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The purpose of this work is to provide an alternative approach to the exact computation of the coefficients 

of the reliability polynomial of a stochastic network with edge failure (under the all-terminal reliability 

condition), in the univariate and bivariate cases. 

This exact computation has driven most research efforts for the past few decades, mostly in the univariate 

case, while in the bivariate case there is still little literature. 

Starting with a brief review of basic concepts, I have tackled the univariate case where all edges have the 

same failure probability. The proposed method approximates the graph’s reliability for different failure 

probabilities taken at Chebyshev points in [0,1] via simulation of the graph’s state at a given point in time. 

These values will then form a Vandermonde matrix, which we can use to interpolate the graph’s reliability 

polynomial. 

The next step is to apply the same reasoning to the bivariate case, where edges can fail with one of two 

different probabilities. While the approach uses the same combination of simulation and interpolation, the 

second phase differs from the previous univariate case in its higher complexity and lesser guarantee of 

accuracy. Nevertheless, the results suggest that this approach can be performant. 

Finally, there are many more assumptions that we could consider in order to bring the studied networks 

closer to real-life, but this paper’s scope has already been challenging with the computational limitations 

of a personal computer. The use of cyberinfrastructures like clusters would have helped extend our 

conclusions.  
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  Abstract (in English, 250 words or less): 

This paper aims to provide an alternative approach to the exact computation of the reliability polynomial 

of univariate and bivariate network reliability by applying simulation-interpolation based methods. This 2-

phase combination consists in approximating firstly the values of a network’s reliability for different states 

(i.e. different edge failure probabilities) through simulation techniques, and secondly to use this information 

as interpolation nodes to approximate the network’s reliability as a continuous function. These results, 

although approximated, can then serve as decision-makers in many real-life scenarios. 

We review some basic concepts for a later development of the proposed approach in instances of 

gradually increasing complexity. 
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1. Introduction 
 

 

Networks surround us with all sorts of shapes, scales, and sizes, as the natural form in which groups of 

elements of any type interact with one another. From the study of a brain’s interconnected neurons to the 

optimization of worldwide transportation systems, network science plays an increasingly important role in 

all sorts of areas. The need to better understand networks is an issue that multiple branches of knowledge, 

from biology to social sciences, are tackling through network science. 

 The urge to develop this relatively new discipline is significant, to the extent that the impact of 

networks in our lives is critical. If we think of how an infectious disease is transmitted within a network of 

individuals, understanding its spread through the population would guarantee that the right measures are 

taken against a risk of an epidemic. On a bigger scale, transportation systems are a real challenge that 

society has faced for centuries. Its social and economic impact, and more recently its extremely serious 

environmental consequences, have driven the search of the most effective ways to transport goods or 

persons between cities. 

 At the same time, the possibilities of development are enormous. Although in the past decades a 

significant number of studies have focused on relatively simple networks, increasing groups of researchers 

are exploring a wider and darker space that is bringing network science closer to real-life. We almost 

immediately think of a brain when considering complexity, but we may still be far from this level of 

intricacy. Complexity can also involve considering numerous factors where previous scientists have 

historically considered a single standardized variable. For instance, let us go back to the infectious disease 

problem. What if we considered two types of relationships between the group of individuals (those that 

imply an everyday contact -family, colleagues-, and those involving only a sporadic contact) instead of a 

single, plain type of relationship? This perspective would certainly be more realistic, and therefore would 

elevate the conclusions of network science to a more refined and useful tool to help make the world better. 

 In network science, one of the major areas of interest when analysing existing networks is to 

evaluate their reliability, or capacity to remain operational. Reliability can take different forms depending 

on what is the network’s purpose. In the case of a transportation system, there may be a depot and a terminus 

station, and thus the system will be operational if there is a route between both stations. However, if the 

need is to ensure that there is always a route between any pair of stations in the network (like in a road 

network where no city should be isolated), then reliability takes on a different dimension. The study of 

network reliability as we know it today was first introduced by Shannon and Moore in the 1950’s, and in 

their ground-breaking paper [4] they set the basis of a promising field of research where networks take the 

shape of a probabilistic model, and reliability is translated into a polynomial. This model’s potential is 

immense: if we can numerically determine the reliability of a system, then for instance we could forecast 

to what extent an electric grid will remain operational under natural disaster conditions. Still there are many 

unknown details in network reliability, and in some cases their complexity renders their analysis intractable. 

In fact, we may be able to translate a system’s reliability into a mathematical formula, but this formula 

remains partially symbolic. Moreover, when increasingly complex networks are being considered, the 

number of unknowns that arise when trying to determine the system’s reliability multiplies. 

However, beyond the bounds of exact computation, the theory of approximation can take over and 

help us nail down the work of previous network scientists. Approximation techniques have proven to 

provide excellent results in those cases where computational evaluation is too costly or just too complex. 

One approximation technique that has been widely studied is polynomial interpolation. In this paper we 

will use interpolation methods to try to fill in the gaps in the study of reliability of simpler networks, and 

then we will attempt to apply these same methods to more complex networks that can be shaped as bivariate 

probabilistic models. We will also combine this approach with simulation techniques to build it on sufficient 

numerical information. 

Particularly, we will focus on systems that are stochastic networks with edge failure, and where 

reliability is defined as the capacity of any pair of elements in the network to remain connected (called all-

terminal reliability). There are many examples in real-life of such systems. Let us consider for instance a 

road network within a given region, containing sparsely distributed cities, villages and road junctions 

interconnected by roads, like the one in figure 1. Any road section could be blocked due to accidents or 

natural events (landslides, floods, …), but the network must guarantee that a vehicle departing from any 

point could get to any other given point in the map. 
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Figure 1: A simplified roadmap of Ibiza 

 

 

 We will start by briefly presenting the basic definitions and notations that we will use in this paper. 

Then, we will present our simulation-interpolation approach to the approximation of a network’s reliability 

for the simplest case where edges can fail with the same probability (univariate case). After the results of 

this proposed method are shown, we will move to the second simplest case, the bivariate case: following 

our same approach, we will propose two approximation methods that will only differ in the interpolation 

technique. Finally, we will summarize our conclusions and discuss the future work. 
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2. Basic definitions and notations 
 

 

In order to model a system, network science utilizes concepts from graph theory. Let us consider a network 

modelled by a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of 𝑛 vertices or nodes, and 𝐸 ⊆ (𝑉
2
) is a set of 𝑚 

bidirectional edges or links (hence our graph is undirected). This network is considered to be operational if 

it satisfies all-terminal reliability. 

 A pathset is a subset 𝑂 ⊆ 𝐸 of edges that makes the graph operational, so any connected spanning 

subgraph of 𝐺 is a pathset. A minimal pathset with respect to inclusion is a minpath, so any spanning tree 

is a minpath. Similarly, a cutset is a subset 𝐶 ⊆ 𝐸 of edges such that (𝑉, 𝐸 − 𝐶) is not operational, and a 

minimal cutset is called a mincut. 

 Regarding edge failure, we will emulate the model introduced by Moore and Shannon where the 

nodes are considered to be perfectly reliable, and the edges could fail independently with a certain 

probability (this model is aligned with the examples of road networks, electric grids, or epidemic spread). 

At any given time, each edge 𝑒 ∈ 𝐸 can be either operational or in failed state, with respective probabilities 

𝑝𝑒 and 1 − 𝑝𝑒. In this work, for simplicity we will assume that the capacity of the links is infinite, or 

alternatively, that the flow travelling through the links is negligible in comparison with their capacity. The 

rationale behind this assumption is to preclude the possibility of cascading failures, which may render our 

reliability analysis intractable. We will consider two cases: 

 

• Univariate probabilistic model: the probability 𝑝𝑒 is the same for all edges 𝑒 ∈ 𝐸. 

 

• Bivariate probabilistic model: there are two types of edges, those with a probability 𝑝 of being 

operational (‘highways’), and those with probability 𝑞 of being operational (‘secondary roads’). 

 

 

 

 

 

 

 

3. Univariate case 
 

 

3.1 The reliability polynomial 
 

For any subset 𝐸′ ⊆ 𝐸, let 𝐺′ = (𝑉, 𝐸′) be the corresponding subgraph of 𝐺. Let us also define the binary 

function 𝜙: 𝐺′ → {0,1} that returns 1 or 0 respectively if 𝐺′ is operational or not. Under our probabilistic 

model, the subgraph 𝐺′ will occur if its edges 𝐸′ are operational, and the rest of edges 𝐸 − 𝐸′ are not. This 

is a probabilistic equation that can be written as 

 

𝑃(𝐺′) =∏𝑝𝑒
𝑒∈𝐸′

∏(1− 𝑝𝑒)

𝑒∉𝐸′

 

 

 

Since reliability is the expected value of 𝜙 over all possible subgraphs of 𝐺, then we can define reliability 

as 

 

Rel(𝐺) = ∑ 𝑃(𝐺′)𝜙(𝐺′)

𝐺′⊂𝐺

= ∑ 𝑃(𝐺′)

𝐺′is a
pathset

 

 

 

In our univariate model 𝑝𝑒 = 𝑝, so finally the graph’s reliability is 

(3.1) 

(3.2) 
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Rel(𝐺, 𝑝) = ∑ 𝑝|𝐸
′|(1 − 𝑝)𝑚−|𝐸

′|

 
𝐸′⊆𝐸

𝐺′is a pathset

 

 

 

 As we can clearly see, Rel(𝐺, 𝑝) is a polynomial in 𝑝, hence we may call it the reliability 

polynomial of 𝑮. This polynomial allows different forms that may simplify later calculations, for instance: 

 

• let 𝑁𝑖 be the number of pathsets with 𝑖 edges. Hence the reliability polynomial can be expressed 

by its 𝑁-form: 

 

Rel(𝐺, 𝑝) =∑𝑁𝑖𝑝
𝑖(1 − 𝑝)𝑚−𝑖

𝑚

𝑖=0

 

 

 

• let 𝐶𝑖 be the number of cutsets with 𝑖 edges. Hence the reliability polynomial can be expressed by 

its 𝐶-form: 

 

Rel(𝐺, 𝑝) = 1 −∑𝐶𝑖(1 − 𝑝)
𝑖𝑝𝑚−𝑖

𝑚

𝑖=0

 

 

 

• the reliability polynomial has, finally, an expanded form: 

 

Rel(𝐺, 𝑝) = ∑𝛼𝑘𝑝
𝑘

𝑚

𝑘=0

 

 

 

 The degree and the calculation of some coefficients of the expanded form are derived from the              

𝑁-form: for any 𝑖 = 0,… ,𝑚, any term 𝑁𝑖𝑝
𝑖(1 − 𝑝)𝑚−𝑖 in (3.4) is a polynomial of degree 𝑚 such that 

 

𝑁𝑖𝑝
𝑖(1 − 𝑝)𝑚−𝑖 = 𝑁𝑖𝑝

𝑖 + ∑ 𝛽𝑖,𝑗𝑝
𝑗

𝑚−1

𝑗=𝑖+1

+ 𝑁𝑖𝑝
𝑚 

 

 

for some unknown real coefficients 𝛽𝑖,𝑗. Thus, the reliability polynomial is a polynomial of degree 𝑚, and 

for any 𝑘 = 0,… ,𝑚 − 1,  

 

𝛼𝑘 = 𝑁𝑘 +∑𝛽𝑖,𝑘
𝑖<𝑘

 

 

and 

 

𝛼𝑚 =∑𝑁𝑖

𝑚

𝑖=0

 

 

 

 Some of the coefficients of the 𝑁-form of the reliability polynomial can be computed exactly. A 

well-known result from graph theory is that any spanning tree (a minpath) has 𝑛 − 1 edges, so 

 

𝑁𝑖 = 0 if 𝑖 < 𝑛 − 1 

 

 

(3.3) 

(3.4) 

(3.5) 

(3.10) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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We can also easily compute 𝑁𝑛−1. Let 𝐿 = 𝐷 − 𝐴 be the Laplacian matrix of 𝐺, where 𝐷 is the 

diagonal degree matrix, and 𝐴 is the adjacency matrix of 𝐺. Now let 𝐿𝑖,𝑗 denote the matrix obtained by 

deleting the 𝑖th row and the 𝑗th column from 𝐿. For any row 𝑖 and column 𝑗, Kirchoff’s Matrix Tree Theorem 

states that 

 

𝑁𝑛−1 = (−1)𝑖+𝑗det (𝐿𝑖,𝑗) 

 

 

 Additionally, if 𝑐 is the minimum cardinality of a cutset, then 𝐶𝑖 = 0 for 𝑖 < 𝑐. This means that 

 

𝑁𝑚−𝑖 = (
𝑚

𝑚 − 𝑖
) 

 

 

for 𝑖 < 𝑐. The parameter c can be found by a network flow algorithm in polynomial time, repeated for every 

pair of vertices. However, the coefficients 𝑁𝑖 for 𝑛 − 1 < 𝑖 < 𝑚 − 𝑐 remain unknown. Some of them may 

be computed efficiently, but the complexity of their calculation may render the analysis intractable -and out 

of scope in this study. Hence, not all of the above results regarding the exact computation of 𝑁-form 

coefficients will translate, in the expanded form (3.6), into exact results. 

 

 In conclusion, all we know about the expanded form of the reliability polynomial, from an exact 

computation perspective, is: 

 

• 𝛼𝑖 = 0 for all 𝑖 < 𝑛 − 1 

 

• 𝛼𝑛−1 = 𝑁𝑛−1 

 

• ∑ 𝛼𝑖 = 1
𝑚
𝑖=𝑛−1  

 

 

 

 

3.2 Polynomial interpolation of the reliability polynomial 
 

For a given continuous function 𝑓: [𝑎, 𝑏] ∈ ℝ → ℝ with known values in 𝑛 + 1 points 𝑥0, … , 𝑥𝑛 such that       

𝑎 ≤ 𝑥0 < ⋯ < 𝑥𝑛 ≤ 𝑏, polynomial interpolation consists in finding a polynomial 𝑓𝑛 ∈ 𝑃𝑛, where 𝑃𝑛 is the 

space of polynomials of degree at most 𝑛 ∈ ℕ with real coefficients, such that for all 𝑖 = 0,… , 𝑛,          

𝑓𝑛(𝑥𝑖) = 𝑓(𝑥𝑖). 
 Going back to network science and our stochastic network with univariate edge failure, an 

interesting and obvious result from approximation theory states that a polynomial is its own polynomial 

interpolant. 

 Interpolation has involved long discussions regarding its potential convergence1, as well as the 

best sets of interpolation points in order to avoid interpolation errors. Although theoretically there is no 

doubt about the interpolation’s convergence when applied to a polynomial, since the result should be exact, 

we shall take into account the general result proven by Lloyd N. Trefethen [6] that states that the 

interpolation convergence is guaranteed2 if Chebyshev points in [𝑎, 𝑏] are chosen as interpolation nodes. 

For 𝑗 = 0,… , 𝑛, Chebyshev nodes are defined as 

 

𝑥𝑛−𝑗 =
𝑎 + 𝑏

2
+
𝑏 − 𝑎

2
cos (

𝑗 𝜋

𝑛
 ) 

 

 

 We normally apply interpolation techniques when 𝑓 is a known function that is computationally 

too complex to evaluate at any given point, and when we can easily obtain the values 𝑓(𝑥𝑖) for a given set 

of interpolation points. In our study we are initially placed in a different position: Rel(𝐺, 𝑝) is not a known 

function, and a priori we do not have any information as to specific reliability values for any given 𝑝. 

 
1 Convergence in interpolation is defined as     ‖𝑓𝑛 − 𝑓‖∞ = max{|𝑓𝑛(𝑥) − 𝑓(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} → 0      when     𝑛 → ∞ . 
2 As long as 𝑓 is Lipschitz continuous, which in general terms means sufficiently smooth. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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 However, we can certainly rely on some of the previously obtained information, like (3.13). Also, 

we may assume that the reliability Rel(𝐺, 𝑝) for a given value of 𝑝 can be approximated using simulation 

methods and powerful calculus software such as MATLAB (version R2019a for student use, © 1994-2020 

The MathWorks, Inc.), and obtain the interpolation values with which we can apply this approximation 

method. 

 

 

 Below are described the steps followed in our proposed method: 

 

 Starting from a given graph 𝐺 = (𝑉, 𝐸) and a given value 𝑝, let us perform a simulation where, 

for each edge 𝑒 ∈ 𝐸, we will evaluate whether it remains operational or not: firstly generating a random 

value 𝑟𝑒 ∈ [0,1], and then “turning off” the edge if 𝑟𝑒 > 𝑝. After repeating this same operation for all edges, 

the resulting subgraph 𝐺′ ⊆ 𝐺, and more specifically its operationality 𝜙(𝐺′), can be easily assessed using 

for instance the depth-first search (dfs) algorithm. Starting from an arbitrary node, this algorithm explores 

the graph in search of all the connected nodes, so only if 𝑛 nodes are explored the subgraph is operational. 

After a sufficiently large number 𝑀 of simulations, if 𝐺𝑖
′ is the subgraph resulting from the 𝑖th simulation, 

then we can define the Simulated Reliability SR as 

 

SR(𝐺, 𝑝) =∑𝜙(𝐺𝑖
′)

𝑀

𝑖=1

/𝑀 ≈ Rel(𝐺, 𝑝) 

 

 

 Let 0 ≤ 𝑝0 < ⋯ < 𝑝𝑘 ≤ 1 be a set of probabilities, with 𝑘 ≤ 𝑚 (we do not want more than 𝑚 + 1 

interpolation points, as the reliability polynomial is of degree at most 𝑚). For each 𝑝𝑗, with 𝑗 = 0,… , 𝑘, we 

know that 

 

Rel(𝐺, 𝑝𝑗) = 𝛼𝑛−1𝑝𝑗
𝑛−1 + 𝛼𝑛𝑝𝑗

𝑛 +⋯+ 𝛼𝑚𝑝𝑗
𝑚 

 

 

We can therefore express this system of 𝑘 equalities with matrices: 

 

(

 

𝑝0
𝑛−1 𝑝0

𝑛 

𝑝1
𝑛−1 𝑝1

𝑛

⋯ 𝑝0
𝑚

⋯ 𝑝1
𝑚

⋮ ⋮
𝑝𝑘
𝑛−1 𝑝𝑘

𝑛
⋱ ⋮
⋯ 𝑝𝑘

𝑚)

 (

𝛼𝑛−1
𝛼𝑛
⋮
𝛼𝑚

) ≈ (

SR(𝐺, 𝑝0)

SR(𝐺, 𝑝1)
⋮

SR(𝐺, 𝑝𝑘)

) 

 

 

Moreover, since we know the value 𝛼𝑛−1 = 𝑁𝑛−1, we can reduce the dimension of the unknown 

coefficients: 

 

(

𝑝0
𝑛

𝑝1
𝑛

⋯ 𝑝0
𝑚

⋯ 𝑝1
𝑚

⋮
𝑝𝑘
𝑛

⋱ ⋮
⋯ 𝑝𝑘

𝑚

)(

𝛼𝑛
⋮
𝛼𝑚
) ≈

(

 

SR(𝐺, 𝑝0) − 𝛼𝑛−1𝑝0
𝑛−1

SR(𝐺, 𝑝1) − 𝛼𝑛−1𝑝1
𝑛−1

⋮
SR(𝐺, 𝑝𝑘) − 𝛼𝑛−1𝑝𝑘

𝑛−1)

  

 

 

Above we have a system of 𝑘 + 1 equations and 𝑚− 𝑛 + 1 unknowns, so let us define  

 

𝑘 = 𝑚 − 𝑛 

 

Now the first matrix is a square matrix, which determinant is 

 

det (

𝑝0
𝑛

𝑝1
𝑛

⋯ 𝑝0
𝑚

⋯ 𝑝1
𝑚

⋮
𝑝𝑚−𝑛
𝑛

⋱ ⋮
⋯ 𝑝𝑚−𝑛

𝑚

) = (𝑝𝑜
𝑛⋯𝑝𝑚−𝑛

𝑛 ) det (

1     𝑝0
1     𝑝1

  
⋯   𝑝0

𝑚−𝑛

⋯   𝑝1
𝑚−𝑛

⋮     ⋮
1 𝑝𝑚−𝑛

  
⋱ ⋮
⋯   𝑝𝑚−𝑛

𝑚−𝑛

) 

 

 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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We can easily identify the right-term above as a Vandermonde determinant, which is non-zero when 𝑝𝜐 ≠
𝑝𝜈 if 𝜐 ≠ 𝜈, and when none of the probabilities in our set is zero, which is the case if we choose the 

interpolation points adequately. 

 

We have proven that a solution exists, and is unique, to the computation of the univariate reliability 

polynomial in its expanded form, using the below formula 

 

(

𝛼𝑛
⋮
𝛼𝑚
) ≈ (

𝑝0
𝑛

𝑝1
𝑛

⋯    𝑝0
𝑚

⋯    𝑝1
𝑚

⋮
𝑝𝑚−𝑛
𝑛

⋱ ⋮
⋯ 𝑝𝑚−𝑛

𝑚

)

−1

(

SR(𝐺, 𝑝0) − 𝛼𝑛−1𝑝0
𝑛−1

SR(𝐺, 𝑝1) − 𝛼𝑛−1𝑝1
𝑛−1

⋮
SR(𝐺, 𝑝𝑚−𝑛) − 𝛼𝑛−1𝑝𝑚−𝑛

𝑛−1

) 

 

 

and if the 𝑚− 𝑛 + 1 interpolation probabilities are chosen as the set of 𝑚 − 𝑛 + 2 Chebyshev points in 

[0,1] where the value 0 is removed. 

 As a recapitulation, our proposed method to approximate the reliability polynomial of a stochastic 

network with univariate edge failure under the all-terminal reliability condition combines results from graph 

theory, polynomial interpolation at Chebyshev points, and simulation. The following diagram summarizes 

the main steps of this method. 

 

 

 
 

Figure 2: Diagram of the proposed method for the univariate case 

 

 

 

 

(3.21) 
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3.3 Practical application 
 

For the reasons exposed above, there are only few examples of stochastic networks with univariate edge 

failure where the reliability polynomial is known, and these instances model very simple systems. 

Nevertheless, one of these systems can be used to test the simulation-interpolation method proposed. 

 

 
Figure 3: The graph 𝐾4 − {𝑒} 

 

 

 Let us consider the graph in figure 3. For all-terminal reliability, it is fairly simple to list all the 

pathsets with 3, 4 and 5 edges: {𝑎𝑐𝑑, 𝑎𝑐𝑓, 𝑎𝑏𝑑, 𝑎𝑏𝑓, 𝑎𝑑𝑓, 𝑏𝑐𝑑, 𝑏𝑐𝑓, 𝑏𝑑𝑓, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑐𝑓, 𝑎𝑏𝑑𝑓, 𝑎𝑐𝑑𝑓,
𝑏𝑐𝑑𝑓, 𝑎𝑏𝑐𝑑𝑓}, and obtain the following 𝑁-form of the reliability polynomial 

 

Rel(𝐺, 𝑝) = 𝑝5 + 5𝑝4(1 − 𝑝) + 8𝑝3(1 − 𝑝)2 

 

from where we get the expanded form (which we will compare our results against) 

 

Rel(𝐺, 𝑝) = 4𝑝5 − 11𝑝4 + 8𝑝3 

 

 Following the formula (3.11) we can exactly compute 𝛼3 = 𝑁3: 

 

(

2 −1
−1 3

−1 0
−1 −1

−1 −1
0 −1

3 −1
−1 2

)                (

2 −1
−1 3

−1 0
−1 −1

−1 −1
0 −1

3 −1
−1 2

)              |
−1 −1 0
3
−1

−1
3

−1
−1
| = −8 

 

Starting from the Laplacian matrix of the graph, and then removing the 4h row and the 1st column, we obtain 

𝛼3 = (−1)5(−8) = 8. 

 Secondly, we want to approximate the coefficients 𝛼4 and 𝛼5 using the proposed method: the 

interpolation points in [0,1] will be defined as the non-zero points in the set of three Chebyshev points in 

[0,1]. Hence, our interpolation points will be 𝑝0 = 0.5 and 𝑝1 = 1. In this extremely simple case we only 

need to run the simulation step for 𝑝0, since the exact value of the reliability polynomial is necessarily 1 

for 𝑝 = 𝑝1. The appropriate code has been written in MATLAB, and the simulation step has been set to 

execute 𝑀 = 105 iterations. The obtained value for the simulated reliability is 

 

SR(𝐺, 𝑝0) = 0.4365 

 

With the same MATLAB code, we have implemented the simple matrix formula (3.21), obtaining the final 

result 

 

𝛼4 ≈ −11.0317  and   𝛼5 ≈ 4.0317 

 

This result is very close to the exact solution, and although there is definitely an absolute error 𝜀 = 0.0317 

in both values, we shall apply a rounding procedure, knowing that the coefficients should be integers, which 

would result in the exact solution. 
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 Now let us take a more complex example: the simplified representation of the island of Ibiza’s 

road map, as shown in figure 1. This time, the MATLAB code also includes the computation of 𝛼𝑛−1. The 

results, using the same method as in the first example, are summarized in the below table: 

 
Coefficient Approximation 

𝛼23 12 

𝛼24 1.4460 × 104 

𝛼25 -9.7547 × 105 

𝛼26 1.8175 × 107 

𝛼27 -1.4874 × 108 

𝛼28 6.4159 × 108 

𝛼29 -1.5921 × 109 
𝛼30 2.3548 × 109 
𝛼31 -2.0524 × 109 
𝛼32 9.7363 × 108 

𝛼33 -1.9403 × 108 

 

 

 

 

3.4 Quality assessment of the proposed method and calibration 
 

The quality of the proposed method can be assessed to the extent that the reliability polynomial is known 

only in rare occasions, with extremely simple graphs. 

With the graph 𝐾4 − {𝑒}, like with any graph with known reliability polynomial, the quality 

assessment is immediate and can be measured in terms of the relative difference (RD) of the obtained 

polynomial (with approximated coefficients) at 𝑝 = 𝑝𝑟, for a uniformly random value 𝑝𝑟 ∈ [0,1], with 

respect to the exact graph’s reliability Rel(𝐺, 𝑝𝑟). 
 As part of the method’s quality assessment, the number of iterations at the simulation step can act 

as a calibration knob between error and computational cost. Hence, the quality assessment is performed for 

different values of 𝑀, and the results show, in addition to the RD, the time elapsed at the simulation step. 

 It is also important to point out that the MATLAB code written to perform our method (see 

Annexes) makes use of the parallelization capacity of the software. The simulation step is designed to use 

multiple threads in parallel, taking advantage of the various cores of the personal computer’s CPU used in 

this study (with a processor Intel® Core™ i7-8700 CPU @ 3.20GHz). 

 Finally, in order to mitigate the effect of potential outliers, for each value 𝑀, the experiment is 

repeated with 10 different random values 𝑝𝑟 and the results are the averages. 

 

 

 Number of simulations per interpolation point 

 10 102 103 104 105 106 

Time (seconds) 3,11E-02 7,07E-02 1,73E-01 1,34E+00 1,15E+01 1,10E+02 

RD 2,16E-01 5,97E-02 1,76E-02 7,39E-03 2,00E-03 3,65E-04 

 
Figure 4: Numerical performance of the proposed method for the univariate case 

 

 

 The above results show that while the time spent on each experiment grows logically  at the same 

rate as the number of simulations increase, the relative difference between the graph’s reliabilities 

(calculated with the exact reliability polynomial and the approximated reliability polynomial) decreases at 

an inversely proportional rate. The graphical analysis will enable further interpretation of these results: 
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Figure 5: Graphical performance of the proposed method for the univariate case 

 

 

 The logarithmic improvement of the RD as an increasing number of simulations is used to obtain 

the simulated reliability at the interpolation points seems to be linear. The RD reduction factor when the 

number of simulations is multiplied by 10 is in average 2.9 ⋅ 10−1 (with a standard deviation of 0.8 ⋅ 10−1). 

Furthermore, from 105 to 106 simulations, the reduction factor reached its minimum, 1.8 ⋅ 10−1. 

At the highest number of simulations (𝑀 = 106), the RD between the approximation and the exact 

reliability is considerably low, while each experiment takes in average nearly 2 minutes, which, considering 

the fact that only one interpolation point is driving most calculations, is a significant amount of time. 

 

 

 

 

 

 

 

 

4. Bivariate case 
 

 

The assumption that all edges have the same reliability is too restrictive. In practice, each edge may have 

its own probability of failing, or at least, there is a set of failure probabilities to choose from. The second 

simplest case is when we have two types of edges, with probabilities p and q of being operational. This 

leads to a bivariate reliability polynomial in the indeterminates 𝑝 and 𝑞. 

This model is suitable for several real-life situations. For example, in a road network there are 

basically two types of roads: highways and conventional roads. Highways are usually more straightforward, 

with less curves, and they have several lanes for each direction, enabling different speeds. They may also 

have a physical division that separates both directions, protection against crossing animals, better signaling, 

etc. All this leads to a smaller probability of accidents, thus a greater reliability. 

 

 

4.1 The reliability polynomial 
 

Following the same reasoning and terminology as in the univariate case, the reliability of a graph 𝐺 is given 

by (3.2), where again 𝜙(𝐺′) = 1 if 𝐺′ is operational under all-terminal reliability, 𝜙(𝐺′) = 0 otherwise, 

and 𝑃(𝐺′) is the occurrence probability of the subgraph 𝐺′. 



 

11 

 Let 𝐸 = 𝐸𝑝⋃𝐸𝑞 , where the operational probability is 𝑝 for the edges of 𝐸𝑝 (we may call them p-

edges), and 𝑞 for the edges of 𝐸𝑞  (q-edges). Let us define 𝑚𝑝 = |𝐸𝑝| and 𝑚𝑞 = |𝐸𝑞|, with |𝐸| = 𝑚 = 𝑚𝑝 +

𝑚𝑞. We may assume, without loss of generality, that 𝑚𝑝 ≥ 𝑚𝑞. 

Thus, if 𝐺′ = (𝑉, 𝐸′) and 𝐸′ = 𝐸𝑝
′⋃𝐸𝑞

′ , the reliability of 𝐺 is 

 

Rel(𝐺, 𝑝, 𝑞) = ∑ 𝑝|𝐸𝑝
′ |(1 − 𝑝)𝑚𝑝−|𝐸𝑝

′ |

 
𝐸′⊆𝐸

𝐺′is a pathset

𝑞|𝐸𝑞
′ |(1 − 𝑞)𝑚𝑞−|𝐸𝑞

′ | 

 

 

The function Rel(𝐺, 𝑝, 𝑞) is clearly a bivariate polynomial in 𝑝 and 𝑞, the reliability polynomial of 𝑮, and 

like in the univariate case, it allows multiple forms, for instance: 

 

• if 𝑁𝑖,𝑗 is the number of pathsets with 𝑖 p-edges and 𝑗 q-edges, then its 𝑁-form is 

 

Rel(𝐺, 𝑝, 𝑞) =∑∑𝑁𝑖,𝑗𝑝
𝑖𝑞𝑗(1 − 𝑝)𝑚𝑝−𝑖

𝑚𝑞

𝑗=0

𝑚𝑝

𝑖=0

(1 − 𝑞)𝑚𝑞−𝑗 

 

 

• similarly, if 𝐶𝑖,𝑗 is the number of cutsets with 𝑖 p-edges and 𝑗 q-edges, then its 𝐶-form is 

 

Rel(𝐺, 𝑝, 𝑞) = 1 −∑∑𝐶𝑖,𝑗(1 − 𝑝)
𝑖(1 − 𝑞)𝑗𝑝𝑚𝑝−𝑖

𝑚𝑞

𝑗=0

𝑚𝑝

𝑖=0

𝑞𝑚𝑞−𝑗 

 

 

• the expanded form of the reliability polynomial of 𝐺 is 

 

Rel(𝐺, 𝑝, 𝑞) = ∑ ∑ 𝛼𝑘1,𝑘2𝑝
𝑘1𝑞𝑘2

𝑚𝑞

𝑘2=0

𝑚𝑝

𝑘1=0

 

 

 

 For all of the above forms, the exact computation of all coefficients is intractable, but just like in 

the univariate case, we can extract some exact information about these coefficients. This partial 

understanding of the reliability polynomial will help refine the simulation-interpolation approach to its 

approximation in the next section.  

The univariate case has showed us that a minpath has 𝑛 − 1 edges, so 

 

𝑁𝑖,𝑗 = 0 if 𝑖 + 𝑗 < 𝑛 − 1 

 

 

and if 𝑁𝑛−1 is the number of minpaths of 𝐺, which we can easily compute with the formula (3.11), then 

 

∑ 𝑁𝑖,𝑗
𝑖+𝑗=𝑛−1

= 𝑁𝑛−1 

 

 

These last results can significantly reduce the length of the expanded form. Indeed, in the 𝑁-form, for any       

𝑖 ≤ 𝑚𝑝 and any 𝑗 ≤ 𝑚𝑞, each of the addends 𝑁𝑖,𝑗𝑝
𝑖𝑞𝑗(1 − 𝑝)𝑚𝑝−𝑖(1 − 𝑞)𝑚𝑞−𝑗  is a polynomial in the 

indeterminates 𝑝 and 𝑞 with the term of maximal total degree equal to 𝑁𝑖,𝑗𝑝
𝑚𝑝𝑞𝑚𝑞 and the term of minimal 

total degree equal to 𝑁𝑖,𝑗𝑝
𝑖𝑞𝑗. Thus, we can deduce that 

 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Rel(𝐺, 𝑝, 𝑞) = ∑ 𝛼𝑘1,𝑘2𝑝
𝑘1𝑞𝑘2

𝑘1=𝑚𝑝

𝑘2=𝑚𝑞

𝑘1+𝑘2=𝑛−1

 

with 

∑ 𝛼𝑘1,𝑘2
𝑘1+𝑘2=𝑛−1

= 𝑁𝑛−1 

 

 

and 

∑ 𝛼𝑘1,𝑘2

𝑘1=𝑚𝑝

𝑘2=𝑚𝑞

𝑘1+𝑘2=𝑛−1

= 1 

 

 

 The univariate case also evidences the fact that, although we may be able to compute the 

coefficients 𝑁𝑚−𝑖 for 𝑖 < 𝑐, where 𝑐 is the minimum cardinality of a cutset, each non-zero coefficient 𝑁𝜇 

for any 𝜇 ≤ 𝑚 will contribute to the coefficients of the expanded form 𝛼𝑘 for all 𝜇 ≤ 𝑘 ≤ 𝑚. Thus, the 

exact computation of more coefficients (or sums of groups of coefficients) in the expanded form, other than 

(4.8) and (4.9), is intractable and out of scope in this study. 

 

We can group the terms with the same total degree to rewrite the extended form of the reliability 

polynomial as the sum 

 

Rel(𝐺, 𝑝, 𝑞) = ∑ 𝛼𝑘1,𝑘2𝑝
𝑘1𝑞𝑘2

𝑘1+𝑘2=𝑛−1

+⋯+ ∑ 𝛼𝑘1,𝑘2𝑝
𝑘1𝑞𝑘2

𝑘1+𝑘2=𝑚

 

 

 

where each of the addends can be rewritten using only one exponent: 

 

∑ 𝛼𝑘1,𝑘2𝑝
𝑘1𝑞𝑘2 =

𝑘1+𝑘2=𝐾

∑ 𝛼𝑘1,𝐾−𝑘1𝑝
𝑘1𝑞𝐾−𝑘1

min {𝑚𝑝;𝐾}

𝑘1=max {0;𝐾−𝑚𝑞}

= ∑ 𝛼𝐾−𝑘2,𝑘2𝑝
𝐾−𝑘2𝑞𝑘2

min {𝑚𝑞;𝐾}

𝑘2=max {0;𝐾−𝑚𝑝}

 

 

 

for 𝑛 − 1 ≤ 𝐾 ≤ 𝑚. 

 Finally, we can group the terms with the same partial degree in the same indeterminate: 

 

Rel(𝐺, 𝑝, 𝑞) = ∑ 𝑝𝑘1

𝑚𝑝

k1=max{0;𝑛−1−𝑚𝑞} 

[ ∑ 𝛼𝑘1,𝑘2𝑞
𝑘2

𝑚𝑞

𝑘2=max {0;𝑛−1−𝑘1}

] 

 

 

or equivalently 

 

Rel(𝐺, 𝑝, 𝑞) = ∑ 𝑞𝑘2

𝑚𝑞

k2=max{0;𝑛−1−𝑚𝑝} 

[ ∑ 𝛼𝑘1,𝑘2𝑝
𝑘1

𝑚𝑝

𝑘1=max {0;𝑛−1−𝑘2}

] 

 

 

 

 

(4.10) 

(4.11) 

(4.8) 

(4.13) 

(4.12) 

(4.9) 
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4.2 Polynomial interpolation of the bivariate reliability polynomial 
 

Several techniques of multivariate polynomial interpolation have been developed through relatively recent 

research studies. Some of the most known of these techniques are the use of a multivariate Vandermonde 

matrix, the Hermite interpolation, or the Newton interpolation (which we will explore later on). While the 

univariate polynomial interpolation guarantees the uniqueness and existence of the solution (as long as few 

requirements are met), the multivariate case is more complex. Determining whether a multivariate 

interpolation has a unique solution (poisedness) in the space of polynomials with given total and/or partial 

degrees is difficult. This matter requires a thorough study of the interpolation nodes, the polynomial space, 

the specific interpolation technique. Furthermore, the study of multivariate interpolation techniques is a 

flourishing field of study, yet filled with unresolved questions. 

 With this in mind, and given the fact that the formulas (4.12) and (4.13) suggest the possibility of 

applying a univariate polynomial interpolation technique to the approximation of the bivariate reliability 

polynomial, we are proposing a first method to approximate the reliability polynomial with a univariate 

approach. 

 

 

4.2.1 Bidimensional univariate polynomial interpolation (BUPI) 
 

Let us take the equation (4.12) as the starting point, with 𝑝 as the indeterminate of study and a fixed value      

𝑄 ∈ [0,1] of 𝑞. The reliability polynomial becomes a univariate polynomial in 𝑝, of degree 𝑚𝑝, and whose 

coefficients are zero for all terms of degree lower than max{0; 𝑛 − 1 − 𝑚𝑞} : 

 

Rel(𝐺, 𝑝, 𝑄) = ∑ 𝐴𝑘1𝑝
𝑘1

𝑚𝑝

k1=max{0;𝑛−1−𝑚𝑞} 

 

 

 

We know that we can approximate the unknown coefficients 𝐴𝑘1  through polynomial interpolation 

in a set of  𝑚𝑝 −max{0; 𝑛 − 1 − 𝑚𝑞} + 1 points, and that these points can guarantee an optimal result (in 

terms of minimized error) if they are Chebyshev points in [0,1]. 
 Similarly, if we consider the equation (4.13) with 𝑞 as the indeterminate and a fixed value  𝑃 ∈
[0,1] of 𝑝, then we obtain the univariate polynomial: 

 

Rel(𝐺, 𝑃, 𝑞) = ∑ 𝐵𝑘2𝑞
𝑘2

𝑚𝑞

k2=max{0;𝑛−1−𝑚𝑝} 

 

 

 

that we can approximate using 𝑚𝑞 −max{0; 𝑛 − 1 − 𝑚𝑝} + 1 Chebyshev points in [0,1]. 

 Again, for the fixed value 𝑄 and each interpolation point 𝑝𝛾 (resp. 𝑃 and 𝑞𝛿), we will approximate 

the value Rel(𝐺, 𝑝𝛾, 𝑄), resp. Rel(𝐺, 𝑃, 𝑞𝛿), with the simulated reliability by applying the same simulation 

procedure, with 𝑀 iterations, as in the univariate case. 

 Once the coefficients 𝐴𝑘1  and 𝐵𝑘2  have been approximated via univariate polynomial 

interpolation, the coefficients of the expanded form of Rel(𝐺, 𝑃, 𝑞) can be obtained following the below 

scheme: 

 

 

1. The bivariate reliability polynomial allows an expanded form, with coefficients that can be stored in a 

matrix (assuming that 𝑚𝑝 ≥ 𝑚𝑞): 

 

(4.14) 

(4.15) 
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Figure 6: Matrix of the coefficients of the expanded form 

 

2. These coefficients are zero if 𝑖 + 𝑗 < 𝑛 − 1, and their sum when 𝑖 + 𝑗 = 𝑛 − 1 is equal to 𝑁𝑛−1: 

 

               
 

Figure 7: Minimal coefficient matrix 

 

 

3. Each of the non-zero coefficients is also a coefficient in two univariate polynomials, one for each 

indeterminate 𝑝 and 𝑞: 

 

 
Figure 8: Two sets of equations after a bidimensional univariate interpolation 
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Finally, this method provides the above system of [𝑚𝑞 −max{0; 𝑛 − 1 −𝑚𝑝} + 1] + [𝑚𝑝 −

max{0; 𝑛 − 1 − 𝑚𝑞} + 1] equations, where each unknown 𝛼𝑖,𝑗 appears in two and only two equations with 

different known coefficients (𝑃𝑖  and 𝑄𝑗). Using MATLAB’s capabilities of matrix calculation, this system 

is the basic ingredient to approximate the reliability polynomial. Additionally, in order to prevent 

singularity or bad scaling, the system is completed with two extra equations, (4.8) and (4.9), which add a 

component of exactness. 

 

 As a recapitulation, the following diagram shows the different steps of this method: 

 

 

 

 
 

Figure 9: Diagram of the proposed method: BUPI 

 

 

 

 

4.2.2 Newton’s bivariate polynomial interpolation (NBPI) in a rectangular basis 
 

The second method we are proposing to approximate the reliability polynomial in the bivariate case is a 

variant of Newton’s bivariate polynomial interpolation. Unlike univariate polynomial interpolation, this 

technique cannot guarantee the uniqueness of the solution, nor does it enable setting all the additional 

conditions to the resulting polynomial interpolant as we did with the univariate method (such as only 

dealing with a specific number of non-zero coefficients, or ensuring that the sum of some specific 

coefficients adds up to 𝑁𝑛−1). This method is only based on the value of the graph’s reliability in a set of 

different bivariate points (𝑝, 𝑞) ∈ [0,1]2, and on recursively searching for the best approximation in a 

sequence of spaces of bivariate polynomials in the indeterminates 𝑝 and 𝑞 with increasing partial degrees 

(the maximum exponents of 𝑝 and 𝑞) and total degree (the maximum sum of the exponents of 𝑝 and 𝑞 in 

the same addend). 

The poisedness of this method depends, to a large extent, on the choice of the interpolation nodes 

(𝑝, 𝑞) in [0,1]2, and the application of this technique is relatively easy using a recursive algorithm, 



 

16 

explained hereafter: let us assume that we aim to approximate a function 𝑓(𝑥, 𝑦) with a polynomial 𝑝(𝑥, 𝑦) 
which has known partial degrees 𝑑1 and 𝑑2 (with 𝑑1 > 𝑑2), and known total degree 𝑑 = 𝑑1 + 𝑑2, so 

 

𝑝(𝑥, 𝑦) =∑∑𝑎𝑖,𝑗𝑥
𝑖

𝑑2

𝑗=0

𝑦𝑗

𝑑1

𝑖=0

 

 

 

with 𝑎𝑑1,𝑑2 ≠ 0. The optimal set of interpolation nodes is a rectangular basis of (𝑑1 + 1)(𝑑2 + 1) points 

 

𝑆 = {(𝑥𝑖 , 𝑦𝑗) ∈ [0,1]
2 ⊂ ℝ2 ∶  0 ≤ 𝑖 ≤ 𝑑1, 0 ≤ 𝑗 ≤ 𝑑2} 

 

 

such that 𝑥0 < ⋯ < 𝑥𝑑1  and 𝑦0 < ⋯ < 𝑦𝑑2, and the values 𝑓(𝑥𝑖 , 𝑦𝑗) are known. With these conditions, the 

polynomial 𝑝(𝑥, 𝑦) is unique if 

 

𝑝(𝑥, 𝑦) = 𝑋𝑡 ∙ 𝑃 ∙ 𝑌 

 

 

where:  

 

• 𝑋 =

(

 
 

1
𝑥 − 𝑥0

(𝑥 − 𝑥0)(𝑥 − 𝑥1)
⋮

(𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑑1−1))

 
 

,      𝑌 =

(

 
 

1
𝑦 − 𝑦0

(𝑦 − 𝑦0)(𝑦 − 𝑦1)
⋮

(𝑦 − 𝑦0)(𝑦 − 𝑦1)⋯ (𝑦 − 𝑦𝑑2−1))

 
 

 

 

 

• 𝑃 =

(

 
 
 
 
 
 
 

𝑝0,0
(0) 𝑝0,1

(1)
𝑝0,2
(2) ⋯ 𝑝0,2

(𝑑2)

𝑝1,0
(1) 𝑝1,1

(1)
𝑝1,2
(2) ⋯ 𝑝1,𝑑2

(𝑑2)

𝑝2,0
(2) 𝑝2,1

(2)
𝑝2,2
(2) ⋯ 𝑝2,𝑑2

(𝑑2)

⋮    ⋮     ⋮     ⋱     ⋮

𝑝𝑑2,0
(𝑑2) 𝑝𝑑2,1

(𝑑2) 𝑝𝑑2,2
(𝑑2) ⋯ 𝑝𝑑2,𝑘2

(𝑑2)

⋮    ⋮     ⋮     ⋱     ⋮

𝑝𝑑1,0
(𝑑1) 𝑝𝑑1,1

(𝑑1) 𝑝𝑑1,2
(𝑑1) ⋯ 𝑝𝑑1,𝑑2

(𝑑1)
)

 
 
 
 
 
 
 

 

 

 

• 𝑝𝑖,𝑗
(0)
= 𝑓(𝑥𝑖 , 𝑦𝑗) 

 

 

• 𝑝𝑖,𝑗
(𝑘)
=

{
 
 
 
 

 
 
 
 
𝑝𝑖,𝑗
(𝑘−1)

−𝑝𝑖−1,𝑗
(𝑘−1)

𝑥𝑖−𝑥𝑖−𝑘
                               if  𝑖 ≥ 𝑘 and 𝑗 < 𝑘

𝑝𝑖,𝑗
(𝑘−1)

−𝑝𝑖,𝑗−1
(𝑘−1)

𝑦𝑗−𝑦𝑗−𝑘
                               if  𝑖 < 𝑘 and 𝑗 ≥ 𝑘

𝑝𝑖,𝑗
(𝑘−1)

+𝑝𝑖−1,𝑗−1
(𝑘−1)

−𝑝𝑖−1,𝑗
(𝑘−1)

−𝑝𝑖,𝑗−1
(𝑘−1)

(𝑥𝑖−𝑥𝑖−𝑘)(𝑦𝑗−𝑦𝑗−𝑘)
    if  𝑖 ≥ 𝑘 and 𝑗 ≥ 𝑘 

𝑝𝑖,𝑗
(𝑘−1)

                                         if  𝑖 < 𝑘 and 𝑗 < 𝑘

 

 

 

 

In this study, the function 𝑓 that will be approximated using this method is a graph’s reliability, but 

with a slight nuance that will force the final interpolant to have its coefficients with the lowest indices equal 

to zero. As per (4.12) and (4.13), the minimal exponent of 𝑝 in Rel(𝐺, 𝑝, 𝑞) is max{0; 𝑛 − 1 −𝑚𝑞}. 

(4.18) 

(4.19) 

(4.16) 

(4.17) 
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Likewise, the minimal exponent of 𝑞 in Rel(𝐺, 𝑝, 𝑞) is max{0; 𝑛 − 1 − 𝑚𝑝}. Hence the interpolated 

function will be 

 

𝑓(𝑝, 𝑞) = 𝑝−max{0;𝑛−1−𝑚𝑞} ∙ 𝑞−max{0;𝑛−1−𝑚𝑝}∙ SR(𝐺, 𝑝, 𝑞) 
 

 

where, once again, the value of the graph’s reliability is replaced with its simulated value. The polynomial 

interpolant obtained with this method will have partial degrees 𝑑1 = 𝑚𝑝 −max{0; 𝑛 − 1 − 𝑚𝑞} and 

𝑑2 = 𝑚𝑞 −max{0; 𝑛 − 1 − 𝑚𝑝}, and total degree 𝑑 = 𝑑1 + 𝑑2. 

 

Finally, some additional remarks about the resulting approximation of the reliability polynomial 

using the Newton bivariate polynomial interpolation that must be taken into account are: 

• the connection between the coefficients 𝑎𝑖,𝑗 of the resulting interpolant and the coefficients of the 

graph’s reliability polynomial is 𝑎𝑖,𝑗 ≈ 𝛼𝑖+max{0;𝑛−1−𝑚𝑞},𝑗+max{0;𝑛−1−𝑚𝑝}
. 

• there will still be some coefficients with low indices, where 𝑖 + 𝑗 < 𝑛 − 1, that will likely be non-

zero in the result. 

• the equations (4.8) and (4.9) cannot be taken into account with this method. 

 

 As a recapitulation, the below diagram shows the different steps of this method: 

 

 

 
 

Figure 10: Diagram of the proposed method: NBPI 

 

 

 

4.3 Practical application 
 

Similarly to the univariate case, the proposed simulation-interpolation based methods have been put into 

practice with the same two different graphs, but with the bivariate component. 

 Also, in order to apply both methods in the most efficient manner, the sets of interpolation nodes 

of each method have been merged. The BUPI method requires two sets of points (𝑝𝑖 , 𝑄) and (𝑃, 𝑞𝑗) which 

should be two sets of Chebyshev points in order to optimize the method (for this study 𝑃 and 𝑄 will be 

(4.20) 
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chosen as centered in [0,1] as possible). Therefore, the NBPI method will expand these sets of points into 

a rectangular basis, as shown in the following figure. In this manner, the set of simulation runs for each 

point of this rectangular basis will provide both methods with their simulated reliabilities. 

 

 
Figure 11: Example scheme of interpolation points for the BUPI (filled in red) and the NBPI (all) 

 

 The first graph is 𝐾4 − {𝑒}, where three edges have probability 𝑝 of remaining operational, 

whereas this probability is 𝑞 for the remaining two edges. 

 

                     
Figure 12: Bivariate 𝐾4 − {𝑒} 

 

It is relatively simple to develop the N-form of Rel(𝐺, 𝑝, 𝑞), and obtain its expanded form: 

 

Rel(𝐺, 𝑝, 𝑞) = 4𝑝3𝑞2  − 5𝑝3𝑞 + 𝑝3 − 6𝑝2𝑞2  +  5𝑝2𝑞 +  2𝑝𝑞2   
 

 Using the first of the proposed methods, the BUPI, with the number of iterations in each simulation 

step set at 𝑀 = 105, the result is 

 

Rel(𝐺, 𝑝, 𝑞) ≈ (3.98)𝑝3𝑞2  − (5.02)𝑝3𝑞 + (0.99)𝑝3 − (5.96)𝑝2𝑞2  + (5.04)𝑝2𝑞 + (1.96)𝑝𝑞2 

 

This highest absolute error of the coefficients is 𝜀 = 0.0448 although if we had chosen to round our results 

(since we know the coefficients are integers), then we would have obtained the exact coefficients. 

 With the second of the proposed methods, the NBPI, the coefficients corresponding to the terms 

in 𝑝, 𝑝2 and 𝑝𝑞, which should be zero are non-zero, although their values are negligible (respectively, 

−6.64 × 10−3, −1.26 × 10−2 and −2.96 × 10−2). If we ignore these, the rest of the resulting polynomial 

is: 

 

Rel(𝐺, 𝑝, 𝑞) ≈ (4.12)𝑝3𝑞2  − (5.16)𝑝3𝑞 + (1.02)𝑝3 − (6.14)𝑝2𝑞2  + (5.19)𝑝2𝑞 + (2.02)𝑝𝑞2 

 

The highest absolute error in these coefficients is 𝜀 = 0.1649, although the non-zero coefficients that we 

ignored may actually help adjust this error with respect to the known exact reliability polynomial. 

 

 

 The second graph is the road map of Ibiza, where this time we have taken into account the road 

type, and assigned each road or edge to one type: highways, with operability probability 𝑞, and secondary 

roads where this probability is 𝑝. 
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Figure 13: A simplified road map of Ibiza (with two types of roads) 

 

Now we are faced with a totally different situation: we have no knowledge as to this graph’s reliability 

polynomial. 

However, using the BUPI method with 𝑀 = 105, we obtain the following coefficients (in 

scientific format): 

 

 

 

𝜶𝒊,𝒋   𝒋=𝟎 1 2 3 4 5 6 7 

𝒊 = 𝟏𝟔 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,72E+02 

17 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 4,12E+04 -1,05E+05 

18 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 -1,75E+05 6,22E+05 0,00E+00 

19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,07E+04 -1,58E+06 0,00E+00 0,00E+00 

20 0,00E+00 0,00E+00 0,00E+00 1,09E+06 2,63E+06 0,00E+00 0,00E+00 0,00E+00 

21 0,00E+00 0,00E+00 -2,52E+06 -3,95E+06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

22 0,00E+00 2,57E+06 5,20E+06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

23 -1,37E+06 -4,63E+06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

24 3,16E+06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

25 -1,48E+06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

26 2,95E+05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 

 

 

One observation we can make is that the sum of coefficients where 𝑖 + 𝑗 = 𝑛 − 1 does not equal 𝑁𝑛−1. 

This is probably due to the fact that in the system of equations that this method builds, the one corresponding 

to   𝑁𝑛−1 = 12 has little influence on the solution as opposed to the equations corresponding to the values 

𝐴𝑘1  and 𝐵𝑘2 . For instance, 𝐴26 = 4.2 ⋅ 106. 

The situation for the NBPI method is the same: there is no exact set of coefficients that we can 

compare our results with. However in this case the coefficient that we know are zero (light red upper left 

triangle of our matrix) have important absolute vales. 
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𝜶𝒊,𝒋  𝒋 = 𝟎 1 2 3 4 5 6 7 

𝒊 = 𝟏𝟔 7,50E+03 -3,14E+05 3,73E+06 -1,92E+07 4,99E+07 -6,87E+07 4,76E+07 -1,31E+07 

17 -5,90E+05 2,47E+07 -2,93E+08 1,51E+09 -3,93E+09 5,40E+09 -3,75E+09 1,03E+09 

18 1,33E+07 -5,55E+08 6,59E+09 -3,39E+10 8,82E+10 -1,21E+11 8,42E+10 -2,32E+10 

19 -1,33E+08 5,55E+09 -6,59E+10 3,39E+11 -8,84E+11 1,22E+12 -8,43E+11 2,32E+11 

20 7,13E+08 -2,98E+10 3,54E+11 -1,82E+12 4,74E+12 -6,52E+12 4,53E+12 -1,25E+12 

21 -2,25E+09 9,43E+10 -1,12E+12 5,77E+12 -1,50E+13 2,07E+13 -1,43E+13 3,94E+12 

22 4,41E+09 -1,85E+11 2,19E+12 -1,13E+13 2,94E+13 -4,04E+13 2,81E+13 -7,72E+12 

23 -5,42E+09 2,27E+11 -2,69E+12 1,39E+13 -3,61E+13 4,96E+13 -3,44E+13 9,48E+12 

24 4,06E+09 -1,70E+11 2,02E+12 -1,04E+13 2,70E+13 -3,72E+13 2,58E+13 -7,10E+12 

25 -1,70E+09 7,11E+10 -8,44E+11 4,35E+12 -1,13E+13 1,56E+13 -1,08E+13 2,97E+12 

26 3,05E+08 -1,27E+10 1,51E+11 -7,80E+11 2,03E+12 -2,79E+12 1,94E+12 -5,34E+11 

 

Also, all these coefficients are completely different from those obtained in the previous experiment with 

the BUPI. 

 

 

 

 

4.4 Quality assessment of the proposed methods and calibration 
 

Like in the univariate case, we want to evaluate our proposed methods by checking the value of the 

approximated polynomial against the reliability of the graph in a random point in [0,1]2. This real reliability 

is only known in the case of the graph 𝐾4 − {𝑒}, so the quality assessment of the proposed methods will be 

based on these results only. 

 This error assessment will be tested applying different values of 𝑀 to the number of simulations 

run in each experiment (to obtain the reliability values at the interpolation points). Also, for each value 𝑀 

and each experiment, we will run 10 different tests (with 10 different random reference values (𝑝𝑟 , 𝑞𝑟) ) 
and calculate the average relative error in order to mitigate the effect of potential outliers. 

 In parallel to measuring the error, we will also keep track of the time needed to perform each 

experiment, and show the mean duration of the test. 

The relevant code has been written in MATLAB (see Annexes). 

 

 

  Number of simulations per interpolation point 

  10 102 103 104 105 106 

BUPI 
Time (seconds) 1,79E+00 3,96E-01 1,07E+00 7,19E+00 5,74E+01 5,50E+02 

RD 3,24E-01 1,57E-01 5,30E-02 9,19E-03 2,94E-03 1,32E-03 

NBPI 
Time (seconds) 3,38E+00 7,49E-01 1,96E+00 1,30E+01 1,03E+02 9,90E+02 

RD 4,36E-01 8,13E-02 3,02E-02 6,25E-03 3,95E-03 1,67E-03 

 
Figure 14: Numerical performance of the proposed methods for the bivariate case 

 

 

 Again, there is a clear improvement in the RD obtained with both methods as a larger number of 

simulations is considered, while the time spent in calculations increases. Another logical result is the fact 

that, in average, the time spent on the NBPI method (which uses 3x3 interpolation points in this case) is 1.8 

times greater than for the BUPI method (which uses only 3+3-1 of those points). 
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Figure 15: Graphical performance of the proposed methods for the bivariate case 

 

 

 In terms of logarithmic RD improvement, both methods show a linear behavior as the number of 

simulations increase. In fact, their performances seem very similar, even without the logarithmic scale 

adjustment. It is the performance in terms of time that appears to make the difference, and the BUPI method 

achieves better results in this regard. In fact, this method has also provided slightly better results in terms 

of RD for 105 and 106 simulations. 

 Looking more closely at the reduction of the RD with the BUPI method as the number of 

simulations increases by 10, the average reduction factor is 3.6 ⋅ 10−1 (with a standard deviation of 1.8 ⋅
10−1). As opposed to the univariate case, the reduction factor is not as predictable although in average it is 

highly performant. 

 Lastly, it is worth noting that for 106 simulations, each experiment with the BUPI method took in 

average more than 9 minutes to be completed. 
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5. Conclusions and future work 
 

In this paper, we have proposed an approach to the study of network reliability based on combined 

simulation-interpolation techniques. The basic idea behind this proposal is: if we can obtain the value of 

the graph’s reliability for different edges’ operativity probabilities via simulation, then we can interpolate 

the graph’s reliability polynomial. 

 With these simple concepts in mind, we have initially explored the univariate case, applying the 

effective interpolation at Chebyshev points. The proposed technique is relatively simple and requires only 

few lines of code, and it has proven to provide good results, to the extent that there are only few exact 

solutions that we can compare them with. The method can also be calibrated by intensifying the simulation 

component, which as we have seen, enables a much higher precision (with the disadvantage of an increased 

computational cost). 

 While investigations on how to exactly compute the coefficient of the reliability polynomial in one 

variable are still ongoing, the bivariate case still remains a nearly unexplored domain. In this paper we have 

applied our approach to this case too, proposing two methods that combine simulation and interpolation, 

but where this second component varies: in the first method (BUPI) the interpolation is univariate in each 

of the two variables independently, whereas the second method (NBPI) explores the Newton bivariate 

polynomial interpolation. Again, the results are promising and allow us to consider their usefulness in the 

real world. 

 A recurrent issue faced during this study was how to test the proposed approach with more realistic 

graphs such as a given road network. Simulation can also provide a solution to this, although at a high cost: 

even if the exact reliability polynomial is unknown, could we substitute its value with a simulated reliability 

for a massive number of simulations? This possibility is intractable with a personal computer, where this 

additional simulation phase could take multiple days for each value. But we also know that 

cyberinfrastructures are a common tool for investigators nowadays, and the access to these high-

performance computing systems could certainly give an answer to this question. 

In times when pandemic has suddenly made modern society stumble and sharpen our 

defenselessness, the study of networks is even more pressing than it already was when the main focus was 

the efficiency in different activities from a socioeconomic standpoint (transportation of goods, energy 

supply, etc.). The consideration of multivariate graphs is not the only open problem whose resolution will 

bring us closer to real-life scenarios. Other recent developments may consider node failure, ternary 

networks (where edges could have a third intermediary state between on and off), or diameter-constrained 

reliability, among other assumptions. The exploration possibilities are boundless, as well as the benefits of 

investigating them further. And while the exact computation of the reliability polynomial of a graph will 

be the only the only way to produce perfectly reliable networks, or to allow an optimal degree of control 

over existing ones, in the meantime, it may also be crucial to explore methods that aim at quasi-optimal 

solutions. Approximation theory and interpolation techniques are good alternatives, but certainly not the 

only ones, and other disciplines like metaheuristic optimization would be worth inspecting. 
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7. Annexes 
 

Code for section 3.4: 

 
%* This is the assessment of the univariate method for the graph K_4-{e}. 
%* 
%* For different values of M, the obtained approximated reliability 
%* is compared against the exact value of the graph's reliability. 
%* 
%* The assessment will be based on the relative difference 
%* and the computation time of the simulation-interpolation step. 

  
%* Presentation of results 
fprintf('number of simulations (log_10) \n'); 
fprintf('elapsed time after simulations-interpolation, in seconds \n'); 
fprintf('Relative difference for a random value of p \n\n'); 

  
%* Graph's static values 
n = 4; m = 5; 

  
%* Interpolation point (Chebyshev) 
p_0 = 0.5; 

  
%* Adjacency matrix 
AdjMat = zeros(n,n); AdjMat(1,2)= p_0; AdjMat(1,3)= p_0; AdjMat(2,3)= p_0; AdjMat(2,4)= p_0; AdjMat(3,4)= p_0; 

  
%* Simulation-interpolation method  
for expnnt=1:6 
    exptime = 0; 
    RD = 0; 
    M = 10^expnnt; 
    numtests=10; 
    for a=1:numtests 

  
        Rel = 0; 
        tic; 
        parfor i=1:M 

  
            A = AdjMat; 
            for j=1:n 
                for k=j+1:n 
                    if rand < A(j,k) 
                        A(j,k) = 1; 
                    else 
                        A(j,k) = 0; 
                    end   
                    A(k,j) = A(j,k);  
                end 
            end 

  
            G = graph(A); 
            adj = dfsearch(G,1); 
            if size(adj,1) < n 
            else 
                Rel = Rel + M^(-1); 
            end 

  
        end 
        alpha = [p_0^n p_0^m;1 1]\[Rel-8*p_0^3; 1-8]; 
        exptime = exptime + toc; 
        p_r = rand; 
        realRel = 4*p_r^5 - 11*p_r^4 + 8*p_r^3; 
        apprRel = alpha(2)*p_r^5 + alpha(1)*p_r^4 + 8*p_r^3; 
        if apprRel<0 
            apprRel = 0; 
        elseif apprRel > 1 
            apprRel = 1; 
        end 
        if realRel == 0 
            fprintf('GHOST'); 
        else 
            RD = RD + abs(realRel-apprRel)/realRel; 
        end 
    end 

  
    exptime = exptime/numtests; RD = RD/numtests; 
    fprintf('%d \n',expnnt); fprintf('%1.4e \n',exptime); fprintf('%1.4e \n',RD); fprintf('\n'); 

  
end 

 

 

Code for section 4.4: 

 
%* This is the assessment of the bivariate methods for the graph K_4-{e}. 
%* 
%* For each method, and for different values of M, the obtained approximated 

%* reliability is compared against the exact value of the graph's reliability. 
%* 
%* The assessment will be based on the relative percentage differences  
%* and the computation time of the entire method. 
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%* Presentation of results 
fprintf('number of simulations (log_10) \n'); 
fprintf('elapsed time after simulations, in seconds \n'); 
fprintf('Relative difference for a random value of p \n\n'); 

  
%* Graph's static values 
n = 4; mp = 3; mq = 2; m = mp + mq; k1 = max([0 n-1-mq]); k2 = max([0 n-1-mp]); N_L = 8; 

  
%* Interpolation points (Chebyshev) 
p = zeros(1,mp-k1+1); q = zeros(1,mq-k2+1); 
for i=0:(mp-k1) 
    p(mp-k1-i+1) = 0.5*cos(i*pi/(mp-k1+1))+0.5; 
end 
for j=0:(mq-k2) 
    q(mq-k2-j+1) = 0.5*cos(j*pi/(mq-k2+1))+0.5; 
end 

  
%* Pre-Adjacency matrices 
PreAp = zeros(n,n); PreAq = zeros(n,n); PreAp(1,2)=1; PreAq(1,3)=1; PreAq(2,3)=1; PreAp(2,4)=1; PreAp(3,4)=1; 

  
%* Tests and results for both methods 
numtests = 10; 
exptime1 = zeros(1,6); exptime2 = zeros(1,6); RD1 = zeros(1,6); RD2 = zeros(1,6); 

  
for a=1:numtests 
    p_r = rand; q_r = rand; 
    realRel = 4*p_r^3*q_r^2-5*p_r^3*q_r+p_r^3-6*p_r^2*q_r^2+5*p_r^2*q_r+2*p_r*q_r^2; 
    fprintf('Test %d of %d: Reference random value done.\n',a,numtests); 
    for expnnt=1:6 
        %* Reliability assessment at the interpolation points 
        %* through SIMULATION: 
        simRel = zeros(mp-k1+1,mq-k2+1); 
        M = 10^expnnt; 
        tic; 
        for i=1:(mp-k1+1) 
            for j=1:(mq-k2+1) 
                AdjMat=(PreAp*p(i))+(PreAq*q(j)); 
                rrr = 0; 
                parfor iter=1:M 
                    A = AdjMat; 
                    for iIt=1:n 
                        for jIt=iIt+1:n 
                            if rand < A(iIt,jIt) 
                                A(iIt,jIt) = 1; 
                            else 
                            A(iIt,jIt) = 0; 
                            end   
                            A(jIt,iIt) = A(iIt,jIt);  
                        end 
                    end 
                    G = graph(A); 
                    adj = dfsearch(G,1); 
                    if size(adj,1) < n 
                    else 
                        rrr = rrr + M^(-1); 
                    end 
                end 
                simRel(i,j) = simRel(i,j) + rrr; 
            end 
        end 
        time = toc; 
        exptime1(expnnt) = exptime1(expnnt) + time*(mp-k1+1+mq-k2)/((mp-k1+1)*(mq-k2+1)); 
        exptime2(expnnt) = exptime2(expnnt) + time; 
        fprintf('Test %d of %d: Simulation done.\n',a,numtests); 

  
        %* BDIMENSIONAL UNIVARIATE POLYNOMIAL INTERPOLATION: 

  
        %* Allocating space for the system Ax=B 
        %* and building the first and last rows as per equations (4.8),(4.9) 
        tic; 
        B=zeros(1+mp-k1+mq-k2+3,1); B(1)=N_L; B(1+mp-k1+mq-k2+3)=1; 
        A=zeros(1+mp-k1+mq-k2+3,(mp-k1+1)*(mq-k2+1)); 
        stati=round((mp-k1+1)/2); statj=round((mq-k2+1)/2); 
        statp=p(stati); statq=q(statj); 
        iA=1; 
        for i=k1:mp 
            for j=k2:mq 
                if i+j==n-1 
                    A(1,iA)=1; 
                end 
                iA=iA+1; 
            end 
        end 
        A(1+mp-k1+mq-k2+3,:) = ones(1,(mp-k1+1)*(mq-k2+1)); 

  
        %* Univariate interpolation with fixed q 
        f=[]; 
        for i=1:(mp-k1+1) 
            f=[f simRel(i,statj)]; 
        end 
        f=f./(p.^k1); 
        coeffsA = flip(polyfit(p,f,mp-k1)); 
        for iter=1:mp-k1+1 
            B(1+iter)=coeffsA(iter); 
            iA=mp*(iter-1)+1; 
            i=k1+iter-1; 
            for j=k2:mq 
                if i+j>=n-1 
                    A(1+iter,iA)=statq^j; 
                end 
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                iA=iA+1; 
            end 
        end 

  
        %* Univariate interpolation with fixed p 
        f=[]; 
        for j=1:(mq-k2+1) 
            f=[f simRel(stati,j)]; 
        end 
        f=f./(q.^k2); 
        coeffsB = flip(polyfit(q,f,mq-k2)); 
        for iter=1:mq-k2+1 
            B(1+(mp-k1+1)+iter)=coeffsB(iter); 
            iA=iter; 
            j=k2+iter-1; 
            for i=k1:mp 
                if i+j>=n-1 
                    A(1+(mp-k1+1)+iter,iA)=statp^i; 
                end 
                iA=iA+mp; 
            end 
        end 

  
        x=A\B; 
        apprRel = 0; e1=k1; 
        for i=1:(mp-k1+1) 
            e2=k2; 
            for j=1:(mq-k2+1) 
                apprRel = apprRel + x((i-1)*mp+j)*p_r^e1*q_r^e2; 
                e2 = e2+1; 
            end 
            e1 = e1+1; 
        end 
        exptime1(expnnt) = exptime1(expnnt) + toc; 
        if apprRel < 0 
            apprRel = 0; 
        elseif apprRel > 1 
            apprRel = 1; 
        end 
        if realRel == 0 
            fprintf('GHOST'); 
        else 
            RD1(expnnt) = RD1(expnnt) + abs(realRel-apprRel)/realRel; 
        end 

  

  
        %* NEWTON BIVARIATE POLYNOMIAL INTERPOLATION: 

  
        %* Sequence of matrices P, starting with P(0) where the minimum exponent 
        %* factors have been removed 
        tic; 
        P = zeros(mp-k1+1,mq-k2+1,mp-k1+1); 
        for i=1:(mp-k1+1) 
            for j=1:(mq-k2+1) 
                P(i,j,1)=(simRel(i,j)/(p(i)^k1))/(q(j)^k2); 
            end 
        end 
        for k = 2:mp-k1+1 
            for i = 1:mp-k1+1 
                for j = 1:mq-k2+1 
                    if and(i<k , j<k) 
                        P(i,j,k) = P(i,j,k-1); 
                    elseif and(i>=k , j>=k) 
                        P(i,j,k) = ... 
                        (P(i,j,k-1)+P(i-1,j-1,k-1)-P(i-1,j,k-1)-P(i,j-1,k-1)) / ... 
                        ((p(i)-p(i-k+1))*(q(j)-q(j-k+1))); 
                    elseif and(i<k , j>=k) 
                        P(i,j,k) = (P(i,j,k-1)-P(i,j-1,k-1))/(q(j)-q(j-k+1)); 
                    elseif and(i>=k , j<k) 
                        P(i,j,k) = (P(i,j,k-1)-P(i-1,j,k-1))/(p(i)-p(i-k+1)); 
                    end               
                end 
            end 
        end 

  
        x = sym('x'); y = sym('y'); 
        X = sym('X',[1 mp-k1+1]); Y = sym('Y',[mq-k2+1 1]); 
        X(1) = 1; Y(1) = 1; 
        for i = 2:mp-k1+1 
            X(i) = expand(X(i-1)*(x-p(i-1))); 
        end 
        for j = 2:mq-k2+1 
            Y(j) = expand(Y(j-1)*(y-q(j-1))); 
        end 
        Rel = (X*P(:,:,mp-k1+1))*Y; 
        [coefficients, symTerms] = coeffs(Rel, [y x], 'All'); 

         
        apprRel = 0; 
        for i=1:(mp-k1+1) 
            for j=1:(mq-k2+1) 
                cc = eval(coefficients(mq-k2+2-j,mp-k1+2-i)); 
                apprRel = apprRel + cc*p_r^(i-1+k1)*q_r^(j-1+k2); 
            end 
        end 
        exptime2(expnnt) = exptime2(expnnt) + toc; 
        if apprRel < 0 
            apprRel = 0; 
        elseif apprRel > 1 
            apprRel = 1; 
        end 
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        if realRel == 0 
            fprintf('GHOST'); 
        else 
            RD2(expnnt) = RD2(expnnt) + abs(realRel-apprRel)/realRel; 
        end 

         

     

     
    fprintf('Test %d of %d: finished testing 10^%d.\n\n',a,numtests,expnnt); 
    end 
end 

  
exptime1 = exptime1/numtests; 
exptime2 = exptime2/numtests; 
RD1 = RD1/numtests; 
RD2 = RD2/numtests; 

  
fprintf('Results BUPI: exponent, time, RD:\n'); 
for expnnt=1:6 
    fprintf('%d \n',expnnt); fprintf('%1.4e \n',exptime1(expnnt)); fprintf('%1.4e \n',RD1(expnnt)); fprintf('\n'); 
end 
fprintf('\nResults NBPI: exponent, time, RD:\n'); 
for expnnt=1:6 
    fprintf('%d \n',expnnt); fprintf('%1.4e \n',exptime2(expnnt)); fprintf('%1.4e \n',RD2(expnnt)); fprintf('\n'); 
end 

 

 




