
Universitat Oberta de Catalunya

Faculty of Computer Science, Multimedia and Telecommunications

Design and implementation of an

end-to-end encrypted cloud

backup service for disk

partitions

Bachelor thesis written and presented by

Xavier Velàsquez Melenciano

Supervised by

Oriol Mart́ı Girona & Sergi Caballé Llobet

Grau en Enginyeria Informàtica

Delivered on June 2020

License

This work is licensed under a Creative Commons

“Attribution-ShareAlike 4.0 International” license.

2

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Design and implementation of an end-to-end

encrypted cloud backup service for disk partitions

Design of a potential commercial solution and implementation of a

prototype of the service

Xavier Velàsquez Melenciano

<xvelasqu@uoc.edu>

Abstract

The market trend in the latest years regarding data backup solutions for organizations has

been the massive adoption of cloud drive services like Dropbox or Google Drive. These

systems have proved to be very powerful productivity tools for day to day operations by

enabling data ubiquity, real-time collaboration, and version control for any kind of file.

Nevertheless, most of these services have raised many concerns regarding safety and data

protection. Recurrent data breaches, insufficient protection against legal subpoenas and

summons, and the impossibility of enabling verifiable encryption out of the box have

brought the spotlight to innovative cloud services offering end-to-end encryption where

all cryptographic operations are claimed to take place in the user’s device — like MEGA

and ProtonDrive.

The goal of this project is to bring this approach to a cloud storage service where instead

of hosting single files, it will store an encrypted image of a whole disk partition. Users

will install an application in their devices which will allow them to schedule backups,

execute the encryption/decryption processes, and synchronize these disk snapshots with

a cloud service. This cloud service will also offer a web interface with options for users

to retrieve their backups. The need for a service like this is justified by the increase of

data corruption threats that malware, especially these known as ransomware, has posed to

corporations with a big number of interconnected workstations. File cloud drives generally

fail both in terms of reliability and efficiency for data recovery in cases of a total loss, while

partition-level backups excel in these use cases.

3

Contents

1 Introduction 9

1.1 Context and Project justification . 9

1.2 Project objectives . 10

1.3 Scope and Work methodology . 11

1.4 Work breakdown and Schedule . 11

1.5 Summary of achieved outcomes . 12

1.6 Briefing of the upcoming chapters . 12

2 Overall Description 13

2.1 Product Perspective . 13

2.2 Product Functionality: Main Use Cases . 14

2.2.1 User-Initiated Use Cases . 14

2.2.2 Server-initiated Use Cases . 15

2.2.3 3rd party provider-initiated Use Cases 16

2.3 User Classes and Characteristics . 16

2.3.1 End Users . 16

2.3.2 Service Operations . 16

2.3.3 3rd Party Provider . 17

2.4 Software Components Formalization . 18

2.4.1 Service Components . 18

2.4.2 Class Hierarchy Proposals . 19

2.4.3 Client-side Encryption Strategy . 22

2.5 Operating Environment . 24

2.5.1 Server Hardware . 24

2.5.2 Server Operating System . 24

2.5.3 Software Stack . 24

4

Contents 5

2.6 Design and Implementation Constraints . 25

2.6.1 Legal Environment & Compliance 25

2.6.2 Software Licensing . 25

2.6.3 Software Limitations . 25

2.7 User Documentation . 25

2.8 Risks, Assumptions, and Dependencies . 26

2.8.1 Risk Analysis . 26

2.8.2 Initial Assumptions . 27

2.8.3 Main Dependencies . 27

3 External Interface Requirements 28

3.1 User Interfaces . 28

3.1.1 Main Client Interface . 28

3.1.2 Backup Recovery Site . 28

3.1.3 System Restore Utility . 29

3.2 Hardware Interfaces . 29

3.2.1 Storage Redundancy . 29

3.2.2 Data Retrieval in the form of Removable Storage 30

3.3 Software Interfaces . 31

3.3.1 Software Libraries . 31

3.3.2 3rd Party Software . 32

3.3.3 3rd Party Cloud Services . 33

3.3.4 Database & Persistence Software . 33

3.4 Communications Interfaces . 34

4 System Features 35

4.1 Client Applications Features . 35

4.1.1 Disk Partition Backup & Encryption 35

4.1.2 Encryption keys management & Decryption 37

4.2 Web Portal Features . 39

4.2.1 User Accounts Management . 39

4.2.2 Cloud Backup Management & Data Retrieval 42

4.3 Server Features . 43

4.3.1 Cloud Backup Service . 43

4.3.2 Cold Storage Backups Sync . 45

Contents 6

5 Other Nonfunctional Requirements 47

5.1 Performance Requirements . 47

5.2 Safety Requirements . 47

5.3 Security Requirements . 47

5.4 Software Quality Assurance and Testing . 48

5.4.1 Testing Strategy . 48

5.5 CI/CD Requirements . 49

5.6 Business Rules . 49

6 Prototype Implementation 51

6.1 General Use Case: Backup and Upload Partition 51

6.1.1 Description . 51

6.1.2 Main Scenario . 53

6.1.3 Preconditions . 54

6.1.4 Post-conditions . 54

6.2 Hardware Stack . 55

6.3 Specific Software Stack . 55

6.3.1 3rd Party Resources . 56

7 Conclusion 57

7.1 Project scope changes and other eventualities 57

7.2 MVP Roadmap . 58

7.3 Future of the project . 58

Glossary 60

Bibliography 62

Journal Articles . 62

Books . 62

Press Articles . 63

Manuals/Guides . 63

Websites/Blogs . 63

A Annex: Gantt Chart 67

Contents 7

B Annex: Class Hierarchy in PlantUML format 73

B.1 Client Application . 73

B.2 Web Service Application . 76

List of Figures

1.1 Source: NetMarketShare [10] . 10

1.2 Source: Stack Overflow [11] . 10

2.1 Data Flow Diagram contextualizing use cases I, II, III, IX, XI, XII, & XIII

[2.2] . 13

2.2 Main Use Cases of the service [2.2] . 14

2.3 Components Diagram of the service . 18

2.4 Client application - Class Hierarchy Diagram 20

2.5 Web service - Class Hierarchy Diagram . 21

2.6 Client-side Encryption Strategy Overview 22

3.1 Mock-up of the CLI client . 29

3.2 AppleTM Time Machine’s User Interface (c©pngkey.com) 30

3.3 Mock-up of the backup recovery section of user private area 31

3.4 Clonezilla (GNU GPL License) . 32

6.1 Use Case II: Actors and Dependencies [2.2] 52

6.2 Use Case II: Flow Diagram [2.2] . 53

6.3 Prototype: Web Server & Hot Storage Disks Array 55

6.4 Prototype: Solution Overview . 56

8

Chapter 1

Introduction

1.1 Context and Project justification

The goal of this project is to design a multi-platform application for performing client-side

encrypted full and differential backups of all desired disk partitions in a user workstation

and store them remotely in the cloud. It is meant to cover the data backup needs of small

and medium companies and individuals, who generally find existing solutions confusing

and many don’t even realize that they have this need.

Certainly, the spread of online cloud services replacing desktop productivity tools like

Google Docs, Gmail, and Dropbox has substantially reduced the damage derived from

data loss events in the user segments previously mentioned; but at the same time has risen

new concerns regarding privacy and additional potential forms of data leaks [24]. This

project aims to develop a cloud backup service that is easy to understand and use, that

does not interfere with the way that users use productivity software of their choice, and

where data confidentiality is uncontested.

Key characteristics of this service will be ease of use and painless setup, lowest consumption

of compute and network resources as possible, and full privacy due to end-to-end encryption

of backups with one-time keys.

9

Chapter 1. Introduction 10

1.2 Project objectives

In the first place, the main goal is to design the service previously introduced and provide a

full software specification that covers all the components involved. The main functionalities

of this service shall be:

• Scheduling of unattended full-disk backups with differential snapshots, similar to

Apple’s Time Machine or Microsoft Windows System Restore.

• Backup encryption taking place in the user’s device with one-time randomly gener-

ated encryption keys per each file.

• Background upload of backups to the cloud via a secure protocol.

• Multi-platform availability of the client applications, initially for user workstations

using Windows, macOS, and Linux-based operating systems [Figs. 1.1 & 1.2].

• Recovery options of the disk images via direct download or physical remittance in

removable media, to be decrypted on the final user’s device using the encrypted keys

stored in the cloud service and the user’s master password.

Figure 1.1: Source: NetMarketShare [10] Figure 1.2: Source: Stack Overflow [11]

Then, the second objective is to develop, implement, and install a prototype of this service

which shall cover, at least, one major use case of the future whole implementation.

Chapter 1. Introduction 11

1.3 Scope and Work methodology

Although the design of the described service involves high complexity disciplines like cryp-

tography, file systems, and computer memory architecture; the implementation of crypto

algorithms and the internals of disk partitions and their file systems are out of the scope

of this project.

Instead, the focus will be set on the software engineering aspect of every component in the

platform, and the potential of a service like the described one to become a viable commer-

cial product. Because of that, the reader will notice that many design choices and decisions

regarding the technology stack will be based on the efficiency, ease of use, maintenance

complexity, and cost-effectiveness of the solution.

Project planning and execution followed the Waterfall model [8], up to the implementation

phase, at all times. Although given the distributed aspect of this service, anyone willing

to continue working on the achieved prototype towards an MVP should consider following

an iterative approach; for example, one that follows Agile principles [7].

1.4 Work breakdown and Schedule

The initial planning contained the project goals with forecasted effort and completion dead-

line for every aspect of the design and the prototype implementation and was formalized

as a Gantt chart [Annex A]. It relied on the expected partial deliverables expected by this

thesis’ supervisors and the objectives for each one of them, and mere effort estimation for

every project aspect during the initial planning phase.

Although it lacks effort estimations for formal testing of the components implemented and

the fact that it was affected by a posterior reduction of features of the prototype system,

which will be elaborated further in this document; it could serve as a template for any

party willing to bring this service to reality.

Chapter 1. Introduction 12

1.5 Summary of achieved outcomes

• Use cases and Requirements definition

• Class hierarchy and Entity relations for every application

• Selection of a commercially viable technology stack

• Testing, CI/CD, and QA strategy proposal

• Implementation of a prototype of the service with in-house hardware, fully covering

a major use case

1.6 Briefing of the upcoming chapters

In the following sections, the reader will find an extended requirement specification of the

software solution; structured following IEEE’s Software Requirements Specification [2] [6].

In addition to that, the characteristics and implementation process of the prototype system

will be described.

Chapter 2

Overall Description

2.1 Product Perspective

This chapter aims to describe the architecture, functionality, and other relevant charac-

teristics of the distributed system, both software and hardware components, required to

bring to life the desired service.

Figure 2.1: Data Flow Diagram contextualizing use cases I, II, III, IX, XI, XII, &
XIII [2.2]

13

Chapter 2. Overall Description 14

It will also describe the 3rd party technologies and partners required for its operation,

which will be elaborated on the external interfaces chapter [3], and a simplified version of

a potential business plan and an outlook for its possible commercialization.

2.2 Product Functionality: Main Use Cases

Categorized according to the three main actors in the service, a high-level description of

the main use cases follows:

Figure 2.2: Main Use Cases of the service [2.2]

2.2.1 User-Initiated Use Cases

I. Account creation and master password setup: A new user wants to create an

account in the service and a master password to protect his/her master encryption

key.

II. Initial backup, encryption, and upload: A user wants to generate a full backup

of a disk partition of his/her system, encrypt it with a randomly generated one-

Chapter 2. Overall Description 15

time key, encrypt this key with his/her master encryption key, and upload both the

encrypted payload and its key to the server.

III. Differential backup, encryption, and upload: A user wants to generate a

differential backup based on a previous full backup of a disk partition of his/her

system, encrypt it with a randomly generated one-time key, encrypt this key with

his/her master encryption key, and upload both the encrypted payload and its key

to the server.

IV. Backup schedule setup: A user wants to choose which disk partitions will be

automatically backed up, encrypted, and uploaded to the server; and the frequency

of these scheduled operations.

V. Backup retrieval and decryption: A user wants to download or order physical

delivery of a previously uploaded backup and, when received, decrypt it.

VI. Account management and keys management: A user wants to modify his/her

private data (including master password) and/or subscription, add or remove man-

aged users to the account, or just delete the account.

2.2.2 Server-initiated Use Cases

VII. User authentication and account management: The server wants to fulfill an

authorization request or account CRUD request.

VIII. Upload request processing, file reception, and storage: The server wants to

register a user file upload request, including its encryption keys, and receive and

store the file.

IX. Download request processing, file retrieval, and file serving: The server

wants to retrieve a file requested by a user from local or external cold storage and

then digitally transfer it to the user.

X. Physical backup retrieval request processing: The server wants to record a

physical file delivery request, which will be manually processed by the service staff,

to fulfill a user-initiated request.

XI. Storage space management: The server wants to transfer backup files that are

not accessed frequently to the cold storage, to free space for new user files.

Chapter 2. Overall Description 16

2.2.3 3rd party provider-initiated Use Cases

XII. Upload request processing: The 3rd party provider wants to receive and store a

file sent by the server.

XIII. Download request processing: The 3rd party provider wants to digitally deliver

a file requested by the server.

2.3 User Classes and Characteristics

2.3.1 End Users

• System Administrator:

They are either individuals who sign up in the service or IT administrators in an

organization. They can link new devices to their account and invite managed users

whose storage devices will be backed up. They’re the only end-users with permission

to retrieve backups stored in the cloud and with access to the account’s encryption

private keys.

• Managed User:

These users’ accounts are managed by a system administrator. They are allowed to

install the client software and schedule backups for their devices, but they need to

contact their sysadmin to perform recovery tasks.

2.3.2 Service Operations

• Cloud Service Administrator:

It is the engineer in charge of supervising the correct function of the backups cloud

storage service. He/she will make sure that the service complies with the SLA

acquired with the end-users and that a secure and cost-effective Cold Storage backup

strategy is being executed together with the more appropriate 3rd party providers.

• Operations Technician:

These technicians support customer service staff and end-users in data recovery

processes, giving advice on the most appropriate backup retrieval way according to

the budget and time restrictions (e.g. direct download, P2P technologies, hard disks

Chapter 2. Overall Description 17

shipment, tape shipment, ...) and assisting in the disk image decryption and system

recovery processes.

They can also advise customers on backup strategies in terms of frequency and device

coverage scope. They can be considered Tier 3 support and most of them should

have the ability to troubleshoot and fix issues in the systems and/or software.

• Customer Service Representative:

Customer Service Representatives comprehend the first two tiers of support to end-

users:

Tier 1 greet customers in the available support platforms (e.g. ticketing system, live

chat, call center, support forums, ...) and perform the first triage of incidents.

Tier 2 agents assist customers and have a technical background sufficient to properly

identify bugs and report them to the development team, to identify a total or par-

tial system outage and report it to the Cloud Service Administrator, and to assist

customers setting up their backup schedule strategy or taking actions in front of a

data loss situation; always assisted by Operations Technicians.

2.3.3 3rd Party Provider

• Cold Storage Service Representative:

This party can be either an Account Manager with a technical background or an IT

expert. Should act as a SPOC and be able to provide immediate assistance in case

of outage of the Cold Storage service and assist with heavy or complex data retrieval

operations. Any situation not complying with the SLA established with the provider

must be reported to this representative immediately.

Chapter 2. Overall Description 18

2.4 Software Components Formalization

2.4.1 Service Components

Figure 2.3: Components Diagram of the service

Chapter 2. Overall Description 19

2.4.2 Class Hierarchy Proposals

The class hierarchy proposals presented above consist in a Model-View-Controller [1] struc-

ture for both the client and server applications. This paradigm allows for an effective de-

coupling between the presentation layer and the business logic and database driver, which

is exactly what we are aiming for by using Qt; sharing a core business logic that is isolated

from other components while compatible with every target operating system.

Client Application

The following diagram is an abstraction of what the final class hierarchy would look like,

as Qt specific types and controllers are not specified. Getter and setter methods are not

displayed either. All of this is done on purpose, so the reader can get a better idea of the

actual data entity relations.

Also, decoupling of the view works in a particular fashion in the Qt framework. The

developer will normally design views by defining an XML layout and have the view widgets

communicate with the application controllers via events, known as signals [43]. Because of

this, view controllers are not specified in the diagram.

Diagram at the next page

Chapter 2. Overall Description 20

Figure 2.4: Client application - Class Hierarchy Diagram

Chapter 2. Overall Description 21

Web Service Application

In the case of the web service, the class hierarchy diagram can also serve as an entity

relation service as Object-relational mapping is the approach chosen to interact with the

persistence layer.

Figure 2.5: Web service - Class Hierarchy Diagram

Chapter 2. Overall Description 22

2.4.3 Client-side Encryption Strategy

Following the market trend of end-to-end encrypted SaaS services like ProtonMail [33] and

MEGA [13], all cryptographic operations will be performed on the client applications and

their source code will be available to the public for inspection, audit, and even to build

their own binaries.

Figure 2.6: Client-side Encryption Strategy Overview

Chapter 2. Overall Description 23

The AES XTS implementation is specifically tailored for disk partitions encryption [26].

In order to ensure a relatively fast encryption process of the disk partition files, the appli-

cation will use the implementation for 128-bit keys. These keys are way less secure than

256-bit keys, but still impossible to brute force by nowadays computing power [5].

For the one-time keys encryption a more simple AES CBC implementation is used, this

time using the 256-bit master key of the account. Given that the account’s master key

is meant to have a longer life span than one-time keys and that the payload to cipher in

this case requires a negligible amount of computing time, it is appropriate to use the more

secure 256-bit keys.

Nevertheless, it is important to mention that both ciphers are prone to Man-in-the-middle

attacks. A malicious adversary could make minor modifications in the encrypted files, in

a way that once the owner decrypts them an apparent working disk partition is generated

containing with corrupted data [4]. For this reason, checksum hashes must be generated

before and after encrypting every file and then stored together with in the files’ metadata

repository.

Chapter 2. Overall Description 24

2.5 Operating Environment

The hardware and software platform hosting the service must be able to accept an un-

determined amount of data, thus it shall scale automatically to accommodate any user

upload request. This scaling necessity must be anticipated and can be performed either at

the server’s storage or by requesting additional resources to the 3rd party provider.

That said, find a high-level proposal of the desired system environment:

2.5.1 Server Hardware

• One or several arrays of SSD or Hard disk drives in a RAID5 redundant configuration

[9].

• One or several load-balanced web servers with sufficient computing power and ran-

dom access memory resources to handle multiple client connections and I/O opera-

tions with the disk arrays.

2.5.2 Server Operating System

• Linux-based distribution compatible with Docker containerization.

2.5.3 Software Stack

• Web Service: Express 4.17.1 [22] on top of Node.js 12.16.3 LTS [28]

• Client Applications Framework: Qt 5.14.2 for Windows, macOS, and Linux [17]

• Orchestration Service: Docker with verified Docker Hub ARM images (nginx,

node, mongo) [21]

• Cold Storage 3rd Party Service: Amazon Web Services S3 Glacier [16]

C++ and Qt were chosen as the programming language and application framework, respec-

tively, due to their speed for processing I/O and compute-intense operations (cryptographic

calculations, in this case) and the ability to work on a single code base that can make builds

for multiple operating systems.

Regarding the web service stack, Node.js was the choice because of its asynchronous ap-

proach; which becomes really useful in I/O-intensive programs like this one. Docker was

chosen as a way to facilitate development of the prototype

Chapter 2. Overall Description 25

2.6 Design and Implementation Constraints

2.6.1 Legal Environment & Compliance

• GDPR compliance can require changes and platform upgrades as the size of the

operations grow, due to organization size-related rules or legislation changes.

• Depending on where operations are run from it might be required to follow strict

procedures on data destruction.

• There should be a way to handle subpoenas and data requests from justice and legal

authorities and users should know in advance how much of their data would

be leaked in such a situation.

• There might be additional constraints imposed by mandatory audits on data han-

dling and systems security

2.6.2 Software Licensing

• Several components of the Qt framework have not been released in a fully open source

license, therefore it might be required to purchase licenses or adopt an alternative if

the service ever becomes ”for-profit”.

2.6.3 Software Limitations

• The Qt framework does not cover all the disk imaging functionality required for the

client applications, therefore this part of the application features will be depending

on platform dependant solutions and a fully multi-platform match of functionality

might not be feasible.

• Any SLA contracted with end-users will be limited by the SLAs agreed with the 3rd

party cold storage provider.

2.7 User Documentation

The prototype will not include additional documentation, other than those aimed at the

application developers. The first iteration of the product should be easy to use with a trivial

Chapter 2. Overall Description 26

minor setup. Future iterations of this product, and certainly after the service Go-Live, will

include a website with FAQ and customer support.

2.8 Risks, Assumptions, and Dependencies

2.8.1 Risk Analysis

Several aspects can be considered mid/long term risks for a service like this:

• Many industries, like the film and videogames sectors, are massively adopting cloud

computing as a way to serve content via streaming technologies; deeming user devices

as simple thin clients. If this trend keeps covering more industries, backups of client

storage devices would eventually become irrelevant.

• There are many reasons to believe that cloud object storage prices will go up. One

of them is that right now there is a pseudo-monopoly between Amazon, Microsoft,

and Google; which can lead to the destruction of other competitors and eventual

price abuse. Also, the fact that the carbon footprint of the datacenters sustaining

these servers in massive will most likely result in future taxes and fines for these

companies; which will eventually increase the retail prices.

• Many organizations already have several active SaaS subscriptions, so every time

they are more reluctant to consider adding new services to their stacks. If this

service ever becomes a commercial product, appropriate monetization and pricing

strategies will likely be key for its success.

• The fact that many organizations have already put in place procedures to store

business-critical data in cloud services might make a service like this a harder sell.

At the end of the day, businesses whose key digital assets are office suite documents

will probably already have them in the cloud; making user workstation potential

data losses less of a concern.

• As we rely on the AES algorithm implementations using 128 and 256 bits keys, we are

supposed to be covered against brute force attacks for many years to come. In any

case, new computing paradigms like quantum computing are evolving fast and may

eventually allow ways to make more time-efficient attacks on these cryptographic

algorithms.

Chapter 2. Overall Description 27

2.8.2 Initial Assumptions

• All the open-source development tools used will be supported by the FOSS commu-

nity during the whole service life cycle.

• The cryptography libraries employed are fully secure and not prone to brute force

attacks given nowadays achievable computing power; in a reasonable time frame.

• Amazon Web Services S3 or any replacement for cloud cold storage will, at the same

time, perform reliable backups in a consistent way of all the data we upload there.

• Both our communications, distributed cloud systems, or 3rd party providers are

prone to both intentional or unintentional data leaks and unauthorized access to

customer data. Consequently, there is full reliance on client-side encryption, user

custody of encryption private keys, and leverage of user authentication to third

parties (e.g. social media log in, one-time access links sent via email, ...).

• As deterministic backups when dealing with disk partitions are not feasible [3] and in

order to avoid Man-in-the-middle attacks that could affect data integrity, checksum

hashes of files, both pre and post encryption, will be stored in the file metadata

repository of the server database.

2.8.3 Main Dependencies

• Hot Backups’ consistency and availability depend on the RAID array reliability.

• The ability to scale, regarding the number or profile of users, will directly depend

on the cloud service resources and storage capacity.

• Disk image creation and restore performance will depend on 3rd party FOSS, as the

development of these tools is not in the scope of this project.

• As previously mentioned, all cryptography operations will depend on 3rd party

FOSS, as the development of these tools is not in the scope of this project.

• Data recovery and user privacy will completely depend on the ability of the end-users

to store their master password confidentially and securely.

Chapter 3

External Interface Requirements

3.1 User Interfaces

3.1.1 Main Client Interface

The client applications must offer a CLI [3.1] aimed for technical users and system adminis-

trators, and a user-friendly GUI, taking advantage of the multi-platform widgets available

in the Qt framework. This graphical interface could be inspired in Apple’s Time Machine

[3.2], in the sense that it should not require prior knowledge of the file system or the disks

partition tables for users being able to set up a backup schedule

3.1.2 Backup Recovery Site

The MVP must come with a user private area accessible on the Internet with a web browser

[3.3], provided with the same authentication methods as the client applications. In this

site, the users with sufficient privileges and not organization-linked users can follow-up the

status of all cloud-synced backups and request the retrieval of available backups.

As some backups residing in the cold storage may take some time to be transferred to

the cloud service, the user will be shown estimated times for the different retrieval options

provided (e.g. direct download, P2P download, hard disks shipment, tape shipment, ...).

28

Chapter 3. External Interface Requirements 29

Figure 3.1: Mock-up of the CLI client

3.1.3 System Restore Utility

It is not in the scope of this project, but users involved in a data recovery process will

require the use of a disk image restore utility to mount recovered disk partitions in their

systems. A FOSS option for this scenario could be Clonezilla [3.4], which is a popular safe

option that runs from a Live CD but lacks a friendly user interface.

3.2 Hardware Interfaces

3.2.1 Storage Redundancy

It is suggested to employ a RAID 5 redundant array for storage, which means that with

a minimum number of three drives it will only sacrifice one disk per array for redundancy

handling and gain fault tolerance for one disk failure.

RAID5capacity = (# of drives− 1) ∗ Size of the smallest drive

Chapter 3. External Interface Requirements 30

Figure 3.2: AppleTM Time Machine’s User Interface (c©pngkey.com)

Anyone involved in the materialization of this project must analyze if this level of redun-

dancy still applies appropriate for a production environment. In case of requiring higher

read/write performance, RAID10 would be a better option, and in case of requiring raising

disk failure tolerance to at least 2 then RAID6 could be a good alternative at a similar

performance level.

3.2.2 Data Retrieval in the form of Removable Storage

The production service shall offer the possibility of retrieving data in some form of remov-

able storage via a courier/delivery service. These could be external hard drives, tape or

optical disks; and, if viable, the user should be able to return the hardware once the data

recovery process is finished and get a partial refund.

Chapter 3. External Interface Requirements 31

Figure 3.3: Mock-up of the backup recovery section of user private area

3.3 Software Interfaces

3.3.1 Software Libraries

• Qt Framework [17]

A framework that facilitates creating multi-platform builds and user interfaces in

the C++ programming language. It also includes I/O and file integrity checking

functionality that will be handy for this project.

• Botan [40]

C++ library with implementations for all the cryptographic operations necessary

for the service functionality, in this case, several implementations of AES-based

algorithms.

• Express.js [22]

Library for building web services and REST APIs with Node.js. It will be the core

Chapter 3. External Interface Requirements 32

Figure 3.4: Clonezilla (GNU GPL License)

of the cloud service API.

3.3.2 3rd Party Software

• Partclone [32]

Open-source utility for easy creation of disk partition images in Linux-based oper-

ating systems.

• dd (MacOS Mojave) [18]

UNIX utility that provides several ways to copy files. The corresponding client

application it to create disk partition images in macOS systems.

• ODIN [29]

Open-source application for easy creation of disk partition images in Windows op-

erating systems.

Chapter 3. External Interface Requirements 33

• OSFMount [31]

This application can be used by users of the platform to mount their disk images in

Windows systems.

• Clonezilla [15]

A Live CD that boots into an open-source disk partition manager with the ability

to create disk partitions from image files. It can be recommended to users of the

platform, independently of the operating system that they normally use, to perform

a system restore from a disk partition image backup of their own.

• HAProxy [41]

High availability load balancer. It allows the web service to distribute incoming

requests among the spawned servers, allowing for better response times and service

availability.

3.3.3 3rd Party Cloud Services

• Amazon Web Services S3 Glacier [16]

Cloud storage provider for the backup and/or Cold Storage needs of the platform.

It allows object direct uploads and downloads via a REST HTTP/HTTPS API, and

also physical pickup and delivery of tape.

• Google Firebase Authentication [23]

Cloud service that integrates several social media authentication providers in a single

API. They provide SDKs for many programming languages and a REST API.

• Docker Hub [20]

The official online repository of Docker images.

3.3.4 Database & Persistence Software

• mdadm [27]

RAID array controller software for Linux-based operating systems.

• rclone [35]

Chapter 3. External Interface Requirements 34

Fork of the popular file and folder synchronization application, rsync, that facilitates

integration with several cloud object storage providers out of the box.

• SQLite [38]

A lightweight relational database contained within a single file. To be used in the

client applications.

• MongoDB [42]

An easy to use NoSQL Document-oriented Database management system. To be

used in the web service.

3.4 Communications Interfaces

• HTTP/HTTPS

Most communication between systems will be carried over HTTP connections, some

of them SSL secured, since both the cloud service and the 3rd party providers will

interact with other components of the system via REST API.

User personal data exchanges and authentication must be performed over secure

connections, while this will not be necessary for backups uploads/downloads given

that the payload encryption method used to be sufficient to guarantee data confi-

dentiality.

• BitTorrent

In future iterations of the product and use cases where it is required to serve the same

backup to several clients, it would be interesting to consider using P2P technology,

to increase transfer rates and reduce server load. The BitTorrent protocol has several

implementations for this purpose.

Chapter 4

System Features

4.1 Client Applications Features

This section contains the common features and requirements among the client-side appli-

cations of the service, regardless of the platform/operating system being used.

4.1.1 Disk Partition Backup & Encryption

Description and Priority

Description: Users will be able to select which disk partitions will be copied as a disk

image, encrypted within the client application, and uploaded to the cloud service in the

background. They will be able to choose when full backups will take place and when will

it be a differential snapshot instead. It will also be possible to set the schedule and/or

frequency when these will happen.

Priority: High

Functional value added:

Operational cost:

Level of risk involved:

Development effort required:

35

Chapter 4. System Features 36

Stimulus/Response Sequences

Stimulus: The user selects a supported disk partition in the list.

Response: The application shows the backup strategy and scheduling settings available.

Stimulus: The user chooses a new backup strategy and/or scheduling setting for a certain

disk partition.

Response: The application shows the backup strategy and scheduling settings available.

Stimulus: User toggles the general switch for enabling / disabling all backup operations.

Response: The application will execute or ignore all scheduled tasks, when required, ac-

cording to the state of the switch.

Functional Requirements

• BKE-1: The application shall be able to scan, list, and show to the user all the

available compatible disk partitions ready to be backed up.

• BKE-2: The application shall be able to generate disk images from the partitions

selected by the user and immediately encrypt them using the 128-bit XTS [26] im-

plementation of the AES algorithm.

• BKE-3: The application shall be able to upload files to the cloud service together

with an encrypted version of its encryption key, initialization vector, and checksum

calculation or equivalent; while making sure that all the metadata gets related to

the user’s account in the user repository.

• BKE-4: The application will upload a disk image to the cloud service if, and only

if, it is properly encrypted.

• BKE-5: The application must execute any tasks scheduled by the user at proper

times as long as its daemon process is running.

• BKE-6: The application must allow the user to set up the backup strategy regard-

ing the frequency of full disk partition backups and differential backups for every

partition available.

Chapter 4. System Features 37

• BKE-7: The application must allow the user to define a schedule for backups to be

automatically generated, encrypted, and uploaded.

• BKE-8: The application must allow the user to disable and re-enable backups

completely by triggering an easy to access switch.

• BKE-9: The application shall abort the operation and notify the user when a task

cannot be performed due to lack of disk space, unavailable Internet connection, or

bad response from the cloud service.

• BKE-10: In case a disk partition is no longer accessible, its configuration will

remain stored and visible to the user but no tasks will be executed and the user will

be informed of the situation.

• BKE-11: The application must allow the user to generate, encrypt, and upload

a disk partition backup (full or differential snapshot) at will and with immediate

processing; regardless of the scheduled ones.

4.1.2 Encryption keys management & Decryption

Description and Priority

Description: The approach regarding encryption keys management will be based in re-

liance on randomly generated master keys - one per account - which will be encrypted with

the account’s master password and uploaded and stored in the cloud service [4].

The process will consist of:

1. A random master key generated at the account’s creation time, which will be en-

crypted with the master password chosen by the user and uploaded to the server

together with a hash of the user’s master password.

Master Key = Rand256-bit(From user-inputted noise)

Encrypted Master Key = AES256ECB(Master Key,Master Password)

2. Every time a backup is created a new unique encryption key and a nonce (initializa-

tion vector) will be generated. These keys will then be encrypted using the master

key and uploaded to the server together with the encrypted backup payload and

checksum calculations; prior and posterior to the encryption process.

Chapter 4. System Features 38

One-time Key = Rand128-bit

IV (Nonce) = Rand64-bit

Encrypted Backup = AES128XTS(Backup Payload, One-time Key, IV)

3. The server will deliver its copy of the encrypted master key to any client application

that can guess the password’s hash. The client application can then decrypt it with

the user’s master password and store it locally, in case of performing a fresh install

of the application.

4. In case that a client application requests a master password change to the server,

the latter will allow it to update the encrypted master key; this time encrypted with

the new password. This allows the user to secure existing backups in case his/her

master password is compromised.

Priority: High

Functional value added:

Operational cost:

Level of risk involved:

Development effort required:

Stimulus/Response Sequences

Stimulus: The user clicks on the login button.

Response: The application opens a web view and redirects the user to the authentication

site of the web service.

Stimulus: The user completes the authentication flow in the web service site successfully.

Response: The client application stores the newly generated auth token and the existing

encrypted master key; both sent from the web service. It then prompts the user to enter

the account’s master password to decrypt the master encryption key.

Stimulus: The user selects the option to decrypt a backup retrieved from the cloud service

and provides the payload and its associated encrypted key and nonce.

Response: The application decrypts the provided keys using the locally stored master

Chapter 4. System Features 39

key and uses the result to decrypt the payload and make it available to the user.

Stimulus: The user selects the option to see the encryption master key.

Response: The application displays the key to the user in plain text. (i.e. if this master

key is compromised, every one-time-key encrypted with it and all backups associated must

be considered compromised).

Functional Requirements

• ENC-1: The client application will use the authentication service provided by the

product’s web service to identify the user. It will provide the application with a copy

of the encrypted master key and a token to keep the user logged in indefinitely; until

there is a logout request or until there is a password change.

• ENC-2: The application must be able to decrypt any previously encrypted backup

with its unique (encrypted) pair of encryption key and nonce, and the encryption

master key stored locally.

• ENC-3: The user must be able to see his/her locally stored encryption master key

in plain text at any moment without requiring an Internet connection.

4.2 Web Portal Features

4.2.1 User Accounts Management

Description and Priority

Description: User accounts creation, management, and authentication will be performed

through a web interface on the Internet. Even while logging in from a standalone client,

a web view or browser window will be open to complete the login flow and provide the

native application with an auth token.

Priority: High

Functional value added:

Chapter 4. System Features 40

Operational cost:

Level of risk involved:

Development effort required:

Stimulus/Response Sequences

Stimulus: The user selects the option to log in to a social media site to create an account.

Response: The site attempts to log in using the 3rd party provider API for social login.

If successful, then prompts the user to provide any required personal data that could not

be fetched from the user’s social profile, asks him/her to confirm, and creates the account.

The system then sends an email to the user requesting action to confirm that the address

is correct.

Stimulus: The user selects the option to create an account.

Response: The site prompts the user to provide an email address and other required

personal data, asks him/her to confirm, and creates the account. The system then sends

an email to the user requesting action to confirm that the address is correct.

Stimulus: The user confirms his/her email address.

Response: The system prompts the user to provide randomized input to generate a

pseudo-random master encryption key and to choose a master password to encrypt and

store the newly created key in the server.

Stimulus: The user with existing account requests to login with a one time link.

Response: The system voids any existing active temporary access link and sends a new

one-time access link to the user’s private area via email.

Stimulus: The user with an existing account selects the option to log in to a social media

site, to then log in to his/her private area.

Response: The site attempts to log in using the 3rd party provider API for social login.

If successful, then tells the web service that access was granted and the user is redirected

to his/her private area.

Chapter 4. System Features 41

Functional Requirements

• UAM-1: The portal must allow creating an account by asking for an email address

and the minimum amount of personal data as possible.

• UAM-2: The portal shall allow creating an account by using a social media login.

• UAM-3: The portal will send an email verification link to the user after creating a

new account.

• UAM-4: Once the user validates the email account of a newly created account, the

site will prompt the user to input randomized data (e.g. by moving the cursor, ..)

to generate a pseudo-random master encryption key on the client-side.

• UAM-5: Once a user’s master encryption key is generated, the user will be prompted

to input a secure master password which will be used to encrypt the key on the client-

side, and then will be uploaded to the server.

• UAM-6: The portal must allow users to login without requiring a password, by

sending a one-time access link to the user’s email account.

• UAM-7: One-time access links must expire when used, when another link is gener-

ated, or after a reasonable amount of time, according to security concerns.

• UAM-8: The portal shall allow users who created their account with the social me-

dia credentials, to authenticate themselves by logging in that social media provider.

• UAM-9: The portal must allow the user to delete all his / her private data, backups,

and/or the whole account.

• UAM-10: The portal will eventually allow users of organizations to invite additional

managed users to share their accounts.

• UAM-11: The user must not be able to interact with his / her newly created

account until the associated email account is validated.

• UAM-12: If an email address is not validated in a reasonable amount of time,

according to security standards, the newly created account associated will be com-

pletely removed.

• UAM-13: The user must be able to modify his / her private data and email address,

and the latter case will initiate a new email address validation process.

Chapter 4. System Features 42

• UAM-14: The user must be able to change his / her master password, in which

case the encryption master key will be encrypted with the new password on the

client-side and then replaced in the server.

• UAM-15: The user master password must be considered secure according to current

cryptography standards in regards to tolerance to brute force attacks for the web

service to allow it in the first place.

4.2.2 Cloud Backup Management & Data Retrieval

Description and Priority

Description: The web portal will be the interface that users will use to manage and

retrieve their cloud-synced backups. It will feature a chronological view [3.3] where users

will be able to easily find their backups and choose different retrieval options.

Priority: Medium

Functional value added:

Operational cost:

Level of risk involved:

Development effort required:

Stimulus/Response Sequences

Stimulus: The user chooses to retrieve a certain full backup or snapshot.

Response: The server will fetch all dependencies, calculate the total size, and provide the

user with the available options for data retrieval.

Stimulus: The user requests to download a certain backup.

Response: If the files are available, a direct download will begin immediately. If files need

to be fetched from the cold storage provider, the user will receive an alert via email when

files are ready to download.

Stimulus: The user requests to retrieve a backup via the physical delivery of a removable

storage drive.

Chapter 4. System Features 43

Response: The portal will log the request and send a confirmation to the user via email.

Functional Requirements

• CBK-1: The user must be able to see all his / her full and partial backups and

related metadata; including file system type, date of creation, date of upload, de-

vice of origin identifier, encrypted the one-time encryption keys, and the user who

uploaded.

• CBK-2: The user must be able to delete any full or partial backup, together with

all its dependencies.

• CBK-3: The user must be able to download any full or partial backup, together

with all its dependencies.

• CBK-4: In case that a backup requested by the user for direct download is not

available at the moment, the system will queue any tasks required to make it available

and will send an alert to the user via email when it becomes available.

• CBK-5: The user must be able to log a request for physical delivery of any full

or partial backup in removable storage, and get a confirmation and follow-ups via

email.

4.3 Server Features

4.3.1 Cloud Backup Service

Description and Priority

Description: The cloud backup service will store and serve user backups, to the web

service and standalone clients of the platform, together with their metadata and encrypted

versions of their unique encryption keys. It will also check file integrity whenever a check-

sum is available.

Priority: High

Chapter 4. System Features 44

Functional value added:

Operational cost:

Level of risk involved:

Development effort required:

Stimulus/Response Sequences

Stimulus: The client application uploads a backup.

Response: The server stores the payload and adds an entry to the the database linked

to the user’s account containing the file’s metadata and unique encryption key encrypted

with the account’s master key.

Stimulus: The client or web service requests a certain backup.

Response: The server looks for it in the hot storage and serves it directly, or requests it

to the cold storage and returns an estimation for its availability.

Stimulus: The client or web service issues a delete request.

Response: The server looks for the requested backup both in the hot storage and cold

storage and deletes all copies.

Functional Requirements

• BSV-1: The server will be constantly listening to HTTP/HTTPS requests from

standalone clients and web service.

• BSV-2: The server will only process requests that contain a valid API key for an

active account, and will limit the scope of data they can acquire and manipulate to

that account’s records.

• BSV-3: The server must implement RAID5 array redundancy in its hot storage

disks.

• BSV-4: The server will only accept incoming backup uploads consisting of the

encrypted payload, metadata, checksum, and unique encryption keys; the latter

themselves encrypted with the account’s master key.

Chapter 4. System Features 45

• BSV-5: The server will initially store the payload of backups in its hot storage file

system and save the metadata in the service database.

• BSV-6: The server will serve files requested by a client/web service together with

their metadata directly from the hot storage.

• BSV-7: If the server does not find a requested file in the hot storage, it will issue

a download request from the cold storage provider to the hot storage and estimate

the remaining time to complete the operation.

• BSV-8: The server will delete files from the hot storage and issue delete requests

to the cold storage provider whenever instructed by the web service.

• BSV-9: The server will deny uploads if the user account available space usage has

been exceeded.

4.3.2 Cold Storage Backups Sync

Description and Priority

Description: This service will proactively move backups between hot and cold storage

(3rd party) according to security, efficiency, and availability criteria.

Priority: Low

Functional value added:

Operational cost:

Level of risk involved:

Development effort required:

Functional Requirements

• CSS-1: The server shall make sure that no storage request to the hot storage will be

denied by a lack of disk space by uploading existing files to the cold storage provider

and liberating space.

• CSS-2: The server criteria for choosing files to be moved to cold storage must favor

service efficiency according to access patterns and user activity.

Chapter 4. System Features 46

• CSS-3: The server will permanently delete long term files according to the user

accounts plans/agreements.

Chapter 5

Other Nonfunctional

Requirements

5.1 Performance Requirements

The web service must adhere to the SLA terms negotiated with end-users, which will always

be less restrictive than the SLA signed with the cold storage 3rd party provider.

5.2 Safety Requirements

Independently of the cloud service operation, it will be necessary to perform recurring

backups of the whole platform databases and user files stored either in hot or cold storage.

These will be the last resource of data recovery in case of major systems failure, so it can

rely on long-term bulk storage technologies like tape or optical disks.

5.3 Security Requirements

The service must comply with GDPR and other data protection laws applicable wherever

the server is located and the clients are invoiced.

The organization running operations will also be required to comply with any mandatory

audit regarding data protection in the server’s jurisdiction before going live.

47

Chapter 5. Other Nonfunctional Requirements 48

It cannot be possible for the service administrators to retrieve any non-encrypted user

encryption key or master password, and they will never facilitate ways to force users to

reveal their not-encrypted encryption keys or master passwords to law enforcement or

justice authorities. At the same time, software developers involved in the product creation

or maintenance will never implement back-doors or spyware in any of the client or web

portal releases.

5.4 Software Quality Assurance and Testing

Both the standalone client applications and the web portal must be easy to use by users

with basic computer skills without the need for extensive documentation. In the GUI

desktop versions, setup shall be similar to Apple’s Time Machine [3.2] and the application

itself shall be lightweight in terms of storage and memory usage (without taking space used

by backup files into account) when compared with similar applications.

Every graphical interface must be clean and be transparent and informative regarding the

handling of user data, level of confidentiality achieved, and risks involved in every data

transfer or data manipulation operation.

5.4.1 Testing Strategy

Given that the service runs in a sort of distributed system and client applications com-

patible with different operating systems and device types, it is critical to maintain a com-

prehensive test suite that guarantees permanent service availability and system integrity

during new releases.

The proposed strategy consists of two different approaches to automated testing:

1. End-to-end Testing: Since a critical aspect of the distributed system operations

is communication between components, it will be mandatory to have automated

tests that can directly interact with the applications’ UIs and make sure that every

functionality is working correctly.

These should cover, at least, every major use case of the service and run automati-

cally in a schedule and, in addition to that, every time that a new software release

is about to be deployed.

Chapter 5. Other Nonfunctional Requirements 49

Solutions like Katalon [25], TestComplete [37], and Selenium [36] can be used to

develop these tests and in different scenarios that cover all the target operating

systems and platforms of this project.

2. Unit Testing: Maintaining applications that support so many different operating

systems and the fact that several programming languages are involved, implies that

some or all developers will work in several codebases.

In these situations, it almost mandatory to implement and execute automated uni-

tary tests before every commit to the development code repository. Doing so will

minimize the risk of bugs and can help anticipate errors that may affect more than

one component of the distributed system before end-to-end tests kick in; which are

generally much slower and resource-consuming than unit tests.

For unit tests coding it is advised to use the standard or de facto standard tools

provided by the programming language or application framework that the code is

written for.

5.5 CI/CD Requirements

Deploy of new releases will involve the provision of several distributed systems, execution

of containerized applications, and execution of automated unitary and end-to-end tests;

which raises the necessity for automated software deployment workflows.

Since the suggested approach for the evolution of this service from the current prototype

to the MVP is an iterative approach in an Agile fashion, it would be interesting to con-

sider applying DevOps principles to the continuous integration and continuous deployment

strategies. Another fact that supports this approach is the requirement for automated scal-

ing of the system, which will require setting up rule sets and automated workflows in the

production environment so new web service instances and storage resources are provisioned

just in time.

5.6 Business Rules

• Users will be limited to access data created and uploaded by them. Initially, there

will be no feature that allows sharing between accounts, therefore each account

Chapter 5. Other Nonfunctional Requirements 50

operation will be limited to its data domain.

• Service will be interrupted once an account reaches the storage limit set for it. Only

data retrieval will be possible, which may incur additional costs payable by the user

according to the plan subscribed.

Chapter 6

Prototype Implementation

To illustrate the feasibility of the distributed system architecture, technology stack, and

encryption and data handling strategies proposed — a prototype covering a subset of the

MVP expected functionality has been implemented in a limited hardware platform and a

Linux client.

Source code for this implementation should have been provided together with this docu-

ment.

6.1 General Use Case: Backup and Upload Parti-

tion

The goal of the prototype is to cover one of the main use cases, as a matter of fact; one

that all active users of the service will eventually execute. It is use case number II [2.2],

the first backup of a disk partition where the process is user-initiated manually.

6.1.1 Description

The user wants to generate a one-time encrypted full backup of one of the disk partitions

in his/her system, and then upload it to the cloud service.

This use case covers the typical scenario after the first time install of the software, where

the user wants to build a first time backup of their disks. The software should encourage

51

Chapter 6. Prototype Implementation 52

the user to perform it as soon as possible.

Once the case use scenario is completed the user will have the possibility to retrieve the

file, and/or generate and upload differential snapshots to keep the backup up to date with

the current status of the system partition.

Figure 6.1: Use Case II: Actors and Dependencies [2.2]

Chapter 6. Prototype Implementation 53

6.1.2 Main Scenario

Figure 6.2: Use Case II: Flow Diagram [2.2]

Chapter 6. Prototype Implementation 54

6.1.3 Preconditions

1. The client application must have been installed in the user’s system and been given

the required privileges to access the application storage space and system partition

table.

2. The user must have an active account registered in the web service with an existing

pair of a master encryption key and master password, and they need to be added to

the environment variables file of the client application.

3. The partition to be backed up must be of type ext3/ext4 since the prototype will

only work in Linux-based operating systems.

4. The disk partition cannot contain the Linux root, as it needs to be unmounted.

5. The file system must have enough free space to accommodate a copy of the target

partition.

6. The user’s system has a stable connection to the Internet with sufficient bandwidth

to allow the upload operations.

7. The web service must be fully operative at the address specified in the environment

variables file of the client application.

6.1.4 Post-conditions

• The encrypted backup of the user’s chosen partition is stored at the very own storage

of our cloud service immediately after finishing upload.

• The encrypted backup will eventually be moved from the remote server to Amazon

S3 Glacier, according to the server’s cron scheduler criteria for executing rclone and

syncing files with the S3 bucket.

• Retrieving/Downloading a file that was moved to the 3rd party cold storage will take

more time to process than those stored in the cloud service itself.

• The user account’s used space quota will be updated according to the final file size

of the encrypted backup.

• The client application will allow the user to generate snapshots (differential backups)

of the partition which will be labeled as dependant on the existing full backup.

Chapter 6. Prototype Implementation 55

6.2 Hardware Stack

• Raspberry Pi 4 Model B - Quad core 64bit ARM v8 processor @ 1.5GHz with 4GB

SDRAM

• Toshiba Canvio Basics 1TB External Hard Drive (4x on a redundant RAID5 array)

Figure 6.3: Prototype: Web Server & Hot Storage Disks Array

6.3 Specific Software Stack

• Operating System: ”Raspbian” Debian Buster with GNU Linux Kernel v4.19

running a SSH/SCP server with public/private key authentication [19]

• Web Service: Express 4.17.1 [22] on top of NodeJS 12.16.3 LTS [28]

• Client Applications Framework: Qt 5.14.2 for Linux [17]

Chapter 6. Prototype Implementation 56

• Orchestration Service: Docker [21] with verified Docker Hub ARM images (node,

haproxy, and mongo) provisioned via Docker Compose [12].

Figure 6.4: Prototype: Solution Overview

6.3.1 3rd Party Resources

• Cold Storage: Amazon Web Services S3 and S3 Glacier [16]

• Dynamic DNS: FreeDNS/Afraid.org [14]

Chapter 7

Conclusion

Thanks to all the work of the academic community on cryptographic algorithms and the

work of the FOSS community on developing abstraction libraries for these algorithms, it is

safe to claim that developing an end-to-end encrypted service is a pretty straightforward

journey once the data securitization and credentials management strategy has been sorted

out.

The abuse of user data collection by Internet companies, the increase in data loss events

caused by malware, and the interest in blockchain and more transparent and decentral-

ized technologies are a promising environment for the proliferation of SaaS services where

respect for user data is the main value. Therefore, I believe this project could be a good

starting point for any new Internet service that shares these values.

7.1 Project scope changes and other eventualities

As mentioned in the introduction and evidenced in the initial project roadmap, a change of

scope regarding the goals of the prototype took place soon after commencing work. A more

realistic analysis of the resources available and the project deadline resulted in removing

graphical interface design from the prototype implementation, together with some of the

main use cases of the product. At the end of the day, we believe that the resulting prototype

serves its purpose and proves that a viable product can be developed with the software

specification and technology stack proposed.

The other main eventuality we faced was the cryptographic algorithms library choice.

Initially, the system was intended to use the Qt Cryptographic Architecture [34] library;

57

Chapter 7. Conclusion 58

which proved to be quite outdated for the Qt Framework version used and to have almost

no documentation available online. Then we decided to pivot to the popular OpenSSL [30]

application, which is widely documented but developing the client with it was quite slow

due to the low-level approach of its C++ library. And, finally, Botan [40] turned out to

be the cryptography library of choice, due to its great documentation and process-oriented

method.

7.2 MVP Roadmap

As next steps to iterate from the current prototype towards an MVP, one should consider

the following:

1. Daemonize the application, so disk partitions that hold the operating system root

directories can be unmounted and backed up during system shutdown [39] or startup.

2. Elaborate on the physical delivery options for backups and design the workflows

and quality assurance procedures that the staff in charge of delivering these should

follow.

3. Design and build the user interface and clients for all supported operating systems.

4. Design and build the website containing the users’ private area and the user authen-

tication flows.

7.3 Future of the project

As additional considerations, these topics deserve further investigation and elaboration for

whoever aiming to turn this project into a commercial SaaS product:

• Master encryption key compromised scenario

What are the options if an account’s master encryption key is compromised? Shall

all existing backups be re-encrypted? Would that be cost-effective and sustainable

for the system?

• Pricing structure

Could a freemium model work for a SaaS like this? A pay-as-you-go model maybe?

Could hardware selling be a profitable source of income?

Chapter 7. Conclusion 59

• Business Development Strategy

Is this a SaaS that could work with an inbound sales approach? Which market

segments could be more interesting to start targeting? B2B? B2C? Both?

Glossary

CLI Command Line Interface. 8, 28, 29

Cold Storage Storage service intended to host files, typically big in size, that are meant

to stay not accessed or modified for long periods of time.. 16, 17, 33

Daemon Background non-interactive process running in an operating system.. 58

DevOps Continuous Integration and Continuous Deployment set of practices that en-

courages collaboration between development teams with IT system administrators

in charge of software deployments.. 49

FAQ Frequently Asked Questions. 26

FOSS Free or Open Source Software. 27, 29

GUI Graphical User Interface. 28

Hot Backups Full, partial or incremental disk image backups which are stored in our

in-house storage but have not been uploaded to the Cold storage service.. 27

I/O Input / Output. 24

Live CD Operating System that runs directly from removable storage without requiring

installing files in the disk, only RAM usage.. 29, 33

Man-in-the-middle attack Systems penetration attack in which a third party modifies

the payload of a communication between two or more parties without their knowledge

nor their authorization.. 23, 27

MVP Minimum Viable Product. 11, 49, 51

60

Chapter 7. Conclusion 61

NoSQL Any database management system design paradigm that is other than the re-

lational approach. Generally refers to document-oriented databases and key-value

stores.. 34

Object-relational mapping Data model management strategy in which the class data

models in an application are abstractions of the underlying database structure. It

allows for seamless materialization of changes in the application data model in the

database, and vice-versa.. 21

SLA Service Level Agreement. 16, 17, 25, 47

SPOC Single Point Of Contact. 17

Bibliography

Journal Articles

[1] T. M. H. Reenskaug, “The original MVC reports”, 1979, Accepted: 2013-03-12T07:58:06Z.

[Online]. Available: https://www.duo.uio.no/handle/10852/9621 (visited on

06/15/2020).

[2] IEEE, “IEEE guide for software requirements specifications”, IEEE Std 830-1984,

pp. 1–26, Feb. 1984, Conference Name: IEEE Std 830-1984. doi: 10.1109/IEEESTD.

1984.119205.

[3] P. Damaschke, “Online strategies for backups”, Theoretical Computer Science, vol. 285,

pp. 43–53, Jan. 1, 2000. doi: 10.1016/S0304-3975(01)00289-4.

[5] A. A. Hasib and A. A. M. M. Haque, “A comparative study of the performance and

security issues of AES and RSA cryptography”, 2008 Third International Conference

on Convergence and Hybrid Information Technology, 2008. doi: 10.1109/ICCIT.

2008.179.

[13] Mega Ltd., “MEGA security white paper”, no. 2, p. 42, Jan. 2020. [Online]. Available:

https://mega.nz/SecurityWhitepaper.pdf (visited on 05/06/2020).

[26] S. S. Keller and T. A. Hall, “The XTS-AES validation system (XTSVS)”, p. 10,

Books

[9] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Redundant arrays of inexpensive

disks(RAIDs)”, in Operating Systems: Three Easy Pieces, CreateSpace Independent

Publishing Platform, Sep. 2018, isbn: 978-1-985086-59-3.

62

https://www.duo.uio.no/handle/10852/9621
https://doi.org/10.1109/IEEESTD.1984.119205
https://doi.org/10.1109/IEEESTD.1984.119205
https://doi.org/10.1016/S0304-3975(01)00289-4
https://doi.org/10.1109/ICCIT.2008.179
https://doi.org/10.1109/ICCIT.2008.179
https://mega.nz/SecurityWhitepaper.pdf

Chapter 7. Conclusion 63

Press Articles

[6] Donn Le Vie, Jr. (Aug. 29, 2010). Writing software requirements specifications (SRS),

TechWhirl. Library Catalog: techwhirl.com Section: Tech Comm Deliverables, [On-

line]. Available: https://techwhirl.com/writing- software- requirements-

specifications/ (visited on 04/05/2020).

[24] R. Hodge. (). Welcome to the 2019 data breach hall of shame, CNET. Library

Catalog: www.cnet.com, [Online]. Available: https://www.cnet.com/news/2019-

data-breach-hall-of-shame-these-were-the-biggest-data-breaches-of-

the-year/ (visited on 06/02/2020).

Manuals/Guides

[18] (). Dd(1) [mojave man page]. Library Catalog: www.unix.com, [Online]. Available:

/man-page/mojave/1/dd (visited on 05/05/2020).

[39] (). Systemd-halt.service, [Online]. Available: https : / / www . freedesktop . org /

software/systemd/man/systemd-halt.service.html (visited on 06/08/2020).

[43] The Qt Company. (). Getting started programming with qt widgets — qt widgets

5.15.0, [Online]. Available: https://doc.qt.io/qt-5/qtwidgets-tutorials-

notepad-example.html (visited on 06/15/2020).

Websites/Blogs

[8] Oxagile. (Feb. 5, 2014). Waterfall software development model, Oxagile Blog. Li-

brary Catalog: www.oxagile.com, [Online]. Available: https://www.oxagile.com/

article/the-waterfall-model/ (visited on 06/13/2020).

[10] NetMarketShare. (2019). Desktop operating system market share in 2019, [Online].

Available: https : / / www . netmarketshare . com / operating - system - market -

share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%

22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%

7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%

22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%

22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%

https://techwhirl.com/writing-software-requirements-specifications/
https://techwhirl.com/writing-software-requirements-specifications/
https://www.cnet.com/news/2019-data-breach-hall-of-shame-these-were-the-biggest-data-breaches-of-the-year/
https://www.cnet.com/news/2019-data-breach-hall-of-shame-these-were-the-biggest-data-breaches-of-the-year/
https://www.cnet.com/news/2019-data-breach-hall-of-shame-these-were-the-biggest-data-breaches-of-the-year/
/man-page/mojave/1/dd
https://www.freedesktop.org/software/systemd/man/systemd-halt.service.html
https://www.freedesktop.org/software/systemd/man/systemd-halt.service.html
https://doc.qt.io/qt-5/qtwidgets-tutorials-notepad-example.html
https://doc.qt.io/qt-5/qtwidgets-tutorials-notepad-example.html
https://www.oxagile.com/article/the-waterfall-model/
https://www.oxagile.com/article/the-waterfall-model/
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D

Chapter 7. Conclusion 64

3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%

222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-

1000%22%7D (visited on 05/25/2020).

[11] Stack Overflow. (2019). Stack overflow developer survey 2019, Developers’ Primary

Operating Systems 2019. Library Catalog: insights.stackoverflow.com, [Online]. Avail-

able: https : / / insights . stackoverflow . com / survey / 2019 / ?utm _ source =

social-share&utm_medium=social&utm_campaign=dev-survey-2019#technology-

_-developers-primary-operating-systems (visited on 05/25/2020).

[12] Docker. (Jun. 11, 2020). Overview of docker compose, Docker Documentation. Li-

brary Catalog: docs.docker.com, [Online]. Available: https://docs.docker.com/

compose/ (visited on 06/14/2020).

[14] J. Anderson. (). FreeDNS - free DNS - dynamic DNS - static DNS subdomain and

domain hosting, [Online]. Available: https://freedns.afraid.org/ (visited on

06/14/2020).

[15] (). Clonezilla - about, [Online]. Available: https://clonezilla.org/ (visited on

05/05/2020).

[16] (). Cloud data archiving — long-term object storage — amazon s3 glacier, [Online].

Available: https://aws.amazon.com/glacier/ (visited on 05/05/2020).

[17] T. Q. Company. (). Qt — cross-platform software development for embedded &

desktop. Library Catalog: www.qt.io, [Online]. Available: https : // www . qt . io

(visited on 05/05/2020).

[19] (). Debian – the universal operating system, [Online]. Available: https://www.

debian.org/ (visited on 05/05/2020).

[20] (). Docker hub, [Online]. Available: https://hub.docker.com/ (visited on 05/05/2020).

[21] (). Empowering app development for developers — docker, [Online]. Available: https:

//www.docker.com/ (visited on 05/05/2020).

[22] (). Express - node.js web application framework. Library Catalog: expressjs.com,

[Online]. Available: https://expressjs.com/ (visited on 05/05/2020).

[23] (). Firebase authentication — simple, free multi-platform sign-in. Library Cata-

log: firebase.google.com, [Online]. Available: https : / / firebase . google . com /

products/auth (visited on 05/05/2020).

https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-01%22%2C%22dateEnd%22%3A%222019-12%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019#technology-_-developers-primary-operating-systems
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019#technology-_-developers-primary-operating-systems
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019#technology-_-developers-primary-operating-systems
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://freedns.afraid.org/
https://clonezilla.org/
https://aws.amazon.com/glacier/
https://www.qt.io
https://www.debian.org/
https://www.debian.org/
https://hub.docker.com/
https://www.docker.com/
https://www.docker.com/
https://expressjs.com/
https://firebase.google.com/products/auth
https://firebase.google.com/products/auth

Chapter 7. Conclusion 65

[25] Katalon. (). Katalon — simplify web, API, mobile, desktop automated tests, Katalon

Solution. Library Catalog: www.katalon.com, [Online]. Available: https://www.

katalon.com/ (visited on 06/14/2020).

[27] (). Mdadm, [Online]. Available: http://neil.brown.name/blog/mdadm (visited on

05/05/2020).

[28] Node.js. (). Node.js — about, Node.js. Library Catalog: nodejs.org, [Online]. Avail-

able: https://nodejs.org/en/about/ (visited on 05/05/2020).

[29] (). ODIN - open disk imager for windows, [Online]. Available: http://odin-win.

sourceforge.net/ (visited on 05/05/2020).

[30] OpenSSL Software Foundation. (). OpenSSL - cryptography and SSL/TLS toolkit,

[Online]. Available: https://www.openssl.org/ (visited on 06/14/2020).

[31] (). OSFMount - mount disk images & create RAM drives, [Online]. Available: https:

//www.osforensics.com/tools/mount-disk-images.html (visited on 05/05/2020).

[32] (). Partclone - about, [Online]. Available: https://partclone.org/ (visited on

05/05/2020).

[33] Proton Technologies AG. (). Secure email: ProtonMail is free encrypted email., Pro-

tonMail. Library Catalog: protonmail.com, [Online]. Available: https://protonmail.

com (visited on 06/14/2020).

[34] (). Qt cryptographic architecture, [Online]. Available: https://api.kde.org/

kdesupport-api/qca-apidocs/ (visited on 05/05/2020).

[35] (). Rclone - rsync for cloud storage, [Online]. Available: https://rclone.org/

(visited on 05/05/2020).

[36] Selenium. (). SeleniumHQ browser automation, [Online]. Available: https://www.

selenium.dev/ (visited on 06/14/2020).

[37] Smartbear. (). Automated UI testing tools — TestComplete, [Online]. Available:

https://smartbear.com/product/testcomplete/overview/ (visited on 06/14/2020).

[38] SQLite Consortium. (). SQLite home page, [Online]. Available: https : / / www .

sqlite.org/index.html (visited on 06/15/2020).

[40] The Botan Developers. (). Botan: Crypto and TLS for modern c++ — botan, [On-

line]. Available: https://botan.randombit.net/ (visited on 06/14/2020).

https://www.katalon.com/
https://www.katalon.com/
http://neil.brown.name/blog/mdadm
https://nodejs.org/en/about/
http://odin-win.sourceforge.net/
http://odin-win.sourceforge.net/
https://www.openssl.org/
https://www.osforensics.com/tools/mount-disk-images.html
https://www.osforensics.com/tools/mount-disk-images.html
https://partclone.org/
https://protonmail.com
https://protonmail.com
https://api.kde.org/kdesupport-api/qca-apidocs/
https://api.kde.org/kdesupport-api/qca-apidocs/
https://rclone.org/
https://www.selenium.dev/
https://www.selenium.dev/
https://smartbear.com/product/testcomplete/overview/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://botan.randombit.net/

Chapter 7. Conclusion 66

[41] The HAProxy Developers. (). HAProxy - the reliable, high performance TCP/HTTP

load balancer, [Online]. Available: http://www.haproxy.org/ (visited on 06/14/2020).

[42] (). The most popular database for modern apps, MongoDB. Library Catalog: www.mongodb.com,

[Online]. Available: https://www.mongodb.com (visited on 05/05/2020).

http://www.haproxy.org/
https://www.mongodb.com

Appendix A

Annex: Gantt Chart

Starts at the next page

67

Page 1 of 5Exported on March 6, 2020 11:33:27 AM PST

Page 2 of 5Exported on March 6, 2020 11:33:27 AM PST

Page 3 of 5Exported on March 6, 2020 11:33:27 AM PST

Page 4 of 5Exported on March 6, 2020 11:33:27 AM PST

Page 5 of 5Exported on March 6, 2020 11:33:27 AM PST

Appendix B

Annex: Class Hierarchy in

PlantUML format

B.1 Client Application

@startuml client

scale 1024 width

scale 768 height

class Account {

+ id : String

+ usedQuota : Integer

+ quota : Integer

+ createdAt : Integer

+ encryptedMasterKey : String

+ uploadBackup(file : PartitionImage)

+ downloadBackup(id : String)

}

Account "1" *-- "1..*" User

abstract class User {

+ email : String

73

Appendix B. Annex: Class Hierarchy in PlantUML format 74

+ createdAt : Integer

+ usedQuota : Integer

- apiKey : String

+ getMasterEncryptionKey(masterPassword : String) : String

}

User <|-- Admin

User <|-- ManagedUser

Admin "1" o- "*" ManagedUser

enum WeekDay {

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

}

class UserSettings {

+ partitionsToBackupList[0..*] : String

+ backupDays[0..*] : WeekDay

+ backupTimes[0..*] : Integer

+ fullBackupInterval : Integer

}

User "1" o- "1" UserSettings

abstract class Partition {

+ id : String

+ label : String

+ rootPath : String

+ size : Integer

+ mount(adminPass : String, mountPoint : String) : Int

Appendix B. Annex: Class Hierarchy in PlantUML format 75

+ unmount(adminPass : String) : Int

+ createImage(adminPass : String, path : String) : PartitionImage

}

class NtfsPartition {

+ winLetter : String

}

class ExtPartition {

+ device : String

}

Partition <|-- NtfsPartition

Partition <|-- ExtPartition

Partition <|-- ApfsPartition

User "1" <- "*" Partition

abstract class PartitionImage {

+ id : String

+ parentId : String

+ label : String

+ path : String

+ fileExtension : String

+ size : Integer

+ isEncrypted : Boolean

+ encryptedAesKey : String

+ aesKeyEncryptionIv : String

+ encryptedInitVector : String

+ initVectorEncryptionIv : String

+ createdAt : Integer

+ encrypt(aesKey : String) : void

+ unencrypt(aesKey : String) : void

}

Appendix B. Annex: Class Hierarchy in PlantUML format 76

class DifferentialImage {

+ parentId : String

+ buildFromParent() : PartitionImage

}

Partition "1" o- "*" PartitionImage

PartitionImage <|-- ParentImage

PartitionImage <|-- DifferentialImage

ParentImage "1" o- "*" DifferentialImage

hide empty members

@enduml

B.2 Web Service Application

@startuml server

scale 1024 width

scale 768 height

class Account {

+ id : String

+ usedQuota : Integer

+ quota : Integer

+ encryptedMasterKey : String

+ createdAt : Integer

}

Account "1" *-- "1..*" User

abstract class User {

+ email : String

+ usedQuota : Integer

+ 3rdPartyAuthProvider: String

+ 3rdPartyAuthUserKey: String

Appendix B. Annex: Class Hierarchy in PlantUML format 77

+ clientApiKeys[0..*] : String

}

User <|-- Admin

User <|-- ManagedUser

Admin "1" o- "*" ManagedUser

!define datatype(x) class x << (D,#FF7700) DataType>>

hide empty members

datatype(3rdPartyUploadDetails) {

uploadId : String

containerBucketId : String

fileObjectId : String

}

class File {

+ id : String

+ path : String

+ fileExtension : String

+ size : Integer

+ encryptedAesKey : String

+ encryptedInitVector : String

+ 3rdPartyStorageProvider : String

+ 3rdPartyStorageUniqueId : String

+ createdAt : Integer

+ uploadedAt : Integer

+ uploadedTo3rdPartyAt : Integer

+ uploadTo3rdParty() : 3rdPartyUploadDetails

+ downloadFrom3rdParty() : void

}

User "1" <- "*" File

class DifferentialFile {

parentId : String

Appendix B. Annex: Class Hierarchy in PlantUML format 78

}

File <|-- DifferentialFile

File "1" o-- "*" DifferentialFile

hide empty members

@enduml

	Introduction
	Context and Project justification
	Project objectives
	Scope and Work methodology
	Work breakdown and Schedule
	Summary of achieved outcomes
	Briefing of the upcoming chapters

	Overall Description
	Product Perspective
	Product Functionality: Main Use Cases
	User-Initiated Use Cases
	Server-initiated Use Cases
	3rd party provider-initiated Use Cases

	User Classes and Characteristics
	End Users
	Service Operations
	3rd Party Provider

	Software Components Formalization
	Service Components
	Class Hierarchy Proposals
	Client-side Encryption Strategy

	Operating Environment
	Server Hardware
	Server Operating System
	Software Stack

	Design and Implementation Constraints
	Legal Environment & Compliance
	Software Licensing
	Software Limitations

	User Documentation
	Risks, Assumptions, and Dependencies
	Risk Analysis
	Initial Assumptions
	Main Dependencies

	External Interface Requirements
	User Interfaces
	Main Client Interface
	Backup Recovery Site
	System Restore Utility

	Hardware Interfaces
	Storage Redundancy
	Data Retrieval in the form of Removable Storage

	Software Interfaces
	Software Libraries
	3rd Party Software
	3rd Party Cloud Services
	Database & Persistence Software

	Communications Interfaces

	System Features
	Client Applications Features
	Disk Partition Backup & Encryption
	Encryption keys management & Decryption

	Web Portal Features
	User Accounts Management
	Cloud Backup Management & Data Retrieval

	Server Features
	Cloud Backup Service
	Cold Storage Backups Sync

	Other Nonfunctional Requirements
	Performance Requirements
	Safety Requirements
	Security Requirements
	Software Quality Assurance and Testing
	Testing Strategy

	CI/CD Requirements
	Business Rules

	Prototype Implementation
	General Use Case: Backup and Upload Partition
	Description
	Main Scenario
	Preconditions
	Post-conditions

	Hardware Stack
	Specific Software Stack
	3rd Party Resources

	Conclusion
	Project scope changes and other eventualities
	MVP Roadmap
	Future of the project

	Glossary
	Bibliography
	Journal Articles
	Books
	Press Articles
	Manuals/Guides
	Websites/Blogs

	Annex: Gantt Chart
	Annex: Class Hierarchy in PlantUML format
	Client Application
	Web Service Application

