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Modified connectivity of vulnerable 
brain nodes in multiple sclerosis, 
their impact on cognition and their 
discriminative value
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Soley1, Maria Sepulveda1, Nuria Sola-Valls1, Carmen Montejo1, Yolanda Blanco1, Irene Pulido-
Valdeolivas1, Magi Andorra1, Albert Saiz1, Ferran Prados2,3,4 & Sara Llufriu1*

Brain structural network modifications in multiple sclerosis (MS) seem to be clinically relevant. The 
discriminative ability of those changes to identify MS patients or their cognitive status remains 
unknown. Therefore, this study aimed to investigate connectivity changes in MS patients related to 
their cognitive status, and to define an automatic classification method to classify subjects as patients 
and healthy volunteers (HV) or as cognitively preserved (CP) and impaired (CI) patients. We analysed 
structural brain connectivity in 45 HV and 188 MS patients (104 CP and 84 CI). A support vector machine 
with k-fold cross-validation was built using the graph metrics features that best differentiate the 
groups (p < 0.05). Local efficiency (LE) and node strength (NS) network properties showed the largest 
differences: 100% and 69.7% of nodes had reduced LE and NS in CP patients compared to HV. Moreover, 
55.3% and 57.9% of nodes had decreased LE and NS in CI compared to CP patients, in associative 
multimodal areas. The classification method achieved an accuracy of 74.8–77.2% to differentiate 
patients from HV, and 59.9–60.8% to discriminate CI from CP patients. Structural network integrity is 
widely reduced and worsens as cognitive function declines. Central network properties of vulnerable 
nodes can be useful to classify MS patients.

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system 
that leads to physical and cognitive disability. Using diffusion-magnetic resonance imaging (MRI), abnormali-
ties in structural brain connectivity have been seen to be driven by demyelinating and neuroaxonal damage in 
patients with MS1–4. Likewise, graph theory analyses of the structural brain network suggests that MS is associated 
with an imbalance in the integration and segregation of the network components3, which deteriorates the infor-
mation flow among brain regions1,2, and affects their function3,4. In this sense, cognitive impairment has been 
related to a decrease in network efficiency, and changes in nodes and connections involving the insula, deep grey 
matter and regions of the frontoparietal network1,2. Measures of small-worldness and network segregation, such 
as local efficiency or clustering coefficient, can provide regional information by characterising the interactions of 
an individual node with its immediate neighbours5. Such network parameters may be modified by the disease and 
lead to cognitive dysfunction when the network collapses6.

Using machine learning algorithms, network characteristics have been used in preliminary studies to discrim-
inate between patients and healthy subjects7–9, to depict disease evolution8, or to classify in the different clinical 
profiles of MS7. Among other classification techniques, Support Vector Machines (SVM10) are efficient, robust 
and accurate methods to classify data in diverse and heterogeneous contexts, such as those related to medical 
diagnosis11,12. Thus, the application of such methods may aid MS diagnosis and enhance our understanding of the 
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network components that collapse when cognitive dysfunction is associated with the development of this disease. 
Therefore, the aim of this study was to characterise the regional changes in connectivity in patients with MS that 
influence their cognitive status. As such, using a supervised learning model we set out to provide an automatic 
classification method based on this information that is capable of distinguishing MS patients from healthy indi-
viduals, and of distinguishing cognitively impaired (CI) and cognitively preserved (CP) MS patients.

Methods
Participants. Patients with relapsing-remitting or secondary progressive MS, aged between 18 and 65 years, 
were recruited to this study at the MS Unit of the Hospital Clinic of Barcelona. We included 188 MS patients diag-
nosed according to the 2010 McDonald criteria21 and 45 HV with no previous or current history of neurological 
or psychiatric diseases. Physical disability was evaluated in all the subjects using the Expanded Disability Status 
Scale (EDSS). The Ethics Committee of the Hospital Clinic of Barcelona approved the study, and all participants 
signed an informed consent. All procedures of this study were performed in accordance with the relevant guide-
lines and regulations.

Cognitive assessment. The Brief Repeatable Battery of Neuropsychological tests (BRB-N22) was completed 
by all patients, and the z-scores were calculated using age and education-adjusted norms23. Patients were classified 
as CI when they had a z-score below −1.5 in two or more tests, while the remaining patients were classified as CP.

Magnetic resonance image acquisition and processing. Structural and diffusion-magnetic resonance 
image acquisition. MRIs were acquired on a 3 T Magnetom Trio scanner (SIEMENS, Erlanger, Germany) 
using a 32 channel phased-array head coil as previously described2,16; including structural 3D-Magnetization 
Prepared Rapid Acquisition Gradient Echo (MPRAGE), 3D-T2 fluid-attenuated inversion recovery (FLAIR) and 
diffusion-weighted imaging (DWI) sequences. The 3D-structural image had the following acquisition parameters: 
TR = 1800 ms; TE = 3.01 ms; TI = 900 ms; 240 sagittal slices with 0.94 mm isotropic voxel size and a 256 × 256 
matrix size. The 3D-T2 FLAIR sequence parameters were: TR = 5000 ms; TE = 304 ms; TI = 1800 ms; 192 sagittal 
slices with 0.94 mm isotropic voxel size and a 256 × 256 matrix size. DWI was acquired with TR = 14800 ms; 
TE = 103 ms; 100 contiguous axial slices; 1.5 mm isotropic voxel size; a 154 × 154 matrix size; b value = 1000 s/
mm2; 60 diffusion encoding directions and a single baseline image acquired at 0 s/mm2. In addition, field map 
images were generated to correct the distortions caused by field inhomogeneities (TE 1/TE 2 = 4.92/7.38 ms, with 
the same slice prescription, slice thickness and field of view as the DWI sequence).

White matter (WM) lesions were segmented in the 3D-MPRAGE space with the JIM 7 software (http://www.
xinapse.com/j-im-7-software/) using 3D-FLAIR images as a reference to improve the identification and delinea-
tion of the lesions. A WM lesion-filling approach24 was applied and for the network analysis, 76 structural brain 
labels were obtained using the Mindboogle (https://mindboggle.info/) and FSL-FIRST packages.

Advanced fibre tracking method to estimate the edges of the network. Pre-processing of diffusion MRI was 
achieved by DWI denoising, motion correction and geometrically unwrapping of the images25. Structural brain 
network reconstruction was performed using the multi-tissue constrained spherical deconvolution (MT-CSD) 
method to decompose two different tissue components, WM (anisotropic) and grey matter (GM)/cerebrospi-
nal fluid (isotropic), which was followed by high-order probabilistic tractography using the MRtrix3 software 
package (http://www.mrtrix.org/)25. The WM and lesions mask were defined as tractography seeding16 to guar-
antee the streamline generation over pathological tissue. Using the anatomical constrained tractography (ACT) 
framework26, with the stopping criteria of a fibre orientation distribution (FOD) amplitude equal to 0.06, a set 
of 6 million streamlines was generated by the fibre tracking method. To minimise the number of false positives 
streamlines, we applied an anatomical exclusion criteria post-processing27.

Connectome matrix reconstruction. The parcellation scheme (76 regions) of structural images were adjusted 
to the native DWI space to define the nodes of the network. Structural brain networks were then represented by 
76 × 76 weighted connectivity matrices based on the mean fractional anisotropy (FA) values for each connection 
(2850 network edges), obtained from lesional and normal appearing brain tissue. We incorporated a weighting 
factor for each streamline contribution28. Only connections present in more than 60% of the HV cohort were 
included in the statistical analyses29. Finally, age and gender correction was performed by regression analysis 
applied to each FA connectivity matrix.

Network analyses. Using iGraph (https://igraph.org/), we obtained five node-based common graph measures30 
from each participant’s FA-weighted connectivity matrix computed for each of the 76 regions from the parcel-
lation map: node strength, the sum of the weights of all edges connected to a node; local efficiency, the average 
inverse shortest path length or global efficiency of a node calculated from the subgraph created by the node’s 
neighbours; clustering coefficient, the fraction of the triangles present around a node; betweenness centrality, the 
fraction of all the shortest path in the graph that pass through a node; and node degree, the total number of edges 
connected to a node.

Classification using SVM with the radial basis function kernel. We defined two groups to build the classifiers, 
the first comprised of all MS patients relative to the HVs, and the second, to compare CI and CP patients. The 
construction of each SVM model implied three steps, the first of which involved the selection of the graph fea-
tures, which aimed to reduce input dimensionality, particularly recommended when the number of features is 
higher than the number of samples and when most of the data are usually redundant or irrelevant31 and hence, to 
minimise the overlap between groups and achieve greater dissimilarity. We only selected those graph metrics for 
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which group comparison returned significant differences (corrected p < 0.05) when comparing CP patients with 
HVs, or CI with CP patients32.

The second step consisted of instance creation and, given the imbalance in the number of subjects in each 
group, we built 100 instances of the SVM model. In order to achieve a balance, we performed random undersam-
pling over the largest group. Thus, for the classification of MS patients relative to HVs, each instance included 90 
random stratified observations (45 HV, 20 CI and 25 CP patients) and 168 observations for the classification of 
CI relative to CP patients (84 CI and 84 CP patients). To find the optimal input parameters for the SVM, namely 
C and γ, a grid search was performed using growing sequences.

The third step was validation using k-fold cross-validation (with k = 10). Thus, at each iteration of the first type 
of classification, 81 observations were used for training and 9 for testing, while for the second type of classifica-
tion, 152 observations were used for training and 16 for testing. We obtained several performance indicators for 
each validation test, including accuracy, sensitivity, specificity and F1-score33. These results were further analysed 
using other confusion matrix indicators to assess the overall performance of the classifiers.

Statistical analysis. The Shapiro-Wilks method was used to assess normality. Differences in demographic, 
clinical and neuroimaging data among the groups were studied using a chi-squared test, one-way ANOVA or 
Kruskal-Wallis tests, as appropriate, with a significance level set to p < 0.05. Levene’s test for equality of variances 
was used to assess the homoscedasticity assumption and we used a Welch correction to compare group differ-
ences when this assumption was violated. Multiple comparisons were analysed with a Tukey HSD or Dunn’s test 
as necessary, and all statistical analyses were performed using the R Statistical Software (www.R-project.org).

Results
The demographic, clinical and cognitive data of the cohort were collected (Table 1) and of the MS patients, 104 
(55%) were classified as CP and 84 (45%) as CI. As expected, the group of CI patients were older, more disabled 
and had a higher proportion of progressive MS patients (p < 0.05, Table 1).

Differences in node-based graph metrics among the groups. Most differences among the groups 
were observed in the measures of local efficiency and node strength (corrected p < 0.05). Local efficiency was 
reduced in CP patients relative to the HVs in all the nodes studied (corrected p < 0.05), while in CP compared to 
CI patients local efficiency was decreased in 42 (55.3%) of the studied nodes (corrected p < 0.05). Regions involv-
ing bilateral pericalcarine, cuneus and lateral occipital cortex, and right parahippocampal, lingual and transverse 
temporal cortex were the regions with the largest differences between CP patients and HVs (corrected p < 0.05). 
On the other hand, areas associated with the pericalcarine, and the superior and inferior parietal cortex of both 
hemispheres, the right lateral occipital cortex, and the left parahippocampal cortex and cuneus were those with 
the largest differences between the two MS groups (corrected p < 0.05, see Fig. 1 for the results from the nodes 
with largest differences between CI and CP patients).

In terms of node strength, 53 (69.7%) nodes were weaker in CP patients than in the HVs (corrected p < 0.05), 
and 44 (57.9%) nodes in CI patients were weaker than in CP patients (corrected p < 0.05). Areas such as the 
nucleus accumbens, hippocampus and lingual gyrus from both hemispheres, right cuneus and pericalcarine 
cortex and the left parahippocampal area were the regions with the largest differences between CP and HVs 
(corrected p < 0.05). Finally, the nodes in which there was the largest differences between MS groups were the 
bilateral hippocampus, right precuneus, occipital cortex (bilateral cuneus, right lingual, left pericalcarine and left 
lateral occipital cortex), the temporal cortex (right superior temporal and left fusiform) and the bilateral isthmus 
of the cingulate cortex (corrected p < 0.05, Fig. 2).

With the clustering coefficient, as well as for betweenness centrality and node degree, a limited number of nodes 
displayed significant differences (corrected p < 0.05). Thus, 12 (15.8%), 10 (13.2%) and 13 (17.1%) nodes were different 
in CP patients relative to HVs respectively, and 6 (7.9%), 8 (10.5%) and 10 (13.2%) between the CI and CP patients. 
Clustering coefficient and node degree were increased in CP compared to HV in 11 and 12 nodes, respectively, and 

Healthy volunteers 
(n = 45)

Cognitive preserved 
(n = 104)

Cognitive impaired
(n = 84) p-value

Age, years 37.77 ± 11.01 41.90 ± 9.07 44.57 ± 11.27 0.003b

Female, n (%) 27 (60) 77 (74) 52 (62) 0.116a

Type of MS, n (%):
RRMS
SPMS

— 99 (95)
5 (5)

71 (85)
13 (15) 0.026a

Disease duration, years — 11.04 ± 9.03 13.97 ± 10.17 0.044c

Median EDSS score (range) — 2.0 (0.0–6.5) 2.5 (0.0–6.5) 0.009d

Lesion volume (cm3) — 6.26 ± 6.98 12.52 ± 15.00 <0.001c

Grey matter volume (cm3) 826.07 ± 54.56 794.38 ± 52.25 767.82 ± 68.48 <0.001e

Global cognition z-score — 0.014 ± 0.436 −1.099 ± 0.571 <0.001c

Table 1. Demographic, clinical and cognitive data of the participants. Continuous variables are given as the 
mean ± standard deviation: EDSS = Expanded Disability Status Scale; RRMS = relapsing remitting multiple 
sclerosis; SPMS = secondary progressive multiple sclerosis. a, Chi square test; b, Student’s t-test for independent 
samples; c, Mann-Whitney U Test; d, Wilcoxon rank-sum test; e, One-way analysis of variance.
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between CI and CP patients in 6 and 10 regions. Moreover, 2 nodes showed higher betweenness centrality in CP com-
pared to HV and 5 nodes in CI compared to CP patients (corrected p < 0.05, Supplementary Figs. 1–3).

SVM classification. Using the SVM-based classification method to differentiate MS patients from HVs, 
and with the network measures with larger differences among the groups as inputs, a maximal discrimination 
accuracy of 77.15% was obtained for local efficiency and of 74.84% for node strength (corrected p < 0.05 when 
comparing CP with HV and CI with CP). The accuracy achieved in classifying CI and CP patients was 59.46% 
using local efficiency and 60.77% using node strength (see Table 2 for the accuracy, precision, sensitivity and 
specificity obtained from these models). When the SVM used the combined information of local efficiency and 
node strength, the accuracy to differentiate MS patients from HV was 76.88%, while it was 59.90% to differentiate 
CI from CP patients (Table 2). The features weights with the highest means for local efficiency, node strength and 
both properties together that were obtained with the different SVM executions are also shown (Fig. 3).

Discussion
Using small-worldness and segregation measures, this study demonstrates changes in brain structural connectiv-
ity in a cohort of MS patients, even in the absence of cognitive decline. Patients with cognitive deficits experience 
more prominent modifications to their structural network, involving areas related to eloquence, suggesting a 
collapse of the network that drives cognitive dysfunction. Indeed, changes in these areas can discriminate MS 

Figure 1. Mean and 95% confidence interval for the local efficiency in healthy volunteers (HV), cognitive 
preserved (CP) and cognitive impaired patients (CI) patients. For each node, ‘#’ stands for the statistical 
significance between CP and HV, and ‘*’ for CI vs. CP.
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patients from healthy individuals, although the capacity of these measures to differentiate patients based on their 
cognitive status is more restricted, suggesting that other factors may also influence such cognitive disturbances.

Local efficiency, a measure of how adjacent nodes are interconnected, appears to be a sensitive measure to 
study structural network changes during the disease course, with an increase in the early stages13 followed by a 

Figure 2. Mean and 95% confidence interval of node strength results from healthy volunteers (HV), 
cognitive preserved (CP) and cognitive impaired patients (CI) patients. For each node, ‘#’ stands for statistical 
significance between CP and HV, and ‘*’ for CI vs. CP.

Groups MS patients vs. HVs CI vs. CP patients

Measures LE NS LE + NS LE NS LE + NS

Accuracy 77.15 ± 3.35 74.84 ± 3.11 76.88 ± 3.35 59.46 ± 1.64 60.77 ± 1.44 59.90 ± 1.25

Sensitivity 74.27 ± 7.85 69.66 ± 7.28 72.17 ± 7.01 39.31 ± 13.19 46.07 ± 17.21 36.91 ± 13.40

Specificity 80.01 ± 3.77 79.94 ± 5.43 81.53 ± 3.85 79.62 ± 11.59 75.47 ± 16.31 82.89 ± 12.90

F1-score 75.99 ± 4.37 72.67 ± 4.27 74.90 ± 4.52 49.65 ± 9.12 52.29 ± 9.17 46.65 ± 8.31

Number of features 42 33 75 42 33 75

Table 2. Measures of the SVM classification performance based on measures of local efficiency (LE), node 
strength (NS), or both. The results are presented as the mean percentage value ± standard deviation of the 
100 instances with different subjects from the largest group using k-folding cross-validations: CI = cognitive 
impaired; CP = cognitive preserve; HV = healthy volunteers.
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widespread reduction as the disease progresses, even when cognitive impairment is not yet established. Moreover, 
a reduction in node strength was also associated with disease duration in previous reports13. The findings of the 
present study support a general reduction in connectivity in MS patients that would appear to impair short-range 
connections between nearby regions. These changes are apparently larger than those identified earlier in indi-
viduals with a shorter disease duration2 and hence, reflect the vulnerability of the structural network to disease 
burden3.

Network modifications can be considered as a hallmark of the disease and they may serve to identify patients 
with MS, or even their cognitive status. When we applied SVM techniques to assess this possibility, we achieved 
a maximum accuracy of 76.8% based on local efficiency. Classification measures with different accuracies to 
distinguish MS patients from HVs by applying graph metrics from both structural and functional networks have 
been described previously7, as well as the efforts to distinguish clinically isolated syndrome from MS through 
the WM and GM connectivity8. The present results are in line of findings centred in diffusion-based structural 
connectivity, which reported an accuracy of 72.5% discriminating patients with MS from healthy individuals7, but 
also, they provide valuable information on the areas that were most distinct between the groups and thus, those 
that suffer characteristic damage in association with the disease. The power and the accuracy of the predictions 
from any machine learning-based algorithm are directly linked to the quality and size of the training sample10,14. 
In this sense, this study focused on a large sample of MS patients, which enhances the variance and reduces the 
bias that complicates the learning task associated with machine learning-based methods. SVM is a popular auto-
matic classification method based on machine learning. Its simplicity favours its application to a wide range of 
discrimination tasks through the use of MRI data7–9,12. Using structural connectivity with advanced tractography 
techniques (MT-CSD), and no specific significance level limiting the values, the data demonstrated the viability of 
the approach adopted in a research environment, and the potential for its future translation into clinical practise 
as a complementary tool for subjects stratification.

Patients with cognitive impairment had a larger reduction in local efficiency and node strength in nodes 
that were already affected. Such modifications support the vulnerability of impaired regions to damage, and the 
hypothesis that when such damage is more intense, cognitive deficits arise due to the collapse of the network or 
its inability to compensate the brain impairment6. Reduced connectivity at nodes involving the parieto-occipital 
and medial temporal areas are the largest differences found in cognitively impaired MS patients. Most of these 
regions are considered brain hubs, maintaining a large number of connections across the brain and with intense 
metabolic demands, which increases their vulnerability to brain damage15. Hence, the loss of local integrity in 
these areas may be related to neuronal disorganization that drives cognitive impairment. The vulnerability of the 
frontal-parietal network components to neuroaxonal and demyelination damage was described in an earlier study 
we performed, along with its relationship to cognition in MS patients2,16.

However, the accuracy of machine learning techniques to distinguish patients based on their disability was 
more limited, as the mean accuracy was 51% (standard deviation 8.6) with k-folding cross-validations, and the 
maximal accuracy was 60.77% using nodal strength to classify CI and CP MS patients. The difficulty in discrimi-
nating patients with different cognitive status using only MRI diffusion characteristics demonstrates the moderate 
relationship between structural connectivity data and cognition and the low specificity of those changes, that par-
tially overlap between groups. Moreover, this situation highlights the need to take into account other important 
parameters that may influence the relationship between brain damage and function, such as brain plasticity or 
cognitive reserve17.

One limitation of this study was that FA, the metric from which graph values were calculated is difficult to 
interpret and it has a limited capacity to estimate changes in the underlying microanatomy due to confounding 
factors, such as those derived from fibre crossing or orientation dispersion18. Recently, multi-shell DWI methods 

Figure 3. Bar plots of the 15 feature weights with the highest means, considering the 100 SVM models and 
comparing MS patients to HVs. The models are based on local efficiency (LE), node strength (NS), or both. The 
bars indicate the mean values while the orange lines show the ranges: mean ± standard deviation.
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were shown to be capable of detecting potentially relevant network changes in early MS19. Further studies with 
these techniques may better characterise the brain microstructure in the context of this complex disease20. To 
improve the accuracy in classifying patients based on their cognitive status, future analyses may include clinical 
and other neuroimaging metrics from larger cohorts with stronger cognitive differences in a model that could 
modulate the changes in connectivity. However, this study focused on investigating the changes in network prop-
erties produced by the disease, relating them to cognition and their discriminative ability. Finally, the HV group 
sample size was quite small compared to the MS group, thus further studies with larger sample sizes and more 
advanced forms of the disease are advisable to validate our findings.

Our results showed a widespread reduction in the structural integrity of the brain network in patients with 
MS, even when cognitive decline is not yet established. Patients with impaired cognitive performance have worse 
brain connectivity, suggesting that as structural damage increases in vulnerable and eloquent regions, network 
collapse and cognitive deficits flourish. In addition, we demonstrate the feasibility of applying SVM methods 
based only on central structural network features to distinguish between HVs and MS patients. Future work 
should focus on improving the accuracy to distinguish the different cognitive profile of patients by adding more 
advanced microstructural features from diffusion MRI.
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