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Abstract With limited financial resources, decision-makers in firms and gov-
ernments face the task of selecting the best portfolio of projects to invest in.
As the pool of project proposals increases and more realistic constraints are
considered, the problem becomes NP-hard. Thus, metaheuristics have been
employed for solving large instances of the project portfolio selection problem
(PPSP). However, most of the existing works do not account for uncertainty.
This paper contributes to close this gap by analyzing a stochastic version of the
PPSP: the goal is to maximize the expected net present value of the inversion,
while considering random cash flows and discount rates in future periods, as
well as a rich set of constraints including the maximum risk allowed. To solve
this stochastic PPSP, a simulation-optimization algorithm is introduced. Our
approach integrates a variable neighborhood search metaheuristic with Monte
Carlo simulation. A series of computational experiments contribute to validate
our approach and illustrate how the solutions vary as the level of uncertainty
increases.
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1 Introduction

Financial decisions are directly linked to wealth creation through capital ac-
cumulation, sustainable economic development, and an increase in welfare
(Patrick, 1966). This thriving for improvement suggests a mentality of op-
timization in financial decision-making. Both firms and governments alike
face investment decisions consisting in selecting, from an array of candidate
projects, those that most successfully fulfill the organizations strategic ob-
jectives and ensure future profitable growth. This project portfolio selection
problem (PPSP) is concerned with identifying efficient portfolios of projects
instead of evaluating the suitability of solely individual projects (Urli and
Terrien, 2010).

Traditional approaches to the PPSP aim at building a ranking of the
projects and allocating the available budget according to this ranking. Among
the most widely employed are the analytical hierarchy process (Suh et al.,
1994) and the scoring method (Coldrick et al., 2005). However, these ap-
proaches suffer from two major shortcomings (Carazo et al., 2010): (i) they
typically assume independence among projects –thus neglecting synergy and
cannibalism effects as well as interdependences–; and (ii) they fail to provide
optimal solutions when the decision-maker wishes to consider further con-
straints beyond budget restrictions.

When considering realistic instances, this problem usually becomes NP-
hard due to its sheer complexity, since the budget-allocating entity usually
pursues several conflicting objectives while taking into account a considerable
number of restraining factors (Fernandez et al., 2015). As noticed by Urli and
Terrien (2010), objectives can be of quantitative nature –such as net present
value or market share–, or pertain to qualitative measures –such as personnel
capabilities or environmental impact. While employing exact methods in solv-
ing NP-hard combinatorial optimization problems (COPs) tends to be com-
putationally expensive, metaheuristics can provide a near-optimal solution to
such problems in reasonable computing times (Soler et al., 2017).

In this paper, we analyze a stochastic version of the PPSP: the goal is
to maximize the expected net present value of the inversion, while consid-
ering random cash flows and discount rates in future periods as well as a
rich set of constraints. These constraints include the maximum risk allowed
and other conditions defined by the decision maker. In order to solve this
version of the problem, we propose a simheuristic algorithm. As described
in Juan et al. (2015a), simheuristic approaches integrate metaheuristics with
simulation techniques in order to deal with the random nature of stochas-
tic COPs. In particular, we use an extension of the variable neighbourhood
search (VNS) metaheuristic (Hansen and Mladenović, 2001) that integrates
Monte Carlo simulation (MCS) techniques. In short, while the metaheuristic
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generates promising portfolios for a deterministic version of the problem, sim-
ulation techniques are applied to: (i) estimate the expected net present value
and risk of these project portfolios under time-variant uncertainty conditions;
(ii) complete a risk analysis on each project portfolio; and (iii) provide feed-
back to the metaheuristic in order to better guide the searching process. The
VNS framework was used since, as discussed in Hansen and Mladenović (2014),
it offers an excellent trade-off between simplicity and performance.

Thus, the main contributions of this paper are: (i) to propose a mathemat-
ical formulation for a rich version of the stochastic PPSP where the goal is to
maximize the net present value of the investment; (ii) to develop a simheuris-
tic algorithm able to solve this stochastic version of the PPSP; and (iii) to
analyze, using the aforementioned algorithm, how the selected portfolio of
projects vary as the uncertainty level increases.

We solve both deterministic and stochastic PPSPs, and compare the near-
optimal solutions. The deterministic PPSP indicates that portfolios consisting
of risky projects have a higher NPV than portfolios consisting of relatively safe
projects. However, it is worth noting that such a relation is not necessarily lin-
ear due to the the presence of cardinality and quantity constraints. Also, the
instances employed in our experiments vary in terms of the pairwise correla-
tion between cashflows from any two projects. The ensuing interdependencies
among the projects can be regarded as a constraint to the volume of projects
that can be included in a portfolio. Turning to the the stochastic PPSP, we find
that a portfolio of projects in a stochastic environment always yields a lower
(expected) NPV than a portfolio in a deterministic environment. Furthermore,
our research findings indicate that a near-optimal solution to the determinis-
tic PPSP is generally sub-optimal under uncertainty. Lastly, a near-optimal
solution to the stochastic PPSP leads to a higher (expected) NPV than a
near-optimal solution to the deterministic PPSP evaluated under uncertainty.

The remainder of the paper is structured as follows. Section 2 presents a
literature review. Section 3 contains the description of the problem as well as
a mathematical formulation. We propose our solving methodology in Section
4. Following this, the computational experiments are presented in Section 5
and their results analyzed in Section 6. Lastly, we present our conclusions and
future research lines in Section 7.

2 Literature Review on the PPSP

Early work on the PPSP (Ghasemzadeh and Archer, 2000) considers a single
weighted objective function and constraints concerning budget and man-hours.
However, their test instances were very limited because they aspired a compar-
ison between manually computed portfolios and those constructed employing
their decision support system. To solve a PPSP employing further constraints,
a two-stage procedure is proposed by Doerner et al. (2004) and Doerner et al.
(2006). During the first phase, the Pareto frontier of efficient project portfolios
is constructed through optimization. Then, in the second phase it is interac-
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tively explored by the decision-makers to account for personal preferences.
They further take into account floor and ceiling constraints for inclusion of
projects from any given subset, as well as resource limitations and minimum
benefit requirements for individual projects. As there are possible synergies
between projects that should be evaluated in order to accurately estimate the
benefits of a project portfolio, the authors make an attempt at incorporating
these considerations into their methodology. The Pareto ant colony optimiza-
tion approach is further enhanced by Stummer and Sun (2005), who suggest
that their improved model performs better with many objective functions and
a large set of efficient solutions and is thus specifically suitable for real-life
problems.

These interdependences show that the portfolio optimization is not a triv-
ial task as the number of possible portfolios increases exponentially with the
number of possible projects. Thus, Urli and Terrien (2010) consider project
interdependences modeled by an interaction matrix as proposed by Schmidt
(1993) in addition to restrictions on monetary and human resources. Rabbani
et al. (2010) further consider that some projects may be mandatory or mutu-
ally exclusive. Furthermore, project interaction leads to the consideration of
timing of project implementation.

While previous research considers static optimization approaches, more re-
cently, research has also drawn on findings from other areas, such as scheduling:
Gutjahr et al. (2008) and Gutjahr et al. (2010) also take employee competen-
cies and the evolution of their knowledge scores over time through learning or
depreciation into account. Carazo et al. (2010) further investigate this research
line and include scheduling as a continuative concept being implemented si-
multaneously to, but also following the project selection. As previous work,
they also consider certain interrelations between different projects and allow
for the transfer of unused monetary resources to the next period. Urli and
Terrien (2010) included continuous project portfolio adjustment over the re-
spective time horizon and solved small and medium instances in satisfactory
computation time. However, the determination of all non-dominated project
portfolios still remains difficult when considering large, but realistically rel-
evant instances (100 projects or more). While this might not be relevant in
most firm investment decisions, it is a significant drawback for governments
or bodies awarding funding for projects and even financial institutions (Cruz
et al., 2014).

A further important factor when considering the particular case of project
portfolio selection processes of financial institutions is project divisibility (Urli
and Terrien, 2010). When the possible decision variables are no longer binary,
the complexity is yet increased. While business projects are at least partially
indivisible, research projects funded by governments can often also be exe-
cuted with partial funding and it is thus a further question how much of the
sought after funding is awarded, introducing further constraints to the bud-
get allocation. Hence, more recent research increasingly focuses on large-scale
instances and partial allocation. Cruz et al. (2014) solve a stationary project
portfolio optimization problem, in which partial support of the requested bud-
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get is allowed. Unlike previous research, they assume that the preferences of
the decision-maker are to some extent known. Outranking is employed in an
a priori preference system in order to model that decision makers will have
preferences towards different portfolios on the efficient frontier based on their
personal goals concerning the achievement of objectives. Incorporating these
preferences allows identifying those portfolios that lie on the efficient frontier
and simultaneously are not outranked by another portfolio. They incorporate
budgetary constraints in that they define upper and lower bounds for inclusion
of projects from a particular group. Fernandez et al. (2015) further enhance
this approach by including synergies in their optimization.

Due to the uncertainty present in different facets of project appraisal, sim-
ulation has been incorporated into the metaheuristics framework to address
this. Gabriel et al. (2006) employ MCS in their methodology to simulate pos-
sible cost scenarios for the respective optimization constraints. They analyzed
a government agency facing a project portfolio decision and showed that their
approach significantly improved the decision-making process and led to more
robust results due to the incorporation of uncertainty. Medaglia et al. (2007)
combine a multi-objective evolutionary algorithm with MCS in order to solve
a project portfolio problem that allows for partial funding of projects, project
interdependences, constrained resources and uncertainty in the objective func-
tion regarding the preferences of the decision-maker. Huang (2007) treats the
project parameters as uncertain and combines a genetic algorithm with ran-
dom fuzzy simulation in order to account for this. An interesting application
combining discrete-event simulation with a genetic algorithm to select security
control portfolios is discussed in Kiesling et al. (2016). In the context of an IT
infrastructure subject to a number of threats, the authors focus on selecting
the best policy from efficient combinations of security controls. Another way
to address uncertainty is by considering robust solutions that perform reason-
ably well across the full range of feasible parameter values. Thus, Liesiö et al.
(2007) propose a multi-objective robust portfolio modeling methodology. Their
approach relies on preference programming methods. They illustrate the effec-
tiveness of their approach in a case study involving real data from a road pave-
ment project in Finland. In Liesiö et al. (2008), the same authors extend their
previous work by also considering project interdependencies, incomplete cost
information and variable budget levels. Using a personal computer, they are
able to solve, in reasonable computing times, instances up to 60 projects, 5 op-
timization criteria, and 10 constraints. For large-size instances (e.g., with 200
projects or more), the authors suggest the use of heuristic-based approaches.

As can be seen from the reviewed examples, uncertainty can be considered
for the project parameters, the modeled constraints, and the objective func-
tion. In this paper, we develop a simheuristics algorithm to address a rich and
stochastic version of the PPSP with the goal of maximizing the net present
value of the investment. Our approach thus addresses several gaps in the liter-
ature and combines different research challenges. Firstly, while most authors
consider a particular subset of projects, such as R&D projects (Doerner et al.,
2004) or government projects (Cruz et al., 2014), we formulate a general ap-
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proach that can easily be applied to a range of project types, such as R&D
projects, investments, or financial projects. We further include constraints on
the number of projects included in the portfolio, as well as on the divisibility of
project funds requested. Likewise, we give the decision maker the possibility to
pre-select portfolios based on personal or strategic preferences (independently
of the projects risk-return characteristics). In addition, we create instances
that can be employed for comparison in future analyses, as the previously
studied examples are either very small in nature or not openly accessible.

3 Formal Description of the Stochastic and Rich PPSP

We consider a stochastic and rich variant of the PPSP, in which there is a
large set of candidate projects that compete for a limited global budget. The
budget allocation is limited in the following ways: (i) if funded, each project
i has to receive a minimum amount, εi ∈ (0, 1], expressed as a percentage
of the available budget (this is an amount below which the project could
not yield successful results and it would thus not make sense to include it in
the portfolio); (ii) similarly, a project is maximally funded with the amount
originally requested, δi ∈ [εi, 1], also expressed as a percentage of the available
budget; (iii) the problem is further constrained by the decision makers’ option
to include certain projects irrespective of their characteristics for strategic or
political reasons (this will be modeled by the binary variable qi, which will take
the value 1 whenever the project i has to be necessarily included); (iv) there
is a minimum (kmin) and a maximum (kmax) number of projects that can
be funded (these threshold values are decided by the evaluation committee
in advance to assure a certain diversification level); and (v) the risk of the
portfolio of selected projects cannot exceed a given threshold, rmax, where the
risk is calculated employing a traditional variance-covariance matrix, σij = σji,
thus accounting for interdependences between projects i and j.

Under these conditions, the projects are evaluated based on their net
present value (NPV), which is defined as the difference between the present
value of future cash inflows and the present value of future cash outflows. Since
predicting future cash flows might be subject to some degree of uncertainty
–which will be higher as we move further in the future–, these cash flows will
be modeled as random variables. When computing the NPV associated with
a given cash flow, an interest rate is used to transform future cash values into
present ones. Since this interest rate might also be subject to some uncertainty,
we will model it as a random variable too (Figure 1). Notice that the use of
random variables for modeling future cash flows as well as the interest rate
transform our COP into a stochastic one. In summary, under the aforemen-
tioned constraints our main goal will be to maximize the expected NPV of the
project portfolio.
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Fig. 1: Illustrative scheme of the Stochastic PPSP.

More formally, consider a set of n projects, P = {1, 2, ..., n}, and a set of
m future times, T = {1, 2, ....,m}. Let us assume that the actual cash flow
generated by each project is directly proportional to the quantity invested in
it. Thus, for each i ∈ P and for each t ∈ T , the actual cash flow of project i at
time t will be given by Cit ·xi, where Cit is a random variable representing the
potential cash flow when project i receives the total requested funding and xi
represents the actual investment in project i (measured as a percentage of the
total available budget). The periodical benefit of project i at period t, Bit(xi),
is defined as the actual cash flow of project i at time t adjusted by a random
discount rate Rit, i.e.:

Bit(xi) = Cit·xi

(1+Rit)t
∀i ∈ P, ∀t ∈ T (1)

The net present value associated with each project i, Ni(xi), is computed
by adding all the periodical benefits provided by the project over time, i.e.:

Ni(xi) =
∑m

t=1Bit(xi) ∀i ∈ P (2)

Similarly, the net present value of an investment plan x = (x1, x2, ..., xn),
N(x), is obtained as the aggregation of individual net present values, i.e.:

N(x) =
∑n

i=1Ni(xi) (3)

The goal is to find a project investment plan, x, that maximizes the ex-
pected net present value, i.e.:

Max E[N(x)] =
∑n

i=1

∑m
t=1E[Bit(xi)] (4)

Also, according to our previous discussion the following constraints apply:∑n
i=1

∑n
j=1 σijxixj ≤ rmax (5)

n∑
i=1

xi = 1 (6)

0 ≤ xi ≤ 1 ∀i ∈ P (7)

0 ≤ εi ≤ δi ≤ 1 ∀i ∈ P (8)

zi ∈ {0, 1} ∀i ∈ P (9)
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εizi ≤ xi ≤ δizi ∀i ∈ P (10)

zi ≤ w · xi ∀i ∈ P (11)

qi ∈ {0, 1} ∀i ∈ P (12)

qi ≤ zi ∀i ∈ P (13)

kmin ≤
∑n

i=1 zi ≤ kmax (14)

Constraint (5) quantifies and limits the risk exposure of the decision-maker.
Equations (6) and (7) restrain the total investment to the available resources.
Equations (8) guarantee that the lower and upper bounds for each project are
within the valid range. The auxiliary variables zi are introduced in equations
(9). The value of zi is 1 if project i is actually included in the portfolio, and
0 otherwise. These binary variables are used in equations (10) to guarantee
that the investment in each project is within its bounds. In the auxiliary equa-
tions (11), w is a very large positive value such that: if xi > 0 then wxi ≥ 1.
Equations (12) and (13) define and impose the pre-assignment constraints: if
the project i is pre-selected (i.e., qi = 1), it must be included in the solution
(i.e., zi = 1) irrespective of its risk-return characteristics. Finally, the cardi-
nality constraint is provided in equation (14) to guarantee that the number of
selected projects fits within the allowed bounds.

4 Our Simheuristic Approach

In order to solve the stochastic and rich PPSP described in the previous sec-
tion, a simheuristic approach is proposed. It combines simulation techniques
with an adaptive variable neighborhood search (VNS) metaheuristic –which
also integrates an acceptance criterion based on simulated annealing (SA). The
metaheuristic component itself relies on a constructive heuristic which employs
biased randomization (BR) techniques. The main ideas behind each of these
components are briefly explained next. After that, the way these components
are integrated in our approach is described.

4.1 Overview of the Main Components

As described in Juan et al. (2015a), simheuristics extend metaheuristics by
introducing simulation techniques that assess the performance of promising
solutions in a stochastic environment: a selected subset of promising solutions
generated by the metaheuristic component are simulated in order to estimate
its performance under a stochastic environment. Usually, this performance is
measured in terms of expected value of some key indicator, but other statistics
could be analyzed as well.
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The main advantage of the VNS metaheuristic (Mladenović and Hansen,
1997) lies in the search systematically employing different neighborhood struc-
tures, rendering it increasingly flexible within the solution space of the prob-
lem. This, in return, potentially leads to better solutions compared to single-
neighborhood-based local search algorithms. Many extensions of VNS have
been proposed, most of them oriented to the solving of large-scale instances
(Melián, 2006; Moreno-Vega and Melián, 2008; Höller et al., 2008; Hansen
et al., 2008).

The SA searching procedure is inspired by the process of physical annealing
with solids in which a crystalline solid is heated and then allowed to cool
slowly until it achieves its most regular possible crystal lattice configuration
(Nikolaev and Jacobson, 2010). In a classical SA, the search starts with a high
temperature and higher chance of transition to a worse solution that decreases
as the search continues, thus reducing the chance of transition (Azizi and
Zolfaghari, 2004). To avoid being trapped in a local minimum, our algorithm
makes use of an adaptive cooling schedule, which includes the possibility of
reheating.

Biased randomization (Juan et al., 2013; Grasas et al., 2017) is a mechanism
to randomize deterministic heuristics. Heuristics include at least one step in
which a choice has to be made, for instance, selecting an element from a
sorted list. Employing BR, instead of selecting the ‘most promising’ option, a
probability is assigned to each candidate option in such a way that the logic
is maintained (i.e., the most promising options receive higher probabilities).
Hence, different solutions may be built at each execution, some of which are
expected to outperform the one provided by the deterministic version.
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Algorithm 1 VNS-based Simheuristic
1: initSol ← genInitSol(Inputs) % Initial solution stage (biased-randomized heuristic)
2: baseSol ← initSol
3: fastSimulation(baseSol) % Monte Carlo simulation
4: bestSol ← baseSol
5: nIter ← 0; temperature ← 0
6: while (nIter ≤ maxIter) do % VNS stage
7: k ← 1
8: while (k ≤ Kmax) do
9: newSol ← shaking(baseSol, k) % biased-randomized heuristic

10: newSol ← localSearch(newSol)
11: if (existInCache(newSol)) then
12: newSol ← retrieveFromCache(newSol)
13: else
14: newSol ← localSolver(newSol)
15: addToCache(newSol)
16: end if
17: if (detNPV(newSol) - detNPV(baseSol) > 0) then
18: fastSimulation(newSol) % Monte Carlo simulation
19: if (stochNPV(newSol) - stochNPV(baseSol) > 0) then
20: baseSol ← newSol
21: if (stochNPV(newSol) - stochNPV(bestSol) > 0) then
22: bestSol ← newSol
23: end if
24: k ← 1
25: end if
26: else % SA-based acceptance criterion
27: temperature ← calculateTemperature
28: if (temperature ≥ Rand) then
29: baseSol ← newSol
30: k ← 1
31: else
32: k ← k + 1
33: end if
34: end if
35: end while
36: nIter ← nIter + 1
37: end while
38: deepSimulation(bestSol) % Refinement stage - Monte Carlo simulation
39: return bestSol

4.2 Algorithm Description

Our approach is depicted in Algorithm 1, which is composed of three stages.
In the first stage, a feasible initial solution is constructed. Then, during the
second stage, an adaptive VNS metaheuristic enhances the initial feasible so-
lution by iteratively exploring the search space and conducting a short number
of simulation runs in which both cash flows and discount rates are randomly
generated to estimate the expected net present value. From this stage, a re-
duced set of promising solutions is obtained. In the third stage, an extended
simulation experiment yields a more accurate estimate of the expected NPV,
as well as other statistics whenever required. The initial-solution stage as well
as the VNS stage are explained next in more detail.
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Given the stochastic instance, we consider its deterministic counterpart
obtained after replacing the random variables by their expected values. In
order to generate an initial solution, initSol, we randomly choose a valid size
s for the project portfolio (i.e., kmin ≤ s ≤ kmax and s ≥

∑
qi). First, the

pre-selected projects are included (Algorithm 2). Then, we randomly select
projects until a portfolio of size s is generated. In order to set the weights of
each project in this portfolio, we apply LocalSolver, a powerful optimization
software (http://www.localsolver.com). This software was selected due to its
ability to consider quadratic expressions as constraints, which is the case of
equation (5). The entire process is repeated until the randomly generated
solution satisfies all the constraints (i.e., until a feasible solution is obtained).
Notice that, being a project-investment plan, initSol will be a feasible solution
for both the deterministic and the stochastic versions of the problem.

Algorithm 2 genInitSol(projectList, maxRisk, Kmin, Kmax)
1: feasibleSol ← false
2: initSol ← null
3: auxProjectList ← copyProjectList(projectList)
4: while (feasibleSol is false) do
5: s ← defineRandPortfolioSize(Kmin,Kmax)
6: selectedProjects ← selectPreselectedProjects(projectList)
7: projectList ← removeProject(projectList, selectedProjects)
8: portfolio ← addProjectToPortfolio(portfolio, selectedProjects)
9: currentPortfolioSize ← getPortfolioSize(portfolio)

10: while ( currentPortfolioSize < s) do
11: project ← selectProjectRandomly(projectList)
12: projectList ← removeProject(projectList, project)
13: portfolio ← addProjectToPortfolio(project)
14: currentPortfolioSize ← currentPortfolioSize + 1
15: end while
16: initSol ← localSolver(portfolio)
17: if (satisfyConstraints(initSol, maxRisk) then
18: feasibleSol ← true
19: else
20: projectList ← copyProjectList(auxProjectList)
21: portfolio ← deletePortfolio(portfolio)
22: end if
23: end while
24: return initSol

In the second stage, the initSol is improved using a VNS procedure. First,
the feasible initSol is copied into baseSol and bestSol. Moreover, the size of
the neighborhood, k, is set to one and the SA-related temperature is set to
zero. Then, a new solution, newSol, is created by shaking the current one.
This procedure consists of randomly deleting a number of non pre-selected
projects in the current portfolio and then randomly introducing new projects.
Each newSol is send to LocalSolver to determine the appropriate investment
weights. In order to avoid calling the solver more than strictly necessary, a
cache memory is implemented –it stores, in a hash map data structure, the
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weights assigned to previously analyzed project portfolios. Next, newSol un-
dergoes a local search phase in order to find the local minimum within the
defined neighborhood structure. In this local search phase, we randomly sub-
stitute projects from the current portfolio by projects outside the portfolio.
This replacement is performed taking into account the risk-affinity between
projects (i.e., the covariance matrix), and a BR technique relying on a geo-
metric distribution is employed (Juan et al., 2015b). If newSol is promising
in terms of deterministic NPV, then it is send through a fast simulation pro-
cess, consisting of 200 runs, to estimate its associated expected NPV under
uncertainty. Whenever this expected NPV outperforms the one of the baseSol
and/or the one of the bestSol, these solutions are updated to newSol and the
process continues. Also, to reduce the odds of getting trapped in a local mini-
mum, an SA-like acceptance criterion is used to update baseSol with newSol
in some occasions even if newSol does not outperform baseSol.

Once the VNS stage ends, the algorithm returns a selected list with of top
5 solutions. For each of these solutions, we perform a more intensive simulation
experiment, consisting of 15, 000 runs, which provides a more accurate estimate
of the expected NPV. Notice that the outcomes of this simulation experiment
can also be used to complete a risk analysis on each proposed solution as well
as to obtain other relevant statistics –e.g., NPV quartiles associated with each
investment plan, etc.

5 Computational Experiments

The algorithm was implemented as a Java application and all experiments
were performed on a standard personal computer equipped with Intel Core i7
CPU at 2.9 GHz with 8GB of RAM memory. As operating system we have
used Windows 8. In order to test it, we created benchmark indexes with a
set of 10 projects and the corresponding required inputs. In a preliminary
analysis, we identified a range of acceptable risk levels, which, as similarly
suggested for traditional portfolio optimization, we then divided into 1000
equidistant points as risk constraint. The so-created benchmarks differ in terms
of their interdependence (correlation) between projects and are deterministic.
In this regard, we distinguish among 6 different instances. Instance 1 assumes
0 correlation among each pair of projects. Instance 2 assumes that each pair
of projects is correlated with the coefficient of 0.9. This coefficient is 0.5 for
instance 3, -0.5 for instance 4, and -0.9 for instance 5. Finally, Instance 6
randomly generates the coefficients of correlation for each pair of projects.
To evaluate the effects of uncertainty on project portfolio selection, we make
several reasonable distributional assumptions about our stochastic variables
Cit and Rit.

It is assumed that the cash flow of project i at time t, Cit, follows a normal
distribution N(µit, σit), where µit = E[Cit] is the deterministic value for the
cash flow of project i at time t (given as an input), and σit = γ · |µit| · t.
In the previous expression, γ > 0 is an auxiliary parameter that is used to
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consider different variability levels in our experiments (intra-period layer of
uncertainty), while t accounts for the fact that uncertainty grows as we move
forward in the future (inter-period layer of uncertainty). In our experiments,
we assume three different levels of intra-period uncertainty: low (γ = 1.05),
medium (γ = 1.10), and high (γ = 1.15). For the purpose of our computa-
tional experiments we have used a total of five periods, i.e., t ∈ {1, 2, 3, 4, 5}.
Similarly, it is assumed that the discount rate of project i at time t, Rit, fol-
lows a normal distribution N(µ′it, σ

′
it), where µ′it = E[Rit] is the deterministic

value for the discount rate of project i at time t (given as an input), and
σ′it = γ · |µ′it| · t. As in the case of uncertain cash flows, the discount rate
features two uncertainty layers, the intra-period layer of uncertainty and the
inter-period one. It is worth noting that our methodology is robust to mod-
ification of the aforementioned distributional properties, either theoretical or
empirically based on real-life scenarios.

The algorithm is executed ten times with different seeds, storing only the
best solutions in each run. A maximum time of 150 seconds was allowed for
each execution. In order to gauge the effect of uncertainty on project portfolio
selection, we carried out two computational experiments. The first experiment
considers deterministic instances, while the second assumes stochastic cash
flows and discount rates.

6 Analysis of Results

In this section we present and discuss the results obtained in two computa-
tional experiments: Subsection 6.1 analyzes the results obtained for the de-
terministic version of the PPSP (i.e., assuming deterministic cash flows and
discount rates), while Subsection 6.2 discusses the stochastic PPSP and shows
that an optimal (or near-optimal) investment plan for the deterministic sce-
nario might be a suboptimal plan for the stochastic one.

6.1 Analyzing the Deterministic PPSP

Figure 2 presents these results by instance. This figure sheds light on the
relation between the maximum risk constraint and the associated expected
NPV for the six instances.

Notice that relaxing the risk constraint leads to a higher average NPV.
However, several departures from this general finding stand out. First, the
nature of the relation between the expected NPV is also driven by the coeffi-
cient of correlation between each pair of projects. Portfolios of projects that
are highly correlated (instances 2 and 3) typically generate a lower expected
NPV than portfolios of less correlated projects (Instances 1, 4, and 5). Fi-
nally, Instance 6 also features positively correlated projects, although based
on randomly drawn coefficients of correlation. Specifically, if the coefficient of
correlation is high and the maximum allowed risk is low, then the portfolio
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Fig. 2: Results for the Deterministic PPSP.

will be dominated by smaller projects that generate lower expected NPV. In-
tuitively, the higher the correlation among the projects the more limiting is
the maximum risk constraint. To meet the maximum risk constraint, larger
projects are crowded out –or cannibalized– by smaller projects. As the co-
efficient of correlation decreases, the expected NPV increases for the same
value of the maximum allowed risk (due to a lower cannibalism effect). As
anticipated, the NPV of the best-found portfolio increases with an increased
allowance of risk exposure for each of the instances. Considering instances 4
and 5 (with negative correlations), it becomes clear that the risk constraint
–which is always defined as a positive monetary value– does not affect the
solution, and that a near-optimal solution is found in most cases. Similarly, it
is intuitive that the higher the correlation between projects, the more limit-
ing the risk constraint acts. This becomes visible when considering instance 2,
which achieves a lower or equal NPV for all levels of maximum risk compared
to the remaining instances. The jumps in the graphs of instances 1, 3, and
6 are due to the limited number of potential projects, which causes projects
with higher benefits to be included only after a certain risk threshold.
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6.2 Analyzing the Stochastic PPSP

For instance 6 (random correlations), Table 1 presents the obtained results.
The first column shows the risk threshold considered (i.e., the maximum risk
allowed by the user). Column [DD] represents the NPV associated with the
best deterministic solution. Columns [Dy] (with y ∈ {L,M,H}) show the ex-
pected NPV obtained when the best deterministic solution is evaluated in the
stochastic PPSP with the corresponding level of uncertainty (L = low, M
= medium, and H = high). Similarly, columns [Sy] show the expected NPV
obtained for the stochastic PPSP using the solution provided by our simheuris-
tic approach. Table 1 indicates that, in general, the (expected) NPV increases
with the maximum risk allowed, regardless of the solution type (deterministic
or stochastic). However, it is worth noting that the NPV-curve becomes flat af-
ter the project portfolio reaches a certain risk treshold. For instance, when the
risk threshold is 37,000 units, taking an additional unit of risk is not followed
by a commensurate rise in the (expected) NPV. Furthermore, a deterministic
solution evaluated in the stochastic PPSP yields a lower expected NPV than
the corresponding stochastic solution obtained with our simheuristic aproach.
This finding suggests that using deterministic solutions in a stochastic envi-
ronment can lead to significant biases in project appraisal. Table 2 contains
the gaps (measured as percentage difference) between [DD] and [Dy], and be-
tween [DD] and [Sy]. The gaps are always positive, which indicates that a
higher degree of uncertainty erodes the expected NPV of a project and hence
drives wedge between a deterministic and a stochastic solution. It is also worth
noting than the gaps between [DD] and [Dy] are larger than the gaps between
[DD] and [Sy].

Figure 3 shows the box-plots of the aforementioned gaps between DD and
Dy or between DD and Sy (where y ∈ {L,M,H}). It is important to remark
that these gaps are always positive, meaning that the NPV in the deterministic
PPSP can be seen as an upper bound for the expected NPV in the stochastic
PPSP –i.e., ceteris paribus, the existence of uncertainty in the project selection
problem reduces the average quality of the NPV that can be attained. Indeed,
the NPV is inversely related to the degree of uncertainty. For a given expected
NPV, a higher degree of uncertainty translates into a larger standard deviation
of a cashflow, and consequently the maximum risk allowed goes up. However,
such as a reduction larger if the existence of uncertainty is ignored in the model.
Also, note that these gaps grow with the uncertainty level: eH box-plots are
above eM box-plots, which in turn are above eL box-plots, (where e ∈ {D,S}).
Finally, it can be noticed that the expected NPV associated with the use of the
best-deterministic solution in a stochastic environment acts as a lower-bound
for the optimal value in the stochastic environment, i.e.: our solutions for the
stochastic PPSP always outperform the expected NPV generated by using the
best-deterministic solution in a stochastic environment. This observation not
only adds credibility to the quality of our algorithm but also illustrates that
using the best deterministic solution in a stochastic environment might be a
bad decision since it usually provides sub-optimal values.
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Max. Risk Best Deterministic Solution Best Stochastic Solution
(in Det. Stoch. Low Stoch. Med. Stoch. High Stoch. Low Stoch. Med. Stoch. High

thousands) [DD] [DL] [DM] [DH] [SL] [SM] [SH]

2 1154.84 1103.00 1058.95 1043.74 1110.34 1093.22 1086.08
3 1420.82 1311.37 1306.22 1301.07 1332.20 1323.64 1319.05
4 1642.84 1535.16 1530.10 1525.05 1622.32 1604.95 1581.12
5 1836.75 1725.84 1720.63 1715.43 1816.08 1805.12 1766.02
6 1992.29 1872.40 1866.77 1861.16 1978.24 1958.11 1913.42
7 2115.22 1988.82 1982.87 1976.92 2102.21 2069.82 1998.97
8 2252.14 2127.32 2121.44 2115.57 2250.85 2201.07 2129.89
9 2386.90 2259.19 2253.18 2247.17 2320.56 2318.39 2261.88

10 2512.24 2383.79 2377.74 2371.71 2436.29 2428.58 2377.44
11 2632.33 2505.42 2499.46 2493.50 2545.21 2544.76 2499.42
12 2744.81 2616.56 2610.54 2604.52 2671.54 2651.98 2620.32
13 2843.14 2714.25 2708.19 2702.14 2784.26 2754.22 2740.02
14 2935.72 2805.69 2799.57 2793.47 2891.70 2853.29 2847.41
15 3025.78 2895.41 2889.28 2883.16 2984.07 2941.11 2936.00
16 3111.63 2980.59 2974.42 2968.27 2991.27 2986.12 2975.07
17 3194.71 3064.06 3057.91 3051.77 3122.54 3114.57 3105.33
18 3275.17 3144.15 3137.98 3131.82 3198.29 3177.38 3158.96
19 3351.05 3218.31 3212.06 3205.81 3291.92 3280.03 3271.88
20 3426.18 3294.59 3288.39 3282.20 3375.23 3364.32 3345.43
21 3497.78 3363.88 3357.58 3351.29 3413.32 3404.49 3390.69
22 3554.55 3422.14 3415.91 3409.68 3430.27 3418.54 3413.78
23 3604.21 3472.34 3466.13 3459.92 3546.32 3506.41 3494.02
24 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
25 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
26 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
27 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
28 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
29 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
30 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
31 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
32 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
33 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
34 3666.31 3535.52 3529.36 3523.20 3624.75 3618.37 3606.41
35 3666.31 3535.52 3529.36 3523.20 3624.75 3618.75 3606.41
36 4454.73 4349.38 4344.43 4339.50 4412.34 4407.93 4399.93
37 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
38 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
39 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
40 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
41 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
42 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
43 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
44 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
45 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
46 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
47 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
48 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
49 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07
50 4503.66 4397.67 4392.70 4387.73 4455.08 4452.91 4450.07

Table 1: This table summarizes the net present value (NPV) of deterministic (Dy) and stochastic (Sy) solutions
in a deterministic (eD) or stochastic (eL, eM, eH) environment (Instance 6).

Fig. 3: Boxplots of Gaps w.r.t. the Best Solution for the Deterministic PPSP (DD).
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Max. Risk Deterministic Gaps [%]
(in thousands) [DD] [DD-DL] [DD-DM] [DD-DH] [DD-SL] [DD-SM] [DD-SH]

2 1154.84 4.70% 9.06% 10.64% 4.01% 5.64% 6.33%
3 1420.82 8.35% 8.77% 9.20% 6.65% 7.34% 7.72%
4 1642.84 7.01% 7.37% 7.72% 1.26% 2.36% 3.90%
5 1836.75 6.43% 6.75% 7.07% 1.14% 1.75% 4.01%
6 1992.29 6.40% 6.72% 7.05% 0.71% 1.75% 4.12%
7 2115.22 6.36% 6.67% 7.00% 0.62% 2.19% 5.82%
8 2252.14 5.87% 6.16% 6.46% 0.06% 2.32% 5.74%
9 2386.90 5.65% 5.93% 6.22% 2.86% 2.96% 5.53%

10 2512.24 5.39% 5.66% 5.93% 3.12% 3.44% 5.67%
11 2632.33 5.07% 5.32% 5.57% 3.42% 3.44% 5.32%
12 2744.81 4.90% 5.14% 5.39% 2.74% 3.50% 4.75%
13 2843.14 4.75% 4.98% 5.22% 2.11% 3.23% 3.76%
14 2935.72 4.63% 4.86% 5.09% 1.52% 2.89% 3.10%
15 3025.78 4.50% 4.72% 4.95% 1.40% 2.88% 3.06%
16 3111.63 4.40% 4.61% 4.83% 4.02% 4.20% 4.59%
17 3194.71 4.26% 4.47% 4.68% 2.31% 2.57% 2.88%
18 3275.17 4.17% 4.37% 4.58% 2.40% 3.08% 3.68%
19 3351.05 4.12% 4.33% 4.53% 1.80% 2.17% 2.42%
20 3426.18 3.99% 4.19% 4.39% 1.51% 1.84% 2.41%
21 3497.78 3.98% 4.18% 4.37% 2.47% 2.74% 3.16%
22 3554.55 3.87% 4.06% 4.25% 3.62% 3.98% 4.12%
23 3604.21 3.80% 3.98% 4.17% 1.63% 2.79% 3.15%
24 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
25 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
26 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
27 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
28 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
29 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
30 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
31 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
32 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
33 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
34 3666.31 3.70% 3.88% 4.06% 1.15% 1.32% 1.66%
35 3666.31 3.70% 3.88% 4.06% 1.15% 1.31% 1.66%
36 4454.73 2.42% 2.54% 2.66% 0.96% 1.06% 1.25%
37 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
38 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
39 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
40 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
41 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
42 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
43 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
44 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
45 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
46 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
47 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
48 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
49 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%
50 4503.66 2.41% 2.53% 2.64% 1.09% 1.14% 1.20%

Average: 3.94% 4.22% 4.44% 1.66% 2.08% 2.72%

Table 2: The tables summarizes the gap between the DD solution and each of the other solutions (Instance 6).

Finally, Figure 4 shows that: (i) as the maximum risk allowed increases,
the problem becomes less constrained and, therefore, the stochastic solutions
get closer to the deterministic ones; and (ii) for each risk level, gap obtained
from our stochastic solutions [DD-Sy] are lower than those obtained from our
deterministic solutions in a stochastic environment [DD-Dy].

6.3 Exploring a Multi-objective Scenario

In multi-objective optimization two or more conflicting goals are considered.
This subsection explores the optimization of a bi-objective PPSP model, where
the NPV associated with an investment plan is maximized (first goal) while,
at the same time, its risk is minimized (second goal). Such a setting resem-
bles Rooderkerk and van Heerde (2016), who have sought to balance risk and
return, albeit in a specific retail-assortment related optimization problem. Im-
portantly, a two-objective optimization problem can now be tailored to capture
a varying degree of risk aversion of the decision maker.
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Fig. 4: Gaps [DD-ey] vs. MaxRisk Allowed (where ‘ey’ represents different solutions).

In order to address this multi-objective scenario, we make use of the Multi-
Directional Local Search (MDLS) method, which was introduced by Tricoire
(2012). This method relies on the concept of Pareto dominance. A neighbor
solution x’ of x is efficient if x’ is better than x for at least one objective.
Hence, to find efficient neighbor solutions of x, it is sufficient with searching
one direction at a time using single-objective local search methods.

The MDLS requires an initial set F of non-dominated solutions to start
an iterative procedure. As initial set, we have used the set F containing
the top five stochastic non-dominated solutions generated by our VNS-based
Simheuristic. At each iteration, a solution x from F is randomly selected and
then, for each objective, a corresponding local search method is employed to
generate a neighbor solution x’.

The single-objective local searches employed in this stage are the ones al-
ready described in the previous section. First, we use biased randomization to
exchange projects from the current portfolio by projects outside the portfolio.
This replacement is performed taking into account the risk-affinity between
projects. Then, the newly generated solution is sent to the commercial Local-
Solver software, which determines the appropriate weights of the investment.
We execute LocalSolver twice, once for each goal. Thus, during the first itera-
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Fig. 5: Pareto frontier for instance 6.

tion the LocalSolver tries to maximize the NPV, while during the second one
it is focused on minimizing the investment risk. Finally, at the end of each
local search, a simulation process is carried out in order to estimate the NPV
under uncertainty.

After that, the non-dominated set F is updated by merging solutions in F
with the new neighbor solutions that have been provided by the local searches.
To merge solutions the dominance rule is used, i.e.: all dominated solutions
are deleted from F. The whole procedure is repeated until a maximum-allowed
computing time is reached. At this point, the MDLS returns the set F of
mutually non-dominated solutions.

Figure 5 shows a Pareto chart with the results obtained after executing the
MDLS method for instance 6. Here, a maximum risk of 21,000 was allowed, and
a medium (γ = 1.10) level of uncertainty was considered. This chart shows the
Pareto frontier of non-dominated solutions for this particular scenario. Notice
that there is a strong relationship between the two objective functions. As the
NPV increases –thus obtaining a higher return of the investment plan– the
risk also increases.

7 Conclusions and Future Work

As far as we know, this is the first work addressing the relevant problem of
maximizing net present value in project portfolio selection problem (PPSP)
under uncertainty and rich conditions. In the stochastic version of the PPSP
discussed here, both the periodical cash flows as well as the discount rates
are modeled as random variables, which represents a step forward with re-
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gards traditional approaches in which they are assumed to be deterministic
and known in advance. Since real-life financial activities underlie plenty of
uncertainty, adding randomness to these elements contributes to diminish the
gap between theory and practice.

After completing a literature review on related work and providing a for-
mal model for the stochastic PPSP, we propose a simheuristic approach to
obtain efficient solutions to it. Our algorithm integrates Monte Carlo simula-
tion inside a variable neighborhood search framework. The algorithm also uses
other components inspired in simulated annealing and biased-randomization
techniques. A series of computational experiments allow us to validate the
solving methodology. Notice that, despite we have assumed specific probabil-
ity distribution and covariance matrices during the numerical experiments,
our methodology is general and it could be used with any other probability
distribution and covariances (in practice, data should be collected for each
case-study and then modeled using the right probability distribution, correla-
tion values among projects, etc.).

Our research findings are as follows. First, we find that a relation between
the expected NPV and risk is not necessarily linear. Indeed, the presence of
cardinality and quantity constraints generate non-linearities in the risk-return
relation. Second, project interdependencies –as measured by the correlation
between cash-flows from two projects– can be regarded as a limit to the vol-
ume of projects that can be included in a portfolio. Third, a near-optimal
solution to the deterministic PPSP is generally sub-optimal in a stochastic en-
vironment. Fourth, a near-optimal solution to the stochastic PPSP gives rise
to a higher (expected) NPV than a near-optimal solution to the deterministic
PPSP evaluated in a stochastic environment.

As research lines for future work, it would be worthy to explore the follow-
ing topics, which represent limitations of our current work: (i) interdependen-
cies can be defined as effects that dynamically influence risk and/or benefit
figures of the project portfolio based on the constituent projects; (ii) although
this paper has already explored a bi-objective extension of our single-objective
approach, developing a complete multi-objective model and solving method-
ology can be of great interest for both researchers and practitioners; and (iii)
other metaheuristic frameworks (e.g.: tabu search, simulated annealing, ge-
netic algorithms, etc.) could be used as a base for our simheuristic approach,
thus comparing the performance of different approaches.
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Höller, H., Melián, B., and Voß, S. (2008). Applying the pilot method to
improve VNS and GRASP metaheuristics for the design of SDH/WDM
networks. European Journal of Operational Research, 191(3):691–704.

Huang, X. (2007). Optimal project selection with random fuzzy parameters.
International Journal of Production Economics, 106(2):513–522.

Juan, A. A., Faulin, J., Ferrer, A., Lourenço, H. R., and Barrios, B. (2013).
Mirha: multi-start biased randomization of heuristics with adaptive local
search for solving non-smooth routing problems. Top, 21(1):109–132.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., and Figueira, G. (2015a).
A review of simheuristics: Extending metaheuristics to deal with stochas-
tic combinatorial optimization problems. Operations Research Perspectives,
2:62–72.

Juan, A. A., Pascual, I., Guimarans, D., and Barrios, B. (2015b). Combin-
ing biased randomization with iterated local search for solving the multi-
depot vehicle routing problem. International Transactions in Operational
Research, 22(4):647–667.

Kiesling, E., Ekelhart, A., Grill, B., Strauss, C., and Stummer, C. (2016). Se-
lecting security control portfolios: a multi-objective simulation-optimization
approach. EURO Journal on Decision Processes, 4(1-2):85–117.
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