
A comparison between LSTM and Facebook
Prophet models: a financial forecasting case
study

Alejandro González Mata
Grau en Enginyeria Informàtica
Intel·ligència Artificial

Consultor/a: David Isern Alarcón
Professor/a responsable de l’assignatura: Carles Ventura Royo

Gener 2020

Aquesta obra està subjecta a una llicència de
Reconeixement 3.0 Espanya de Creative
Commons

http://creativecommons.org/licenses/by/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/
http://creativecommons.org/licenses/by/3.0/es/

FITXA DEL TREBALL FINAL

Títol del treball:
A comparison between LSTM and Facebook
Prophet models: a financial forecasting case
study

Nom de l’autor: Alejandro González Mata

Nom del consultor/a: David Isern Alarcón

Nom del PRA: Carles Ventura Royo

Data de lliurament (mm/aaaa): 01/2020

Titulació o programa: Grau en Enginyeria Informàtica

Àrea del Treball Final: Intel·ligència Artificial

Idioma del treball: Anglès

Paraules clau
LSTM, Facebook Prophet, financial
forecasting

 Resum del Treball (màxim 250 paraules): Amb la finalitat, context
d’aplicació, metodologia, resultats i conclusions del treball

La predicció d’actius financers és una de les principals aplicacions de
l’Aprenentatge Automàtic i les Xarxes Neuronals. En concret, les xarxes
basades en Long Short-Term Memory (LSTM) han demostrat ser especialment
útils en aquest camp i en altres problemes de sèries temporals. Per contra, s’ha
investigat menys sobre l’idoneïtat i el rendiment del model Facebook Prophet,
basat en el model additiu i que és capaç d’unir tèndencies no lineals amb
estacionalitats configurables. Aquest projecte buscava construir i comparar dos
models: un basat en un xarxa neuronal LSTM i l’altre basat en l’algorisme
Prophet, per així analitzar quin dels dos actuava millor com a predictor, en
concret sobre el preu de l’índex borsari S&P500. Per tal de comparar aquests
models un mòdul de simulació de trading va ser implementat i utilitzat com a
plataforma de backtesting, mitjançant el qual els models poguessin posar en
pràctica les seves prediccions i així determinar el seu rendiment econòmic.
Després de l’anàlisi dels models, es va concloure que que la LSTM aconseguia
millors resultats i actuava com un predictor decent en comparació amb altres
estràtègies de trading senzilles. El model Prophet també tenia retorns
d’inversió positius, però era menys robust com a predictor. A banda, el
projecte ha demostrat la utilitat de fer ús d’una plataforma de backtesting en
qualsevol tasca de predicció financera, ja que ajuda a detectar asimetries entre
el rendiment d’un model durant la fase de test de l’algorisme i el posterior
rendiment del model en un entorn de trading simulat.

i

 Abstract (in English, 250 words or less):

Finance forecasting is one of the main applications of Machine Learning in
general and Artificial Neural Networks in particular. Long Short-Term Memory
(LSTM) networks have been proven specially useful in this field and in other
time series problems. However, less literature has been written about the
suitability and performance of the Facebook Prophet model, which is based on
an additive model that blends non-linear trends with configurable seasonalities.
This project aimed to build and compare two predictive models, one based on a
LSTM network and another one based on the Prophet algorithm, to analyse
which of them performed better in forecasting tasks, particularly in predicting
the price of the S&P500 index. In order to compare these two models, a trading
simulator module was built as a backtesting platform where the predictions of
the models could be applied to determine its economic performance. After
building the two models, it was demonstrated that the LSTM model achieved
better results, and was proven a decent predictor compared to other benchmark
trading strategies. The Prophet model also showed positive returns of
investment, but its accuracy as a predictor was not as high. The project results
also suggest that a backtesting platform is a convenient feature when dealing
with forecasting enterprises, since it allows to detect asymmetries between the
fitness of a model during the testing phase of the algorithm and its later
performance in a simulated trading environment.

ii

Table of Contents
1. Introduction...5

1.1 Context and justification...5
1.2 Objectives..6
1.3 Methodology..7
1.4 Work plan...7
1.5 Summary of the products...8
1.6 Chapter description..8

2. Tools and data preparation...10
2. 1 Tools selection..10
2.2 Data gathering...10
2.3 Data pre-processing...11
2.4 Data presentation...11

3. LSTM model..14
3.1 How does a Neural Network work?...14
3. 2 A brief history of Neural Networks..15
3.3 The LSTM cell..16
3.4 Hyperparameter description..17
3.5 Hyperparameter selection..19
3.6 Data preparation..21
3.7 Hyperparameter tuning..22
3.8 LSTM selected model..28

4. Facebook Prophet model..29
4.1 Model overview..29
4.2 Hyperparameters...30
4.3 Default hyperparameters execution...30
4.4 Hyperparameter tuning..33
4.5 Logarithmic transformation of the original dataset....................................38
4.6 Facebook Prophet selected model..40

5. Trading simulator module...42
5.1 Module description...42
5.2 Additional trading strategies studied..44
5.3 Trader simulator testing...44
5.4 Models comparison..45

6. Conclusions...47
7. Bibliography..49

3

Figure Index
 Figure 1: Gantt diagram of the project...7
 Figure 2: Daily closing prices of the S&P500 index...12
 Figure 3: Training-testing data split...13
 Figure 4: Histogram with the closing prices of the whole dataset.....................14
 Figure 5: Neuron diagram..16
 Figure 6: Comparison between RNN cell and LSTM cell..................................18
 Figure 7: Example grid search dictionary defined in Python.............................20
 Figure 8: Different learning ratios and its effect...21
 Figure 9: LSTM layers distribution...22
 Figure 10: Training dataset vector with time-step..23
 Figure 11: LSTM model 1..24
 Figure 12: LSTM model 2..25
 Figure 13: LSTM model 3..27
 Figure 14: LSTM model 4..28
 Figure 15: LSTM model 5..29
 Figure 16: Prophet model prediction with default hyperparameters..................32
 Figure 17: Prophet components default hyperparameters................................33
 Figure 18: Prophet prediction 1...36
 Figure 19: Prophet prediction 2...37
 Figure 20: Prophet prediction 3...37
 Figure 21: Prophet prediction 4...38
 Figure 22: Prophet prediction 5...41
 Figure 23: Prophet prediction 6...42

4

1. Introduction

1.1 Context and justification

Since the appearance in the 1970s of the DOT systems (Designated
Order Turnaround), that only forwarded trading orders, the trading market
has experimented a huge change thanks to software and computer
science.

From the implementation of systems to assist in decision taking to
automated trading systems (ATS), which automatically take decisions
based on a set of rules, finance has found in software a powerful tool.
The exact percentage is hard to confirm, but something around 60% of
the trading activities in the equities and the foreign exchange markets [1]
are operated by computers.

In this intersection between trading and computing, the field of market
analysis and finance forecasting has experienced an interesting war of
ideas:

There are two main approaches to market analysis: technical and
fundamental analysis, which in their core are the exact opposite of each
other. Technical analysis believes that the future prices of an asset can
be predicted by its past price, and frequently make use of statistical and
mathematical methods. Fundamental analysis, on the other hand, claims
that future behaviour of an asset is better predicted from the study of its
financial reports and a set of related factors (the environment, the
competitors, the rest of the economy…).

Until this moment, Machine learning has been widely used mostly in
technical analysis. Since the explosion of neural networks, and specially
of Recurrent Neural Networks (RNN), lots of research have been
conducted to compare performance of different approaches and
algorithms. In this regard, RNNs and Long Short-Term Memories (LSTM)
have been fairly studied [3], [4] as market forecasters.

However, in 2017 a new tool for predicting time series was open sourced
by Facebook: Facebook Prophet tool [21]. This model has already been
used in very interesting applications like Land-Use/Land-Cover

5

classification [25] and others, but has not been as extensively studied as
a market forecaster as neural networks.

This projects aims to dig into this recent tool, Facebook Prophet, and
explore its performance as a forecaster. To do so, it will be compared
against a solid time series predictor, that has been proven to work well in
stock market forecasting: LSTMs. Both models will be generated from
scratch as part of the process of understanding and exploring their
respective strengths.

The motivation for this project is to explore a field where algorithms are
rapidly replaced by more efficient ones and where solutions hardly ever
work well for all problems.

The Standard & Poor’s 500 index (S&P500) was the variable chosen to
forecast. It was chosen between other stock market indexes because it is
broad enough to capture the economic situation of the United States (as
opposed to Dow Jones, for instance, which only contains 30 companies
and only from the industrial sector) and because it is commonly used by
economists as a benchmark1.

1.2 Objectives

This project has two main objectives:

The first one is to implement two different predictive models for the price
of the S&P500 stock index, one of them based on a LSTM neural
network and the other one based on the Facebook Prophet forecasting
tool. Those two predictive models will be compared in terms of
performance between them and also with other trading strategies that will
be used as benchmarks.

The second main objective of this project is to implement a trading
simulator module in Python where the predictive models can apply their
predictions with real-world data. This tool will also be used to evaluate
the models’ performance.

1 Benchmark is a model or measurement against which to compare the performance of
another model.

6

1.3 Methodology

The project involves generating and comparing two predictive models,
the architectures of which will be designed and subsequently tuned from
scratch.

The process will be inherently iterative. The models will be first
generated with default hyperparameters and they will be updated
gradually in order to find the best performing ones.

1.4 Work plan

The original idea for the project suffered a deviation during November.
The objective has always been to build a predictive model, but originally
the method to generate this model was to make use of a
neuroevolutionary algorithm called NEAT, and it was exclusively focused
on neural networks.

After the project goal shift, the planning was changed and most of the
milestones were modified. The Gantt diagram in Figure 1 shows the
project’s tasks after the change: some of the older project tasks were
reused (the data gathering and pre-processing, the LSTM model
preparation), but some of them were not.

7

Figure 1: Gantt diagram of the project

1.5 Summary of the products

Besides this report, containing the numerical results of the comparison
between the two models, the second product generated is the trader
simulator and the rest of the Python project needed to generate the
models and interpret them.

This Python project consists mainly of:

• lstm.py: the module which performs the training and testing of the LSTM
models.

• prophet.py: the module which performs the training and testing of the
Facebook Prophet models.

• trader_simulator.py: the module that interprets the models generated and
performs the trading simulation.

• data_preprocessor.py: an auxiliary module containing methods for data
manipulation.

• test/test_trader_simulator.py: the unit test implemented to verify the
trader simulator.

Some models and predictions (.h5 and .csv files) and plots were also
included in the project’s folder structure, together with the original dataset
(sp5001962.csv) used for this project and a README.txt file explaining
the different modules.

1.6 Chapter description

Chapter 2 presents the data used for the prediction task and details the
preparation process. It also enumerates the tools used and the criteria
behind this selection.

Chapter 3 describes the process of building the LSTM model, as well as
the basics about Neural Networks, Recurrent Neural Networks and the
Long Short-Term Memory cell.

Chapter 4 does the same process description for the Facebook Prophet
model.

8

Chapter 5 explains the trader simulator module and how it compares the
performance of the models, finally presenting the results of each model’s
prediction.

Chapter 6 presents the conclusion of the project.

9

2. Tools and data preparation

This chapter contains information about the tools used in this project and
explains the methods applied to the original dataset in order to prepare it for the
construction of the models. It ends with a visual presentation of the data.

2.1 Tools selection

The code for the project was written in Python [6].

For the implementation of the LSTM, two libraries were considered: TensorFlow
[7] and Keras [8]. Keras runs on top of TensorFlow and it is a higher level
library, so it is faster to prototype and build different architectures with it.
TensorFlow also has a high-level API and provides more features, but as the
project would not make use of those features, Keras was chosen for its
simplicity.

For the Facebook Prophet model, the implementation in Python was used.

Some other libraries were used, the most important of them being: sklearn
(used for preprocessing tasks), matplotlib (for plotting), numpy (for array
handling) and pandas (for reading and writing the datasets).

2.2 Data gathering

Unlike intraday stock prices (with periods smaller than a day, i.e., seconds,
minutes our hours), which tend to be hard to find or expensive, daily data is
ubiquitous and free. The most common dataset for the stock index S&P500 is
the OHLC set, which refers to Open-High-Low-Close prices: the prices at the
opening and closing time of the stock market, and its highest and lowest value
achieved during that period. It can be found in several websites.

For this project, the data used was extracted from Yahoo! Finance [5], and it
covers from 2nd January 1962 to 5th December 2019. Stock markets are closed

10

on weekend days and holidays, and the downloaded dataset already considers
that information. Therefore, the days in which the stock market is closed do not
appear as samples in our data, which means that the total number of
observations is 14583.

2.3 Data pre-processing

Since the time series predictive models that are going to be built are univariate,
only one column from the OHLC will be selected, the rest will be ruled out.
Closing price is the one feature that will be observed since it includes the
information of the day and would eventually allow the trading simulatror to
perform its calculation during the closing times of the stock market (night) and
place a buy or a sell order during that time.

Once the dataset contains only the closing price for each observation (day),
some sort of data normalization should be made. This normalization is frequent
in Machine Learning tasks and consists in transforming the data in order to
make fit it in a smaller range.

This data transformation has been largely proven to make models not only train
faster, but also to achieve better performances. In this project, some sort of
normalization will be applied to both models built, but for each model the
techniques used will be different: in the case of the LSTM model, Min-Max
normalization will be applied. For Prophet, on the other hand, a logarithmic
transformation will be carried out. However, each of these methods will be
explained in the respective chapters for each model.

Lastly, it is worth pointing out that for the LSTM model the train dataset and the
test dataset will be slightly smaller than the original one. This happens because
the LSTM needs the observations of the N previous days to perform a
prediction for the next one. That means that the first prediction that the LSTM
will be able to make is for the observation number N+1 of the test dataset.
However this will be thoroughly explained in Chapter 3, and does not have a
great effect in the results, since N will be small.

11

2.4 Data presentation

The dataset after the pre-processing carried out in the previous chapter show
the following values:

The range of the closing prices goes from 52.32$ on its lowest value in
February 1962, to 3,153.63$ in November 2019, when it reaches its maximum.

This dataset needs now to be split in training and testing dataset in order to be
able to validate the models built in the following chapters. The first 80% of the
observations will serve as training set and the last 20% will be used as testing
set.

This draws the split line the on the 7th May 2008:

12

Figure 2: Daily closing prices of the S&P500 index between 1962 and 2019

And it means that the train dataset will contain 11666 observations, while the
test dataset will contain the last 2917 observations.

Another data visualization plot that will be useful to better understand the
dataset is the histogram with the frequencies of the different closing price
ranges:

13

Figure 3: Training-testing data split

As it could be noticed in the previous plots, most of the samples of the dataset
have values smaller than 1,500$, and there is a big mode in the first bin of the
distribution. This knowledge will prove useful when normalizing the data for the
respective models.

14

Figure 4: Histogram with the closing prices of the whole dataset

3. LSTM model

In this chapter there is a short introduction to neural networks: how they work
and its history. There is also a presentation of the LSTM cell or unit and the
hyperparameters that can be used to define a network based on it.

After this theoretical presentation, the LSTM predictive models generated for
this projected are presented and compared with each other. Finally, there is a
summary of the selected model with its hyperparameter configuration.

3.1 How does a Neural Network work?

A neural network is a machine learning system, composed of artificial neurons
connected with each other. Those neurons perform a transformation in a set of
inputs to generate outputs, which can be used both in tasks of classification or
regression.

The learning aspect of a neural network takes place after every iteration during
the training phase, and it mainly updates the relationship between neurons so
that the network can globally adjust better to the expected outputs.

The inner working of a single neuron is the following (see Figure 5):

15

A neuron receives different input values from different neurons (x1...xn). Each
one of this connections with other neurons has a weight assigned (w1...wn), that
can be updated during the training phase to minimize the difference between
the output of the neural network and the expected output.

Inside the neuron, the calculations taken place are:

y neuron=f (∑
j=1

n

x j∗w j+b) (1)

Where x are the input values from other neurons, w are the weights, b is the
bias value and f is the activation function, which modifies and normalizes the
output and can be of different types.

3. 2 A brief history of Neural Networks

The idea behind neural networks was born in 1943 by the neurophysiologist
Warren McCulloch and the mathematician Walter Pitts, who proposed a
theoretical model to represent the inner working of biological neurons with
propositional logic [11]. This served as a starting point for a series of new
inventions:

16

Figure 5: Neuron diagram. Source: https://towardsdatascience.com/statistics-is-
freaking-hard-wtf-is-activation-function-df8342cdf292

In 1958, the perceptron was presented by Frank Rosenblatt. Perceptrons are
primitive neural networks that only have an input and an output layer consisting
of linear threshold units (LTU), which perform a weighted sum of the
connections that they receive from other units and then apply a step function.
This is the main behaviour of neurons and despite being very limited in terms of
architecture and learning, the perceptron already reinforced the connections
that lead to lower errors in the final predictions.

Some years later, in 1986, D.E.Rumelhart et al. [12] presented the
backpropagation algorithm, which made training much more efficient. This
algorithm is very clearly described by A. Géron in p. 263-264 of his book
“Hands-On Machine Learning” [17]:

“For each training instance the backpropagation algorithm first makes a
prediction (forward pass), measures the error, then goes through each
layer in reverse to measure the error contribution from each connection
(reverse pass), and finally slightly tweaks the connection weights to
reduce the error (Gradient Descent step).”

Then, Recurrent Neural Networks (RNN) appeared. As opposed to in
feedforward networks, the neurons in recurrent networks are connected to
themselves across time steps. This means that a neuron, in addition to the
connections with other neurons, is also connected to its past state, thus
allowing the network to develop some sort of memory.

3.3 The LSTM cell

The Long Short-Term Memory cell (or unit) appears as an extension of the RNN
cell. It has been modified and extended since its presentation paper by S.
Hochreiter and J. Schmidhuber [14], but the main components can still be
observed in Figure 6:

17

The x vector and the h vector work as the input and the output vector of a
simple neuron respectively. However, there are several more differences.

In the first place, there are two more input vectors to the cell: ht-1 and ct-1. Those
two values represent respectively the short and the long-term state of the
previous time step cell. This way, ht is at the same time the output of the current
unit and the short-term input for the next time step cell.

The main idea behind the LSTM unit is that it allows a long-term vector c to flow
over time steps, dropping and learning new memories (via the Forget and
Output gate), while at the same time also the short-time h memory is being
used by the unit.

3.4 Hyperparameter description

A LSTM network has several hyperparameters that can be tuned. The
preeminent amongst them are:

• Batch size: defines the number of samples that go through the network
before the inner parameters of the network update themselves. Each
update on the inner parameters is called an iteration so, in a way,
defining the batch size equals to define the number of iterations in each
epoch.

18

Figure 6: Comparison between RNN cell and LSTM cell. Source: [9]

For instance, with a training dataset of 11520 observations, having a
batch size of 96 samples will allow the neural network to update itself
120 times (iterations).

11520
96

=120 (2)

• Number of epochs: defines the number of iterations over the whole
training dataset.

• Number of layers: layers are divided into input, hidden and output ones,
and are aggregations of neurons. But as a hyperparameter, the number
of layers refers only to hidden layers.

• Units per layer: refers to the number of neurons in each layer.

• Input sequence’s length (also called time steps): the number of
observations into the past that each sample contains.

• Objective function (or loss function): the function that computes the
difference between the predicted output and the actual one, i.e., the
function that the neural network is trying to minimize. For this project,
since the objective is to minimize the error, it will referred as the loss
function.

• Optimizer: the optimization function is the mechanism that uses the
neural network to find the value that minimizes the loss function. One of
the most important optimization algorithms is Stochastic Gradient
Descent (SGD), which relies on the iterative calculation of the gradient of
a function, making steps at each point towards the negative gradient in
order the find the global minimum.

There are however more recent algorithms that extend and modify this
approach, like AdaGrad o Adam, and which converge faster and find
better minima because of its finer behaviour in sparse gradients (that
appear, for instance, when approaching the minimum) [15].

• Dropout: is a technique proposed by Srivastava et al. [10] which
addresses the problem of overfitting. It does it by randomly disabling
(dropping) different units in a neural network along with their connections
during training. This prevents the system from relying too much in some
specific units, thus becoming too specialized.

19

3.5 Hyperparameter selection

In order to test several combinations of the previously defined hyperparameters,
a grid search dictionary was defined. This dictionary (see Figure 7) is later used
with the help of the scikit-learn library [24] and allows to test the model with all
the possible combinations of variables defined in the dictionary.

The grid search was performed to find the combination that achieved the lower
error in the test dataset. Specifically, the hyperparameters tested were:

• Input sequence length (or time steps): for this dataset, where every
observation is a day, they were considered time windows of [5, 150] days
in the past.

• Number of units: this is, the number of LSTM cells in each hidden layer.
The range of values tested was [5, 500].

• Number of epochs: values between [3, 50] were tested.

• Batch size: values between [32,128] were tested.

• The number of layers: the range of [1, 4] hidden layers was tested.
However, since 2 layers early appeared to be the most efficient
architecture, all the experiments presented in this section have the
constant value of 2 hidden layers. The results in Table 1 also refer to a 2
hidden layer architecture.

The rest of the hyperparameters were not included in the grid search and
therefore had constant values:

• Loss function: mean squared error has been chosen:

20

Figure 7: Example grid search dictionary defined in Python

MSE=
1
N∑

i=1

N

(Y i−Ŷ i)
2

(3)

where N is the number of predictions, Y is the vector of observed values
and Ŷ is the vector of predicted values. It is a function that highly
penalizes outliers because of the 2-exponent.

Mean absolute error could have also been chosen as the loss function,
but in this case it was considered desirable that the model punished
large errors specially. Furthermore, mean absolute error was also tested
briefly as loss function for this experiment, and it generated slightly less
accurate models.

• Optimizer: Adam algorithm was chosen. There are two main reasons:
first of all, for its adaptive learning rate. The learning rate determines the
speed at which the model changes as a response to the loss function.
For optimization algorithms based in gradient descent, the learning rate
determines the size of the step towards the minimum that the system will
take (see Figure 8).

Considering θ the variable studied and J(θ) the loss function to minimize,
we can see the effects of the learning rate: a rate too high means a risk
of overshooting the minimum, even a risk of diverging (left image), and a
rate too low means a risk of getting stuck at global minima or slow
convergence (right image).

21

Figure 8: Different learning ratios and its effect. Left image: high learning rate. Center
image: adequate learning rate. Right image: small learning rate. Source: self-elaboration

Adaptive learning rates appeared to try to solve this problem and will be
the choice for this project.

Secondly, Adam was chosen among other adaptive learning-rate
algorithms for its faster convergence [15], [16].

• Dropout probability: 20%. Dropout was incorporated into the model by
adding a Dropout Keras layer after each LSTM layer. This way, for each
iteration over the network, 20% of the units in each LSTM layer will be
disabled and not taken into account for the weight updates.

The final distribution of the LSTM layers can be seen in Figure 9: two hidden
LSTM layers with dropout, and an output layer with an only unit (only one
feature is being predicted, that is the closing price, so the output layer will have
only one unit).

3.6 Data preparation

The data to feed the neural network with must have a particular shape.
Specifically, Keras needs the train dataset to be a 3-dimensional vector
containing (number of samples, time-steps, number of features):

The number of time-steps will be one of the hyperparameters to be tuned and
the number of features will be always one, since the time series model we are
working with is univariate (it has only one feature, the closing price of the
S&P500).

In this case, the number of samples will be the train dataset (11666) minus the
number of time-steps. This happens because the LSTM model needs the N
previous observations to perform a prediction (see Figure 10):

22

Figure 9: LSTM layers distribution

The first value that it will be able to predict will therefore be the N+1th

observation, thus reducing the train dataset by N observations. This will not be
problematic since, as it will be showed in subsequent chapters, the optimal
value for N is quite small (N=5).

Other than that, data is also normalized by using the MinMaxScaler from the
sklearn library [24], which uses the following formula:

X std=
X−X .min

X .max−X .min
(4)

X scaled=X std∗(max−min)+min (5)

where X.min, X.max represent the minimum and maximum values in the original
data and min, max the desired range, in this case (0,1).

This is a very common choice because, as opposed to standardization (zero-
mean and unit variance), it does not distort the data.

The Scaler is fitted with the training data and then both training and test data
are transformed. The transformation will be inverted after training the model, so
the data can be visualized and studied with their original values.

3.7 Hyperparameter tuning

23

Figure 10: Training dataset vector with time-step. Source: self-
elaboration

In order to measure the fitness of a model, a lot of metrics can be chosen. For
this project (both for the LSTM and for the Facebook Prophet model), the
selected function will be the root mean squared error (hereafter RMSE), which
is the square root of the MSE defined in formula (3):

RMSE=√ 1N∑
i=1

N

(Y i−Ŷ i)
2

(6)

Mean absolute error (MAE) could have also been used, since it has the
advantage that it is more intuitive and presents directly the mean of the errors:

MAE=
1
N

∑
i=1

N

|Y i−Ŷ i| (7)

However, let us recall that the model was built using MSE as the loss function in
order to penalize large errors. Although a different metric could have been used
here to measure the predictions error, RMSE was also chosen so that this
penalization was also taken into account when evaluating the model. In
addition, RMSE has the advantage that it acts as an upper bound to MAE and
therefore it already gives some information about it.

Before analysing the concrete results of the search grid, there is a phenomenon
worth mentioning:

The models that yield a better RMSE seem to predict the real values some
observations later, which means that the predicted value is something similar to
a shift of N observations to the right (see Figure 11 and Figure 12). This is
difficult to avoid because this kind of behaviour actually performs well, but it
avoids the possibility of finding a more generic predictor that could perform
worse in terms of the loss function, but rather behave in a more visionary way.

24

However, the models that show this kind of behaviour are not an absolute shift
of N observations. As it can be sen in Figure 12, which shows an extract of
Figure 11 between observations [200,300], the predicted function is not
completely overfitted.

25

Figure 11: LSTM model with input_seq=5, units=200, epochs=5, batch_size=64

Figure 12: LSTM model with input_seq=5, units=200, epochs=5,
batch_size=64. Zoomed over observations [200,300]

This shift can be observed in other models built with neural networks for time
series prediction. For instance, the neural network built by A. Hedayati
Moghaddam et al. [18] for the NASDAQ stock price prediction also show that
deviation.

The existence of this phenomenon was a motivation to implement a trading
strategy (that will be explained in Section 5.2) that assigns to the prediction for
the next day the value of the Nth previous one (in this case, N = 5 will be useful).
This simple strategy will be useful to compare its performance particularly with
the LSTM model.

Other than that, it can also be interesting to calculate the RMSE between the
real values and a theoretical shift of X observations in that data. Having X=1
day, the RMSE obtained is 36.50:

RMSE=√ 1N∑
i=1

N

(Y i−Y (i−1))
2
=36.50 (8)

However, having X=5 days, which is more or less the deviation that the
obtained model seems to have, the RMSE obtained is:

RMSE=√ 1N∑
i=1

N

(Y i−Y (i−5))
2
=79.49 (9)

This values will serve as a benchmark for the LSTM models generated. For
instance, the LSTM model referenced in Figure 11 has a RMSE of 41.31 which
means that it performs slightly worse than the 1-day shift just calculated as
benchmark, but better than if was just a 5-day shift in the data.

Having explained this phenomenon and having the 5-day shift RMSE as
benchmark, the grid search results are presented (see Table 1):

26

Input
sequence

lenth

Number of
units

Number of
epochs

Batch size RMSE

5 5 5 96 532.30

5 10 8 96 399.25

5 150 5 128 43.14

5 200 3 64 37.71

5 200 5 64 41.31

5 200 8 64 139.26

5 500 3 1 307.83

5 500 5 96 33.87

5 500 8 96 35.56

5 500 50 96 135.61

10 50 5 64 168.61

10 500 5 128 37.37

15 200 5 128 46.11

15 500 5 96 47.89

20 50 5 64 226.62

60 500 3 64 85.44

60 500 5 64 148.56

60 500 8 64 74.27

60 500 3 96 83.53

60 500 5 96 37.07

60 500 8 96 84.82

100 50 5 64 188.33

100 200 5 64 59.08

120 150 5 64 92.42

120 200 5 64 63.17

120 500 5 64 78.37

Table 1: RMSE of the LSTM models

The conclusions that can be extracted from this data and from the plots are the
following:

• Input sequence length, i.e., a long window into the past, does not
correlate positively with accuracy. The grid search shows that for both

27

sequences of 5 or 60 observations into the past, the results are quite
similar.

• It seems beneficial for the model not to train a lot: a higher number of
epochs generates bigger errors. Let us see the best model (Figure 13)
which was trained during 5 epochs, compared with the model that has
the same configuration but trained during 50 epochs (Figure 14):

28

Figure 13: LSTM model input_seq=5, number_units=500, epochs=5,
batch_size=96

The model trained for 50 epochs performs way worse specially in the last
part of the test set. This might be caused by an overfitting acquired over
the train dataset, which has way lower prices that the test dataset. Those
lower values might have been learned by the network, but this is just an
hypothesis.

• Low input sequences work well with a high number of units. If the
number of units is also low (for instance input_sequence=5 and
number_neurons=10), the model captures the trends, but fails to adjust
the value (see Figure 15).

29

Figure 14: LSTM model input_seq=5, number_units=500, epochs=50,
batch_size=96

• In general, both for short and long input sequences, a high number of
units is needed to let the model learn from the data.

• The adequate batch size for this experiment seems to be 96. They were
also tested extreme batch sizes like 1 that did not perform well despite its
very high computational cost.

3.8 LSTM selected model

The best performing model, i.e. the model with the lower RMSE, is the one with
the following hyperparameter configuration:

• Input sequence length: 5
• Number of units: 500
• Number of epochs: 5
• Batch size: 96

Its RMSE over the test set is 33.87, which is slightly better than the benchmark
value of 36.50 obtained in Formula (8), by calculating the RMSE of the test set
with its 1-observation shift to the past. But it is way better in terms of error than
the 5-observation shift calculated in Formula (9), which was 79.49.

30

Figure 15: LSTM model input_sequence=5, number_units=10

For a more detailed exploration of the model’s fitness, the MAE was also
calculated (Formula 7) and the resulting value was 24.92.

31

4. Facebook Prophet model

In this chapter the Facebook Prophet implementation is presented, as well as its
main hyperparameters tuned to generate the predictive model for the project.

A first execution was carried out with the default parameters of the algorithm, to
see how it performed without any changes. After that, more executions were
carried out: firstly, the original dataset was fed into the algorithm without any
data normalization process. After that, a logarithmic transformation was carried
out on the original dataset, with the purpose of determining the suitability of it,
while trying to search for better models.

At the end of the chapter there is a summary of the hyperparameters of the
selected model.

4.1 Model overview

Facebook Prophet is a model and a library that provides features both from
generalized linear models (GLM) and additive models (AM), mainly extending
GLM by using non-linear smoothing functions. It was specified by Taylor and
Letham [19] in 2017.

The main difference between Prophet and other statistical methods is the
analyst-in-the-loop approach. This approach allows the the analyst to apply their
domain knowledge about the data to the forecasting algorithm, without having
any knowledge of the statistical methods working from within. This approach,
therefore, tries to take advantage from both the statistical forecasting and the
judgmental forecasting, the latter being the forecasting methods based on
human experts decisions. The parameters that can be tuned by the analyst will
be defined and explained in sections 4.2 and 4.4.

The general function to define the time series is the following:

y (t)=g(t)+s(t)+h(t)+ϵt (10)

32

where g(t) represents the non-periodic changes in the value of the time series,
s(t) model seasonality (which can be daily, weekly, monthly, yearly or any
other), h(t) represents the effects of holidays and εt is the error term.

4.2 Hyperparameters

There are several customizable parameters in Facebook Prophet’s
implementation [21], the main ones being:

• Changepoints: which define trend changes. These can be found by the
algorithm itself or they can also be defined and tuned by the analyst.

• Seasonality: which define the periodic functions which may affect the
time series. By default, Prophet considers yearly, weekly and daily
seasonality, and tries to find trends that represent those periodic effects
in data.

• Holidays: special days (holidays or any other recurrent event) can also
be modeled by the Prophet additive model. The dates can be added
manually through a pandas.Dataframe, but there are also built-in holiday
sets for a dozen countries.

• Fourier order: referring to the seasonality function, this value will
determine how fast it can change and adapt, and it will also imply a more
fitted model (with the consequent risk of overfitting).

From these hyperparameters, holidays was the only one that was not tuned or
considered for the building of the current model. There are two reasons for this
decision: first of all, the S&P500 is a highly globally operated index, and
therefore it is not self-evident that considering only one country’s holidays would
make an important difference. But most importantly, equities market are closed
on United States holidays, so our original S&P500 dataset does not contain any
information in these days for the algorithm to model.

4.3 Default hyperparameters execution

33

Having discarded the holidays, executing the default configuration generates
the following Prophet model, which can be plotted with the built-in plot function:

The black line shows the training data and the blue line shows the prediction
made (both for the training and the test data, which consist in 2817
observations). The lighter blue area delimits the upper and lower prediction
between the certainty interval (by default it is 80%).

34

Figure 16: Prophet model prediction with default hyperparameters

As we can see, the model is not finely adjusted during the training phase with
the default configuration, but let us see the decomposed seasonalities to
explain how this feature works:

Prophet has three default seasonalities: daily, weekly and yearly. As our data
do not contain intraday data (meaning hourly data or even data with smaller
intervals like minutes or seconds), the daily seasonality is directly eliminated by
the library. The other two default seasonalities are printed, besides the general
trend of the prediction.

Some comments on these periodic trends should be made: first of all, the
general trend is not correctly determined from 1999 onwards.

35

Figure 17: Prophet components with default hyperparameters. Top image: trend
component effect to the general function. Center image: weekly seasonality

effect. Bottom image: yearly seasonality effect.

Second of all, weekly seasonality takes into account weekend days, which are
not in the original dataset as the stock market is closed. So, using our dataset,
weekly seasonality should be disabled in the way that it is defined.

Lastly, the yearly seasonality is indeed interesting as it highlights two
phenomena that appear frequently in the economic circles. Those are the
September Effect and the January Effect, each one respectively referring to a
decrease and an increase in stock prices in those months. The September
Effect seems important in our data, and has higher evidence in economic
literature [20]. The January Effect has a smaller impact, but it is also significant.

4.4 Hyperparameter tuning

Once the default configuration has been proven to not perform well as a
predictor, the next step is to tune the configurable hyperparameters previously
described: period of the seasonality, Fourier order of this function and
changepoints.

The first step will be to disable the default Prophet seasonality (weekly, yearly,
daily). Prophet allows to make use of several seasonality functions working at
the same time, but after trying to define a model with 2-3 different seasonality
functions working at the same time, this option was discarded. The reason is
that, despite being more time and resource intensive, the resulting RMSE did
not seem to get specially lower.

Therefore, all the performance results showed in Table 2 are calculated with
only 1 seasonality function, described by its period and Fourier order. The
variables and its respective range values considered were:

• Period: this variable determines the number of days in a seasonality, so
a wide range of values were tested: [5, 12000].

• Fourier order: the default value is 10 for yearly seasonality, but in this
dataset, the range [3, 25] was tested.

• Changepoints: it is not recommended to change directly the number of
changepoints, but rather to change the strength of the sparse prior. Both
things were done in this experiment. changepoint_prior_scale was

36

changed between [0.001, 10] and changepoints were changed from [10,
100] (from a default number of default of 25). Having tested that
changing the number of changepoints did not affect a lot the results, that
variable did remain constant in the default value for the rest of the model
experimentation.

These variables were evaluated using a grid search over different subsets of
values. Also, as with the LSTM, RMSE has been the metric chosen to evaluate
the performance of the model, but the results will also be evaluated visually
using plots.

For conciseness reasons, only some of these variable combinations have been
copied into this report:

Period Fourier order Changepoints
prior scale

RMSE

7 5 0.05 772.04

7 10 0.05 771.17

7 20 0.05 771.35

20 5 0.05 772.31

20 10 0.05 772.75

20 20 0.05 771.19

1000 5 0.01 775.35

2700 10 0.04 857.12

2750 10 0.05 841.40

2850 5 0.01 788.06

5000 5 0.1 569.73

7500 5 0.1 431.90

7500 5 0.04 325.15

9000 5 0.13 251.61

9000 5 0.1 330.10

9000 10 0.01 429.41

11000 5 0.01 388.55

11000 5 0.1 348.57

11000 5 0.13 430.29

11000 10 0.13 911.60

11000 15 0.01 367.40

Table 2: RMSE of Prophet model with raw data

37

The best RMSE obtained in that grid search corresponds to a model with a
period of 9000 observations, a Fourier order of 5, a changepoint prior scale of
0.13 (higher than the default 0.05) and the default number of changepoints (25).
Its plot can be see in Figure 18.

The consequences extracted from these results are:

• Period is the most important variable of all, and has the bigger impact in
the RMSE.

• Fourier order also makes a big impact on the model. In some cases it
does only adjust the model in a more fitted way, but in other cases, the
change of this value can absolutely change a trend and modify
spectacularly the results, as shows in Figure 19 and Figure 21.

These two models differ only in its Fourier order value, being 15 and 5
respectively. And while the Fourier order of 5 seems to capture the
positive trend quite well, the model with Fourier value of 15 predicts a
negative trend that does not happen.

38

Figure 18: Prophet prediction with period=9000, fourier_order=5,
prior_scale=0.13

• It is difficult to chose a particular combination of variables, because the
RMSE, besides being too high, does not reflect well the fitness of the
model. For instance:

39

Figure 20: Prophet prediction with period=2700, fourier_order=5

Figure 19: Prophet prediction with period=9000 and fourier_order=15

Figure 20 shows a RMSE=860.14, while in Figure 21, RMSE=330.10.
This could lead us to choose the second model since its performance is
way better, but looking into the plots, it seems that the first model does a
better job at identifying change trends, though it fails to correctly predict
the dimension of this change.

Particularly, it detects the 2008 bottom price (even though it detects it too
late and with a higher price) and it also detects a second local minimum
around 2015, while the model in Figure 21 fails to identify these two
change points and has a broader prediction.

• That said, there are two configurations of period that seem to reflect well
our data in two different ways, and those are a period value close to
2750 observations (days) and another one around 9000. The latter
performs worse but seems to have a better understanding of trends, and
the former has closer predictions to the real values but fails to get
important downs in price.

• Lower periods close to one week (period=5, since only workdays are
taken into account) or one month (period=20) do not perform well at all
and fail to fit the model during the training phase.

40

Figure 21: Prophet prediction with period=9000 and fourier_order=5

4.5 Logarithmic transformation of the original dataset

The previous section calculations were made without any data pre-processing.
But given the high error of the predictor and the skewed distribution of our data,
a second model incorporating pre-processing was considered in order to test if
the model could be more accurately fit during training. As showed in Figure 4,
the original dataset shows what could be considered a positive skew, with a
remarkable long tail. There is a wide range of values (between 52.32$ and
3,153.63$), but most of the samples are concentrated on the lowest part of the
distribution.

For those reasons, it was considered appropriate to apply the logarithmic
transformation to the original data as a data pre-processing mechanism. This
will allow us to compare the performance of model with and without pre-
processing.

Given its mathematical nature, the logarithmic transformation is most useful
when data has a range of several orders of magnitude. In this case, data spans
two orders of magnitude, and has a rather low value for most part of the training
data, so it could be beneficial to normalize it this way so that the feature has
comparable values.

As it happened with the LSTM, the data pre-processing is done in the
data_preprocessor.py module. In this case, it consists only of applying the
natural logarithm to the closing price of each day. The model is fit with the
transformed data, but the resulting predictions are re-transformed (in this case
with an exponential function), in order to be able to compare them with the
original data. The RMSE is therefore calculated with the re-transformed data, so
it can be compared with the other Prophet model and with the real dataset.

The resulting RMSE for the same grid search used in the previous section are:

Period Fourier order Changepoints
prior scale

RMSE

7 5 0.05 789.33

7 10 0.05 788.50

7 20 0.05 789.70

20 5 0.05 787.84

20 10 0.05 790.22

20 20 0.05 790.28

41

1000 5 0.01 788.69

2700 10 0.04 877.22

2750 10 0.05 829.99

2850 5 0.01 849.52

5000 5 0.1 615.03

7500 5 0.1 1011.62

7500 5 0.04 930.87

9000 5 0.13 362.37

9000 5 0.1 640.68

9000 10 0.01 1815.09

11000 5 0.01 632.73

11000 5 0.1 1659.21

11000 5 0.13 675.77

11000 10 0.13 888.14

11000 15 0.01 1845.88

Table 3: RMSE of Prophet model with log-transformed data

We can also extract some conclusions from these new values:

• First of all, it is remarkable that nearly all the combinations of values
performed better without normalization. A more extensive grid search
was carried out, but the results were similar: the RMSE is globally higher
for logarithmically transformed data. This might suggest that Prophet
implementation takes advantage of wide-ranged data, but it could also
lead to think that logarithmic transformation was not the adequate pre-
processing mechanism for this experiment. However, it could also be due
to an inappropriate configuration of the variables described or it could be
the normal behaviour for this dataset. A deeper analysis would be
needed to ascertain the cause.

• The models built with logarithmic transformation have a wider variance
than the raw ones, with lots of models with very high RMSE. Other than
that, it also appears that small changes in one hyperparameter (keeping
the rest constant) generate bigger changes in the RMSE than without
normalization.

• The period values for which the model performs better are similar, with
the best RMSE around 9000. The absolute best model has the same
hyperparameter configuration than in the non-normalized experiment,

42

and its plot can be seen in Figure 22, over the transformed data, and in
Figure 23, over the re-transformed data.

As it happened with the non-normalized model, it seems to capture some
trends, but it does it too late for some of them (the 2008 crash) and fails
to adjust their dimension.

43

Figure 22: Prophet prediction (normalized data) with period=9000,
fourier_order=5, prior_scale=0.13. Over the transformed dataset

Figure 23: Prophet prediction (normalized data) with period=9000,
fourier_order=5, prior_scale=0.13. Over the de-transformed dataset

4.6 Facebook Prophet selected model

Given that the best performing model with normalization is significantly worse
than its non-normalized equivalent, the non-normalized model will be selected
to be compared with the LSTM model.

Therefore, the hyperparameters for the best model are:

• Period = 9000
• Fourier order = 5
• Changepoint prior scale = 0.13
• Number of changepoints = 25 (default value)

Its RMSE over the test set is 251.61 and its MAE is 191.95.

44

5. Trading simulator module

In order to compare the performance of the models built for the project, a
trading simulator was built in which the models can see the financial results of
their predictions. This trading simulator module is explained in this chapter,
alongside some auxiliary trading strategies that were implemented to be used
as benchmarks.

There is a reference to the unit tests written to verify this module, and finally
there is a comparison between the financial returns of all the models
implemented (LSTM, Prophet and the auxiliary strategies).

5.1 Module description

Even though the LSTM and the Prophet model could be compared by using
mathematical indicators, another objective of the project was to develop a
platform where these two models could perform as automatic traders. This tool
would act as a backtesting2 module and could be used as a foundation for an
eventual system to perform automatic trading on a real-world environment.

The trading simulator uses the same test dataset that was used to tune the
hyperparameters and select the more effective LSTM and Prophet predictors,
i.e., the data set from the 14th May 2008 to the 5th December 2019. Let us recall
that the original test dataset starts at 7th May 2008, but given the prediction shift
N = 5 that was explained in Chapter 3.6 (see Figure 10) and the lack of samples
for the weekend days, the first value that can be predicted is the 14th May.

For each day of the dataset, the simulator decides whether to place a buy order
for the next day, sell or do nothing at all, depending on the predicted value and
the closing price of that day. The decision to buy or sell is taken in a quite
straight-forward and simple way:

If the predicted value of the S&P500 index for the next day is higher than the
closing price of the current day, a buy order is placed. As the simulator has a

2 In predictive models and specially in trading, backtesting is the process of testing a model or
a strategy in a secure environment before deploying it in the real world.

45

limited amount of money, it will only be able to buy stock when it has the
required liquidity.

If the predicted value is lower than the closing price of the current day, a sell
order will be placed. Likewise, this order will be carried out only if the trader
holds stock in that moment.

At the end of the test dataset, a financial measurement is calculated to show the
performance of each model. The measurement selected is the return of
investment (ROI), which is calculated following the formula:

ROI=
(Final value of the investment−Cost of investment)

Cost of investment
(11)

Summarized, the algorithm behind the module works as follows:

1. An initial capital (10,000$) is assigned to every different model to invest
it.

2. The test datasets are loaded to perform the comparison with the
predicted values.

3. The predictive models are loaded (in the case of LSTM from the .h5 files
generated during the training).

4. The predictions are loaded or generated with the test dataset.

5. Each model executes an specific method to go over all the days in the
test dataset, deciding for each day whether to buy or sell depending on
the prediction made.

6. After going through all the days in the test dataset, the initial capital has
increased or decreased. The last day, all the stock is sold with the
consequent closing price.

7. A performance ratio is calculated to measure the performance of each
strategy. In this case, the return of investment or ROI.

46

5.2 Additional trading strategies studied

Besides the LSTM and the Facebook Prophet model, four more models were
developed and tested in order to use them as benchmarks for performance.
These models were:

• A buy and hold model: this strategy has many advocates amongst
famous investors and makes the case that assets should be held for a
long time. In our module, this will translate into buying all the stock
possible at the beginning of the test phase and holding it until the very
last day, when it will be all sold.

• Simple Moving Average model (SMA): this method calculates the
average between the N past observations and assigns the calculated
value to the prediction for the next day. This is indeed a very naive
technique, but it is widely used as a benchmark.
For this experiment, two SMA models will be tested: one with a window
of N = 20 days into the past, and another one with N = 60.

• Random buy: this strategy will decide whether to buy or sell each day
randomly. It does not seem a good investing technique but it will serve as
comparison for the rest of the models.
In order to soften the effects of randomness, a mean of the ROI will be
calculated over a thousand executions.

• N-last value model: this strategy was designed to compare it to the LSTM
model specifically. It assigns the closing price of the Nth previous day to
the next day prediction. Values of N = 1 and N = 5 were calculated, but
since the shift between the original data and the predictions seems to be
close to 5 observations (see Figure 12), the model with N = 5 is finally
the one to compare with the LSTM model.

5.3 Trader simulator testing

A small unit test was developed using the standard library unittest [22] from
Python to verify the simulator implementation.

The test class has two methods that simulate standard use cases that will
appear in the designed module: buy and sell orders in different sequences. In

47

addition, it includes another test method that covers a less frequent but equally
important case use: the case in which the stock price decreases consecutively
―or not consecutively but but before any sell order― and after one buy order in
which all the possible stock was bought, the next day the price decreases it is
possible to buy again even though the last day it was not possible.

All three test were executed during the different phases of the development and
passed without errors.

5.4 Models comparison

The returns of investment (ROI) for all the models implemented can be seen in
Table 4:

Model ROI Final capital

LSTM 1.11 21,061$

Facebook Prophet 0.73 17,308$

SMA (20 days) 0.69 16,930$

SMA (60 days) 0.36 13,643$

Buy and hold 1.19 21,961$

Random -0.15 8,500$

N-last value (5 days) 1.29 22,900$

Table 4: ROI of the implemented models

First of all, the best performing LSTM model achieves a ROI of 1.11, which
means that it has turned its initial 10,000$ capital into 21,061$. It has
outperformed both of the SMA models, the random strategy and the Prophet
model. It has a similar return to the buy and hold method (21,900$).

The Facebook Prophet model (Figure 18) has a smaller ROI, which was
something expected, since its RMSE was way higher than the one from the
LSTM. However, it still achieves a positive return and outperforms both SMA
methods.

The N-last value algorithm has achieved the biggest ROI, and that makes sense
in a dataset that has globally growing prices. Stock prices naturally increases its
value and executing more buy than sell orders benefits from this behaviour.

48

It is also worth mentioning that the RMSE value of a trained model, calculated
during the test phase, does not exactly predict its performance in the trading
simulator.

For instance, let us compare the two best performing LSTM models in terms of
RMSE (presented in Table 1). These two models have a quite similar RMSE,
but the one with the lower error, also grants a ROI considerably lower (see
Table 5):

LSTM model RMSE ROI

Model with input_seq, neurons, epochs, batch_size
= (5, 500, 5, 96)

33.87 1.11

Model with input_seq, neurons, epochs, batch_size
= (5,500, 8, 96)

35.56 1.38

Table 5: ROI comparison between the two best performing LSTM models

Therefore, choosing the second best-performing LSTM model would have
granted better returns on a real-world environment. Actually better than best
performing method (N-last value method). This was the kind of behaviour that
the trading simulator was built to detect.

Lastly, it has to be pointed out that, despite the chosen test set covering a
decreasing price period of time at the beginning (the year 2008, see Figure 3),
there is a global positive growth ratio in the dataset. This might have influenced
the results, since there is no big danger of a huge depreciation in price.

49

6. Conclusions

The first objective, regarding the building of the two models, was achieved but
not completely as expected:

On the one hand, the LSTM models performed quite well with univariate data
and a rather simple architecture. This fact was already expected, since LSTMs
are widely used in price forecasting. However, the built architecture seems to
favour models which create predictions that imitate the past behaviour, rather
than building a proper predictive vision of the future.

Nevertheless, LSTM models achieved acceptable error values and gave
positive economic returns. Also, its design and tuning induced some
conclusions (already explained in the respective subsections) about its inner
working that might prove useful in future work.

The Prophet model, on the other hand, did not show the same accuracy, nor the
same returns of investment than its LSTM counterpart. Its predictions were
generally either too vague or too disproportionate in terms of dimension. Very
few models showed a close-to-reality trend modeling, and the ones which did
were too late in detecting those trend changes. There are several possible
reasons for this poor predictive results:

One of them might be Prophet’s nature: it is a tool whose main configurable
parameters are seasons and holidays. In this regard, Jining Yan et al. [25]
showed the great potential of Prophet when dealing with seasonal and noisy
data. The stock market, however, does not generate data on holidays, so that
feature is not used.

In addition, the seasons generated by the author did not seem to adequately
capture global trends. Models with a sole seasonality did not succeed at
generating solid predictions, but neither did models with several seasonalities
(each one with different periods). Perhaps with a deeper understanding of the
financial environment and the markets, that would have been different, since
that is another advantage of the Prophet tool: it allows the analyst to feed its
domain knowledge into the model.

50

The second objective, regarding the building of the trading simulator module,
was also achieved. It proved useful for several reasons:

In the first place, despite having implemented only a very simple investment
technique (place a buy order if the prediction for the next day is higher than the
current price), it worked well as a comparison tool. In addition to the abstract
error measurement, it also allowed a hands-on comparison between all the
models.

It stated as well the importance of having a backtesting platform in any kind of
forecasting enterprise, since it allowed to find out that a better performing model
in terms of error during the test phase does not imply a better return of
investment in a trading environment. In this regard, it also pointed out that the
election of a trading strategy cannot rely entirely in the RMSE calculations over
the test set. This does not mean that RMSE is not a valid measurement, but
that auxiliary backtesting methods have to be conducted.

On another front, and regarding the original dataset, the training and the test
data split takes place during the 2008 crash, with the subsequent decrease in
stock prices. After that period, there is also an anomalously abrupt increase in
prices in a very short time. This behaviour could have been predicted by more
sophisticated models, but the models built for this project failed to do so. In this
regard, it would have been interesting to apply those models on other test sets:
specially to time series that showed decreases in prices, to evaluate data with
other trends.

Future work could set out towards a deeper understanding of the S&P500
financial and periodic behaviour, in order to better determine the seasonalities
used by Facebook Prophet and take full advantage of this algorithm’s features.

In addition, the trading simulator could be improved so that its decisions were
more sophisticated. For instance, by investing a variable quantity depending on
the difference between the predicted price and the current price, or by
connecting the module to a live source of data, like AlphaVantage API [26], so
that the process could be more automated.

51

7. Bibliography

[1] https://www.economist.com/leaders/2019/10/03/the-rise-of-the-
financial-machines (December 2019)

[2] Simon, Selvan. Accuracy Driven Artificial Neural Networks in Stock
Market Prediction. International Journal on Soft Computing. 3. 35-44.
(2012). 10.5121/ijsc.2012.3203.

[3] O. Coupelon. Neural network modeling for stock movement
prediction Neural Network Modeling for Stock Movement Prediction.
(2007).
http://olivier.coupelon.free.fr/Neural_network_modeling_for_stock_move
ment_prediction.pdf

[4] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon and K.
P. Soman, "Stock price prediction using LSTM, RNN and CNN-sliding
window model," 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), Udupi. pp. 1643-
1647. (2017). doi: 10.1109/ICACCI.2017.8126078

[5] Yahoo! Finance S&P500 historical data
https://finance.yahoo.com/quote/%5EGSPC?p=^GSPC&.tsrc=fin-srch
(October 2019)

[6] Python official site. https://www.python.org/ (October 2019)

[7] TensorFlow official site. https://www.tensorflow.org/ (October 2019)

[8] Keras official site. https://keras.io/ (October 2019)

[9] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and
description. (2014). https://arxiv.org/abs/1411.4389

[10] Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex &
Sutskever, Ilya & Salakhutdinov, Ruslan. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Journal of Machine Learning
Research. 15. 1929-1958. (2014).
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

52

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
https://arxiv.org/abs/1411.4389
https://keras.io/
https://www.tensorflow.org/
https://www.python.org/
https://finance.yahoo.com/quote/%5EGSPC?p
http://olivier.coupelon.free.fr/Neural_network_modeling_for_stock_movement_prediction.pdf
http://olivier.coupelon.free.fr/Neural_network_modeling_for_stock_movement_prediction.pdf
https://www.economist.com/leaders/2019/10/03/the-rise-of-the-financial-machines
https://www.economist.com/leaders/2019/10/03/the-rise-of-the-financial-machines

[11] McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133
(1943) https://doi.org/10.1007/BF02478259

[12] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986)
https://doi.org/10.1038/323533a0

[13] Russell S.J., Norvig P. Artificial Intelligence: A modern approach (2nd
edition). Prentice Hall. (2003).

[14] Hochreiter, Sepp & Schmidhuber, Jürgen. Long Short-term Memory.
Neural computation. 9. 1735-80. (1997) 10.1162/neco.1997.9.8.1735.

[15] https://machinelearningmastery.com/adam-optimization-algorithm-
for-deep-learning/ (December 2019)

[16] https://towardsdatascience.com/types-of-optimization-algorithms-
used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
(December 2019)

[17] Géron A. Hands-On Machine Learning with Scikit-Learn &
TensorFlow. O’Reilly. (2017).

[18] A. Hedayati Moghaddam, M. Hedayati Moghaddam and M. Esfand-
yari. Stock market index prediction using artificial neural network. (2016).
https://www.sciencedirect.com/science/article/pii/S2077188616300245

[19] Taylor SJ, Letham B. Forecasting at scale. PeerJ Preprints. (2017).
5:e3190v2 https://doi.org/10.7287/peerj.preprints.3190v2

[20] Davidsson M. Stock Market Anomalies. A literature Review and
Estimation of Calendar effects on the S&P500 index. (2006).
http://www.diva-portal.org/smash/get/diva2:4020/fulltext01.pdf

[21] Facebook Prophet https://facebook.github.io/prophet/ (December
2019)

[22] Python unittest https://docs.python.org/3/library/unittest.html
(December 2019)

[23] https://machinelearningmastery.com (November 2019)

53

https://machinelearningmastery.com/
https://docs.python.org/3/library/unittest.html
https://facebook.github.io/prophet/
http://www.diva-portal.org/smash/get/diva2:4020/fulltext01.pdf
https://doi.org/10.7287/peerj.preprints.3190v2
https://www.sciencedirect.com/science/article/pii/S2077188616300245
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/BF02478259

[24] Scikit-learn library official site. https://scikit-learn.org (November
2019)

[25] Yan, Jining & Wang, Lizhe & Song, Weijing & Chen, Yunliang &
Chen, Xiaodao & Deng, Ze. A time-series classification approach based
on change detection for rapid land cover mapping. ISPRS Journal of
Photogrammetry and Remote Sensing. 249-262. (2019).
https://www.sciencedirect.com/science/article/abs/pii/S09242716193024
00

[26] AlphaVantage API. https://www.alphavantage.co/ (January 2020)

[27] https://www.investopedia.com (December 2019)

54

https://www.investopedia.com/
https://www.alphavantage.co/
https://www.sciencedirect.com/science/article/abs/pii/S0924271619302400
https://www.sciencedirect.com/science/article/abs/pii/S0924271619302400
https://scikit-learn.org/

	1. Introduction
	1.1 Context and justification
	1.2 Objectives
	1.3 Methodology
	1.4 Work plan
	1.5 Summary of the products
	1.6 Chapter description

	2. Tools and data preparation
	2.1 Tools selection
	2.2 Data gathering
	2.3 Data pre-processing
	2.4 Data presentation

	3. LSTM model
	3.1 How does a Neural Network work?
	3. 2 A brief history of Neural Networks
	3.3 The LSTM cell
	3.4 Hyperparameter description
	3.5 Hyperparameter selection
	3.6 Data preparation
	3.7 Hyperparameter tuning
	3.8 LSTM selected model

	4. Facebook Prophet model
	4.1 Model overview
	4.2 Hyperparameters
	4.3 Default hyperparameters execution
	4.4 Hyperparameter tuning
	4.5 Logarithmic transformation of the original dataset
	4.6 Facebook Prophet selected model

	5. Trading simulator module
	5.1 Module description
	5.2 Additional trading strategies studied
	5.3 Trader simulator testing
	5.4 Models comparison

	6. Conclusions
	7. Bibliography

