
> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

1

Abstract— Nowadays, there are several services and

applications that allow users to locate and move to different
tourist areas using a mobile device. These systems can be used
either by internet or downloading an application in concrete
places like a visitors centre. Although such applications are able
to facilitate the location and the search for points of interest, in
most cases, these services and applications do not meet the needs
of each user. Users can lose the internet connection or the results
offered may not fit their schedules or their own personal tastes.

This paper aims to provide a solution by studying the main
projects, services and applications, their routing algorithms and
their treatment of the real geographical data in Android mobile
devices, focusing on the data acquisition and treatment to
improve the routing searches in off-line environments.

Index Terms— Android, OpenStreetMap, OSMAnd, routing,
optimization

I. INTRODUCTION

S defined in reference [1], the term Geographical
Information Systems (GIS) involves a wide range of
hardware, software and geographic data organized for

managing and analyzing spatial information referenced with
the aim to solve complex problems of planning and
management, but also used for individual purposes.

With the advent of GPS software and the fast expansion and
great acceptance for smartphones in the market such as
IPhones, Blackberries or HTCs, and other mobile devices such
as tablets and PDAs, has increased the number of GIS-based
applications that deal with geographic information bringing it
to the general public and promoting the creation of
applications with functions for leisure and entertainment.
These new applications provide information and services such
as points of interest (POI’s), routes of all types, navigation and
augmented reality [2]. Currently, only in the Android Market it
is possibly to find over 400 applications related to location-
based systems (LBS) and GPS [3]. Over half of these
applications are used in particular title, focusing mainly on the

Manuscript received January 19, 2012. This paper is the Master Final

Work in the Official Master in Free Software of the Universitat Oberta de
Catalunya and it was supported in part by project AVANZA2 (TSI-020110-
2009-442).

1 C. Cuadrat Seix is a postgraduate student in the Universitat Oberta de
Catalunya (e-mail: ccuadrat@uoc.edu).

2 A. Pérez Navarro is a professor and the director of this work at the
Universitat Oberta de Catalunya, Department of IT, Multimedia and
Telecommunications, Barcelona, Spain (e-mail: aperezn@uoc.edu).

creation of routes especially for the preparation of tourist
routes or location of POI’s.

Tourism is an area that has experienced tremendous growth
in recent years thanks to the emergence of geographic
information accessible to everybody and free of charge [4].
Web applications like GoogleMaps [5], OpenStreetMaps [6]
or Wikiloc [7] have their own versions to be used in
smartphones and other mobile devices. Moreover, there is a
wide range of applications that use these information systems
providing specific services: audio tourist guides, default tourist
routes, etc.

However, most mobile devices have many limitations to
effectively manage geographic information, in most cases
using a continuous Internet connection to run these
applications on the server. The main problem lies in 3G or
HSDPA (3.5G) coverage which only covers the most densely
populated areas as shown in the image:

Fig.1. Areas with 3G coverage in Spain [8].

In addition, this service is expensive and often has limited

bandwidth consumption per month.
Making the execution of these applications on the server is

not a viable option because of the large number of areas where
there is not coverage that most of the times are areas important
for tourist purposes. Running GIS applications on mobile
devices independent of the server is necessary. However, as
pointed in [9] limitations in display performance and storage
capabilities of these devices hinder this option: small screens,
low working memory, limited data entry, etc. Therefore
finding a solution that allows mobile users to have only the
amount of information they really need is necessary. That

Route optimization and customization using real
geographical data in Android mobile devices

Cira Cuadrat Seix1 and Antoni Pérez Navarro2

A

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

2

means allowing the users to filter the data according to their
needs and their preferences. Thus, the known client-server
architecture would be valid, even though, would only be
required for short time periods because its goal is customizing
the GIS for the user: the information sent would be different
according to the interests of the user (architecture, nature) or
according to other factors such as the number or types of users,
or if the route is done in a vehicle (car, bicycle, walking). To
achieve this goal will require considering several factors: to
improve the hardware of mobile devices with more working
memory and computing power, to have more ability to get
input data, to better display and moreover to improve the
running data, to create standardized ontologies that help to
optimize the user search, and furthermore, to create and refine
algorithms that allow us to consider all this information and
create routes for each user’s needs or tastes.

This paper focuses on the study and the improving of
routing algorithms to facilitate customization and meet the
needs of users considering factors such as connectivity and the
data processing in the routing algorithms. To carry this out, it
is necessary to know the efforts that have been done in this
subject by the mobile device markets.

The paper is organized as follows: a review of the main
devices and the technologies involved is provided in the
section 2. In section 3 are described Android, the OS selected
to develop the study, and its main APIs for routing. In section
4, there is a summary about the OpenStreetMap project and
the presentation of some remarkable applications based on it
for mobile devices. Section 5 provides a review of graph
theory issues which are used in navigation and routing. In
section 6, the four Android projects selected are reviewed to
know how they solve the main routing problems. In the
following sections, 7 and 8, the improvements from the ideas
on the studied projects, are presented, implemented and tested.
Finally, the paper closes with the key outcomes from the paper
and a brief discussion of the future challenges and direction of
this research.

II. MAIN DEVICES AND TECHNOLOGIES INVOLVED

A mobile device is a small, hand-held computing device,
typically having a display screen with touch input and/or a
miniature keyboard and less than 2 pounds (0.91 kg). Early
pocket sized ones were joined in the late 2000s by larger but
otherwise similar tablet computers. As in a personal digital
assistant (PDA), the input and output are often combined into
a touch-screen interface. Nowadays, smartphones and tablets
are popular amongst those who wish to use some of the powers
of a conventional computer in environments where carrying
one would not be practical. Mobile devices such as the iPhone,
iPad, Android and others are revolutionizing the way
information can be disseminated as explained in [10].

The most common mobile operating systems (OS) used by
modern smartphones include Google's Android, Apple's iOS,
Microsoft's Windows Phone, Nokia's Symbian, RIM's
BlackBerry OS, and embedded Linux distributions such as
Maemo and MeeGo. Such operating systems can be installed
on many different phone models, and typically each device can
receive multiple OS software updates over its lifetime. It is

important to know which OS gives more features and facilities
to develop this study. In order to choose one, the most
important factors to be considered are explained below.

The distinction between smartphones and feature phones
can be vague and there is no official definition for what
constitutes the difference between them. One of the most
significant differences is that the advanced application
programming interfaces (APIs) on smartphones for running
third-party applications can allow those applications to have
better integration with the phone's OS and hardware than is
typical with feature phones. In comparison, feature phones
more commonly run on proprietary firmware, with third-party
software support through platforms such as Java ME or
BREW. An additional complication in distinguishing between
smartphones and feature phones is that over time the
capabilities of new models of feature phones can increase to
exceed those of phones that had been promoted as
smartphones in the past.

So, it’s obvious that the kernel of a SO is the software
responsible for providing secure access to the hardware
device, responsible for managing resources, and that's why it's
important to know which kernel uses each the device. Both
Android and Palm are based on Linux. Blackberry is based on
a proprietary kernel. Iphone is based on OS X. S60 is based on
Symbian and Windows Mobile is based in Windows CE. Both
of them are all proprietary software. The main difference
between a private or free distribution kernel, is that the kernel
which is based in open source software will have a large
community of developers, thanks to which it is possible to
quickly find errors, make improvements and resolve problems
facilitating the rapid adaptability to the needs of end users.

Another important factor to consider is the adaptability of
the platform to different terminals. In this item, Android has
great adaptability since it is being increasingly used in more
mobile devices and not just smartphones.

Finally, the last important factor to consider is connectivity.
It’s quite important having Wi-Fi Internet access and 3G
connectivity to improve data acquisition. All current
smartphones offer this possibility with the only limitation of
the network are connected and the distributor of phone
services.

Android is the platform chosen to carry out this project, for
the significantly increased demand in the market of Android
devices which is the 43% according to [11]-[12], (figure 2),
the availability of the applications, the fact that it is an OS
non-dependent on a specific hardware, and in addition, this
platform has an enormous community that offers many tools
for the development.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

3

 Fig.2. Share of worldwide 2011 smartphones sales to end users by operating

system, according to [11]-[12]

III. ANDROID AND ITS MAPPING API’S

Android is a Linux based operating system for mobile
devices such as smartphones and tablet computers. It is
developed by the Open Handset Alliance led by Google.
Nowadays, Android is spreading their market for other devices
such as MP3 players, netbooks, computers, TV’s and e-book
readers.

Programming on Android is based on APIs. An API
(Application Programming Interface) consists of a set of class
libraries that can be used quickly and easily. These elements
and features for applications can be used and developed
without having to start from scratch when starting a new
project. There are 2 great API’s for programming maps on
Android: Android Maps API [13] and OpenStreetMap [14]. In
order to carry out this study, the features and characteristics of
both API’s must be studied to choose which one gives more
facilities and better characteristics. Therefore, a little
description of both API’s is presented here.

Android Maps API is a web mapping service application
and technology provided by Google, free (for non-commercial
use), that powers many map-based services, including the
Google Maps website [5], Google Ride Finder [14], Google
Transit [15], and maps embedded on third-party websites via
the Google Maps API. It offers street maps, a route planner for
traveling by foot, car, bike or public transport and an urban
business locator for numerous countries around the world.
Google Maps satellite images are not updated in real time;
they are several months or years old.

In 2006, Google introduced a Java application called
Google Maps for Mobile, intended to run on any Java-based
phone or mobile device. Many of the web-based site's features
are provided in the application. One of its important features is
the introduction of a GPS-like location service that does not
require a GPS receiver. The "my location" feature works by
using the GPS location of the mobile device, if it is available.
This information is supplemented by the software determining
the nearest wireless networks and cell sites. The software then

looks up the location of the cell site using a database of known
wireless networks and cell sites. The Cell-site location method
is used by triangulating the different signal strengths from
different cell transmitters and then using their location
property (retrieved from the online cell site database) to aid
“My Location” in determining the user's current location.
Wireless network location method is calculated by discovering
the nearby Wi-Fi hotspots and using their location property
(retrieved from the online Wi-Fi database, in the same way as
the cell site database) to further discover the user's location.
The order in which these take precedence is:

-- GPS-based services.
-- WLAN-, Wi-Fi-based services.
-- Cell transmitter-based services.
The software plots in blue the streets that are available with

a yellow icon and a green circle around the estimated range of
the cell site based on the transmitter's rated power (among
other variables). The estimate is refined using the strength of
the cell phone signal to estimate how close to the cell site the
mobile device is.

Google Maps Navigation for Android 2.0 is free. The main
features provided in the application are:

-- Search in plain English.
-- Search by voice.
-- Traffic view.
-- Search along route.
-- Satellite view.
-- Street View.
-- Car dock mode.
 Although, GoogleMaps API is an extension of the

Android SDK that provides easy access for Android
applications of the Google services geographic data, it has two
important problems. First, for proper operation is necessary to
use a continuous connection to the Internet as it’s stated in
[16]. Second, the terms of the license: when using Google
Geocoding API, the application of map viewing is subject to a
limit of 2500 queries geocode requests per day as explained in
[17]. This limit is fixed in order to prevent abuse of the
service, after that the API stops working for 24 hours, making
it impossible to view the maps.

However, the powerful Google Maps infrastructure has a
major limitation: users cannot interact with the geographic
data. Instead, they are shown pictures of the data, and any
content they add is a separate, and weakly linked, layer [18].

OpenStreetMap (OSM) is a collaborative project to create a
free editable map of the world. Two major driving forces
behind the establishment and growth of OSM have been
restrictions on use or availability of map information across
much of the world and the advent of inexpensive portable GPS
devices.

The maps are created using data from portable GPS devices,
aerial photography, other free sources or simply from local
knowledge. Both rendered images and the vector dataset are
available for download under a Creative Commons
Attribution-ShareAlike 2.0 license. All the contributors of the
project must register on the project and must commit to
provide data in a Creative Commons BY-SA 2.0 license or
choose a compatible license as explained in [19].

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

4

The OpenStreetMap approach to mapping was inspired by
sites such as Wikipedia; the map display features a prominent
'Edit' tab and a full revision history is maintained. Registered
users can upload GPS track logs and edit the vector data using
free GIS editing tools like JOSM (Desktop Java editor).
Various mobile applications also allow contribution of GPX
tracks to the OSM project.

Due to its simplicity for creating maps and generating routes
even without network connection, the free access to the source
code and the real geographic data and finally, its use in
multiple mobile devices applications, this work will be
implemented in the OSM environment.

IV. OSM PROJECT

As mentioned in [20], “OSM follows the peer production
model that created Wikipedia; its aim is to create a set of map
data that’s free to use, editable, and licensed under new
copyright schemes”. This project was born at the University
College of London in July 2004. The main purpose is, as
stated in [19]: “The project was started because most maps you
think of as free actually have legal or technical restrictions on
their use, holding back people from using them in creative,
productive, or unexpected ways”.

A considerable number of contributors edit the world map
collaboratively using the OSM technical infrastructure, and a
core group, estimated at approximately 50 volunteers, dedicate
their time to create and improve OSM’s infrastructure,
including maintaining the server, writing the core software that
handles the transactions with the server, and creating
cartographical outputs. There’s also a growing community of
software developers who develop software tools to make OSM
data available for further use across different application
domains, software platforms, and hardware devices. However,
the main project is the OSM Web site, which can be seen in
figure 3 below.

Fig.3. Capture of the OSM Web site with the basic information of the town of

Lleida.

Furthermore, new projects have been developed in OSM
with special functionalities such as: GreenGPS [21], a sensing
fuel-efficient maps application; the STRIVE OSM Project
[22], an application to deliver location-based environmental
information in Ireland; and UN Spatial Data Infrastructure for

Transportation [23], a collaborative mapping for emergency
routing for disaster logistics used in Haiti earthquake and UN
portal for Africa.

A. Editing Tools

User-contributed geographical information is a core part of
OSM, and the OSM developer community has made a great
effort to implement tools to facilitate user contributions to the
database.

For most casual contributors, the OSM Web site offers a
lightweight online Flash-based editor, Potlatch 2 [24], which
lets users add, update, or delete geographical features through
a relatively easy-to-use interface. As can be seen in figure 4,
user can choose between lists of tags, ordered by type, select
one, then select its position on the map and edit the
appropriate information.

Fig.4. Capture of the web interface of Portlach 2 Edition Tool.

So the interface is kept deliberately simple, with more

advanced functionality provided through keyboard shortcuts;
Potlatch gives extensive guidance to users by providing
predefined tagging schemas for frequently occurring features
(such as motorways or primary roads). Potlatch also lets users
upload and integrate GPX tracks recorded from handheld GPS
units.

More experienced OSM contributors also use the JOSM, an
editing suite with an interface similar to traditional GIS
packages. The application lets users import, edit, and tag OSM
data offline and allows uploads of OSM updates through the
OSM API.

Moreover, apart from individual user contributions from
GPS tracks and the digitizing of aerial imagery, OSM has also
taken advantage of the availability of free geographical
information in certain parts of the world. For example, the
most important cases explained in [20] which are the
commercial navigation information provider AND
(Autonomous Navigation Data) and the Isle of Man’s
Department for Local Government and the Environment that
donated the entire street map information of the Netherlands
and the Isle of Main to the project.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

5

B. Technical Infrastructure

The heart of OSM’s technical infrastructure lies in the central
database holding the live data, which is implemented in
MySQL. The database schema is designed to support wiki
environments, such as versioning and rollbacks, and keeps
copies of modified and deleted features indefinitely.

All geographical entities are recorded as points (nodes),
which contain the latitude and longitude coordinates along
with user name and timestamp information. Linear and area
features are defined by reference to a list of ordered nodes,
called ways. Area features are not explicitly defined in the
database schema, rather, they’re defined implicitly by the
condition of a way that’s closed (the first node of a way is the
same as the last one) and explicit tagging conventions (using
the tag area=yes).

As explained in [25], “OpenStreetMap's internal files are
lists of nodes, ways and relations, which can be tagged with
information about the respective map element”. Any user is
free to introduce its own tags, but it is recommended to use
existing tags and only have new ones if they are not already
covered by the existing ones. The tags of the map elements are
represented as (key, value) pairs. An element of the map may
have multiple tags as can be seen, for example, in line 6 of
figure 5, where the key (k) is “addr:city” and the value (v) is
“Bremen”:

Fig.5. Example of an OSM node with its tags in an XML representation as

seen in [25]

 On the other hand, as we can see in the example, the OSM
uses a topologic schema of data. The basic elements in the
cartography are:

-- Nodes: points that include the geographic location given.
-- Routes (Ways): ordered list of nodes representing a

polyline or polygon (when it begins and ends at the same
point).

-- Relations (Relations): groups of nodes, paths and other
relationships that can be assigned to the particular properties.

-- Labels (tags) can be assigned to nodes, paths or
relationships and consist of a key and value. For example,
highway = trunk.

C. Mapping Outputs

The main cartographic output from the OSM information is
presented on the OSM Web site as a Google Maps-like
interface, named “Slippy Map”, which uses the open source
AJAX library OpenLayers to automatically update the map

display and allow interaction with users. As users drag the
map, the visible extent is updated and new map tiles are
requested in the background without reloading the entire
HTML page.

A search function, implemented as an external Web service,
lets users to quickly find cities, villages, or other POI’s in the
database. There is also added an export tab, that lets users to
quickly generate map images, PDF files, and raw data
downloads of custom bounding boxes. The default set of tiles
on the main OSM Web site is rendered using Mapnik, an open
source library for generating high-quality map images. It uses
a weekly database dump as the source for the rendering of map
tiles, given that live rendering of tiles on the clients request
would be too computationally expensive to be practical; map
tiles are rendered for all zoom levels and saved on the server
so that they can be served rapidly as static images.

Thanks to the open source nature of all the tools needed for
map rendering, several OSM contributors have developed
custom map tile sets that cover specific needs of use, for
example, a tile set that highlights cycle-path networks and
other relevant information to cyclists.

D. OSM Routing

OSM data includes information for routing by many modes
including car, foot, bicycle and horse. There are many offline,
embedded and web-based routing services using OSM data.
One of the most remarkable is OpenRouteService (ORS) [26].
This project has been the base for most projects in routing in
OMS. ORS is a route service operating on OSM data that was
launched in April 2008. This service available on web,
implement open standards of the Open Geospatial Consortium
(OGC), mainly OpenGis Location Services 1.1. ORS was the
first national route planner for pedestrian or bicycle routes
even before the companies like Google.

OSR’s routing algorithms are based in the implementation of
the combination of A* and Dijkstra’s algorithms. However, its
main purpose is giving routing services for travelling and
navigation and other information such as POI’s, is not
considered. The data processing is done in the web server
using the database information. In figure 6 [26], the main
components and structure of the ORS are shown, divided by
typology: the viewer tools (OpenLayers), the services involved
in all the procedure (OpenLS and the Geoserver) and finally,
the renderer (Databases and OSM data).

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

6

Fig.6. Schema of the components in ORS as seen in [26].

OSR presents some problems, which also affect many OSM

routing projects, in order to offer a reliable and successful
routing service. The core of each routing application is the
routing graph. The routing graph represents the street network
as a model of nodes and edges. It is important that the graph is
built from a topologically correct dataset: junctions are
represented as nodes and streets are represented as edges
between them. Junctions are only recognized as such, if the
crossing streets have a common node at their intersection.
During the collaborative work, as explained in [27] the
intersections and junctions were not well defined, so the
existing topology of OSM data is examined regarding the
occurrence of street intersections with common nodes,
junctions, and at those common nodes, streets are divided into
individual edges or ways. The number of edges in the routing
graph is usually higher than the number of streets in the
original dataset. In figure 7 an example of this situation is
shown: OSM data on the left shows 2 streets divided into 9
different nodes; and the ORS data, on the right shows only 4
nodes to define the same 2 streets.

Fig.7. Example of building the routing graph from OSM data taken from
[27]: on the left there is the original OSM data, on the right the modified

OSM data.

Moreover, another problem is the inconsistency in the OSM
data. Unfortunately, in many regions the data are almost
nonexistent or not well defined, because of the use of
abbreviations or different spelling for the same street or POI.
For this reason, the results are not detailed enough and are not
fully reliable, given that often lack basic information such as

the number of streets and the position of the numbers.
However, the increasing amount of the volunteers and
contributors in the OSM project, are improving the data
quality and moreover, increasing the amount of information in
most areas.

E. OSM Projects for Mobile Devices

Currently there are multiple projects that use OSM
developed on Android and also provide searches that can be
performed without Internet connectivity. Some of the most
popular are: Navit [28], GpsMid [29], OSMAnd [30] and
VGPS [31], as seen in [19].

Navit is a multiplatform project that mainly focuses on
navigation functions performed by vehicle. Navit is one of the
most successful applications because it offers the functions of
a GPS even having no connectivity and it is also translated to
49 languages, including voice directions.

GpsMid project is also multiplatform, including Android,
that offers navigation and also the option to view and search
for POI's. It does not only allow the navigation but it also
offers the option to edit maps and customize them, and thus
actively collaborate with OSM. It is licensed under GPLv2.

OSMAnd is a fully open OSM-based navigation application
for Android. Its main features are: display vector OSM maps
and tile maps (using Mapnik), supports layers for several types
of POI’s and let the addition of them into OSM databases,
gives navigation with or without connection, voice navigation
and uses ORS to perform the online routing, and YOURS or
CloudMade for offline routing. It also allows edition and
customization of the maps. Moreover, not only it serves
navigation and routing by vehicle, also for pedrestrians.

Finally, VGPS is also a multi-platform project that allows
addition of GPS off-line navigation and also allows
geocatching but only for personal use. However, the routing is
focused in travelling by car or any other motor vehicle.

Studying the different technologies used in these projects,
the work and the treatment of data with different search
algorithms (mainly A* and Dijsktra algorithms) and finally, the
way the impedances are considered to favor the search for
different user preferences, is the key to improve the search
algorithms involved in the routing to get better and customized
routes.

V. GRAPH THEORY ISSUES

The routing algorithms on OSM are mainly based on search
algorithms in graphs. A graph is an abstract representation of a
set of objects where some pairs of the objects are connected by
links. The interconnected objects are represented by
mathematical abstractions called vertices, and the links that
connect some pairs of vertices are called edges. Typically, a
graph is depicted in diagrammatic form as a set of dots for the
vertices, joined by lines or curves for the edges. An example of
a graph can be seen in figure 8, with 6 vertices and 7 edges.

Graphs are one of the objects of study in discrete
mathematics.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

7

Fig.8. Example of a scheme of a graph in [32]

The typical structure in which the information is stored in a

graph depends on the graph itself and the algorithm used to
manipulate it. Some structures are simple and use lists and
arrays or matrix, although, as pointed in [33] there is often a
combination of these structures.

The two algorithms used in most applications based on
OSM routing algorithm is A* and Dijkstra's algorithms,
although the application Navit, also used Dijkstra's algorithm
with Fibonacci as seen in [19].

A* is an algorithm widely used in path finding and graph
traversal, the process of plotting an efficiently traversable path
between points, called nodes (denoted as n). The main
problem with some search algorithms in graphs, such as the
greedy algorithm, which is guided exclusively by the heuristic
function, is that may not indicate the path of lowest cost, or the
actual cost of travel to one node to another (such as climbing
algorithms) and can be given if necessary to make a move to
achieve greater cost solution. Therefore it is quite intuitive that
a good algorithm research should take into account two
factors, the heuristic value of the nodes and the actual cost of
the tour.

To avoid that problem, A* uses a best-first search and finds
a least-cost path from a given initial node to one goal node
(out of one or more possible goals).

It uses a distance-plus-cost heuristic function (usually
denoted f(n)) to determine the order in which the search visits
nodes in the tree. The distance-plus-cost heuristic is a sum of
two functions:

-- the path-cost function, which is the cost from the starting
node to the current node (usually denoted g(n))

-- and an admissible "heuristic estimate" of the distance to
the goal (usually denoted h(n)).

The h’(n) part of the f(n) function must be an admissible
heuristic; that is, it must not overestimate the distance to the
goal. Thus, for an application like routing, h(n) might
represent the straight-line distance to the goal, since that is
physically the smallest possible distance between any two
points or nodes.

In addition, the A* algorithm maintains two auxiliary data
structures that can be called open, implemented as a priority
queue (ordered by the value f (n) of each node), and closed,
which keeps information nodes already visited. At each step of
the algorithm, the node is expanded first to open, and if that is
not a goal node, calculate f (n) of all of its children and insert
them to open and mark the evaluated node to closed.

The search algorithm is a combination of the breadth-first
search (BFS) and the depth-first search (DFS): while h’(n)
tends to first in depth, g (n) tends to first in width. This way,
the way of research changes whenever nodes are most

promising. An example of the A* search algorithm is shown in
figure 9 below, where the green square marks the starting
point, the red squares show the path followed, the grey ones
mark the obstacle, and finally, the blue square denotes the
destination.

Fig.9. Schema of a search using A* algorithm as shown in [32]

If the heuristic h satisfies the additional condition

h(x)<=d(x,y)+h(y) for every edge x, y of the graph (where d
denotes the length of that edge), then h is called monotone, or
consistent. In such a case, A* can be implemented more
efficiently because no node needs to be processed more than
once, and A* is equivalent to running Dijkstra's algorithm with
the reduced cost d'(x,y): = d(x,y) − h(x) + h(y).

The space required for A* algorithm to be executed is the
biggest problem. As is well possible to store all nodes in each
state, the amount of memory required is exponential with
respect to the size of the problem. To solve this problem
several variations of this algorithm have been proposed and its
performance combined with the Dijkstra’s algorithm.

Dijkstra's algorithm, as defined in [33], also called the
shortest path algorithm, is an algorithm to determine the
shortest path given a source vertex to other vertices in a graph
with weights on each edge. Its name refers to Edsger Dijkstra,
who was first in describing it in 1959.

The idea behind this algorithm is to go exploring all paths
shorter from the vertex origin and leading to all other vertexes,
and when the shortest path from source vertex to other
vertexes, that build the graph, are obtained the algorithm stops.
The algorithm is a specialization of the uniform cost search,
and as such, does not work on graphs with edges of negative
cost (in always choosing the node with less distance may be
excluded from the search nodes in future iterations will
decrease overall cost of the path passing through an edge with
negative cost).

The algorithm would work as follows: given a weighted
directed graph of N nodes not isolated, X is the initial node, a
vector D of size N will store at the end of the algorithm the
distances from X to other nodes, and the following steps will
continue:

-- Step 1: Initialize all distances in D with an infinite value
on the top because they are unknown, except for X that has to
be placed at 0 due to the distance from X to X is 0.

-- Step 2: Let a = X (to take as the current node).

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

8

-- Step 3: Travel all the nodes adjacent to a, except the
nodes that have been already treated or completed, calling
these nodes vi.

-- Step 4: If the distance from X until it is stored in D is
greater than the distance from X to a, added to the distance
from a to vi; then it is replaced with the new distance, this is: if
(Di> Da + d (a, vi)) then Di= Da + d (a, vi).

-- Step 5: Mark as completed node a.
-- Step 6: Take the current node as the next node with the

lower value in D (this can be done storing the values in a
priority queue) and return to step 3 while there are nodes
which are not marked.

Once the algorithm has finished, D is completely full.
In figure 10 below, an example of the Dijkstra’s algorithm

completed route is shown. In the schema, every node is noted
with a letter and the distance between the nodes, is already
calculated with a value number. The problem lies in knowing
which is the shortest path between nodes a and z. After the
execution of the Dijkstra’s algorithm, the shortest path is
ADCBFEZ, marked in red, and the total distance is 23.

Fig.10. Schema of a search using Dijkstra’s algorithm as shown in [32]

The combination of the A* algorithm and Dijkstra's

algorithm, get on reducing the high computational cost of the
A* algorithm while minimizing some cases search are simpler
to use the Dijkstra’s algorithm because the road is almost
direct. So, the combination of both algorithms is perfect for
routing in mobile devices because of their actual limitations of
the hardware: low memory and low CPU.

VI. STUDY AND ANALYSIS OF THE PROJECTS

As seen in previous sections, there are several problems in
routing and navigating in mobile devices. These are mainly the
limitations of the hardware of these devices, the lack of
connection in some areas, the quality of the data and finally the
data acquisition and treatment to develop the routes. From now
and on, the following sections will focus in solving the main
problems that directly are involved in the routing calculation to
improve and optimize the searches. In order to achieve this
goal, a previous study of the solutions offered by the main
projects in Android mobile devices, is necessary.

The main issues that directly affect the calculation of routes
are the connectivity, the quality of data and the data
acquisition and treatment in the routing algorithms. The use of
the combination of Dijkstra’s and A* algorithms solve the
hardware limitations problem, for this reason, a modification
or new combination is not proposed. However, the way in

which data is acquired and treated by those algorithms, is an
importance subject to improve the routing and customize
searches.

The four projects selected are Navit, GpsMid, VGPS and
OSMAnd because of their popularity and importance as
pointed in [3] and [19]. For the connection issue and the
quality of data, all four projects provide a similar solution.
However, the acquisition and treatment of the data, differs in
each project in some aspects.

An important aspect to be considered is the purpose of each
project. Both VGPS and Navit, are applications designed to
calculate routes for vehicles, to travel by car or any other
motor vehicle. These projects only include POI’s to be
displayed on the maps, but there is no real treatment of that
information in the routing algorithms. For that reason, these
two projects will only be considered for the connectivity
problem.

A. The Connectivity Problem

An Internet connection is a requirement for most of the
routing systems. The mobile device running this type of
applications must be connected to the Internet and enable GPS
features in order to give the exact position and control the
movement during the route. However, neither the internet nor
the GPS coverage, are not always available. Moreover, the
long term connection also implies the waste of the battery
which is quite limited in these devices.

To solve this issue, all four projects, allow the off-line
routing. To achieve it, user must download the maps of the
area that is going to visit and store it in the device memory.

Nevertheless, these maps include the information of big
regions, even full countries, becoming big files which must be
stored in the limited storage memory of the mobile device. For
example, OSMAnd maps can be downloaded from the project
web [30], but as seen in figure 11 below, every file includes
the information of a full country, making it too heavy to be
stored in the device main memory.

Fig.11. Capture of the maps repository of OSMAnd project in its website

[30].

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

9

Another example is the repository of GpsMid project, shown
in figure 12, which even offering the maps by city extracts, the
weight can be of 47MB.

Fig.12. Capture of the maps repository of GpsMid project in its website [29].

In order to not collapse the main memory of the mobile

device, each project offers different solutions.
GpsMid and VGPS obtain the data in several ways:
-- downloading it from Planet OSM [34], which is a web

repository of all OSM data in one file. There are also files
called Extracts which contain OSM data for individual
continents, countries and important metropolitan areas.
However, it is not recommended because of the big weight of
the files and the repository is quite big, so user can get lost in
it.

-- downloading it with JOSM [35], which allows the
selection and extraction of OSM data of the user selected
areas. This process includes the installation of JOSM and
exporting the data to an XML file.

-- downloading it directly in the OSM site [6], first searching
the area and then exporting the data into an XML file.

Once the user has the XML file, this has to be converted in
the formats that fit for each application. As explained in [31],
VGPS converts the files in java libraries using the VGPS Map
Generator. As seen in figure 13 below, this process is a little
bit complicated for novel users, because VGPS Map Generator
works using commands in the terminal.

Fig.13. Capture of the VGPS Map Generator taken from [31].

GpsMid does not need any conversion and accepts OSM
data files in both .xml and .osm extensions.

Navit’s map files can be downloaded from Garmin site [35]
or OSM site [6] in XML format, as GpsMid or VGPS, no
conversion is needed. Garmin is a private company that
develops consumer, aviation, and marine technologies for
GPS. This company has the intellectual property of all their
maps. However, according to [28], this company has given
access to some of their maps, like the MetroGuide Europe
which is open and can be used freely.

OSMAnd project offers their maps in .obf extension,
compressed into ZIP files, in the repository of the project site
[30]. User can also download directly the data from OMS
webpage in XML format, and use the OSMAndMapCreator
application to convert the files into .obf. Morever, this project
allows to charge GPX files which is quite useful to make
routes offline. The main problem is the big weight of the files,
for example, if a user wants to download the map data of a city
of Spain, must download the full Spain map, and its weight’s,
even compressed into a ZIP file is 43.1 MB. To minimize the
problem, OSMAnd allows choosing to store the data in the
memory of the device or in the SD target and moreover, the
place in which download it. This facilitates the storage because
user can download the maps both in a computer and then insert
the SD target to the device, or directly in the mobile device,
and then, decide if the maps must be stored in the SD target or
in the main memory.

B. The Quality of Data

The availability and accuracy of spatial data is important for
these applications to work efficiently, effectively, and
correctly. As explained in previous sections, OSM coverage is
not uniform across all the territory and the best mapped zones
are cities and towns. The lack of spatial data in a particular
region can lead to these systems not performing well.

Nevertheless, the popularity of OSM is growing quickly and
the diversity and quantity of the points of interest provided
offer new opportunities and challenges in creating customized
and detailed visualization of cities.

To collaborate in the project and moreover improve the
quality and quantity of the OSM data, both GPSmid and
OSMAnd implement the functionality to set data and track
routes to be uploaded to the OSM project automatically. The
only limitations are the tags provided in both applications. So
if the users do not find a predefined tag that matches the
information they want to store, the only way is saving the track
and the position in the mobile device and upload it in the OSM
web page.

The process of recording a track is quite easy in both
applications. The user only has to select the “record track”
option on the menu and follow the instructions. The edition of
every point is quite easy, as seen in the figure 14, where first
user selects the coordinates and then, specifies the information
to edit and choose the appropriate tags.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

10

Fig.14. Capture of the POI editor tool on OSMAnd.

C. The Data Acquisition and Treatment

In both projects, the searches can be done in two different
ways. The first one is a simple text-based interaction for free
search, similar to the one existing in tools like Google Maps or
OpenStreetMap, where user selects “Search” option and writes
down then name of the address or POI.

 In this case of search, the text input by the user needs to
undergo a process of analysis which extracts from the query
the concepts which are matched. There are several problems
with that type of searching. The main problem is that in this
direct search depends on how the tags have been formalized in
the OSM project. For example, in the region of Catalonia,
there are two official languages: Spanish and Catalan. If a user
searches for a specific street, has to write it in Catalan if it was
introduced in Catalan, and the search in Spanish does not offer
any results. Moreover, the tags may not be well defined. For
example, if a user does not write it in the same way it’s written
and defined, there may not be a good result. This can be seen
in figure 15: if the user searches for “Passeig de Ronda,
Lleida, Cataluña, Spain”, there are no results. But if the user
searches for “Gran Passeig de Ronda, Cataluña”, user can
choose between the following results: “Gran Passeig de
Ronda, Parc, Gualda, Llivia, Cataluña, 25171, España” and
“Gran Passeig de Ronda, Parc, Gualda, Llivia, Cataluña,
España”, which are the same street in Lleida, but instead of
using the name of the town, appears the name of two
neighborhoods (Gualda and Llivia).

Fig.15. Capture of the two search cases in OSMAnd.

 Another problem is the lack of data, explained in the
previous sections of this paper. And the other problem is that

the data has not yet been indexed. The main responsible for
indexing the data in OSM project is Nominatim [37].
Nominatim is s a tool to search OSM data by name and
address and to generate synthetic addresses of OSM points.
Usually, the indexing process takes about 2 days. However,
there is no update for some areas; for example, the town of
Lleida (Catalonia, Spain) has not been updated since 2007
[37]. For this reason, if user searches for a specific street or
POI using internet connection, may not find any result.
However, using the offline mode, user can update its area file
and then have the actual data.

The second type of search provides a better structuring of the
query with the help of a tag selection. As seen in figure 16,
user selects the option search by POI’s and can choose
between a big list that includes: the search by name,
predetermined data groupings of POI’s (car assistance, for
tourists, etc.), the nearest POI’s from the location and of
course, by the OSM categories: Transport, Education, Nature,
etc.

Fig.16. Capture of POI’s options search in OSMAnd.

So, while the first interface is more intuitive, the second has

the advantage that it is easier to relate with the concepts in the
ontology of the POI’s. Moreover, user only has to select the
correct name of the POI instead of writing it, which eliminates
any problem of the nomenclature or definition.

In both projects, once the point of search has been defined
(address or POI) the way in which the search is done, differs.
On one hand, if it’s an online search using the connectivity
characteristics of the device, internet connection and GPS, the
process will involve a continuous exchange of data between
the server and the application in the mobile device. As seen in
figure 17, the application will send the data to the server for
both types of search, the text input search named type 1 and
the POI’s selection search, named type 2. The search will be
done on the OSM server, as well as the routing calculation.
The result and the calculated route information will be sent to
the devices and shown in the application map.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

11

Fig.17. Schema of the online search process considering both typologies of

search. The squared procedures are completely performed on the server.

On the other hand, if the search is done without connectivity,

the mobile device will be responsible of all the process, as
seen in figure 18. Firstly, the data for the searching will be
taken from the data files stored in the memory of the device.
Secondly, the calculation route will be generated by the
application. And finally, the application will show the routing
search result in the map of the application.

Fig.18. Schema of the offline search process considering both typologies of

search.

VII. PROPOSALS FOR IMPROVEMENT

As seen in section 6, all four projects (Navit, GpsMid, VGPS
and OSMAnd) have done great efforts to solve the main
problems. However, there are several points, in which
improvements can be made, in order to get faster, more
customized and more optimized routes.

These solutions involve the 3 main problems: the
connectivity problem, the quality of data and finally, the data
acquisition and treatment. The main goal to be achieved is
solving and minimizing the problems, considering aspects such
as time, CPU load, memory use and the quality of the results
per search. Besides, the quality of the results will also include
the improvements in order to achieve the user’s needs. These
proposals for improvements are explained below for every
problem.

A. The Connectivity Problem

The lack of connectivity is already solved using preloaded
data which is been downloaded from every project site or

directly from the OSM web. However, the files obtained are
quite big to store them in the mobile devices main memory.
Moreover, its weight also influences negatively in the searches
because of the great amount of data that must be considered
and treated before getting the correct match. The more data
involved, the more time is needed to locate the point, the more
memory is used and of course, the more CPU is also used.

To solve this problem, data files must be reduced. For
example, instead of having all the information of a full country
or continent in one file, this information can be divided into
small parts involving only the information of a particular city
or region.

It is important to note that this solution does not provide any
improvement when the search is completely carried out with
connectivity. However, the results obtained may be profitable
and can be taken into account for future developments that
work out how the information is stored on the servers.

B. The Quality of Data

As explained in previous sections, OSM coverage is not
uniform across all areas. The lack of spatial data in a particular
region can lead to the system not performing well. For
example, the town of Lleida (Catalunya, Spain), has a lack of
basic information such as streets names or POI’s. Moreover,
there are areas that are not well defined: incorrect names of
streets, squares or POI’s, incorrect locations of POI’s and
streets, etc. So there is a need of having available and correct
data.

In order to solve that problem, there are mainly two ways.
The first one involves the use of the Portlach Edition Tool (or
other editing tool depending in the expertise of the user) in the
OSM webpage. The web user interface of this tool is quite
easy to use and quite intuitive. Moreover, the changes can be
seen immediately into the OSM website.

Nevertheless, improving the data in the OSM website may
not be enough: depending on the area, the information is only
stored but not indexed for the searching tools, as seen in
previous sections. So even if the appropriate changes are
made, searches will not be optimized.

The second way to solve the problem of coverage is to
optimize the data using the mobile application. GpsMid and
OSMAnd projects allow creating POI’s and tracks and then
uploading them in the OSM project. And what is more
important, the new data is stored in the projects maps and
updated regularly. This information will be taken into account
in the off-line searches. However, the depuration and
correction of the data is not an available and direct option from
the mobile applications. To solve that problem, editing the
map information and correcting it, is the only way.

C. The Data Acquisition and Treatment

In mobile devices, as seen in section 6, searches acquire and
process the information depending on two aspects: the
available connection and the type of information which is
being searched. The lack of 3G or HSDPA (3.5G) coverage
can not be solved because depends on the service provider.
However, in both methodologies, the availability and
correctness of the data stored and indexed in the server and

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

12

stored in the mobile device, can be solved as seen in the
previous subsections.

Nevertheless, there are some aspects that can be considered
to be improved related to the data. These aspects consider the
customization and optimization of the searches to cover the
final user needs: the ontology used and the groups of tags by
activity. As seen in section 6.c, OSMAnd and GpsMid projects
use the ontology formalized in the OSM project and offers the
POI’s search organized by it.

However, this classification of data is not well structured and
furthermore, is not really intuitive. For example, the History
and Tourist themes can be confusing: a user may expect to find
in the Tourist theme, the historical monuments of the area,
instead of information of hotels or tourist information offices.
Another aspect to be considered is the lack of valuable
information about the POI’s. Information such as the schedule
of the POI should be offered. This way the user does not waste
time going to a place which can be closed. So this information
is quite important in order to cover user needs and moreover,
to optimize searches. Thus, there is not only a saving in user’s
time, but also there is a saving of searches in terms of
exchange of information (data acquisition, queries and
displays) between the server and the mobile device (in
available connection searches) or a saving of the resources in
the mobile device (in offline searches).

As well as the typology can not be easily modified because
depends on the OSM project, the improvement of the tags
information stored in the map and POI files of some projects
can be optimized. For example, OSMAnd offers the option of
storing the schedule information of POI’s, as can be seen in
figure 14. However, this information is not used by the
application and not even filled for most of the POI’s. So,
filling the information of these tags and the implementation of
the functionality that considers them is the improvement
proposed to this problem.

D. Methodology Implementation

In order to implement and test the improvements proposed in
the three previous sections, there are some methodology issues
that must be considered and explained.

To be able to carry out the proposed improvements and their
testing, the development is done in a clone application of one
of the projects studied in the previous sections. This clone
application includes the changes proposed to optimize and
customize the searches. These improvements involve:
1. Reducing the existing data files size.
2. Creating and editing quality data files for searching.
3. Developing the functionalities to carry out the testing.
4. Developing the functionalities to customize the searches.

The Android project selected between the studied projects in
previous sections is OSMAnd project [30]. This selection is
due to the fact that it’s the only fully open OpenStreetMap-
base navigation application for Android. Other projects such
as GpsMid are working on the migration to Android, but there
are several bugs and problems that have not been solved yet
and do not work properly in Android platforms. Moreover,
OSMAnd allows OSM data contributions and works the POI’s
data, not only displaying it but editing and searching by it.

Another advantage is that the project has the goal to create
comfortable navigation/routing application for Android mobile
devices that have limitation with internal, operating memory
and processor resources. Also application has a goal to
economy internet usage or do not use it at all (using preloaded
data), that's why offline features are more prioritized than
online. As most of the improvements proposed are going to be
displayed using offline characteristics, this project is the one
that fits the main needs of the improvement proposals.

The implementation and testing will be done in an Android
mobile device. The selected model to perform all the
improvements is an HTC Desire, running in Android OS
version 2.2. The main hardware characteristics of this device
as seen in [38] are:

-- CPU: 1 GHz.
-- ROM Memory: 512 MB.
-- SD Memory Target: 4 GB.
-- Screen: AMOLED 3.7 inches and resolution of 800x480.
-- Other characteristics enabled: GPS, 3G, Wi-Fi and

Bluetooth connectivity.
The connection between the mobile device and the computer

is done by USB.
The development environment used is the SDK Android [39]

and its tools for developing in Android 2.2 Platform.
The environment to develop the source code is Eclipse

Indigo for Java Developers [40] performed in the OS Linux
distribution Ubuntu [41] version Oneiric.

For compiling the OSMAnd clone project, the programming
languages have to be specified. Mainly the source code is
written in Java, but there are some features that include C++
language. Moreover, the features to treat the data stored in
.obf format are mainly implemented in JavaEE and XML.

The OSMAnd clone project can be downloaded from the
web site of the project using git [42], a version control system.
Once downloaded and compiled, the clone project can be
exported to the Eclipse SDK to work with the source code, as
seen in capture 19 below.

Fig.19. Capture of the OSMAnd source compiled in Eclipse.

 As explained in previous sections, OSMAnd data is stored
in .obf (OSMAnd binary format) format for the mapping data
and the POI’s data. This extension file can be edited using
SQlite database [43] or the OSMAnd application. All the
instructions to create, edit and upload the data sources are
available in [44].

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

13

As pointed in previous sections, OSMAnd enables routing
offline if previously the track is stored in the SD memory card.
This type of search is based in POI’s to locate the places. So
the tracks have been recorded and stored in the SD memory
card of the device for the testing in GPX format. These tracks
have been recorded using OSMAnd.

The OSMAnd maps available online for the area of the city
of Lleida are included in the files named Europe_Spain.obf
(166MB) and Catalonian_wiki.obf (156MB).
Catalonian_wiki.obf is reduced to the area of the province of
Lleida. Moreover, some POI’s of the town of Lleida have been
edited and corrected. The weight of the final file, named
Lleida.obf, is about 29 MB, almost a 19% less than the
original file.
 Finally, all the screenshots are taken using the default
screenshot application on Ubuntu. The screenshots on the
HTC device are taken using Dalvik Debug Monitor [45]
(DDM). This monitoring tool is also the main responsible to
show the HTC hardware use. In figure 20 below, the DDM is
monitoring the Memory use of the device.

Fig.20. Capture of the Dalvik Debug Monitor, monitoring the HTC memory

use.

 The development in the source code involves two different
objectives:

1. The functionalities to carry out the testing.
2. The functionalities to customize the searches.

For the first objective, the main changes in the source code
and data files are made in order to visualize the improvements
proposed considering aspects such as time, CPU load, memory
use and the quality of the results per search.

The system device characteristics can be monitored by the
DDM tool. However, the time and the quality of the search can
not be monitored with this tool. For this reason, a function
which calculates time has been added to the source code. This
functionality is called when there is a searching of two
different ways:
-- when user makes a search by POI’s: the function is called
since the user selects a typology or group of POI’s and ends
when the selected POI is shown in the map.
-- when user makes a search for routing: the function is called
when user selects the option “Navigate to a point” and finishes
when the route is showed to the user in the map.
 Once it has finished, a message in shown in the device
screen, specifying the time that has been spent in the search, as

can be seen in figure 20. This process gives us a clear idea if
the changes made in the data files, are correct.

Fig.20. Capture of the dialog showing the time calculation of a route online

search (in the testing section specified as Case 2).

 In order to be able to know the quality of the routing
searches, the route described in the mobile device is compared
to the same search done in the ORS webpage [26], as shown in
figure 21, using the same coordinates in both. Also both
searches are performed in the same travelling display:
pedestrian.

Fig.21. Capture of the OSR comparative of the search used in testing Case 2.

 For the second objective, customizing and facilitating the
search of the user, the data of some POI’s has been optimized
including the schedule time. OSMAnd does not offer any
information about the schedule even though it offers to set that
information. For this reason, a little functionality that considers
this aspect has been included. This function checks the day of
the week and the time in the device mobile and compares it to
the data of the POI. As shown in figure 22, if the selected POI
is closed in that day in that time, then shows the information to
the user, and asks if the user wants to go on with the search.

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

14

Fig.22. Capture of the screen telling the POI selected, la Llotja is closed.

 With this functionality, users won’t waste time going to a
POI that is closed. Moreover, this functionality improves the
user satisfaction and helps in customizing the routes even
though do not affect in the routing optimization and treatment
of the data and it’s not included in the testing.

E. Testing the Improvements in the Android Device

All the testing will be performed in the town of Lleida
(Catalonia, Spain). The testing will be done for the following
search cases:

- Case 1: Search of a particular POI and its location on
the map.

- Case 2: Search from my location option to a specific
address.

- Case 3: Search from my location option to a specific
POI.

All three searches will be done with and without connectivity
for each file: the Europe_Spain.obf file and the simplified and
improved file, named Lleida.obf. . The online searches are
performed with GPS and Wi-Fi enabled in order to not loose
connectivity. The offline searches are done using the GPX
files tracked before.

The address introduced to the system is Gran Passeig de
Ronda, Lleida and the POI’s selected are, in Case 1 La Llotja,
the emblematic Congress Center of the town, and in Case 2,
Centre d’Art La Panera, an art exhibition hall.

The difference between the OSR and the OSMAnd clone
search is denoted by a numerical value. This value is the
difference of the distance (in meters) of both searches,
establishing the same coordinates. The value shows which has
given the best route, being the best search the shortest one, and
it is expressed like that:

--If value=0: both routes are equal.
--If value<0: the OSR search is shorter than the OSMAnd

clone search.
--If value>0: the OSMAnd clone search is shorter than the

OSR search.
Every case of search is performed 3 times for the values of

CPU load, memory used and time spend on the search. The
values shown in the final results are the average of the three
results obtained.

VIII. RESULTS AND DISCUSSIONS

Following the testing and the implementation methodology,
explained in the previous section, the results obtained are
shown in table I below.

TABLE I

RESULTS

 Table I shows the values monitored in the testing (CPU
load, memory use, time per search and the quality of the route)
for each case and for each data file considering the
connectivity.
 These results show the fact that OSMAnd clone is an
application implemented thinking on mobile devices
characteristics and limitations. Its adaptability to the device
main resources can be seen in the figure: it never surpasses the
ROM memory capability or collapses the CPU.

It’s also shown that offline features are more prioritized than
online features. This prioritizing can be seen, for example, in
the fact that offline searches can not be performed if the user
must type the address, because of the use of Nominatim online
tool. For this reason, there are no values in offline searches for
Case 2 in the table.

Analyzing the results between the online and offline
searches for every file, there is a significant decrease on time
values as well as for the ROM memory use, between the
searches. However, the CPU load is quite similar in the 3
cases, in which the lower value obtained is 79% for both files.
For the offline searches, still there is little improvement in the
CPU load, because even the search is performed in the device,
the GPS and Wi-Fi connections, with the system processes and
the exchange of data to maintain the connection, are not
working.

Comparing the results obtained between the two stored files
(Europe_Spain.obf and Lleida.obf), there is a significant
decrease on the time values. CPU load and memory use are
lower comparing them with the full Spain file because
OSMAnd also uses the stored file information for the online
searches, minimizing the exchange of information between the
device and the server, directly sending the coordinates of a
POI, instead of the query for the name of the POI.

The differences between the OSR and the OSMAnd clone
routing searches are minimal: 14 m and 8m. This is due to the
fact that the data of Lleida has not been indexed since 2007, as
explained in section 6, so they have the same available data.
Moreover, ORS gives the total distance value of the route in
kilometers, rounding it off up, while OSMAnd clone shows the
distance in meters (also in kilometers but does not round off).
However, as seen in figures 20-21, showing the same search,
OSR makes an optimal path, the shortest one, than OSMAnd
clone. OSMAnd clone runs the route by the other side of the
round.

To sum up, with the results obtained, it is shown that the
weight of the data files and the quality of the data influence the

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

15

result. The less the weight, the less the time spent on searching
and the less waste in memory and storage of the device.

IX. CONCLUSION

This work presents the state of the art of the main
technologies, projects and services that are being developed
for Android mobile devices. From the study of the main
services and applications, their routing algorithms and their
treatment of the data, this paper describes a methodology
working on the data files to improve and customize the routing
searches considering the main problems in routing in mobile
devices:

1. The lack of connectivity in some areas.
2. The quality of the data involved in the searches.
3. The treatment and acquisition of the data to develop the

searches.
4. The lack of services to improve the routing experience.
The solutions presented are the following:

1. The use of stored data files that include only the
information of the area, reducing the ones available in
the OSMAnd project site.

2. The optimization of the data files, both geographical
information and also the characteristics of the POI’s,
editing and updating the data stored.

3. The treatment of the POI’s information in the
searches, in order to meet the needs of the users.

These solutions are implemented and tested on an OSMAnd
clone application, a fully open OpenStreetMap-base
navigation application for Android, specially optimized for
offline searches. The testing area is the region of Lleida
(Catalonia, Spain).

The implementation of the solutions 1 and 2 is made
considering aspects such as time, CPU load, memory use and
the quality of the results per search. For the third solution, to
facilitate and customize the search of the user, the data of
some POI’s has been optimized including the schedule time
and a function has been implemented that considers this
aspect.

The main conclusions that can be drawn from the results
analysis are:

• The quality of data helps on the searching in order to get
better results.
• The weight of the stored files influences negatively in the
searches.
• The functionality implemented considering the schedule,
improves the user experience and helps on the user’s choice,
avoiding user’s waste of time, and saving time and queries
to the servers.
However, there are several problems that should be taken

into account. First of all, OSM actual data is not indexed for
the search. For example, the data of the area of Lleida has not
been updated since 2007 for searching and routing. A study to
implement a solution should be considered.

Second, the ontologies of the data in OSM are not well-
defined. The research of better information architecture (IA)

and its ontologies must be carried out.
Finally, with the improving of the IA, a study of the final

user’s needs should be considered in order to facilitate real
thematic routes and information display on the application
according to the user wishes.

ACKNOWLEDGMENT

C. Cuadrat would like to thank Alejandro Reche Pérez for
its help and support in the technical and programming issues.

Finally, C.Cuadrat would also express her gratitude to all
OSM project and OSMAnd project developers and
contributors, and the director of this project, A. Navarro,
without their work and advice this paper would not have been
possible.

REFERENCES

[1] J. Gutiérrez Puebla and M.Gould, SIG:Sistemas de Información
Geográfica. Madrid (Spain): Editorial Síntesis, S.A., 1994, ch. 1.

[2] L. Descamps-Vila, J. Casas, J. Conesa and A. Pérez-Navarro,"Cómo
introducir semántica en las aplicaciones SIG móviles: expectativas,
teoría y realidad" presented at the V Jornades SIG Lliure, Girona
(Spain), March 24, 2011. Available: http://dugi-
doc.udg.edu/bitstream/10256/3380/1/art6.pdf

[3] Android Market Site. [Last search: 27/11/2011]. Available:
https://market.android.com/

[4] L. Descamps-Vila, J. Casas, J. Conesa and A. Pérez-Navarro, "Hacia la
mejora de la creación de rutas turísticas a partir de información
semántica", presented at the V Jornades SIG Lliure, Girona (Spain),
March 24, 2011. Available: http://dugi-
doc.udg.edu/bitstream/10256/3384/1/art13.pdf

[5] GoogleMaps Site. [Last consulted: 24/10/2011]. Available:
http://maps.google.com/

[6] OpenStreetMap Site. [Last search: 20/10/2011]. Available:
http://www.openstreetmap.org/

[7] Wikiloc Site. [Last search: 24/10/2011]. Available:
http://wikiloc.com/wikiloc/home.do

[8] Comisión del Mercado de las Telecomunicaciones (CMT), Informe
Anual 2010 - Infraestructuras, Barcelona (Spain), 2010. Available:
http://informeanual.cmt.es/docs/1.2%20INFORME%20SECTOR%20-
%20INFRAESTRUCTURAS.pdf

[9] W. Paireekreng and K.W. Wong, "Intelligent Mobile User Profile
Classification for Content Personalisation" in IEEE WKDD '10
Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining, Washington DC (USA), Jan. 9-10, 2010,
pp241-244.

[10] C. Davidsson and S. Moritz, “Utilizing Implicit Feedback and Context
to Recommend Mobile Applications from First Use”, in Proceedings of
the 2011 ACM Workshop on Context-awareness in Retrieval and
Recommendation (CaRR), New York (USA), February , 2011, pp. 19-
22.

[11] Allied Business Intelligence, Inc., Android Overtakes Apple with 44%
Worldwide Share of Mobile App Downloads. [Last search: 26/10/2011].
Available: http://www.abiresearch.com/press/3799-
Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobil
e+App+Downloads

[12] Gartner Newsroom, Gartner Says Sales of Mobile Devices in Second
Quarter of 2011 Grew 16.5 Percent Year-on-Year; Smartphone Sales
Grew 74 Percent. [Last search: 26/10/2011]. Available:
http://www.gartner.com/it/page.jsp?id=1764714

[13] Google Code, Google Projects for Android: Google APIs – Obtaining a
Maps API Key. [Last search: 20/10/2011]. Available:
http://code.google.com/android/add-ons/google-apis/mapkey.html

[14] Google Code, Google Projects for Android: OSM API. [Last search:
20/10/2011]. Available: http://code.google.com/p/modosmapi/

[15] Google Labs, Google Ride Finder. [Last search: 20/10/2011]. Available:
http://labs.google.com/ridefinder

> Master Final Work – Official Master in Free Software – Universitat Oberta de Catalunya <

16

[16] Google Labs, Google Transit site. [Last search: 20/10/2011]. Available:
http://www.google.com/intl/en/landing/transit/#mdy

[17] I. Lidó Monzón and Dr. S. Machado Sánchez, "Aplicación Android de
movilidad para invidentes", M.S.c, IT Department, Universitat
Politècnica de Catalunya, Barcelona, Spain, April 30, 2011.

[18] R. Priedhorsky and L. Terveen, "The computational geowiki: what, why,
and how", in Proceedings of the 2008 ACM conference on Computer
supported cooperative work, San Diego (USA), Nov. 08-12, 2008, pp.
267-276

[19] OpenStreetMap (OSM), Official Wiki of OSM Project. [Last search:
20/10/2011]. Available: http://wiki.openstreetmap.org/wiki/

[20] M. Haklay and P. Weber, "OpenStreetMap: User-Generated Street
Maps", Pervasive Computing, IEEE Computer Society, Vol. 7, no. 4,
pp. 12-18, Oct.-Dec. 2008

[21] R. Ganti, N. Pham, H. Ahmadi, S. Nangia and T. Abdelzaher,
“GreenGPS: A Participatory Sensing Fuel-Efficient Maps Application”,
Annual International conference on Mobile Systems, Applications and
Services (MobiSys), San Francisco (USA), June 2010, pp. 151-164.
Available:
http://domino.research.ibm.com/comm/research_teams.nsf/pages/mes.p
ubs.html/$FILE/mobisys10.pdf

[22] B. Ciepluch, P. Mooney, R. Jacob and A.C. Winstanley, “PhD
Showcase: Using OpenStreetMap to deliver location-based
environmental information in Ireland”, SIGSPATIAL Special, v.1 n.3,
Nov. 2009, pp. 17-22

[23] P. Neis, P. Singler and A. Zipf, “Collaborative mapping and Emergency
Routing for Disaster Logistics – Case studies from the Haiti earthquake
and the UN portal for Afrika”, In: Geospatial Crossroads @ GI_Forum
'10. Proceedings of the Geoinformatics Forum Salzburg, 2010.
Available: http://koenigstuhl.geog.uni-
heidelberg.de/publications/2010/Neis/un-osm-emergency-routing.gi-
forum2010.full.pdf

[24] Portlach Edition Tool. [Last search: 08/01/2012]. Available:
http://www.openstreetmap.org/edit

[25] M. Codescu, G. Horsinka, O. Kultz, T. Mossakowski and R. Rau,
"Osmonto - an ontology of OpenStreetMap tags". In State of the map
Europe (SOTM-EU) 2011, 2011. Available: http://www.informatik.uni-
bremen.de/~okutz/osmonto.pdf

[26] OpenRouteService website. [Last search: 13/01/2012]. Available:
http://openrouteservice.org

[27] S. Schmitz, A. Zipf and P. Neis, “New Applications based on
collaborative geodata – the case of Routing”, in XXVIII INCA
International Congress on Collaborative Mapping and
SpaceTechnology, Gandhinagar, Gujarat, India. Available:
http://koenigstuhl.geog.uni-
heidelberg.de/publications/bonn/conference/cmap2008.cartography-
bonn.subm.pdf

[28] Navit project website. [Last search: 02/11/2011]. Available:
http://www.navit-project.org/

[29] GpsMid project website. [Last search: 30/12/2011]. Available:
http://gpsmid.sourceforge.net/

[30] OSMAnd project website. [Last search: 08/01/2012]. Available:
http://osmand.net/

[31] VGPS project website. [Last search: 02/11/2011]. Available:
http://www.digitalmobilemap.com/vgps-map-generator

[32] Wikipedia’s Graph Theory page. [Last search: 24/10/2011]. Available:
http://en.wikipedia.org/wiki/Graph_theory

[33] J. Gimbert, R. Moreno, J.M. Ribó and M. Valls, Apropament a la teoria
de grafs i als seus algorismes.Lleida (Spain): Edicions de la Universitat
de Lleida, 1998, ch. 1 - ch.2 Annex A.

[34] Planet OSM repository website. [Last search: 11/01/2012]. Available:
http://planet.openstreetmap.org/

[35] Java OpenStreetMap Editor (JOSM) website. [Last search: 11/01/2012].
Available: http://josm.openstreetmap.de/

[36] Garmin Corporation website. [Last search: 11/01/2012]. Available:
http://www.garmin.com/

[37] Nominatim project web page. [Last search: 14/01/2012]. Available:
http://wiki.openstreetmap.org/wiki/Nominatim

[38] HTC Desire main webpage. [Last search: 14/01/2012]. Available:
http://www.htc-desire.es/

[39] Android SDK site. [Last search: 16/01/2012]. Available:
http://developer.android.com/sdk/index.html

[40] Eclipse Indigo site. [Last search: 16/01/2012]. Available:
http://www.eclipse.org/

[41] Ubuntu site. [Last search: 16/01/2012]. Available:
http://www.ubuntu.com/

[42] Git Control System webpage. [Last search: 16/01/2012]. Available:
http://git-scm.com/

[43] SQLite Database webpage. [Last search: 18/01/2012]. Available:
http://www.sqlite.org/

[44] OSMAnd Wiki project site. [Last search: 18/01/2012]. Available:
http://code.google.com/p/osmand/wiki/HowToArticles

[45] Android developers: How DDMS Interacts with a Debugger. [Last
search: 18/01/2012]. Available:
http://developer.android.com/guide/developing/debugging/ddms.html

