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  Resum  del  Treball  (màxim  250  paraules):  Amb  la  finalitat,  context
d’aplicació, metodologia, resultats i conclusions del treball

La  predicció  d’actius  financers  és  una  de  les  principals  aplicacions  de
l’Aprenentatge  Automàtic  i  les  Xarxes  Neuronals.  En  concret,  les  xarxes
basades en Long Short-Term Memory (LSTM) han demostrat ser especialment
útils en aquest camp i en altres problemes de sèries temporals. Per contra, s’ha
investigat menys sobre l’idoneïtat i el rendiment del model Facebook Prophet,
basat  en el  model  additiu  i  que és capaç d’unir  tèndencies no lineals  amb
estacionalitats configurables. Aquest projecte buscava construir i comparar dos
models:  un  basat  en  un xarxa neuronal  LSTM i  l’altre  basat  en l’algorisme
Prophet,  per així  analitzar quin dels dos actuava millor  com a predictor,  en
concret sobre el preu de l’índex borsari S&P500. Per tal de comparar aquests
models un mòdul de simulació de  trading va ser implementat i utilitzat com a
plataforma de  backtesting, mitjançant el qual els models poguessin posar en
pràctica les seves prediccions i  així  determinar el  seu rendiment econòmic.
Després de l’anàlisi dels models, es va concloure que que la LSTM aconseguia
millors resultats i actuava com un predictor decent en comparació amb altres
estràtègies  de  trading senzilles.  El  model  Prophet  també  tenia  retorns
d’inversió   positius,  però  era  menys  robust  com  a  predictor.  A  banda,  el
projecte ha demostrat la utilitat de fer ús d’una plataforma de  backtesting en
qualsevol tasca de predicció financera, ja que ajuda a detectar asimetries entre
el  rendiment  d’un model  durant  la  fase de test  de l’algorisme i  el  posterior
rendiment del model en un entorn de trading simulat.
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  Abstract (in English, 250 words or less):

Finance forecasting is  one of  the main applications of  Machine Learning in
general and Artificial Neural Networks in particular. Long Short-Term Memory
(LSTM) networks have been proven specially useful in this field and in other
time series problems. However, less literature has been written about the 
suitability and performance of the Facebook Prophet model, which is based on
an additive model that blends non-linear trends with configurable seasonalities.
This project aimed to build and compare two predictive models, one based on a
LSTM network and another one based on the Prophet algorithm, to analyse
which of them performed better in forecasting tasks, particularly in predicting
the price of the S&P500 index. In order to compare these two models, a trading
simulator module was built as a backtesting platform where the predictions of
the  models  could  be  applied  to  determine  its  economic  performance.  After
building the two models, it was demonstrated that the LSTM model achieved
better results, and was proven a decent predictor compared to other benchmark
trading  strategies.  The  Prophet  model  also  showed  positive  returns  of
investment, but its accuracy as a predictor was not as high. The project results
also suggest that a backtesting platform is a convenient feature when dealing
with forecasting enterprises, since it allows to detect asymmetries between the
fitness  of  a  model  during  the  testing  phase  of  the  algorithm  and  its  later
performance in a simulated trading environment.
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1. Introduction

1.1 Context and justification

Since the  appearance in  the  1970s of  the  DOT systems (Designated
Order Turnaround), that only forwarded trading orders, the trading market
has  experimented  a  huge  change  thanks  to  software  and  computer
science. 

From  the  implementation  of  systems  to  assist  in  decision  taking  to
automated  trading  systems (ATS),  which  automatically  take  decisions
based on a set of rules, finance has found in software a powerful tool.
The exact percentage is hard to confirm, but something around 60% of
the trading activities in the equities and the foreign exchange markets [1]
are operated by computers. 

In this intersection between trading and computing, the field of market
analysis and finance forecasting has experienced an interesting war of
ideas:

There  are  two  main  approaches  to  market  analysis:  technical  and
fundamental analysis, which in their core are the exact opposite of each
other. Technical analysis believes that the future prices of an asset can
be predicted by its past price, and frequently make use of statistical and
mathematical methods. Fundamental analysis, on the other hand, claims
that future behaviour of an asset is better predicted from the study of its
financial  reports  and  a  set  of  related  factors  (the  environment,  the
competitors, the rest of the economy…).

Until  this  moment,  Machine learning  has been widely  used  mostly  in
technical analysis. Since the explosion of neural networks, and specially
of  Recurrent  Neural  Networks  (RNN),  lots  of  research  have  been
conducted  to  compare  performance  of  different  approaches  and
algorithms. In this regard, RNNs and Long Short-Term Memories (LSTM)
have been fairly studied [3], [4] as market forecasters. 

However, in 2017 a new tool for predicting time series was open sourced
by Facebook: Facebook Prophet tool [21]. This model has already been
used  in  very  interesting  applications  like  Land-Use/Land-Cover
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classification [25] and others, but has not been as extensively studied as
a market forecaster as neural networks. 

This projects aims to dig into this recent tool,  Facebook Prophet, and
explore its performance as a forecaster. To do so, it will be compared
against a solid time series predictor, that has been proven to work well in
stock market forecasting: LSTMs. Both models will  be generated from
scratch  as  part  of  the  process  of  understanding  and  exploring  their
respective strengths.

The motivation for this project is to explore a field where algorithms are
rapidly replaced by more efficient ones and where solutions hardly ever
work well for all problems.

The Standard & Poor’s 500 index (S&P500) was the variable chosen to
forecast. It was chosen between other stock market indexes because it is
broad enough to capture the economic situation of the United States (as
opposed to Dow Jones, for instance, which only contains 30 companies
and only from the industrial sector) and because it is commonly used by
economists as a benchmark1.

1.2 Objectives

This project has two main objectives:

The first one is to implement two different predictive models for the price
of  the  S&P500  stock  index,  one  of  them  based  on  a  LSTM  neural
network and the other one based on the Facebook Prophet forecasting
tool.  Those  two  predictive  models  will  be  compared  in  terms  of
performance between them and also with other trading strategies that will
be used as benchmarks.

The  second  main  objective  of  this  project  is  to  implement  a  trading
simulator module in Python where the predictive models can apply their
predictions with real-world data. This tool will also be used to evaluate
the models’ performance.

1 Benchmark  is  a model  or  measurement  against  which  to  compare  the  performance of
another model.
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1.3 Methodology

The project involves generating and comparing two predictive models,
the architectures of which will be designed and subsequently tuned from
scratch. 

The  process  will  be  inherently  iterative.  The  models  will  be  first
generated  with  default  hyperparameters  and  they  will  be  updated
gradually in order to find the best performing ones. 

1.4 Work plan

The original idea for the project suffered a deviation during November.
The objective has always been to build a predictive model, but originally
the  method  to  generate  this  model  was  to  make  use  of  a
neuroevolutionary algorithm called NEAT, and it was exclusively focused
on neural networks. 

After the project goal shift, the planning was changed and most of the
milestones  were  modified.  The  Gantt  diagram in  Figure  1 shows the
project’s tasks after the change: some of the older project tasks were
reused  (the  data  gathering  and  pre-processing,  the  LSTM  model
preparation), but some of them were not.
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1.5 Summary of the products

Besides this report, containing the numerical results of the comparison
between the  two models,  the  second product  generated is  the  trader
simulator  and  the  rest  of  the  Python  project  needed  to  generate  the
models and interpret them. 

This Python project consists mainly of:

• lstm.py: the module which performs the training and testing of the LSTM
models.

• prophet.py: the module which performs the training and testing of the
Facebook Prophet models.

• trader_simulator.py: the module that interprets the models generated and
performs the trading simulation.

• data_preprocessor.py: an auxiliary module containing methods for data
manipulation.

• test/test_trader_simulator.py:  the  unit  test  implemented  to  verify  the
trader simulator.

Some models and predictions (.h5 and .csv files) and plots were also
included in the project’s folder structure, together with the original dataset
(sp5001962.csv) used for this project and a README.txt file explaining
the different modules.

1.6 Chapter description

Chapter 2 presents the data used for the prediction task and details the
preparation process. It also enumerates the tools used and the criteria
behind this selection. 

Chapter 3 describes the process of building the LSTM model, as well as
the basics about Neural Networks, Recurrent Neural Networks and the
Long Short-Term Memory cell. 

Chapter 4 does the same process description for the Facebook Prophet
model.
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Chapter 5 explains the trader simulator module and how it compares the
performance of  the models, finally presenting the results of each model’s
prediction.

Chapter 6 presents the conclusion of the project.
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2. Tools and data preparation

This  chapter  contains  information  about  the  tools  used  in  this  project  and
explains the methods applied to the original dataset in order to prepare it for the
construction of the models. It ends with a visual presentation of the data. 

2.1 Tools selection

The code for the project was written in Python [6]. 

For the implementation of the LSTM, two libraries were considered: TensorFlow
[7]  and Keras [8].  Keras runs on top of TensorFlow and it  is  a higher level
library,  so  it  is  faster  to  prototype  and  build  different  architectures  with  it.
TensorFlow also has a high-level API and provides more features, but as the
project  would  not  make  use  of  those  features,  Keras  was  chosen  for  its
simplicity. 

For the Facebook Prophet model, the implementation in Python was used. 

Some other  libraries  were  used,  the  most  important  of  them being:  sklearn
(used  for  preprocessing  tasks),  matplotlib  (for  plotting),  numpy  (for  array
handling) and pandas (for reading and writing the datasets). 

2.2 Data gathering

Unlike intraday stock  prices (with  periods smaller  than a day,  i.e.,  seconds,
minutes our hours), which tend to be hard to find or expensive, daily data is
ubiquitous and free. The most common dataset for the stock index S&P500 is
the OHLC set, which refers to Open-High-Low-Close prices: the prices at the
opening and closing time of the stock market, and its highest and lowest value
achieved during that period. It can be found in several websites. 

For this project, the data used was extracted from Yahoo! Finance [5], and it
covers from 2nd January 1962 to 5th December 2019. Stock markets are closed
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on weekend days and holidays, and the downloaded dataset already considers
that information. Therefore, the days in which the stock market is closed do not
appear  as  samples  in  our  data,  which  means  that  the  total  number  of
observations is 14583. 
 

2.3 Data pre-processing

Since the time series predictive models that are going to be built are univariate,
only one column from the OHLC will  be selected, the rest will  be ruled out.
Closing  price  is  the  one  feature  that  will  be  observed  since  it  includes  the
information  of  the  day  and  would  eventually  allow  the  trading  simulatror  to
perform its calculation during the closing times of the stock market (night) and
place a buy or a sell order during that time. 

Once the dataset contains only the closing price for each observation (day),
some sort of data normalization should be made. This normalization is frequent
in Machine Learning tasks and consists in transforming the data in order to
make fit it in a smaller range. 

This data transformation has been largely proven to make models not only train
faster,  but also to achieve better performances. In this project,  some sort  of
normalization  will  be  applied  to  both  models  built,  but  for  each  model  the
techniques used will  be  different:  in  the  case of  the LSTM model,  Min-Max
normalization  will  be applied.  For  Prophet,  on the  other  hand,  a  logarithmic
transformation  will  be  carried  out.  However,  each  of  these  methods  will  be
explained in the respective chapters for each model. 

Lastly, it is worth pointing out that for the LSTM model the train dataset and the
test dataset will be slightly smaller than the original one. This happens because
the  LSTM  needs  the  observations  of  the  N  previous  days  to  perform  a
prediction for the next one. That means that the first prediction that the LSTM
will  be able to make is for the observation number N+1 of the test dataset.
However this will be thoroughly explained in Chapter 3, and does not have a
great effect in the results, since N will be small.
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2.4 Data presentation

The dataset after the pre-processing carried out in the previous chapter show
the following values: 

The  range  of  the  closing  prices  goes  from  52.32$  on  its  lowest  value  in
February 1962, to 3,153.63$ in November 2019, when it reaches its maximum.

This dataset needs now to be split in training and testing dataset in order to be
able to validate the models built in the following chapters. The first 80% of the
observations will serve as training set and the last 20% will be used as testing
set. 

This draws the split line the on the 7th May 2008:
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Figure 2: Daily closing prices of the S&P500 index between 1962 and 2019



And it means that the train dataset will contain 11666 observations, while the
test dataset will contain the last 2917 observations. 

Another  data  visualization  plot  that  will  be  useful  to  better  understand  the
dataset  is  the  histogram  with  the  frequencies  of  the  different  closing  price
ranges:
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Figure 3: Training-testing data split



As it could be noticed in the previous plots, most of the samples of the dataset
have values smaller than 1,500$, and there is a big mode in the first bin of the
distribution. This knowledge will prove useful when normalizing the data for the
respective models.
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3. LSTM model

In this chapter there is a short introduction to neural networks: how they work
and its history. There is also a presentation of the LSTM cell or unit and the
hyperparameters that can be used to define a network based on it.

After this theoretical presentation, the LSTM predictive models generated for
this projected are presented and compared with each other. Finally, there is a
summary of the selected model with its hyperparameter configuration.

3.1 How does a Neural Network work?

A neural network is a machine learning system, composed of artificial neurons
connected with each other. Those neurons perform a transformation in a set of
inputs to generate outputs, which can be used both in tasks of classification or
regression.

The learning aspect of a neural network takes place after every iteration during
the training phase, and it mainly updates the relationship between neurons so
that the network can globally adjust better to the expected outputs.

The inner working of a single neuron is the following (see Figure 5):
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A neuron receives different input values from different neurons (x1...xn). Each
one of this connections with other neurons has a weight assigned (w1...wn), that
can be updated during the training phase to minimize the difference between
the output of the neural network and the expected output.

Inside the neuron, the calculations taken place are:

y neuron=f (∑
j=1

n

x j∗w j+b) (1)

Where x are the input values from other neurons, w are the weights, b is the
bias value and f is the activation function, which modifies and normalizes the
output and can be of different types.

3. 2 A brief history of Neural Networks 

The idea behind neural networks was born in 1943 by the neurophysiologist
Warren  McCulloch  and  the  mathematician  Walter  Pitts,  who  proposed  a
theoretical  model  to  represent  the  inner  working  of  biological  neurons  with
propositional  logic  [11].  This  served as  a  starting  point  for  a  series  of  new
inventions:
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In 1958, the perceptron was presented by Frank Rosenblatt. Perceptrons are
primitive neural networks that only have an input and an output layer consisting
of  linear  threshold  units  (LTU),  which  perform  a  weighted  sum  of  the
connections that they receive from other units and then apply a step function.
This is the main behaviour of neurons and despite being very limited in terms of
architecture  and learning,  the  perceptron  already reinforced the  connections
that lead to lower errors in the final predictions. 

Some  years  later,  in  1986,  D.E.Rumelhart  et  al.  [12]  presented  the
backpropagation  algorithm,  which  made  training  much  more  efficient.  This
algorithm is  very  clearly  described  by  A.  Géron  in  p.  263-264  of  his  book
“Hands-On Machine Learning” [17]:

“For each training instance the backpropagation algorithm first makes a
prediction (forward pass), measures the error, then goes through each
layer in reverse to measure the error contribution from each connection
(reverse  pass),  and  finally  slightly  tweaks  the  connection  weights  to
reduce the error (Gradient Descent step).”

Then,  Recurrent  Neural  Networks  (RNN)  appeared.  As  opposed  to  in
feedforward  networks,  the  neurons  in  recurrent  networks  are  connected  to
themselves across time steps.  This means that a neuron,  in  addition to  the
connections  with  other  neurons,  is  also  connected  to  its  past  state,  thus
allowing the network to develop some sort of memory.

3.3 The LSTM cell

The Long Short-Term Memory cell (or unit) appears as an extension of the RNN
cell.  It  has  been  modified  and extended since its  presentation  paper  by  S.
Hochreiter  and  J.  Schmidhuber  [14],  but  the  main  components  can  still  be
observed in Figure 6:
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The x vector and the h vector work as the input and the output vector of a
simple neuron respectively. However, there are several more differences. 

In the first place, there are two more input vectors to the cell: ht-1 and ct-1. Those
two  values  represent  respectively  the  short  and  the  long-term  state  of  the
previous time step cell. This way, ht is at the same time the output of the current
unit and the short-term input for the next time step cell.

The main idea behind the LSTM unit is that it allows a long-term vector c to flow
over  time  steps,  dropping  and  learning  new  memories  (via  the  Forget  and
Output gate),  while at the same time also the short-time h memory is being
used by the unit.

3.4 Hyperparameter description

A  LSTM  network  has  several  hyperparameters  that  can  be  tuned.  The
preeminent amongst them are:

• Batch size: defines the number of samples that go through the network
before the inner  parameters  of  the  network update  themselves.  Each
update  on  the  inner  parameters  is  called  an  iteration  so,  in  a  way,
defining the batch size equals to define the number of iterations in each
epoch. 
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For instance,  with  a training dataset  of  11520 observations,  having a
batch size of 96 samples will  allow the neural network to update itself
120 times (iterations). 

11520
96

=120 (2)

• Number  of  epochs:  defines  the  number  of  iterations  over  the  whole
training dataset.

• Number of layers: layers are divided into input, hidden and output ones,
and are aggregations of neurons. But as a hyperparameter, the number
of layers refers only to hidden layers.

• Units per layer: refers to the number of neurons in each layer.
 

• Input  sequence’s  length  (also  called  time  steps):  the  number  of
observations into the past that each sample contains. 

• Objective  function  (or  loss  function):  the  function  that  computes  the
difference  between  the  predicted  output  and  the  actual  one,  i.e.,  the
function that the neural network is trying to minimize. For this project,
since the objective is to minimize the error, it will  referred as the loss
function. 

• Optimizer:  the  optimization  function  is  the  mechanism  that  uses  the
neural network to find the value that minimizes the loss function. One of
the  most  important  optimization  algorithms  is  Stochastic  Gradient
Descent (SGD), which relies on the iterative calculation of the gradient of
a function, making steps at each point towards the negative gradient  in
order the find the global minimum. 

There are however more recent algorithms that extend and modify this
approach,  like AdaGrad o Adam, and which converge faster and find
better minima because of its finer behaviour in sparse gradients (that
appear, for instance, when approaching the minimum) [15].

• Dropout:  is  a  technique  proposed  by  Srivastava  et  al.  [10]  which
addresses the  problem of  overfitting.  It  does it  by randomly disabling
(dropping) different units in a neural network along with their connections
during training. This prevents the system from relying too much in some
specific units, thus becoming too specialized.  
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3.5 Hyperparameter selection

In order to test several combinations of the previously defined hyperparameters,
a grid search dictionary was defined. This dictionary (see Figure 7) is later used
with the help of the scikit-learn library [24] and allows to test the model with all
the possible combinations of variables defined in the dictionary.

The grid search was performed to find the combination that achieved the lower
error in the test dataset. Specifically, the hyperparameters tested were:

• Input  sequence  length  (or  time  steps):  for  this  dataset,  where  every
observation is a day, they were considered time windows of [5, 150] days
in the past.

• Number of units: this is, the number of LSTM cells in each hidden layer.
The range of values tested was [5, 500].

• Number of epochs: values between [3, 50] were tested.

• Batch size: values between [32,128] were tested. 

• The number  of  layers:  the  range  of  [1,  4]  hidden  layers  was  tested.
However,  since  2  layers  early  appeared  to  be  the  most  efficient
architecture,  all  the  experiments  presented  in  this  section  have  the
constant value of 2 hidden layers. The results in Table 1 also refer to a 2
hidden layer architecture.

The  rest  of  the  hyperparameters  were  not  included  in  the  grid  search  and
therefore had constant values:

•  Loss function: mean squared error has been chosen:
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MSE=
1
N∑

i=1

N

(Y i−Ŷ i)
2

(3)

where N is the number of predictions, Y is the vector of observed values
and  Ŷ  is  the  vector  of  predicted  values.  It  is  a  function  that  highly
penalizes outliers because of the 2-exponent. 

Mean absolute error could have also been chosen as the loss function,
but  in  this  case it  was considered desirable that  the  model  punished
large errors specially. Furthermore, mean absolute error was also tested
briefly as loss function for this experiment, and it generated slightly less
accurate models. 

• Optimizer:  Adam algorithm was chosen. There are two main reasons:
first of all, for its adaptive learning rate. The learning rate determines the
speed at which the model changes as a response to the loss function.
For optimization algorithms based in gradient descent, the learning rate
determines the size of the step towards the minimum that the system will
take (see Figure 8).

Considering θ the variable studied and J(θ) the loss function to minimize,
we can see the effects of the learning rate: a rate too high means a risk
of overshooting the minimum, even a risk of diverging (left image), and a
rate  too  low means  a  risk  of  getting  stuck  at  global  minima or  slow
convergence (right image).
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Figure 8: Different learning ratios and its effect. Left image: high learning rate. Center
image: adequate learning rate. Right image: small learning rate. Source: self-elaboration



Adaptive learning rates appeared to try to solve this problem and will be
the choice for this project. 

Secondly,  Adam  was  chosen  among  other  adaptive  learning-rate
algorithms for its faster convergence [15], [16].

• Dropout probability:  20%. Dropout was incorporated into the model by
adding a Dropout Keras layer after each LSTM layer. This way, for each
iteration over the network, 20% of the units in each LSTM layer will be
disabled and not taken into account for the weight updates. 

The final distribution of the LSTM layers can be seen in  Figure 9: two hidden
LSTM layers  with  dropout,  and an output  layer  with  an  only  unit  (only  one
feature is being predicted, that is the closing price, so the output layer will have
only one unit).

3.6 Data preparation

The  data  to  feed  the  neural  network  with  must  have  a  particular  shape.
Specifically,  Keras  needs  the  train  dataset  to  be  a  3-dimensional  vector
containing (number of samples, time-steps, number of features):

The number of time-steps will be one of the hyperparameters to be tuned and
the number of features will be always one, since the time series model we are
working  with  is  univariate  (it  has  only  one  feature,  the  closing  price  of  the
S&P500).

In this case, the number of samples will be the train dataset (11666) minus the
number of time-steps. This happens because the LSTM model needs the N
previous observations to perform a prediction (see Figure 10):
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Figure 9: LSTM layers distribution



The  first  value  that  it  will  be  able  to  predict  will  therefore  be  the  N+1th

observation, thus reducing the train dataset by N observations. This will not be
problematic  since,  as it  will  be showed in  subsequent  chapters,  the optimal
value for N is quite small (N=5). 

Other than that, data is also normalized by using the MinMaxScaler from the
sklearn library [24], which uses the following formula:

X std=
X−X .min

X .max−X .min
(4)

X scaled=X std∗(max−min)+min (5)

where X.min, X.max represent the minimum and maximum values in the original
data and min, max the desired range, in this case (0,1). 

This is a very common choice because, as opposed to standardization (zero-
mean and unit variance), it does not distort the data. 

The Scaler is fitted with the training data and then both training and test data
are transformed. The transformation will be inverted after training the model, so
the data can be visualized and studied with their original values. 

3.7 Hyperparameter tuning
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Figure 10: Training dataset vector with time-step. Source: self-
elaboration



In order to measure the fitness of a model, a lot of metrics can be chosen. For
this  project  (both  for  the  LSTM  and  for  the  Facebook  Prophet  model),  the
selected function will be the root mean squared error (hereafter RMSE), which
is the square root of the MSE defined in formula (3):

RMSE=√ 1N∑
i=1

N

(Y i−Ŷ i)
2

(6)

Mean  absolute  error  (MAE)  could  have  also  been  used,  since  it  has  the
advantage that it is more intuitive and presents directly the mean of the errors:

MAE=
1
N

∑
i=1

N

|Y i−Ŷ i| (7)

However, let us recall that the model was built using MSE as the loss function in
order to penalize large errors. Although a different metric could have been used
here to  measure  the predictions  error,  RMSE was  also chosen so that  this
penalization  was  also  taken  into  account  when  evaluating  the  model.  In
addition, RMSE has the advantage that it acts as an upper bound to MAE and
therefore it already gives some information about it. 

Before analysing the concrete results of the search grid, there is a phenomenon
worth mentioning:

The models that yield a better RMSE seem to predict  the real values some
observations later, which means that the predicted value is something similar to
a shift  of N observations to the right (see  Figure 11 and  Figure 12). This is
difficult  to avoid because this kind of behaviour actually performs well,  but it
avoids  the  possibility  of  finding  a more  generic  predictor  that  could  perform
worse in terms of the loss function, but rather behave in a more visionary way.
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However, the models that show this kind of behaviour are not an absolute shift
of N observations. As it can be sen in  Figure 12, which shows an extract of
Figure  11 between  observations  [200,300],  the  predicted  function  is  not
completely overfitted.
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Figure 11: LSTM model with input_seq=5, units=200, epochs=5, batch_size=64

Figure 12: LSTM model with input_seq=5, units=200, epochs=5,
batch_size=64. Zoomed over observations [200,300]



This shift can be observed in other models built with neural networks for time
series  prediction.  For  instance,  the  neural  network  built  by  A.  Hedayati
Moghaddam et al.  [18] for the NASDAQ stock price prediction also show that
deviation.

The existence of this phenomenon was a motivation to implement a trading
strategy (that will be explained in Section 5.2) that assigns to the prediction for
the next day the value of the Nth previous one (in this case, N = 5 will be useful).
This simple strategy will be useful to compare its performance particularly with
the LSTM model.

Other than that, it can also be interesting to calculate the RMSE between the
real values and a theoretical shift of X observations in that data. Having X=1
day, the RMSE obtained is 36.50:

RMSE=√ 1N∑
i=1

N

(Y i−Y (i−1))
2
=36.50 (8)

However,  having  X=5  days,  which  is  more  or  less  the  deviation  that  the
obtained model seems to have, the RMSE obtained is:

RMSE=√ 1N∑
i=1

N

(Y i−Y (i−5))
2
=79.49 (9)

This values will  serve as a benchmark for the LSTM models generated. For
instance, the LSTM model referenced in Figure 11 has a RMSE of 41.31 which
means that  it  performs slightly worse than the 1-day shift  just  calculated as
benchmark, but better than if was just a 5-day shift in the data. 

Having  explained  this  phenomenon  and  having  the  5-day  shift  RMSE  as
benchmark, the grid search results are presented (see Table 1):
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Input
sequence

lenth

Number of
units

Number of
epochs

Batch size RMSE

5 5 5 96 532.30

5 10 8 96 399.25

5 150 5 128 43.14

5 200 3 64 37.71

5 200 5 64 41.31

5 200 8 64 139.26

5 500 3 1 307.83

5 500 5 96 33.87

5 500 8 96 35.56

5 500 50 96 135.61

10 50 5 64 168.61

10 500 5 128 37.37

15 200 5 128 46.11

15 500 5 96 47.89

20 50 5 64 226.62

60 500 3 64 85.44

60 500 5 64 148.56

60 500 8 64 74.27

60 500 3 96 83.53

60 500 5 96 37.07

60 500 8 96 84.82

100 50 5 64 188.33

100 200 5 64 59.08

120 150 5 64 92.42

120 200 5 64 63.17

120 500 5 64 78.37

Table 1: RMSE of the LSTM models

The conclusions that can be extracted from this data and from the plots are the
following:

• Input  sequence  length,  i.e.,  a  long  window  into  the  past,  does  not
correlate positively with accuracy. The grid search shows that for both
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sequences of 5 or 60 observations into the past, the results are quite
similar. 

• It seems beneficial for the model not to train a lot: a higher number of
epochs generates bigger errors. Let us see the best model (Figure 13)
which was trained during 5 epochs, compared with the model that has
the same configuration but trained during 50 epochs (Figure 14):
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Figure 13: LSTM model input_seq=5, number_units=500, epochs=5,
batch_size=96



The model trained for 50 epochs performs way worse specially in the last
part of the test set. This might be caused by an overfitting acquired over
the train dataset, which has way lower prices that the test dataset. Those
lower values might have been learned by the network, but this is just an
hypothesis. 

• Low  input  sequences  work  well  with  a  high  number  of  units.  If  the
number  of  units  is  also  low  (for  instance  input_sequence=5  and
number_neurons=10), the model captures the trends, but fails to adjust
the value (see Figure 15).
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Figure 14: LSTM model input_seq=5, number_units=500, epochs=50,
batch_size=96



• In general, both for short and long input sequences, a high number of
units is needed to let the model learn from the data. 

• The adequate batch size for this experiment seems to be 96. They were
also tested extreme batch sizes like 1 that did not perform well despite its
very high computational cost.

3.8 LSTM selected model

The best performing model, i.e. the model with the lower RMSE, is the one with
the following hyperparameter configuration:

• Input sequence length: 5
• Number of units: 500
• Number of epochs: 5
• Batch size: 96

Its RMSE over the test set is 33.87, which is slightly better than the benchmark
value of 36.50 obtained in Formula (8), by calculating the RMSE of the test set
with its 1-observation shift to the past. But it is way better in terms of error than
the 5-observation shift calculated in Formula (9), which was 79.49. 
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Figure 15: LSTM model input_sequence=5, number_units=10



For  a  more  detailed  exploration  of  the  model’s  fitness,  the  MAE  was  also
calculated (Formula 7) and the resulting value was 24.92.
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4. Facebook Prophet model

In this chapter the Facebook Prophet implementation is presented, as well as its
main hyperparameters tuned to generate the predictive model for the project.

A first execution was carried out with the default parameters of the algorithm, to
see how it performed without any changes. After that, more executions were
carried out: firstly, the original dataset was fed into the algorithm without any
data normalization process. After that, a logarithmic transformation was carried
out on the original dataset, with the purpose of determining the suitability of it,
while trying to search for better models.

At the end of the chapter there is a summary of the hyperparameters of the
selected model.

4.1 Model overview

Facebook Prophet is a model and a library that provides features both from
generalized linear models (GLM) and additive models (AM), mainly extending
GLM by using non-linear smoothing functions. It was specified by Taylor and
Letham [19] in 2017.

The  main  difference  between  Prophet  and  other  statistical  methods  is  the
analyst-in-the-loop approach. This approach allows the the analyst to apply their
domain knowledge about the data to the forecasting algorithm, without having
any knowledge of the statistical methods working from within. This approach,
therefore, tries to take advantage from both the statistical forecasting and the
judgmental  forecasting,  the  latter  being  the  forecasting  methods  based  on
human experts decisions. The parameters that can be tuned by the analyst will
be defined and explained in sections 4.2 and 4.4.

The general function to define the time series is the following:

y (t )=g(t )+s(t )+h(t )+ϵt (10)
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where g(t) represents the non-periodic changes in the value of the time series,
s(t)  model  seasonality  (which  can  be  daily,  weekly,  monthly,  yearly  or  any
other), h(t) represents the effects of holidays and εt is the error term.

4.2 Hyperparameters

There  are  several  customizable  parameters  in  Facebook  Prophet’s
implementation [21], the main ones being:

• Changepoints: which define trend changes. These can be found by the
algorithm itself or they can also be defined and tuned by the analyst.

• Seasonality:  which  define the periodic  functions which  may affect  the
time  series.  By  default,  Prophet  considers  yearly,  weekly  and  daily
seasonality, and tries to find trends that represent those periodic effects
in data.

• Holidays: special days (holidays or any other recurrent event) can also
be modeled by the Prophet  additive model.  The dates can be added
manually through a pandas.Dataframe, but there are also built-in holiday
sets for a dozen countries.

• Fourier  order:  referring  to  the  seasonality  function,  this  value  will
determine how fast it can change and adapt, and it will also imply a more
fitted model (with the consequent risk of overfitting).

From these hyperparameters, holidays was the only one that was not tuned or
considered for the building of the current model. There are two reasons for this
decision:  first  of  all,  the  S&P500  is  a  highly  globally  operated  index,  and
therefore it is not self-evident that considering only one country’s holidays would
make an important difference. But most importantly, equities market are closed
on United States holidays, so our original S&P500 dataset does not contain any
information in these days for the algorithm to model.

4.3 Default hyperparameters execution
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Having discarded the holidays, executing the default  configuration generates
the following Prophet  model, which can be plotted with the built-in plot function:

The black line shows the training data and the blue line shows the prediction
made  (both  for  the  training  and  the  test  data,  which  consist  in  2817
observations).  The lighter  blue  area delimits  the upper  and lower  prediction
between the certainty interval (by default it is 80%). 
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Figure 16: Prophet model prediction with default hyperparameters



As we can see, the model is not finely adjusted during the training phase with
the  default  configuration,  but  let  us  see  the  decomposed  seasonalities  to
explain how this feature works:

Prophet has three default seasonalities: daily, weekly and yearly. As our data
do not contain intraday data (meaning hourly data or even data with smaller
intervals like minutes or seconds), the daily seasonality is directly eliminated by
the library. The other two default seasonalities are printed, besides the general
trend of the prediction. 

Some comments  on  these  periodic  trends  should  be  made:  first  of  all,  the
general trend is not correctly determined from 1999 onwards.
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Figure 17: Prophet components with default hyperparameters. Top image: trend
component effect to the general function. Center image: weekly seasonality

effect. Bottom image: yearly seasonality effect.



Second of all, weekly seasonality takes into account weekend days, which are
not in the original dataset as the stock market is closed. So, using our dataset,
weekly seasonality should be disabled in the way that it is defined.

 

Lastly,  the  yearly  seasonality  is  indeed  interesting  as  it  highlights  two
phenomena  that  appear  frequently  in  the  economic  circles.  Those  are  the
September Effect and the January Effect, each one respectively referring to a
decrease and an increase in  stock prices in  those months.  The  September
Effect seems  important  in  our  data,  and  has  higher  evidence  in  economic
literature [20]. The January Effect has a smaller impact, but it is also significant.

4.4 Hyperparameter tuning

Once  the  default  configuration  has  been  proven  to  not  perform  well  as  a
predictor, the next step is to tune the configurable hyperparameters previously
described:  period  of  the  seasonality,  Fourier  order  of  this  function  and
changepoints.

The first step will be to disable the default Prophet seasonality (weekly, yearly,
daily). Prophet allows to make use of several seasonality functions working at
the same time, but after trying to define a model with 2-3 different seasonality
functions working at the same time, this option was discarded. The reason is
that, despite being more time and resource intensive, the resulting RMSE did
not seem to get specially lower. 

Therefore, all the performance results showed in Table  2 are calculated with
only  1  seasonality  function,  described  by  its  period  and  Fourier  order.  The
variables and its respective range values considered were:

• Period: this variable determines the number of days in a seasonality, so
a wide range of values were tested: [5, 12000].

• Fourier order: the default value is 10 for yearly seasonality, but in this
dataset, the range [3, 25] was tested.

• Changepoints: it is not recommended to change directly the number of
changepoints, but rather to change the strength of the sparse prior. Both
things  were  done  in  this  experiment.  changepoint_prior_scale  was
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changed between [0.001, 10] and changepoints were changed from [10,
100]  (from  a  default  number  of  default  of  25).  Having  tested  that
changing the number of changepoints did not affect a lot the results, that
variable did remain constant in the default value for the rest of the model
experimentation.

These variables were evaluated using a grid search over different subsets of
values. Also, as with the LSTM, RMSE has been the metric chosen to evaluate
the performance of the model, but the results will  also be evaluated visually
using plots.

For conciseness reasons, only some of these variable combinations have been
copied into this report:

Period Fourier order Changepoints
prior scale

RMSE

7 5 0.05 772.04

7 10 0.05 771.17

7 20 0.05 771.35

20 5 0.05 772.31

20 10 0.05 772.75

20 20 0.05 771.19

1000 5 0.01 775.35

2700 10 0.04 857.12

2750 10 0.05 841.40

2850 5 0.01 788.06

5000 5 0.1 569.73

7500 5 0.1 431.90

7500 5 0.04 325.15

9000 5 0.13 251.61

9000 5 0.1 330.10

9000 10 0.01 429.41

11000 5 0.01 388.55

11000 5 0.1 348.57

11000 5 0.13 430.29

11000 10 0.13 911.60

11000 15 0.01 367.40

Table 2:  RMSE of Prophet model with raw data
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The best RMSE obtained in that grid search corresponds to a model with a
period of 9000 observations, a Fourier order of 5, a changepoint prior scale of
0.13 (higher than the default 0.05) and the default number of changepoints (25).
Its plot can be see in Figure 18. 

The consequences extracted from these results are:

• Period is the most important variable of all, and has the bigger impact in
the RMSE.

• Fourier order also makes a big impact on the model. In some cases it
does only adjust the model in a more fitted way, but in other cases, the
change  of  this  value  can  absolutely  change  a  trend  and  modify
spectacularly the results, as shows in Figure 19 and  Figure 21. 

These two models differ only in its Fourier order value, being 15 and 5
respectively.  And  while  the  Fourier  order  of  5  seems  to  capture  the
positive trend quite well, the model with Fourier value of 15 predicts a
negative trend that does not happen.

38

Figure 18: Prophet prediction with period=9000, fourier_order=5,
prior_scale=0.13



• It is difficult to chose a particular combination of variables, because the
RMSE, besides being too high, does not reflect well the fitness of the
model. For instance:
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Figure 20: Prophet prediction with period=2700, fourier_order=5

Figure 19: Prophet prediction with period=9000 and fourier_order=15



Figure 20 shows a RMSE=860.14, while in  Figure 21, RMSE=330.10.
This could lead us to choose the second model since its performance is
way better, but looking into the plots, it seems that the first model does a
better job at identifying change trends, though it fails to correctly predict
the dimension of this change. 

Particularly, it detects the 2008 bottom price (even though it detects it too
late and with a higher price) and it also detects a second local minimum
around 2015,  while the model  in  Figure  21 fails to  identify  these two
change points and has a broader prediction. 

• That said, there are two configurations of period that seem to reflect well
our data in two different ways, and those are a period value close to
2750  observations  (days)  and  another  one  around  9000.  The  latter
performs worse but seems to have a better understanding of trends, and
the  former  has  closer  predictions  to  the  real  values  but  fails  to  get
important downs in price.

• Lower periods close to one week (period=5,  since only  workdays are
taken into account) or one month (period=20) do not perform well at all
and fail to fit the model during the training phase.
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Figure 21: Prophet prediction with period=9000 and fourier_order=5



4.5 Logarithmic transformation of the original dataset

The previous section calculations were made without any data pre-processing.
But given the high error of the predictor and the skewed distribution of our data,
a second model incorporating pre-processing was considered in order to test if
the model could be more accurately fit during training. As showed in Figure 4,
the original dataset shows what could be considered a positive skew, with a
remarkable long tail.  There is a wide range of values (between 52.32$ and
3,153.63$), but most of the samples are concentrated on the lowest part of the
distribution.

For  those  reasons,  it  was  considered  appropriate  to  apply  the  logarithmic
transformation to the original data as a data pre-processing mechanism. This
will  allow  us  to  compare  the  performance  of  model  with  and  without  pre-
processing.

Given its  mathematical  nature,  the  logarithmic transformation is  most  useful
when data has a range of several orders of magnitude. In this case, data spans
two orders of magnitude, and has a rather low value for most part of the training
data, so it could be beneficial to normalize it this way so that the feature has
comparable values. 

As  it  happened  with  the  LSTM,  the  data  pre-processing  is  done  in  the
data_preprocessor.py  module.  In  this  case,  it  consists  only  of  applying  the
natural  logarithm to the closing price of each day. The model  is fit  with the
transformed data, but the resulting predictions are re-transformed (in this case
with an exponential  function),  in order to  be able to compare them with the
original data. The RMSE is therefore calculated with the re-transformed data, so
it can be compared with the other Prophet model and with the real dataset. 

The resulting RMSE for the same grid search used in the previous section are:

Period Fourier order Changepoints
prior scale

RMSE

7 5 0.05 789.33

7 10 0.05 788.50

7 20 0.05 789.70

20 5 0.05 787.84

20 10 0.05 790.22

20 20 0.05 790.28
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1000 5 0.01 788.69

2700 10 0.04 877.22

2750 10 0.05 829.99

2850 5 0.01 849.52

5000 5 0.1 615.03

7500 5 0.1 1011.62

7500 5 0.04 930.87

9000 5 0.13 362.37

9000 5 0.1 640.68

9000 10 0.01 1815.09

11000 5 0.01 632.73

11000 5 0.1 1659.21

11000 5 0.13 675.77

11000 10 0.13 888.14

11000 15 0.01 1845.88

Table 3: RMSE of Prophet model with log-transformed data

We can also extract some conclusions from these new values:

• First  of  all,  it  is  remarkable that nearly all  the combinations of values
performed better  without  normalization.  A more  extensive  grid  search
was carried out, but the results were similar: the RMSE is globally higher
for  logarithmically  transformed  data.  This  might  suggest  that  Prophet
implementation takes advantage of wide-ranged data, but it could also
lead to think that logarithmic transformation was not the adequate pre-
processing mechanism for this experiment. However, it could also be due
to an inappropriate configuration of the variables described or it could be
the  normal  behaviour  for  this  dataset.  A  deeper  analysis   would  be
needed to ascertain the cause.

• The models built with logarithmic transformation have a wider variance
than the raw ones, with lots of models with very high RMSE. Other than
that, it also appears that small changes in one hyperparameter (keeping
the rest constant) generate bigger changes in the RMSE than without
normalization. 

• The period values for which the model performs better are similar, with
the best RMSE around 9000. The absolute best model has the same
hyperparameter  configuration  than  in  the  non-normalized  experiment,
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and its plot can be seen in Figure 22, over the transformed data, and in
Figure 23, over the re-transformed data.

As it happened with the non-normalized model, it seems to capture some
trends, but it does it too late for some of them (the 2008 crash) and fails
to adjust their dimension. 
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Figure 22: Prophet prediction (normalized data) with period=9000,
fourier_order=5, prior_scale=0.13. Over the transformed dataset

Figure 23: Prophet prediction (normalized data) with period=9000,
fourier_order=5, prior_scale=0.13. Over the de-transformed dataset



4.6 Facebook Prophet selected model

Given that the best performing model with normalization is significantly worse
than its non-normalized equivalent, the non-normalized model will be selected
to be compared with the LSTM model. 

Therefore, the hyperparameters for the best model are: 

• Period = 9000
• Fourier order = 5
• Changepoint prior scale = 0.13
• Number of changepoints = 25 (default value)

Its RMSE over the test set is 251.61 and its MAE is 191.95.
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5. Trading simulator module

In  order  to  compare  the  performance  of  the  models  built  for  the  project,  a
trading simulator was built in which the models can see the financial results of
their  predictions.  This  trading  simulator  module  is  explained in  this  chapter,
alongside some auxiliary trading strategies that were implemented to be used
as benchmarks. 

There is a reference to the unit tests written to verify this module, and finally
there  is  a  comparison  between  the  financial  returns  of  all  the  models
implemented (LSTM, Prophet and the auxiliary strategies).

5.1 Module description

Even though the LSTM and the Prophet model could be compared by using
mathematical  indicators,  another  objective  of  the  project  was  to  develop  a
platform where these two models could perform as automatic traders. This tool
would act as a backtesting2 module and could be used as a foundation for an
eventual system to perform automatic trading on a real-world environment.

The trading simulator uses the same test dataset that was used to tune the
hyperparameters and select the more effective LSTM and Prophet predictors,
i.e., the data set from the 14th May 2008 to the 5th December 2019. Let us recall
that the original test dataset starts at 7th May 2008, but given the prediction shift
N = 5 that was explained in Chapter 3.6 (see Figure 10) and the lack of samples
for the weekend days, the first value that can be predicted is the 14th May. 

For each day of the dataset, the simulator decides whether to place a buy order
for the next day, sell or do nothing at all, depending on the predicted value and
the closing price of that day. The decision to buy or sell  is taken in a quite
straight-forward and simple way:

If the predicted value of the S&P500 index for the next day is higher than the
closing price of the current day, a buy order is placed. As the simulator has a

2 In predictive models and specially in trading, backtesting is the process of testing a model or
a strategy in a secure environment before deploying it in the real world.
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limited  amount  of  money,  it  will  only  be  able  to  buy stock  when it  has  the
required liquidity.

If the predicted value is lower than the closing price of the current day, a sell
order will be placed. Likewise, this order will be carried out only if the trader
holds stock in that moment.

At the end of the test dataset, a financial measurement is calculated to show the
performance  of  each  model.  The  measurement  selected  is  the  return  of
investment (ROI), which is calculated following the formula:

ROI=
(Final value of the investment−Cost of investment)

Cost of investment
(11)

Summarized, the algorithm behind the module works as follows:

1. An initial capital (10,000$) is assigned to every different model to invest
it.

2. The  test  datasets  are  loaded  to  perform  the  comparison  with  the
predicted values.

3. The predictive models are loaded (in the case of LSTM from the .h5 files
generated during the training).

4. The predictions are loaded or generated with the test dataset.

5. Each model executes an specific method to go over all the days in the
test dataset, deciding for each day whether to buy or sell depending on
the prediction made.

6. After going through all the days in the test dataset, the initial capital has
increased  or  decreased.  The  last  day,  all  the  stock  is  sold  with  the
consequent closing price.

7. A performance ratio is calculated to measure the performance of each
strategy. In this case, the return of investment or ROI.
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5.2 Additional trading strategies studied

Besides the LSTM and the Facebook Prophet model, four more models were
developed and tested in order to use them as benchmarks for performance.
These models were:

• A buy  and  hold  model:  this  strategy  has  many  advocates  amongst
famous investors and makes the case that assets should be held for a
long  time.  In  our  module,  this  will  translate  into  buying  all  the  stock
possible at the beginning of the test phase and holding it until the very
last day, when it will be all sold.

• Simple  Moving  Average  model  (SMA):  this  method  calculates  the
average between the N past  observations and assigns the calculated
value to  the  prediction  for  the  next  day.  This  is  indeed a  very  naive
technique, but it is widely used as a benchmark.
For this experiment, two SMA models will be tested: one with a window
of N = 20 days into the past, and another one with N = 60.

• Random buy: this strategy will decide whether to buy or sell each day
randomly. It does not seem a good investing technique but it will serve as
comparison for the rest of the models. 
In order to soften the effects of randomness, a mean of the ROI will be
calculated over a thousand executions.

• N-last value model: this strategy was designed to compare it to the LSTM
model specifically. It assigns the closing price of the Nth previous day to
the next day prediction. Values of N = 1 and N = 5 were calculated, but
since the shift between the original data and the predictions seems to be
close to 5 observations (see Figure 12), the model with N = 5 is finally
the one to compare with the LSTM model.

 

5.3 Trader simulator testing

A small  unit  test was developed using the standard library unittest [22] from
Python to verify the simulator implementation. 

The  test  class  has  two methods  that  simulate  standard  use  cases  that  will
appear in the designed module: buy and sell orders in different sequences. In
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addition, it includes another test method that covers a less frequent but equally
important case use: the case in which the stock price decreases consecutively
―or not consecutively but but before any sell order― and after one buy order in
which all the possible stock was bought, the next day the price decreases it is
possible to buy again even though the last day it was not possible. 

All three test were executed during the different phases of the development and
passed without errors.

5.4 Models comparison

The returns of investment (ROI) for all the models implemented can be seen in
Table 4:

Model ROI Final capital 

LSTM 1.11 21,061$

Facebook Prophet 0.73 17,308$

SMA (20 days) 0.69 16,930$

SMA (60 days) 0.36 13,643$

Buy and hold 1.19 21,961$

Random -0.15 8,500$

N-last value (5 days) 1.29 22,900$

Table 4: ROI of the implemented models 

First  of all,  the best performing LSTM model achieves a ROI of 1.11, which
means  that  it  has  turned  its  initial  10,000$  capital  into  21,061$.  It  has
outperformed both of the SMA models, the random strategy and the Prophet
model. It has a similar return to the buy and hold method (21,900$).

The  Facebook  Prophet  model  (Figure  18)  has  a  smaller  ROI,  which  was
something expected, since its RMSE was way higher than the one from the
LSTM. However, it still  achieves a positive return and outperforms both SMA
methods. 

The N-last value algorithm has achieved the biggest ROI, and that makes sense
in a dataset that has globally growing prices. Stock prices naturally increases its
value and executing more buy than sell orders benefits from this behaviour.

48



It is also worth mentioning that the RMSE value of a trained model, calculated
during the test phase, does not exactly predict its performance in the trading
simulator. 

For instance, let us compare the two best performing LSTM models in terms of
RMSE (presented in  Table 1). These two models have a quite similar RMSE,
but the one with the lower error,  also grants a ROI considerably lower (see
Table 5):

LSTM model RMSE ROI

Model with input_seq, neurons, epochs, batch_size
= (5, 500, 5, 96)

33.87 1.11

Model with input_seq, neurons, epochs, batch_size
= (5,500, 8, 96)

35.56 1.38

Table 5: ROI comparison between the two best performing LSTM models 

Therefore,  choosing  the  second  best-performing  LSTM  model  would  have
granted better returns on a real-world environment.  Actually better than best
performing method (N-last value method). This was the kind of behaviour that
the trading simulator was built to detect. 

Lastly,  it  has to be pointed out  that,  despite the chosen test  set  covering a
decreasing price period of time at the beginning (the year 2008, see Figure 3),
there is a global positive growth ratio in the dataset. This might have influenced
the results, since there is no big danger of a huge depreciation in price.
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6. Conclusions

The first objective, regarding the building of the two models, was achieved but
not completely as expected: 

On the one hand, the LSTM models performed quite well with univariate data
and a rather simple architecture. This fact was already expected, since LSTMs
are widely used in price forecasting. However, the built architecture seems to
favour models which create predictions that imitate the past behaviour, rather
than building a proper predictive vision of the future. 

Nevertheless,  LSTM  models  achieved  acceptable  error  values  and  gave
positive  economic  returns.  Also,  its  design  and  tuning  induced  some
conclusions (already explained in the respective subsections) about its inner
working that might prove useful in future work.

The Prophet model, on the other hand, did not show the same accuracy, nor the
same returns  of  investment  than its  LSTM counterpart.  Its  predictions  were
generally either too vague or too disproportionate in terms of dimension. Very
few models showed a close-to-reality trend modeling, and the ones which did
were  too  late  in  detecting  those trend changes.  There  are  several  possible
reasons for this poor predictive results:

One of them might be Prophet’s nature: it is a tool whose main configurable
parameters  are seasons and holidays.  In  this  regard,  Jining  Yan et  al.  [25]
showed the great potential of Prophet when dealing with seasonal and noisy
data. The stock market, however, does not generate data on holidays, so that
feature is not used. 

In addition, the seasons generated by the author did not seem to adequately
capture  global  trends.  Models  with  a  sole  seasonality  did  not  succeed  at
generating solid predictions, but neither did models with several seasonalities
(each one with different periods). Perhaps with a deeper understanding of the
financial environment and the markets, that would have been different, since
that is another advantage of the Prophet tool: it allows the analyst to feed its
domain knowledge into the model. 
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The second objective, regarding the building of the trading simulator module,
was also achieved. It proved useful for several reasons:

In the first place, despite having implemented only a very simple investment
technique (place a buy order if the prediction for the next day is higher than the
current price), it worked well as a comparison tool. In addition to the abstract
error  measurement,  it  also  allowed a  hands-on comparison between all  the
models.

It stated as well the importance of having a backtesting platform in any kind of
forecasting enterprise, since it allowed to find out that a better performing model
in  terms  of  error  during  the  test  phase  does  not  imply  a  better  return  of
investment in a trading environment. In this regard, it also pointed out that the
election of a trading strategy cannot rely entirely in the RMSE calculations over
the test set. This does not mean that RMSE is not a valid measurement, but
that auxiliary backtesting methods have to be conducted. 

On another front, and regarding the original dataset, the training and the test
data split takes place during the 2008 crash, with the subsequent decrease in
stock prices. After that period, there is also an anomalously abrupt increase in
prices in a very short time. This behaviour could have been predicted by more
sophisticated models, but the models built for this project failed to do so. In this
regard, it would have been interesting to apply those models on other test sets:
specially to time series that showed decreases in prices, to evaluate data with
other trends.

Future  work  could  set  out  towards  a  deeper  understanding  of  the  S&P500
financial and periodic behaviour, in order to better determine the seasonalities
used by Facebook Prophet and take full advantage of this algorithm’s features.

In addition, the trading simulator could be improved so that its decisions were
more sophisticated. For instance, by investing a variable quantity depending on
the  difference  between  the  predicted  price  and  the  current  price,  or  by
connecting the module to a live source of data, like AlphaVantage API [26], so
that the process could be more automated. 
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