48,78% 40,20% 44,08%

0,01 0,001 1346 755 719 50 73,21% 65,18% 96,42% 77,78%

0,01 1355 772 706 37 74,11% 65,74% 97,34% 78,48%
0,1 1213 1282 195 180 86,93% 86,15% 87,08% 86,61%
1 1049 1403 71 347 85,44% 93,66% 75,14% 83,39%
10 800 755 722 593 54,18% 52,56% 57,43% 54,89%
100 970 436 1039 425 48,99% 48,28% 69,53% 56,99%
1000 821 573 901 575 48,57% 47,68% 58,81% 52,66%

0,1 0,001 1371 633 841 25 69,83% 61,98% 98,21% 76,00%

0,01 1283 1177 300 110 85,71% 81,05% 92,10% 86,22%
0,1 1167 1317 161 225 86,55% 87,88% 83,84% 85,81%
1 1101 1367 109 293 85,99% 90,99% 78,98% 84,56%
10 772 1309 166 623 72,51% 82,30% 55,34% 66,18%
100 542 869 606 853 49,16% 47,21% 38,85% 42,63%
1000 696 735 739 700 49,86% 48,50% 49,86% 49,17%

1 0,001 1336 875 600 59 77,04% 69,01% 95,77% 80,22%

0,01 1220 1313 162 175 88,26% 88,28% 87,46% 87,86%
0,1 1190 1336 142 202 88,01% 89,34% 85,49% 87,37%
1 1131 1364 111 264 86,93% 91,06% 81,08% 85,78%
10 1029 1411 64 366 85,02% 94,14% 73,76% 82,72%
100 827 582 895 566 49,09% 48,03% 59,37% 53,10%
1000 1096 441 1035 298 53,55% 51,43% 78,62% 62,18%

10 0,001 1142 1334 142 252 86,27% 88,94% 81,92% 85,29%

0,01 1189 1304 172 205 86,86% 87,36% 85,29% 86,32%
0,1 1175 1338 137 220 87,56% 89,56% 84,23% 86,81%
1 1115 1379 96 280 86,90% 92,07% 79,93% 85,57%
10 1103 1131 344 292 77,84% 76,23% 79,07% 77,62%
100 835 1159 315 561 69,48% 72,61% 59,81% 65,59%
1000 0 1476 0 1394 51,43% 0,00% 0,00% 0,00%

100 0,001 1329 924 552 65 78,50% 70,65% 95,34% 81,16%

0,01 1224 1197 279 170 84,36% 81,44% 87,80% 84,50%
0,1 1134 1233 244 259 82,47% 82,29% 81,41% 81,85%
1 1115 1286 190 279 83,66% 85,44% 79,99% 82,62%
10 1077 1239 236 318 80,70% 82,03% 77,20% 79,54%
100 934 1421 53 462 82,06% 94,63% 66,91% 78,39%
1000 974 439 1035 422 49,23% 48,48% 69,77% 57,21%

1000 0,001 1331 915 560 64 78,26% 70,39% 95,41% 81,01%

0,01 1261 965 509 135 77,56% 71,24% 90,33% 79,66%
0,1 1102 1160 314 294 78,82% 77,82% 78,94% 78,38%
1 1013 994 482 381 69,93% 67,76% 72,67% 70,13%
10 1121 1338 139 272 85,68% 88,97% 80,47% 84,51%
100 1047 1410 65 348 85,61% 94,15% 75,05% 83,53%
1000 820 1420 54 576 78,05% 93,82% 58,74% 72,25%

83

LINEAR 0,001 - 683 881 595 711 54,49% 53,44% 49,00% 51,12%

0,01 - 1084 1262 214 310 81,74% 83,51% 77,76% 80,53%
0,1 - 1076 1388 88 318 85,85% 92,44% 77,19% 84,13%
1 - 992 1363 112 403 82,06% 89,86% 71,11% 79,39%
10 - 1115 1225 251 279 81,53% 81,63% 79,99% 80,80%
100 - 1056 1274 200 340 81,18% 84,08% 75,64% 79,64%
1000 - 865 573 903 529 50,10% 48,93% 62,05% 54,71%

84

