Engineering of formate dehydrogenase for the acceptance of a biomimetic nicotinamide-based cofactor in the reduction of CO₂

by Vanesa Teijeiro Seijas

January 2020

Advisor: Elisabeth Ortega Carrasco

University Master's Degree in Bioinformatics and Biostatistics

Open University of Catalonia
University of Barcelona
Table of contents

1. Introduction
 1.1. Formate Dehydrogenase
 1.2. CO₂ Conversion by FDH
 1.3. Biomimetic Cofactors
 1.4. Enzyme Evolution

2. Objective

3. Research Method
 3.1. Work Pipeline
 3.2. Project Planning

4. Results
 4.1. Selection of the FDH enzyme
 4.2. Target Residues for Mutations
 4.3. Selection of the Biomimetic Cofactor
 4.4. Enzymes with Mutations
 4.5. Mutants Evaluation
 4.6. Mutant Viability Evaluation

5. Conclusions

6. Limitations and Improvements
1. Introduction

1.1. Formate Dehydrogenase

- **EC 1.17.1.9**
- **Types**
 - Metal-independent
 - Metal-dependent
- **Applications**
 - Cofactor regeneration
 - CO_2 conversion (under research)

(Amao, 2018)
1. Introduction

1.2. CO₂ Conversion by FDH

\[\text{HCOO}^- \rightleftharpoons \text{CO}_2 + \text{H}^+ + 2e^- \]

\[\text{CO}_2 + \text{H}^+ + 2e^- \rightleftharpoons \text{HCOO}^- \]

(Castillo et al., 2008)

(Marpani et al., 2017)
1. Introduction

1.3. Biomimetic Cofactors

(Guarneri et al., 2019)
1. Introduction

1.4. Enzyme Evolution

Directed Evolution

vs

Rationally Design
2. Objective

• Determine at least one beneficial mutation for doing protein engineering to the enzyme formate dehydrogenase to allow the use of a nicotinamide biomimetic cofactor instead of the natural cofactor NADH
3. Research Method

3.1. Work Pipeline

Select the enzyme and residues for mutations
- FDH enzyme that requires a cofactor and thermostable
- Residues that interact with the cofactor

Select the biomimetic cofactor
- Binding position similar to the natural cofactor NADH
- Method: Molecular docking using SwissDock

Create mutants and determine the 3D structure
- Method: Homology modelling using SwissModel

Select the best mutant
- Interactions of each mutant with the biomimetic cofactor
- Method: Molecular docking using Autodock Vina

Evaluation of the viability of the mutant
- Stability of the protein (Method: CUPSAT)
- Ligand transport (Method: Caver Web)
3. Research Method

3.2. Project Planning
4. Results

4.1. Selection of the FDH Enzyme

PsFDH (formate dehydrogenase from *Pseudomonas sp. 101*)

- Natural cofactor: NADH
- Tm: 63°C

(Filippova et al., 2005)

Apoenzyme
PDB: 2NAC

Holoenzyme
PDB: 2NAD
4. Results

4.2. Target Residues for Mutations

- Catalytic domain
- Reaction mechanism
- Interaction between subunits
4. Results

4.3. Selection of the Biomimetic Cofactor

(Nowak, Pick, Csepei, et al., 2017)

E (V) vs NHE

-0.6 -0.55 -0.5 -0.45 -0.4 -0.35 0.3 -0.35 -0.2

NADH NADP⁺ P3NAH MNA⁺ P2NA⁺ BNA⁺

Increasing oxidation ability

Increasing reducing ability

P3NAH docking in PsFDH

NADH P3NAH P2NAH MNAH

Biomimetic cofactors

Natural cofactor
4. Results

4.4. Enzymes with Mutations

π–π Stacking Interactions

- Ala 283
- Phe
- Tyr
- Gly 123
- Phe
- Tyr

Wider Cofactor Binding Groove

- Thr 376 → Gly
- Ser 380 → Gly
- Tyr 381 → Gly
- Arg 222 → Gly

- 2NADa_A283F
- 2NADa_A283Y
- 2NADa_G123F
- 2NADa_G123Y
- 2NADa_T376G
- 2NADa_S380G
- 2NADa_Y381G
- 2NADa_R222G
4. Results

4.5. Mutants Evaluation

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding Score</td>
<td>-7.6</td>
</tr>
<tr>
<td>H Bonds</td>
<td>2</td>
</tr>
<tr>
<td>Distance (Å)</td>
<td>1.200</td>
</tr>
</tbody>
</table>
4. Results

4.5. Mutants Evaluation

<table>
<thead>
<tr>
<th></th>
<th>2NADa_A283F</th>
<th>2NADa_A283Y</th>
<th>2NADa_G123F</th>
<th>2NADa_G123Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMEAN</td>
<td>0.27</td>
<td>0.29</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Binding Score</td>
<td>-6.7</td>
<td>-7.4</td>
<td>-7.2</td>
<td>-7.3</td>
</tr>
<tr>
<td>H bonds</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Distance (Å)</td>
<td>2.424</td>
<td>5.635</td>
<td>5.594</td>
<td>5.573</td>
</tr>
</tbody>
</table>
4. Results

4.5. Mutants Evaluation

<table>
<thead>
<tr>
<th></th>
<th>2NADa_T376G</th>
<th>2NADa_S380G</th>
<th>2NADa_Y381G</th>
<th>2NADa_R222G</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMEAN</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>Binding Score</td>
<td>-7.2</td>
<td>-7.2</td>
<td>-7.1</td>
<td>-7.5</td>
</tr>
<tr>
<td>H bonds</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Distance (Å)</td>
<td>1.409</td>
<td>0.245</td>
<td>2.473</td>
<td>1.348</td>
</tr>
</tbody>
</table>
4. Results

4.6. Mutant Viability Evaluation

Protein Stability

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Overall Stability</th>
<th>Torsion</th>
<th>Predicted ΔΔG (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLY</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>1.69</td>
</tr>
<tr>
<td>ALA</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>3.14</td>
</tr>
<tr>
<td>VAL</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>2.99</td>
</tr>
<tr>
<td>LEU</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>1.71</td>
</tr>
<tr>
<td>ILE</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>3.85</td>
</tr>
<tr>
<td>MET</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>2.97</td>
</tr>
<tr>
<td>PRO</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>0.04</td>
</tr>
<tr>
<td>TRP</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>2.61</td>
</tr>
<tr>
<td>THR</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>0.38</td>
</tr>
<tr>
<td>PHE</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>2.72</td>
</tr>
<tr>
<td>GLN</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>1.27</td>
</tr>
<tr>
<td>LYS</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>0.61</td>
</tr>
<tr>
<td>TYR</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>2.06</td>
</tr>
<tr>
<td>ASN</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>1.33</td>
</tr>
<tr>
<td>CYS</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>3.25</td>
</tr>
<tr>
<td>GLU</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>2.01</td>
</tr>
<tr>
<td>ASP</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>2.11</td>
</tr>
<tr>
<td>ARG</td>
<td>Stabilising</td>
<td>Unfavourable</td>
<td>1.23</td>
</tr>
<tr>
<td>HIS</td>
<td>Stabilising</td>
<td>Favourable</td>
<td>2.19</td>
</tr>
</tbody>
</table>

Ligand Transport

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>2NADa_S380G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottleneck radius (Å)</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Length (Å)</td>
<td>15.7</td>
<td>16.4</td>
</tr>
<tr>
<td>Distance to surface (Å)</td>
<td>13.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Curvature</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Number of residues</td>
<td>40</td>
<td>38</td>
</tr>
</tbody>
</table>
5. Conclusions

• Viable mutant: 2NADa_S380G
 • Access tunnel Ser -> Gly
 • Acceptable protein stability and ligand transport

• Residues added with aromatic groups: steric hindrance

• Potential of free software for planning protein engineering
6. Limitations and Improvements

• Limitations
 • Steps are not automatically connected
 • Dependence of tools based on web servers

• With more computational power
 • Molecular dynamics
 • More mutations
Thank you for your attention!

Please, send me your questions!