
Model-Driven Engineering for

Design-Runtime Interaction in Complex

Systems: Scientific Challenges and

Roadmap

Report on the MDE@DeRun 2018 Workshop

Hugo Bruneliere1(B), Romina Eramo2(B), Abel Gómez3(B), Valentin Besnard4,
Jean Michel Bruel5, Martin Gogolla6, Andreas Kästner6, and Adrian Rutle7

1 IMT Atlantique, LS2N (CNRS) and ARMINES, Nantes, France
hugo.bruneliere@imt-atlantique.fr

2 University of L’Aquila, L’Aquila, Italy
romina.eramo@univaq.it

3 Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC),
Barcelona, Spain

agomezlla@uoc.edu
4 ERIS, ESEO-TECH, Angers, France

valentin.besnard@eseo.fr
5 IRIT (CNRS) and Université de Toulouse, Toulouse, France

bruel@irit.fr
6 University of Bremen, Bremen, Germany

{gogolla,andreask}@informatik.uni-bremen.de
7 Western Norway University of Applied Sciences, Bergen, Norway

adrian.rutle@hvl.no

Abstract. This paper reports on the first Workshop on Model-Driven
Engineering for Design-Runtime Interaction in Complex Systems (also
called MDE@DeRun 2018) that took place during the STAF 2018 week.
It explains the main objectives, content and results of the event. Based
on these, the paper also proposes initial directions to explore for further
research in the workshop area.

Keywords: Design time modeling · Runtime modeling
Interactions · Correspondences · Traceability · Feedback

This workshop has been supported by the MegaM@Rt2 project. MegaM@Rt2 has 
received funding from the Electronic Component Systems for European Leadership 
Joint Undertaking under grant agreement No. 737494. This Joint Undertaking receives 
support from the European Union’s Horizon 2020 research and innovation program 
and from Sweden, France, Spain, Italy, Finland & Czech Republic. Webpage - https://
megamart2-ecsel.eu/mde-derun-2018/.

c
_. https://doi.org/10.1007/978-3-030-04771-9 40



1 Introduction

Complex systems are now predominant in several domains such as automo-
tive, health-care, aerospace, industrial control and automation [2]. Such sys-
tems call for modern practices, such as Model-Driven Engineering (MDE), to
tackle advances in productivity and quality of these Cyber-Physical Systems
(CPSs) [4]. However, the proposed solutions need to be further developed to
scale up for real-life industrial projects and to provide significant benefits at
execution time. To this intent, one of the major challenges is to work on achiev-
ing a more efficient integration between the design and runtime aspects of the
concerned systems: the system behavior at runtime has to be better matched
with the original system design in order to be able to understand critical sit-
uations that may occur, as well as corresponding potential failures in design.
Methods and tools already exist for monitoring system execution and perform-
ing measurements of runtime properties. However, many of them do not rely on
models and, usually, do not allow a relevant integration with (and/or a traceabil-
ity back to) design models. Such a feedback loop from runtime is highly relevant
at design time, the most suitable level for system engineers to analyze and take
impactful decisions accordingly. It might also be useful to let the final users have
some sort of control and manipulation possibilities over elements they would not
be able to access otherwise. This last benefit implies that the models at run-
time might be quite different from those at design time, especially in terms of
programming/engineering background.

MDE@DeRun 20181 has been planned as a meeting point where both
researchers and practitioners on model-driven and model-based techniques and
architectures for complex systems can share their experiences and thoughts on
this area of work. Its main goal was to disseminate and exchange related ideas
or challenges, identify current and future key issues as well as explore possible
solutions. The potentially relevant topics concern traceability between design
time and runtime models, as well as related runtime information. They notably
include (but not only):

– Model-based techniques, methods and tools allowing any interaction between
design time and runtime, possibly resulting from heterogeneous engineering
practices.

– Model-based techniques, methods and tools for inferring design deviations
and identifying affected elements over a possibly large spectrum of runtime
system configurations or conditions.

– Methods and techniques allowing to practically integrate, possibly in different
ways, any feedback collected at runtime into design level models.

– Integrated model-based methods and techniques for runtime analysis and
design artifacts input collection, e.g. based on probes injection to some run-
time artifacts.

1 https://megamart2-ecsel.eu/mde-derun-2018/.



– Validation and verification mechanisms for linking results of runtime analy-
sis, e.g. from execution traces, with design models expressing systems’ both
functional and non-functional requirements.

– (Industrial) case studies, experience reports, literature reviews or visionary
positions related to any of the previously mentioned topics.

The remainder of this paper is structured as follows. Section 2 briefly introduces
the different papers accepted and presented during the workshop. Possible future
challenges on design/runtime interactions in the MDE context are then discussed
in Sect. 3, before we finally conclude this paper in Sect. 4.

2 Contribution Summary

In what follows, we list the 5 papers (4 short papers and 1 long paper) that have
finally been accepted and presented during the workshop. A short summary is
provided for each one of them.

Aliya Hussain, Saurabh Tiwari, Jagadish Suryadevara and Eduard
Enoiu: From Modeling to Test Case Generation in the Industrial

Embedded System Domain — This short paper presents an on-going inves-
tigation being carried out at Volvo CE2 to improve testing processes by using
a Model-based testing (MBT) approach. The goal has been to investigate
the use of MBT and the evidence on how modeling and test generation can
improve the current way of manually creating test cases based on natural lan-
guage requirements. The authors used the Conformiq Creator tool to model
the behavior and structure of a function controlling the accelerator pedal
provided by Volvo CE. The authors automatically created test cases covering
the model, and compare these test cases in terms of test goal coverage and
number of test cases to assess the applicability of MBT in this context. The
approach has shown encouraging results.

Saurabh Tiwari, Emina Smajlovic, Amina Krekic and Jagadish Surya-
devara: A System Modeling Approach to Enhance Functional and

Software Development — This short paper presents a SysML-based mod-
eling approach to enhance functional and software development process within
Volvo CE. The increased complexity of embedded software demands for
new development methodologies to address flexible functional development,
enhance communication among development teams, and maintain traceabil-
ity from design concepts to software artifacts. The discussed approach has
been experimented in the context of developing a new transmission system
(partially electrified) and its features. While the underlying modeling app-
roach is still work-in-progress, both initial success and existing gaps have
been highlighted.

2 Volvo Construction Equipment AB, Sweden.



Daniel Zimmermann: Automated Consistency Preservation in Elec-

tronics Development of Cyber-Physical System — This short paper
presents an automated strategy to ensure consistency between two widely
used categories of software tools in electrical engineering: an Electronic Design
Automation application (EDA) for designing Printed Circuit Boards (PCBs)
and an electronic circuit simulator tool to predict system behavior at runtime.
Coupling these two types of tools provides the developers with the ability of
efficiently testing and optimizing the behavior of the electric circuit during
the PCB design process; to avoid the disadvantages of ambiguous heuristic
matching methods, a strategy ensuring a reliable assignment of these model
elements is needed. The approach has been implemented by using Eagle CAD
as the PCB software and Matlab/Simulink with the Simscape extension as
the simulation tool.

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov
and Philippe Dhaussy: Embedded UML Model Execution to Bridge

the Gap Between Design and Runtime — This long paper proposes a
solution to bridge the gap between design and runtime aspects in model-based
software development. In fact, with classical model-driven development tech-
niques, developers start by building design models before producing actual
code. Although various approaches can be used to validate models and code
separately, models and code are however separated by a semantic gap. This
gap typically makes it hard to link runtime measures (e.g., execution traces)
to design models. The approach presented in this paper avoids this semantic
gap by making it possible to execute UML design models directly on embed-
ded microcontrollers. Therefore, any runtime measure is directly expressed in
terms of the design model.

Andreas Kästner, Martin Gogolla, Khanh-Hoang Doan and Nisha
Desai: Sketching a Model-Based Technique for Integrated Design

and RunTime Description — This short paper sketches a UML- and
OCL-based technique for the coherent description of design time and run-
time aspects of models. The basic idea is to connect a design model and a
runtime model with a correspondence model. The authors show two simple
examples, one for structural modeling and one for behavioral modeling, that
introduce the underlying principles. As all three models are formulated in the
same languages—UML and OCL—one can reason about the single models
and their relationships in a comprehensive way.

3 Discussion: Challenges and Roadmap

After the paper presentation sessions (as summarized in previous Sect. 2), we
then had a discussion panel in which we identified common challenges and a
high-level research roadmap related to the topics of the workshop. The result of
this collaborative work is described in what follows.

Although many contributions could be achieved in the last decade in the
MDE community, there are still several open challenges towards a complete and



relevant integration between runtime and design aspects in complex systems.
Firstly, explicit correspondences and/or traceability links are needed between
runtime and design molidels. Secondly, a better understanding of the nature of
the available runtime information (and its possible impacts on the design infor-
mation) is required. Thirdly, the objectives and benefits of leveraging such cor-
respondences and information need to be defined. We foresee a set of challenges
that can be used as a research roadmap.

Correspondences/traceability between runtime and design models —
The aim to match the system behavior at runtime with the original system
design can be achieved in several ways. This is mainly related to the concept
of traceability. As widely treated in the literature, traceability relationships
may help designers to understand the associations and dependencies that
exist among heterogeneous models and their correspondences [5,6].
In MDE, a trace link is a relationship between one or more source model
elements and one or more target model elements, whereas a trace model is a
structured set of trace links, e.g., between source and target models. Trace
links may be defined between entire artifacts (e.g., a requirements document
and a design model) or between parts of artifacts.
The correspondence between runtime and design models might also take
advantage of the MDE capabilities. For instance, in the case of (automated)
model transformations, the traceability links are not only obvious but also
allow some syntactic adaptation (e.g., different levels of abstraction) as well
as some semantic adaptation (e.g., different viewpoints) on the way.
In order to integrate runtime and design aspects of the system several aspects
need to be considered.
1. Types of correspondences—Correspondences between models could be

defined through the following means: (a) traceability link, (b) consis-
tency specification, (c) (bidirectional) model transformation, (d) model
viewpoints and views. (e) megamodeling.

2. Approaches—Correspondences between models can be defined by means
of the following approaches: (a) by integrating correspondences inside
models, that implies a modification of the original models, or (b) by defin-
ing external correspondences between models, in this case the consistency
of the original models is preserved (no modifications).

3. How correspondences are produced—Correspondences can be defined both
in a manual manner, requiring engineers and domain experts, or automat-
ically, starting from executable correspondence specifications. There can
also exist mixed approaches where correspondences are automatically ini-
tiated/proposed and refined manually.

4. When correspondences are produced—Correspondences can be produced
(a) at design-time (e.g., when creating the design model), between design-
time and runtime phases (e.g., by applying some processes/transfor-
mations on the design model), (b) at system initialization (e.g., by creat-
ing all traceability links), or (c) on the fly at runtime (e.g., by creating a
new trace link for each new runtime object created/used).



Runtime information — Runtime information can be considered as any soft-
ware, architectural information or model of the runtime system that can be
obtained during the system execution. For instance, through observation and
instrumentation, logs and metrics (that can be also considered as kinds of
runtime traces), runtime information can be collected to enable comprehen-
sion of the inner workings of already deployed software system [3].
Such models containing runtime information should not be confused with
models@run.time [1] that, in general, aims at applying model-driven tech-
niques for adapting and evolving software behavior while it is executing. On
the contrary, we are interested in exploiting information collected only at run-
time. This information can then be used offline to improve the initial system
design through trial and error, eventually with the help of verification and
validation tools (for instance).
In the following, we describe several aspects we believe important to consider.
1. Types of runtime information—Runtime information can be of different

types, such as simulation models, executable models, model representing
logs/traces, model representing states or configurations of the system,
models expressing dynamic information or runtime measures on design
models, test models.

2. How they are obtained—Runtime information can be collected by means
of various mechanisms, such as simulation, monitoring, execution, debug-
ging, profiling, verification.

3. How they are represented—Runtime information can be represented by:
(a) specific models representing runtime information (i.e., using a com-
mon and/or a general metamodel); or (b) measures that are directly
expressed in terms of the design model.

4. How are they visualized— Runtime information can be visualized over
sequence diagrams, graphical diagrams of the design model (e.g., with
particular tools like Papyrus), state-space graphs, or various textual rep-
resentations (using some DSLs). These models give either a snapshot of
the system execution, a representation of the current execution trace, or
a representation of the whole execution history (i.e., a part of the system
state-space corresponding to all explored execution traces).

5. Who uses runtime information—Runtime information should take into
account the users; e.g., end-users, architects, designers, developers of the
system, and also “test engineers” in charge of verifying and validating
the system. This will have a strong impact on the type of chosen runtime
models.

6. Viewpoints—A same runtime information can take on different roles
depending on the context/perspective from which it is analyzed (e.g.,
business, system, technology). In the same vein, some software artifacts
(or parts of them) can be considered as design time or runtime ones
depending on the specific viewpoint from which they are observed.

Objectives — The vision underlying the integration of design and runtime
models is to create awareness of problems in design or critical situations that



may occur. The understanding of this class of problems can be exploited for
different purposes.
1. Using/Analyzing correspondences—Correspondences (i.e., traceability

relationships) between elements in models can be exploited to perform
operations on models. Some of the key operations are: (a) match, that
takes two models and returns a mapping between them; (b) compose, that
composes a pair of correspondences; (c) merge, that uses correspondences
between two models to create a new model that is the merge of them;
and (d) set operations on models, such as union, intersection, difference.
Such correspondences can also be used to build views combining together
several models that can possibly conform to different metamodels. This
can be realized according to corresponding viewpoints specifying the
nature/type of these correspondences at metamodel-level.
Furthermore, correspondences can be used to feed both functional (e.g.,
consistency, requirement traceability) and non-functional analysis (e.g.,
performance, reliability, availability, security).

2. Inference capabilities—Correspondence between design and runtime
information can be used to achieve inference capabilities, discovering the
system properties deviations and affected design components based on
trace analysis. For instance, inference methods offer a control loop across
the whole design chain between runtime and design time of the system,
including non-functional aspects. This way, additional information from
runtime models can be used to enhance system/design models.

3. Requirements—Correspondences can be used to reconcile the require-
ments and the system’s runtime behavior in case of system deviations
from the initial requirement specification.

4. Reverse engineering—Going backwards through the development cycle,
correspondences can be used in reverse engineering guiding the specifica-
tion of the system design from the runtime behavior.

4 Conclusion

Achieving an efficient integration between the design and runtime aspects of
complex systems proved to be an interesting challenge for MDE methods and
tools. The industrial relevance of this research area has also been confirmed by
the participation of some companies to the workshop, such as Volvo Construction
Equipment that submitted and presented a couple of papers during the event.

The first International Workshop on Model-Driven Engineering for Design-
Runtime Interaction in Complex Systems (MDE@DeRun 2018) aims at provid-
ing a place for the community to share ideas and results in this research area we
believe important. This paper summarized the main objectives and contributions
of this first edition. Furthermore, it discussed and proposed some first directions
for further research in this area, which we plan to explore in the future in our
respective works. We hope to be able to capitalize on the success of this initial
edition of the MDE@DeRun workshop in order to organize a second edition of
this event next year.



Acknowledgements. We would like to thank everyone who took part in the success
of this first edition of the workshop, including the program committee members, the
paper authors and everyone who attended the workshop or took part in the interesting
discussions we had.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009). https://doi.org/10.1109/MC.2009.326

2. Boccara, N.: Modeling Complex Systems. Graduate Texts in Comtemporary
Physics. Springer, Heidelberg (2004). https://doi.org/10.1007/b97378

3. Cito, J., Leitner, P., Bosshard, C., Knecht, M., Mazlami, G., Gall, H.C.: Perfor-
manceHat: augmenting source code with runtime performance traces in the IDE.
In: Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, ICSE 2018, pp. 41–44 (2018)

4. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc. IEEE
100, 13–28 (2012)

5. Paige, R.F., et al.: Rigorous identification and encoding of trace-links in model-
driven engineering. Softw. Syst. Model. 10(4), 469–487 (2011)

6. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Softw. Syst. Model. 9(4), 529–565 (2010)




