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S1. Data source acquisition and composition

S1.1. Empirical accident data

As described in the main text, accident data were downloaded from pub-
lic sources (city governments in the case of Barcelona and Madrid [34, 35],
and state governments in the case of San Francisco [36]). We distinguish
accidents where a vehicle and a pedestrian were involved (simply ’'pedes-
trian’ onwards), from vehicle-vehicle accidents (simply 'vehicle’ onwards). In
Barcelona and San Francisco, all accident records had GPS coordinates as
metadata. In Madrid, only the street addresses of the accidents were avail-
able. These addresses were matched against the municipal street directory
offered publicly by the city government of Madrid.

Visualizing this data spatially, as in Figure S1, highlights the distinct
fingerprints of historical patterns of vehicle-pedestrian and vehicle-vehicle
accidents in all three cities. In Barcelona and San Francisco, pedestrian acci-
dents tend to be more concentrated in central areas, while vehicle-vehicle ac-
cidents are distributed across major thoroughfares. In Madrid, a single main
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artery concentrates the majority of vehicle-vehicle accidents, while pedestrian
accidents are spread more widely in a number of separate clusters. This un-
derscores not only that a safe street for a pedestrian is different than one
for a driver, but also that pedestrian and vehicle safety can mean different
meanings in different urban contexts.

S1.2. Street-level imagery

Street networks for all three cities were extracted from OpenStreetMap
(OSM) [74], using the OSMnx package for Python. OSMnx [75] provides
a simple interface for querying OSM data. Specifically, it allows for the
extraction of road networks by place name (e.g., “Barcelona”). Addition-
ally, only the driveable road network was extracted for each city (excluding
pedestrian-only streets), a feature available out-of-the-box with OSMnx.

As mentioned in the main text, querying a single Google Street View
image requires several pieces of information: the desired geographical location
of the image, and the desired camera angle. GSV’s coverage is obviously not
comprehensive; requesting an image from a specific point does not guarantee
a view from that precise location, and it will simply return the closest possible
result. In the cities studied, we found an average distance of 15 meters
between images.

Considering this situation, and in order to aggregate as many GSV images
as possible, points were generated at regular intervals of 5 meters along the
OSM-extracted street networks of Madrid and Barcelona (San Francisco’s
images were sourced from a different service, Mapillary, explained below).
These points were used as query points for the GSV API. The desired camera
angle was calculated considering the next two points along the path. This
averaging method smooths out jagged angles on streets with curves. One-
way streets were distinguished by a field available in the OSM data, and were
only queried once, in the proper direction.

Imagery for San Francisco was provided by Mapillary, a crowd-sourced
street-level imagery provider. 350,000 images were made available from Map-
illary’s San Francisco data. All Mapillary imagery was made available under
the CC-BY-SA license. The imagery does not cover the entire city. Notably
for the results (see Section 3.1 of the main text), the available images were
concentrated mostly in medium-density areas of the city, while the high-
density north-east and lower density south-west portions of the city lacked
significant coverage. A map illustrating distribution of available photos in
San Francisco, together with population density, can be seen in Figure S2.
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Distribution of accidents, Barcelona (car-car) . Distribution of accidents, Barcelona
(car-pedestrian)

Distribution of accidents, Madrid Distribution of accidents, Madrid
(car-car) (car-pedestrian)

Distribution of accidents, San Francisco Distribution of accidents, San Francisco
(car-car) (car-pedestrian)

Figure S1: Distribution of historical accident data, vehicle-pedestrian and
vehicle-vehicle. Across all 3 cities, the patterns of distribution of both types of ac-
cident are distinct. In both Barcelona and San Francisco, pedestrian hazard is heavily
concentrated in the city center, while vehicle hazard is spread more widely across areas of
high traffic flow. In Madrid, vehicle accidents appear funneled down the heavily-trafficked
Paseo de la Castellana, while pedestrian accidents are in fact more widely distributed,
concentrating in certain pockets throughout the urban core.
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Figure S2: Distribution of imagery available for San Francisco. Unlike for Madrid
and Barcelona, imagery for San Francisco was only available for select areas of the city.
Each white dot represents an image. Census block groups are colored by their population
density. Note that the majority of photos are concentrated in areas of medium population
density. The imagery was available from Mapillary under the CC-BY-SA license.
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Using the dataset of images from Mapillary presented distinct challenges.
While GSV images are shot on standardized equipment worldwide, Mapillary
imagery is crowd-sourced, and thus subject to distinct cameras, positionings
of the camera, image quality, etc. Additionally, the images are not 360
degree panoramas, in contrast to GSV. This means that specific camera
angles cannot be queried. In order to filter out images with angles not facing
directly down the path of the street, the OSM street network data was once
again used. Images whose camera angle was different from the angle of the
street by more than 30 degrees were discarded.

S2. Hazard at a sub-street segment level

As previously explained, the hazard-level estimation we develop has a
high spatial resolution, assigning estimated hazard-levels to individual points
separated on average by about 15 meters. This is worth highlighting, as it
provides a uniquely fine-grained traffic safety measure: for a street segment
of 100 meters in length (around average in Barcelona), 7 individual points
can be assessed.

Figure S3 illustrates some of the interesting insights that can be gained
from such a high-resolution tool. As can be seen, while some street segments
have relatively constant hazard levels, others vary greatly, with some points
being labelled as highly hazardous, and others being labelled as quite safe.

This same observational data can lead to other lines of investigation. For
example, obvious to the naked eye (and possibly to common sense), hazard
for pedestrians tends to increase at intersections.

S3. Comparing pedestrian (Hp) and vehicle (Hy ) hazard levels

The empirical vehicle and pedestrian accident data were used to esti-
mate both vehicle and pedestrian hazard levels, Hy and Hp respectively,
for all points in each city for which we had street-level images. Vehicle and
pedestrian hazard can be compared in various ways to highlight interesting
patterns and relationships.

S3.1. Differences in spatial distribution

Examining the information on a map, as in Figure S4, allows us to identify
spatial clusters and patterns in the distribution of relative hazard for pedes-
trians and vehicles. We can identify some of the same patterns in the maps
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Figure S3: Example of high-resolution hazard estimation. An area of several
city blocks in Barcelona (Poble Nou neighborhood). The colored cells form part of a
Voronoi diagram of Barcelona, generated using the point locations of all street-level images
available for the city. Each cell is colored according to the estimated pedestrian hazard
level (Hp) of the image located within it. Some images within 15-30 meters of each other
return highly different hazard levels.
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as in the scatter plots: hazard tends to be higher in general for vehicles, and
the distribution of relative hazard is similar for both groups. That being said,
it is interesting to note specific areas, particularly in central locations, where
hazard levels are higher for pedestrians. On the other hand, some areas of
high vehicle traffic may be very dangerous for vehicles, but safe for pedestri-
ans, simply because the lack of pedestrian infrastructure keeps walkers away.
In both Madrid and Barcelona, the map of vehicle hazard clearly highlights
more-trafficked roads as very hazardous, while for pedestrians, these same
roads are assigned only a medium hazard level. These spatial patterns can
also be compared to the distribution of empirical accident points above in
Figure S1.

S53.2. Point-by-point differences

Figures Sbc and S6¢, as well as Figure 4c in the main text, show the
relationship between car and pedestrian hazard for each point across the 3
cities. It can be seen that hazard is generally skewed towards vehicles (e.g.,
there are very few high-hazard pedestrian points that are low-hazard for
vehicles, but not vice-versa). While there is variation between the pedestrian
and vehicle hazard, they tend to rise together. Additionally, in line with
common sense, hazard tends to be concentrated closer to the city center (not
shown).

Also interesting is the comparison between the three cities themselves.
While all share the patterns indicated above, San Francisco and Barcelona
exhibit far more dispersed shapes, while in Madrid pedestrian and vehicle
hazard seems more tightly linked.

S4. Use of a radius to match accidents to images

As noted in the main text, we assign to a street image all accidents that
are within a 50 meter radius of the image. This method, like all other possible
accident assignment methods, opens up room for some error. Specifically,
there is a risk that accidents from unrelated parallel streets may be assigned
to an image if city blocks are particularly small in a given area. However,
considering the nature of the classification problem we face, and the other
options available for accident assignment, we believe the benefits outweigh
the costs of this method.

The information contained in the image data used for classification is
necessarily contextual, in that it takes into account not just the immediate
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Figure S4: Spatial distribution of estimated pedestrian and vehicle hazard index.
In the left column we see vehicle hazard levels, while the right shows those same levels for
pedestrians. Here, Madrid and Barcelona, despite their distinct sizes and shapes, display
similar distributions of predicted hazard for both pedestrians and vehicles. In general,
hazard for both pedestrians and vehicles is much higher in the dense center. Pedestrian
hazard tends to be higher in older, more pedestrianized areas, while vehicle hazard is
logically higher on pedestrian-restricted roads. In San Francisco, like in the other 2 cities,
vehicle hazard is noticeably higher in general than pedestrian hazard. We observe that
predictions of hazard index for San Francisco is less accurate due to the precision of
the Voronoi diagram constructed with a reduced (and less evenly distributed) number of
images (see Figure S2 for description). Additionally, less accident data was used to train
the classifier for San Francisco. Finally, it is possible that the distinct urban structures of
the cities of study (Spanish cities versus a large American city) simply lead to a different
distribution of hazard levels.
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Figure S5: Hazard level interpretability of Madrid. Top: Radar plots showing the
level of object fixation of the CAM model for pedestrian (a) and vehicles (b). For both,
the blue area corresponds to images classified as safe (H < 0.33), while scenes classified
as dangerous (H > 0.66) are mapped on the plot as red. To build these radars, each
individual image is mapped to the radar categories (a relevant subset of those detected by
the segmentation task), and the average of such mappings is shown. ¢ The plot shows the
triple relationship between Hp, Hy and the color-coded level of disorder, which increases
towards warmer colors as the levels of hazard increase. The plot corresponds to Madrid.
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Figure S6: Hazard level interpretability of San Francisco. Top: Radar plots show-
ing the level of object fixation of the CAM model for pedestrian (a) and vehicles (b).
For both, the blue area corresponds to images classified as safe (H < 0.33), while scenes
classified as dangerous (H > 0.66) are mapped on the plot as red. The patterns for San
Francisco differ from those in Madrid or Barcelona, specially with regard to the role of the
category “People” in dangerous scenes. ¢ The plot shows the triple relationship between
Hp, Hy and the color-coded level of disorder. Unlike the clear patterns of the other cities
under study, the plot for San Francisco reveals that high spatial disorder mostly dominates
the region Hy < Hp.

location of the image, but also any part of the surrounding area that is visible,
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r ‘ Recall ‘ Precision ‘ Accuracy ‘ F1-Score ‘ FP ‘ TP ‘ TN ‘ FN

20m 0,04 0,96 0,49 0,09 0,1% 2,5% | 49,94% | 47,46%
30m 0,28 0,90 0,61 0,43 1,51% | 15,08% | 46,05% | 37,36%
40m 0,39 0,88 0,65 0,54 2,75% | 20,91% | 44,81% | 31,52%
50m 0,86 0,72 0,75 0,77 17,79% | 45,45% | 29,72% | 7,05%
100m | 0,98 0,61 0,67 0,75 31,82% | 51,46% | 15,74% | 0,97%
200m | 0,99 0,53 0,54 0,69 45.25% | 52,42% | 2,30% | 0,02%

Table S1: Results of the Deep Learning approach for accident prediction, considering
different radii values.

including intersecting streets and blocks beyond the current one. The visible
space of the image can all be considered connected from the point of view
of determining the hazard levels, since fast-moving car traffic can cover the
entire area in a matter of seconds. For this reason, it is important to relate
images and accidents on a similarly contextual basis.

Applying a simple radius is the most effective way to include this kind of
contextual information, without manually assigning accidents on an image-
to-image basis, and without including to many assumptions to an automated
assignment process. Another possible option would be to assign accidents
to the image’s road segment. However, this leaves out information from
intersecting streets. Beyond that, many common representations of road
networks, like the ones we used from OpenStreetMap, present other issues
that could lead to relevant accidents not being assigned to an image if only
accidents from the image’s segment were considered. For example: (1) com-
plex intersections such as traffic circles tend to have many small segments
which are disconnected from longer ones, (2) non-regular urban grid patterns
can split single segments into smaller pieces, (3) some roads (usually arte-
rial) are divided into separate, parallel line segments representing different
lanes/traffic directions. We note that some of these problems were considered
for some special cases that were easier to filter, such as grade-separated high-
ways, whose images were not assigned accidents from parallel streets (and
vice versa).

S4.1. Results with different radii of accident assignment

In order to construct a labeled dataset of images (dangerous/safe), we
choose a radius that links a documented accident with a street-level image
(or few of them, depending on the radius). For our experiments, several radii
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were tested initially in Barcelona (Table S1). In this city, the best results
were obtained for a radius r = 50m, and the same radius was applied to San
Francisco and Madrid. We used the following measures: recall, precision,
accuracy and Fl-measure. Recall refers to the fraction of samples detected
as dangerous over the total number of dangerous samples in the dataset (TP
over TP+FN). Precision is the fraction of the true real danger points detected
over the number of points detected as dangerous by the Network (TP over
TP+FP). Accuracy measures how good is the system detecting danger points
(TP+TN over all the samples). The Fl-measure is a particular case of the
F-measure, that combines precision and recall in a single score as:

precision - recall

Fl1=2 (1)

precision + recall
These metrics were considered together to optimize the classification net-
work’s identification of dangerous and safe scenes.

The reason why radii below or above the optimal one render worse results
is related to the balance between the proportion of dangerous and safe places
in the training dataset. Using small radii, only a small set of points is labelled
as dangerous, particularly for the pedestrian accident dataset; while the vast
majority are labelled as safe. As a consequence of this, the neural network
only has a few points in the class “dangerous” to learn from, tending to
classify the majority of points as safe ones. Accordingly, the network learns
to identify the most representative instances of dangerous points (precision
is close to 1), but recall is very low: most dangerous spots are misidentified
as safe. The extreme disparity between recall and precision is progressively
corrected as r increases. Indeed, as the radius value increases, more locations
are labelled as dangerous, and the network is able to learn more features from
such dangerous points, discriminating better from safe ones.

Beyond the optimal radius, the same effect occurs in the opposite di-
rection. Now, the classifier has a large dataset of dangerous points, and
only a few safe ones. Recall is much higher than precision, and the network
overestimates the proportion of dangerous spots.

Finally, a mid-range radius of 50 meters yielded optimal accuracy and
Fl-score. Along the lines of the above paragraphs, the reason behind this
good result is a balanced dataset between safe and dangerous locations. The
histograms in Figure S7 show the number of points against the number of
accidents occurring in those points, for Barcelona, and for several radii.

We are aware that several techniques can be used to correct imbalances
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in the size of training datasets, and two of them (weighted loss function
and minor class oversampling) were actually implemented, for the sake of
completeness. As expected, overall results for radii below and above 50m
improved, but never surpassed, the ones reported in the main text and in
Table S1. Faced with similar results, we believe that the proposed pipeline
is simpler and yields a more natural interpretation beyond the technical de-
tails. In particular, street-level images are, on average, separated by about
15 meters (as stated in the main text). Using a medium-sized radius, like
r = 50m, allows us to include the relationship between neighboring points
on a street segment, while preventing r to encompass a too-large portion of
a city block. In practical terms, our choice enables the inclusion of the local
features, mostly within a segment, excluding at the same time irrelevant in-
formation from other blocks.

S5. Multi-class Classification with Ordinal Regression

For comparison purposes, we trained a multi-class classifier with four
classes. For this experiment, we used the Barcelona P dataset. Instead of
addressing a simple multi-class classifier, we cast this problem into a Ordi-
nal Regressor, because the created classes are not completely independent
between them and follow a danger level ranking.

To construct the dataset, we have divided the images in four rating
classes: ‘no-danger’, ‘mild-danger’, ‘danger’ and ‘high-danger’. Images tagged
as ‘no-danger’, correspond to locations with no accidents, images in class
‘mild-danger’ have one accident around a radius of 50m, images in class
‘danger’ have between 2 and 5 accidents around, and, finally, images be-
longing to class ‘high-danger’ have more than 5 accidents around. Classes
distribution can be seen in Table S2.

For the Ordinal Reggresor, we used the methodology shown in [61]. We
trained three binary classifiers for the four classes. For each binary classifier,
the classification architecture used is ResNet, as well as in the main pipeline.
As metrics, we used simple accuracy and balanced accuracy, this last takes
into account the number of samples of each class. Table S3 shows every
binary classifier classes and accuracies. After training, the final accuracy
of ordinal reggressor is 0.47, significantly better than a simple multi-class
classifier. Final classification results can be seen in Table S4.
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Negative Class

|

Class ‘ Samples
No-danger 85509
Mild-danger | 34576
Danger 40315
High-danger | 17245

Table S2: Dataset distribution

Positive Class

‘ Accuracy ‘ Balanced Accuracy

No-danger Higher than Mild-danger 0.75 0.75
Less than Mild-danger Higher than danger 0.72 0.67
Less than danger High-danger 0.89 0.66

Table S3: Ordinal Regressor internal classifier results

S6. Pedestrian Safety Improvements

Figure S8 shows the results of the application point-to-point of the ex-
haustive search of mirror images, as well as for the dummy k-nn regressor,
for Madrid and San Francisco. Figure S9 illustrates more examples of mirror
images for the 3 cities taken into this study. Finally, Figure S10 provides
a visual overview of the most frequent interventions predicted by our opti-
mization scheme for Madrid and San Francisco.
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Method | Accuracy | Balanced Accuracy

Simple Multi-class classifier 0.53 0.39
Ordinal Regressor 0.55 0.47

Table S4: Results of Ordinal Regressor
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Figure S8: Hazard reduction heuristics. Expected improvement for pedestrian and
vehicle hazards, with respect to their original values: (a) Madrid and (c) San Francisco.
Grey intensity represents the density of observations in a given area of the plot. Expected
improvement of a dummy k-nn algorithm that only considers similarity between images:
(b) Madrid and (d) San Francisco.
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Figure S9: Hazard reduction: selected examples. Panels a-d show a representa-
tive selection of proposed interventions towards safer scenes in San Francisco (a and b),
Madrid (c) and Barcelona (d). For each target on the left (i.e. the scene that we attempt
to improve), we show its most similar, safer mirror image, illustrating some common inter-
ventions proposed by the heuristic. Visually, all of them seem to point at simplifications
of the original image.
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Figure S10: Aggregate view of hazard reduction. Chord diagram representing an
aggregate overview of proposed interventions in Madrid (left) and San Francisco (right).
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