

 1

From Declarative to Imperative UML/OCL
 Operation Specifications

Jordi Cabot

Estudis d'Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya
Rbla. Poblenou 156. E08018 Barcelona, Spain

jcabot@uoc.edu

Abstract: An information system maintains a representation of the state of the
domain in its Information Base (IB). The state of the IB changes due to the
execution of the operations defined in the behavioral schema. There are two
different approaches for specifying the effect of an operation: the imperative
and the declarative approaches. In conceptual modeling, the declarative
approach is preferable since it allows a more abstract and concise definition of
the operation effect and conceals all implementation issues. Nevertheless, in
order to execute the conceptual schema, declarative specifications must be
transformed into equivalent imperative ones.

Unfortunately, declarative specifications may be non-deterministic. This
implies that there may be several equivalent imperative versions for the same
declarative specification, which hampers the transformation process. The main
goal of this paper is to provide a pattern-based translation method between both
specification approaches. To facilitate the translation we propose some
heuristics that improve the precision of declarative specifications and help
avoid non-determinism in the translation process.

1. Introduction

A Conceptual Schema (CS) must include the definition of all relevant static and
dynamic aspects of the domain [12]. Static aspects are collected in structural
diagrams. Dynamic aspects are usually specified by means of a behavioral schema
consisting of a set of system operations [14] (also known as domain events [19]) that
the user may execute to query and/or modify the information modeled in the
structural diagram. Without loss of generality, in this paper we assume that structural
diagrams are expressed using object-oriented UML class diagrams [21] and that
operations are specified in OCL [20].

There are two different approaches for specifying an operation effect: the
imperative and the declarative approaches [28]. In an imperative specification, the
conceptual modeler explicitly defines the set of structural events to be applied over
the Information Base (IB). The IB is the representation of the state of the domain in
the information system. A structural event is an elementary change (insertion of a
new object, update of an attribute,…) over the population of the IB.

2

 In a declarative specification, a contract for each operation must be provided. The
contract consists of a set of pre and postconditions. A precondition defines a set of
conditions on the operation input and the IB that must hold when the operation is
issued while postconditions state the set of conditions that must be satisfied by the IB
at the end of the operation. In conceptual modeling, the declarative approach is
preferable since it allows a more abstract and concise definition of the operation
effect and conceals all implementation issues [28].

CSs must be executable in the production environment (either by transforming
them into a set of software components or by the use of a virtual machine) [18]. To be
executable, we must translate declarative behavior specifications into equivalent
imperative ones.

The main problem hindering this translation is that declarative specifications are
underspecifications [28] (also called non-deterministic), that is, in general there are
several possible states of the IB that satisfy the postcondition of an operation contract.
This implies that a declarative specification may have several equivalent imperative
versions. We have a different version for each set of structural events that, given a
state of the IB satisfying the precondition, evolve the IB to one of the possible states
satisfying the postcondition.

The definition of a postcondition precise enough to characterize a single state of
the IB is cumbersome and error-prone [4,26]. For instance, it would require
specifying in the postcondition all elements not modified by the operation. There are
other ambiguities too. Consider a postcondition as o.at1=o.at2+o.at3, where o
represents an arbitrary object and at1, at2 and at3 three of its attributes. Given an
initial state s of the IB, states s’ obtained after assigning to at1 the value of at2 + o.at3
satisfy the postcondition. However, states where at2 is changed to hold the o.at1 - o.at3
value or where, for instance, a zero value is assigned to all three attributes satisfy the
postcondition as well. Strictly speaking, all three interpretations are correct (all satisfy
the postcondition), though, most probably, only the first one represents the behavior
the conceptual modeler meant when defining the operation.

In this sense, the main contribution of this paper is twofold:
1. We present several heuristics to clarify the interpretation of declarative

operation specifications. We believe these heuristics represent usual modelers’
assumptions about how the operation contracts should be interpreted when
implementing the operations.

2. We define a set of patterns that use these heuristics in order to automatically
translate an operation contract into a corresponding imperative operation
specification.

As far as we know ours is the first method addressing the translation of UML/OCL
operation contracts. Note that the high expressiveness of both languages increases the
complexity of the translation process. We believe that the results of our method
permit to leverage current model-driven development methods and tools by allowing
code-generation from declarative specifications, not currently provided by such
methods. Our translation is useful to validate the specification of the operations as
well. After defining the operation contract, conceptual modelers could check if the
corresponding imperative version reflects their aim and refine the contract otherwise.

3

The rest of the paper is organized as follows. Section 2 introduces the running
example and some basic UML and OCL definitions. Section 3 presents our set of
heuristics and Section 4 the list of translation patterns. Section 5 covers some
inherently ambiguous declarative specifications. Section 6 sketches some
implementation issues. Finally, Section 7 compares our approach with related work
and Section 8 presents some conclusions and further research.

2. Running Example

As a running example throughout the rest of the paper we will use the CS of Fig. 2.1
aimed at (partially) representing a simple e-commerce application. This CS is
expressed by means of a UML class diagram [21]. Class diagrams consist of a set of
classes (i.e. entity types) related by means of a set of associations (i.e. relationship
types). Reified relationship types are called association classes in UML. Class
instances are referred to as objects while association instances are known as links.

The CS contains information on sales (class Sale) and the products they contain
(class Product and association class SaleLine). Sales are delivered in a single
shipment (class Shipment and association DeliveredIn) but shipments may include
several sales.

The CS includes also the contract of the replanShipment operation. This operation
checks if shipments to be delivered soon have all their sales ready and replan them
otherwise. The operation behavior is specified in OCL [20]. OCL is a formal high-
level language used to write expressions on UML models. OCL admits several
powerful constructs like iterators (forAll, exists,…) and operations over collections of
objects (union, select,…). In OCL the implicit parameter self refers to the object over
which the operation is applied. The dot notation is used to access the attributes of an
object or to navigate from that object to the associated objects in a related class (the
related class is identified by its role name in the association or the own class name
when the name is not ambiguous).

For instance, in the precondition the expression self.shippingDate returns the value
of the shippingDate attribute while self.sale returns the sales delivered in the
shipment represented by the self variable. The exist iterator applied over this set of
sales returns true if at least one sale satisfies the expression not readyForShipment.

In the postcondition we specify that there are two different ways of replanning the
shipment depending on the value of the urgent attribute. We may either simply
postpone the shipment until the new date given as an input (when it is not urgent) or
to generate a new shipment to hold the sales that are not ready yet (and proceed with
the usual shipment for the remaining ones). The expression sh1.oclIsNew() indicates
that in the final state a new object (represented by the variable sh1) must exist and
sh1.oclIsTypeOf(Shipment) indicates that this object must be instance of Shipment.
The includesAll expression determines that shipment sh1 must contain all non-ready
sales (computed with the expression self.sale@pre->select(not readyForShipment),
where @pre indicates that self.sale is evaluated in the previous state, that is, in the
state of the IB at the beginning of the operation execution), and so forth.

4

SaleDeliveredIn
1..*

id : Natural
expectedShDate: Date
amount: Money
shippingAddress:Address
readyForShipment:Boolean

context Shipment::replanShipment(newDate:Integer)
 pre: self.shippingDate>today() and self.shippingDate<today()+7 and self.sale->exists(not readyForShipment)
 post: if self.urgent
 then
 sh1.oclIsNew() and sh1.oclIsTypeOf(Shipment) and sh1.shippingDate=newDate
 and sh1.id=generateNewId() and sh1.airTransport=self.airTransport
 and sh1.urgent=true and sh1.sale->includesAll(self.sale@pre->select(not readyForShipment))
 and self.sale->excludesAll(self.sale@pre->select(not readyForShipment))
 and sh1.sale->forAll(s| s.expectedShDate=sh1.shippingDate)
 else self.shippingDate=newDate and self.sale->forAll(s| s.expectedShDate=self.shippingDate)
 endif

SaleLine

0..1
Shipment

id: Natural
shippingDate: Date
airTransport: Boolean
urgent: Boolean

Product
id : Natural
name: String
price: Money

1..**

quantity: Natural

 Fig. 2.1. Our running example

3. Interpreting Declarative Specifications: a Heuristic Approach

Given the contract of an operation op and an initial state s of an IB (where s verifies
the precondition of op) there exist, in general, a set of final states sets’ that satisfy the
postcondition of op. All implementations of op leading from s to a state s’ ∈ sets’
must be considered correct. Obviously, s’ must also be consistent with all integrity
constraints in the schema, but, assuming a strict interpretation of operation contracts
[24], the verification of those constraints need not to be part of the contract of op.

Even though, strictly speaking, all states in sets’ are correct, only a small subset
accs’ ⊂ sets’ would probably be accepted as such by the conceptual modeler. The other
states satisfy the postcondition but do not represent the behavior the modeler had in
mind when defining the operation. In most cases |accs’| = 1 (i.e. from the modeler
point of view there exists a single state s’ that really “satisfies” the postcondition).

The first aim of this section is to detect some common OCL operators and
expressions that, when appearing in a postcondition, increase the cardinality of sets’,
that is, the expressions that cause an ambiguity problem in the operation contract. We
also consider the classical frame problem, which, roughly, appears because
postconditions do not include all necessary conditions to state which parts of the IB
cannot be modified during the operation execution. Obviously, some of the problems
could be avoided by means of reducing the allowed OCL constructs in the contracts
but we will assume in the paper that this is not an acceptable solution.

Ideally, once the conceptual modeler is aware of the ambiguities appearing in an
operation op, he/she should define the postcondition of op precise enough to ensure
that accs’ = sets’. However, this would require specifying the possible state of every
single object and link in the new IB state which is not feasible in practice [4,26].

Therefore, the second aim of this section is to provide a set of heuristics that try to
represent common assumptions used during the specification of operation contracts.

5

Each heuristic disambiguates a problematic expression exp that may appear in a
postcondition. The ambiguity is solved by providing a default interpretation for exp
that identifies, among all states satisfying exp, the one that, most probably, represents
what the modeler meant when defining exp.

With these heuristics, modelers do not need to write long and cumbersome
postconditions to clearly specify the expected behavior of the operation. They can
rely on our heuristic to be sure that, after the operation execution, the new state will
be the one they intended. Our heuristics have been developed after analyzing many
examples of operation contracts of different books, papers and, specially, two case
studies ([11] and [23]) and comparing them, when available, with the operation
textual description. Due to lack of space we cannot provide herein the list of
examples we have examined.

In what follows we present our set of heuristics and discuss their application over
our running example.

3.1 List of Heuristics

Each heuristic may target different OCL expressions. Note that other OCL
expressions can be transformed into the ones tackled here by means of first
preprocessing them using the rules presented in [8]. In the expressions, capital letters
X, Y and Z represent arbitrary OCL expressions of the appropriate type (boolean,
collection,…). The letter o represents an arbitrary object. The expression r1.r2…rn-1.rn
represents a sequence of navigations through roles r1..rn.

Heuristic 1: Nothing else changes
- OCL expressions: −
- Ambiguity: Possible values for objects and links not referenced in the

postcondition are left undefined.
- Default interpretation: Objects not explicitly referenced in the postcondition

should remain unchanged in the IB (they cannot be created, updated or deleted
during the transition to the new IB state). Links not traversed during the
evaluation of the postcondition cannot be created nor deleted. Besides, for those
objects that do appear in the postcondition, only those attributes or roles
mentioned in the postcondition may be updated.

Heuristic 2: The order of the operands matters
- OCL expressions: X.a=Y (and in general any OCL binary operation)
- Ambiguity: There are three kinds of changes over an initial state resulting in a

new state satisfying the above equality expression. We can either assign the
value of expression Y to a, assign a to Y or assign to a and Y an alternative value
c. In X.a, a represents an attribute or role of the objects returned by X.

- Default interpretation: In the new state a must have taken the value of b.
Otherwise (that is, if the modeler’s intention was to define that b should take the
value of a) he/she would have most probably written the expression as Y.b = X.a.
Note that if either operand is a constant value or is defined with the @pre
operator (referring to the value of the operand in the previous state) just a

6

possible final state exists because the only possible change is to assign its value
to the other operand (as usual, we assume that the previous state cannot be
modified). This applies also to other ambiguities described in this section.

Heuristic 3: Do not falsify the if clause
- OCL expressions: if X then Y else Z | X implies Y
- Ambiguity: Given an if-then-else expression included in a postcondition p, there

are two groups of final states that satisfy p: 1 – States where the if and the then
condition are satisfied or 2 – States where the if condition is false while the else
condition evaluates to true. Likewise with expressions using implies.

- Default interpretation: To evaluate X and enforce Y or Z depending on the true
value of X. Implementations of the operation that modify X to ensure that X
evaluates to false are not acceptable (even if, for some states of the IB, it could
be easier to falsify X in order to always avoid enforcing Y).

Heuristic 4: Change only the last navigation in a navigation chain
- OCL expressions: X.r1.r2…rn-1.rn=Y (or any other operation over objects at rn)
- Ambiguity: This expression may be satisfied in the final state by

adding/removing links to change the set of objects obtained when navigating
from rn-1 to rn, by changing any intermediate role navigation ri or by changing the
value of Y.

- Default interpretation: To add/remove the necessary links on the association
traversed during the last navigation (rn-1.rn) in the navigation chain.

Heuristic 5: Minimum insertions over the includer collection and no changes on
the included one
- OCL expressions: X->includesAll(Y) | X->includes(o)
- Ambiguity: All final states where, at least, the objects in Y (or o) have been

included in X satisfy these expressions. However, states that, apart from those
objects, add other objects to X also satisfy them as well as states where Y
evaluates to an empty set (or o is null) since by definition all collections include
the empty collection.

- Default interpretation: The new state s’ should be obtained by means of adding to
the initial state s the minimum number of links needed to satisfy the expression,
that is, a maximum of Y->size() links must be created (just one for includes
expressions). States including additional insertions are not acceptable and
neither states where Y is modified to ensure that it returns an empty result.

Heuristic 6: Minimum deletions from the excluder collection and no changes on
the excluded one
- OCL expressions: X->excludesAll(Y) | X->excludes(o)
- Ambiguity: All final states where, at least, the objects in Y (or o) have been

removed from the collection of objects returned by X satisfy these expressions.
However, states that, apart from those objects, remove other objects from X also
satisfy them as well as states where Y evaluates to an empty set (or o is null)
since then, clearly, X excludes all objects in Y.

7

- Default interpretation: The desired behavior is the one where the new state s’ is
obtained by means of removing from the initial state s the minimum number of
links required to satisfy the expression and where Y has not been modified to
ensure that it returns an empty set. Therefore, in s’ a maximum of Y->size() links
may be deleted (or just one, for excludes expressions).

Heuristic 7: Do not empty the source collection of iterator expressions
- OCL expressions: X ->forAll(Y) (and, in general, all other iterator expressions)
- Ambiguity: There are two possible approaches to ensure that a forAll expression

is satisfied in the new state of the IB. We can either ensure that all elements in X
verify the Y condition or to ensure that X results in an empty collection since a
forAll iterator over an empty set always returns true.

- Default interpretation: To ensure that all elements in X verify Y (and not to force
X to be empty).

Heuristic 8: Minimum number of object specializations
- OCL expressions: o.oclIsTypeOf(Cl) | o.oclIsKindOf(Cl)
- Ambiguity: These expressions require o to be instance of class Cl (or instance of

a subtype of Cl when using oclIsKindOf). Therefore, new states where Cl is
added to the list of classes that o is an instance of satisfy the expression.
However, states where additional classes have been added or removed from o
(assuming multiple classification) satisfy the expression as well.

- Default interpretation: The object o should only be specialized to Cl during the
transition to the new state.

Heuristic 9: Minimum number of object generalizations
- OCL expressions: not o.oclIsTypeOf(Cl) | not o.oclIsKindOf(Cl)
- Ambiguity: These expressions establish that, in the new state, o cannot be an

instance of Cl (for oclIsTypeOf expressions) or an instance of Cl subtypes (for
oclIsKindOf expressions). Therefore all states verifying this condition are valid
even if they add/remove other classes from the list of classes where o belongs.

- Default interpretation: The object o should only be generalized to a supertype of
Cl. If Cl has no supertypes, o must be completely removed from the IB.

3.2 Interpretation of ReplanShipment Using our Heuristics

The expected behavior of replanShipment explained in Section 2 is just one of the
(many) possible interpretations of replanShipment that satisfy its postcondition. Our
heuristics prevent these alternative interpretations and ensure the described behavior.

As an example, heuristic 3 discards states where the value of the urgent attribute
has been set to false (for instance, to avoid creating the new shipment), heuristic 2
ensures that variable sh1 is initialized with the values of the self variable (and not the
other way around), heuristic 7 discards states where the expression self.sale->forAll
is satisfied by means of removing all sales from self and so forth.

8

4. Patterns for a Declarative to Imperative Translation

Given a declarative specification of an operation op with a contract including a
precondition pre and a postcondition post, the generated imperative specification for
op follows the general form:

op(param1…paramn) { [if pre then] translate(post) [endif] }
where translate(post) is the (recursive) application of our translation patterns over
post. Testing the precondition is optional. Although usually added in object-oriented
programming (defensive programming approach), it can be regarded as a redundant
check [17] (the client should be responsible for calling op only when pre is satisfied).

The main purpose of our translation patterns is to draw from the postcondition
definition a minimal set of structural events that, when applied over an initial state of
the IB (that satisfies the precondition), reach a final state that verifies the
postcondition. A set of structural events is minimal if no proper subset suffices to
satisfy the postcondition [29].

When facing ambiguous OCL expressions, our patterns use the previous heuristics
to precisely determine the characteristics of the desired final state and generate the
needed structural events accordingly. This ensures that the final state, apart from
satisfying the postcondition, is acceptable from the modeler’s point of view. Getting
rid of ambiguities also guarantees the determinism of the translation process.

As a result, the translation produces an imperative specification of the initial
operation that could be used as an input for model-driven development tools in order
to (automatically) generate its implementation in a given technology platform.

For the sake of simplicity we focus on the generation of the modifying structural
events. We do not provide a translation for queries appearing in the postcondition
into a set of primitive read events. Since queries do not modify the state of the IB,
their translation is straightforward (and, in fact, most imperative languages for UML
models allow expressing queries in OCL itself or in some similar language, see [16]).

For each pattern we indicate the OCL expression/s targeted by the pattern and its
corresponding translation into a set of structural events. Our patterns do not address
the full expressivity of the OCL but suffice to translate most usual OCL expressions
appearing in postconditions. Additional OCL expressions can be handled with our
method if they are first transformed (i.e. simplified) into equivalent OCL expressions
(using the transformation rules presented in [8]) covered by our patterns.

4.1. Structural Events in the UML

The set of structural events allowed in UML behavior specifications is defined in the
UML metamodel Actions packages [21] (structural events are called actions in the
UML). The list of supported events1 is the following:

1 For the sake of clarity, we distinguish between events over attributes and events over

association ends (i.e. roles). UML unifies both concepts under the notion of structural
feature.

9

- CreateObject(Class c): It creates a new instance of c. This new instance is
returned as an output parameter.

- DestroyObject(Object o): It removes o from the IB. Optionally, we may indicate
in the event that all links where o participated must be removed as well.

- AddAttributeValue(Attribute at, Object o, Object value): It adds value to the list
of values for the attribute at of o (attributes may be multivalued in UML)

- RemoveAttributeValue(Attribute at, Object o): It removes all values of attribute
at in object o.

- CreateLink(Association a, Object o1, …, Object on): It creates a new link for the
association a relating objects o1..on.

- CreateLinkObject(Association a, Object o1, …, Object on): It creates a new link
object (i.e. an association class instance) in a relating objects o1..on.

- DestroyLink(Association a, Object o1, …, Object on): It removes from a the link
(or link object) between objects o1..on.

- RemoveLinkValue(AssociationEnd ae, Object o): It removes from o the values of
the association end (i.e. role) ae. This event removes all links of the association
ae.association (that returns, according to the UML metamodel, the association
where ae belongs) where o participates.

- ReclassifyObject(Object o, Class[] newClasses, Class[] oldClasses): It adds to
the list of classes of o the classes specified in newClasses and removes those in
oldClasses. Note that this event permits performing several generalizations and
specializations at the same time.

4.2. List of Patterns

Table 4.1 presents our list of translation patterns. The translation is expressed using a
simple combination of OCL for the query expressions, the above structural events
and, when necessary, conditional and iterator structures.

Table 4.1 List of patterns. Column N indicates the pattern number. Expression describes the
OCL expression targeted by each pattern and Translation the imperative code excerpt
generated for it. In the patterns, Bi stands for a boolean expression, o for an object variable and
X and Y for two arbitrary OCL expressions of the appropriate type. o.r represents a navigation
from o to the associated objects in the related class playing the role r.

N Expression Translation Description
1

B1 and … and Bn
Translate(B1);
…
Translate(Bn);

A set of boolean expressions linked by
ANDs are transformed by translating each
single expression sequentially.

2
if B1 then B2 else B3

if B1 then Translate(B2);
else Translate(B3);

We translate both B2 and B3 and execute
them depending on the evaluation of B1
(according to heuristic 3, a translation
trying to falsify B1 is not acceptable).

3
o.at=Y (where at is a
univalued attribute)

RemoveAttributeValue(at,o);
AddAttributeValue(at,o,Y);

We assign to the attribute at of o the value
Y. The previous value is removed.
Following heuristic 2, Y cannot be
modified.

10

4
o.at=Y (where at is
multivalued)

RemoveAttributeValue (at,o);
foreach val in Y do
 AddAttributeValue(at,o,val);
endfor;

First, all previous values of o.at are
removed. Then we assign one of the values
of Y to each slot of at.

5 o.r = Y (where r is a
role with a ‘1’ max
multiplicity)

RemoveLinkValue(r,o);
CreateLink(r.association, o,Y);

A new link relating o and Y in the
association r.association is created
(r.association retrieves the association
where r belongs to).

6
o.r=Y (when o. r may
return many objects)

RemoveLinkValue (r,o);
foreach o’ in Y do
CreateLink(r.association,o,o’);
endfor;

We create a new link between o and each
object in Y.

8
X->forAll(Y)

foreach o in X do
 if not (o.Y) then Translate(o.Y)
 endif;
endfor;

We ensure that each element affected by
the forAll iterator verifies the Y condition.
According to heuristic 7, objects included
in X cannot be removed.

9 o.oclIsNew() and
o.oclIsTypeOf(Cl)

1
0

o.oclIsNew() and
Cl.allInstances()->
includes(c)

o:=CreateObject(Cl);

The translation creates a new object of
type Cl. This new object is stored in the
original postcondition variable. If Cl is an
association class CreateLinkObject is used
instead.

1
1

not
o.oclIsTypeOf(OclAny)

1
2

not o.oclIsKindOf(Cl)
(Cl has no supertypes)

1
3

Cl.allInstances()
 ->excludes(o)
(Cl has no supertypes)

DestroyObject (o);

o is deleted from the IB. This event
deletes also all links where o participates.
(OclAny is the common supertype of all
classes in an UML model).

1
4

o.oclIsTypeOf(Cl)

ReclassifyObject(o,Cl,Cl.gener
alization.specific);

The class Cl is added to o. Moreover, if Cl
has subtypes (retrieved using the
navigation generalization.specific of the
UML metamodel) these subtypes must be
removed from o (oclIsTypeOf is satisfied
iff Cl and the type of o coincide).

1
5 o.oclIsKindOf(Cl) ReclassifyObject(o,Cl,[]); Cl is added to the list of classes of o.

1
6

not o.oclIsTypeOf(Cl)
(Cl<>OclAny)

1
7

not o.oclIsKindOf(Cl)
(Cl has supertypes)

1
8

Cl.allInstances()
 -> excludes(o)
(Cl has supertypes)

ReclassifyObject(o, [], Cl);

o is removed from Cl but may remain
instance of other classes in the model

1
9 o.r->includesAll(Y)

foreach o’ in Y do
CreateLink(r.association, o, o’)
endfor;

A new link is created between o and each
object in Y. If o.r is a navigation towards
an association class, CreateLinkObject is

11

used instead.

2
0 o.r->includes(Y) CreateLink(r.association,o,Y); A link is created between o and the single

object returned by Y

2
1 o.r->excludesAll(Y)

foreach o’ in Y
DestroyLink(r.association,o,o’)
endfor;

All links between o and the objects in Y
are destroyed.

2
2 o.r->excludes(Y) DestroyLink(r.association, o,Y)

The link between o and the object in Y is
removed.

2
3 o.r->isEmpty(Y)

foreach o’ in o.r@pre
DestroyLink(r.association,o,o’)
endfor;

All links between o and the objects
returned by o.r in the previous state are
removed.

4.3. Applying the Patterns

Fig. 4.1 shows the translation of the replanShipment operation (Fig. 2.1). Next to
each translation excerpt we show between brackets the number of the applied pattern.

 context Shipment::replanShipment(newDate:Date)
{
if self.shippingDate>today() and self.shippingDate<today()+7 and self.sale->exists(not readyForShipment)
then
 if self.urgent (2)
 then (1)
 sh1:=CreateObject(Shipment); (9)
 AddAttribueValue(shippingDate, sh1, newDate)); AddAttribueValue(id, sh1, generateNewId()); (3)
 AddAttribueValue(airTransport, sh1, self.airTransport); AddAttribueValue(urgent, sh1, true); (3)
 foreach o in self.sale@pre->select(not readyForShipment) CreateLink(DeliveredIn,sh1,o); endfor; (19)
 foreach o in self.sale@pre->select(not readyForShipment) DestroyLink (DeliveredIn, self, o); endfor; (21)
 foreach o in sh1.sale (8)
 if not o.expectedShDate=sh1.shippingDate
 then AddAttributeValue(expectedShDate,o,sh1.shippingDate); (3) endif;
 endfor;
 else
 AddAttributeValue(shippingDate,self,newDate); (3)
 foreach o in self.sale (8)
 if not o.expectedShDate=self.shippingDate
 then AddAttributeValue(expectedShDate,o,self.shippingDate); (3) endif;
 endfor;
 endif;
endif;
}

 Fig. 4.1. Imperative version of replanShipment

12

5. Translating Inherently Ambiguous Postconditions

In some sense, all postconditions can be considered ambiguous. However, for most
postconditions, the heuristics provided in Section 3 suffice to provide a single
interpretation for each postcondition.

Nevertheless, some postconditions are inherently ambiguous (also called non-
deterministic [2]). We cannot define heuristics for them since, among all possible
states satisfying the postcondition, there does not exist a state clearly more
appropriate than the others. As an example assume a postcondition including an
expression a>b. There is a whole family of states verifying the postcondition (all
states where a is greater than b), all of them equally correct, even from the modeler
point of view or, otherwise, he/she would have expressed the relation between the
values of a and b more precisely (for instance saying that a=b+c).

We believe it is worth identifying these inherent ambiguous postconditions since
most times the conceptual modeler does not define them on purpose but by mistake.
Table 5.1 shows a list of expressions that cause a postcondition to become inherently
ambiguous. We also provide a default translation for each expression so that our
translation process can automatically translate all kinds of postconditions.
Nevertheless, for these expressions user interaction is usually required to obtain a
more accurate translation since the default translation may be too restrictive. For
instance, for the second group of ambiguous expressions, the user may want to
provide a specific constant value instead of letting the translation tool to choose an
arbitrary one.

Table 5.1 List of inherently ambiguous expressions and their possible translation

Expression Ambiguity description Default Translation

B1 or … or Bn
At least a Bi condition should be true but it
is not defined which one(s) To ensure that B1 is true

X<>Y, X>Y, X>=Y,
X<Y, X<=Y

The exact relation between the values of X
and Y is not stated

To assign to X the value of Y plus/less a
constant value of the appropriate type

X+Y=W+Z

(likewise with -,*,/,…)
The exact relation between the values of
the different variables is not stated To translate the expression X = W+Z-Y

X->exists(Y) An element of X must verify Y but it is not
defined which one

To force the first element of X to verify Y
(a total order relation must exist)

X->any(Y)=Z Any element of X verifying Y could be the
one equal to Z

To assign the value of Z to the first
element of X verifying Y

X.at->sum()=Y There exist many combinations of single
values that once added result in Y

To assign to each object in X a value
Y/X-> size() in its attribute at

X->asSequence() There are many possible ways of
transforming a collection of elements X
into an (ordered) sequence of elements

Order in the sequence follows the total
order of the elements in X (a total order
relation on X must exist)

X.r->notEmpty() The condition states that the navigation
through the role r must return at least an
object but it is not stated how many nor

To assign a single object. The assigned
object will be the first object in the
destination class (a total order relation on

13

which ones. the destination class must exist)

op1() = op2() The return value of op1 and op2 must
coincide. Depending on their definition
several alternatives may exist.

Application of previous patterns
depending on the specific definition of
each operation

6. Tool Implementation

A prototype implementation of the translation presented in this paper has been
developed. Given the XMI file representing the CS and the set of OCL operation
contracts in a textual form (parsed using the Dresden OCL toolkit [9]), the prototype
translates the selected operations.

More specifically, the translation is obtained by means of traversing in preorder the
OCL binary tree resulting from representing the OCL postcondition as an instance of
the OCL metamodel [20]. For each tree node (where each node represents an atomic
subset of the OCL expression: an operation, a constant, an access to an attribute, etc),
the prototype chooses and applies the appropriate pattern. The complexity of the
translation process is O(log n), being n the number of nodes of the tree.

Due to lack of space we cannot show this tree representation nor the details of the
preorder traversal algorithm actually performing the translation.

7. Related Work

Two kinds of related work are relevant here: approaches devoted to the problem of
improving the precision of declarative specifications (Section 7.1) and model-driven
development methods and tools that may include facilities for generating code from
operation contracts (Section 7.2).

7.1. Methods to Interpret Declarative Specifications

Methods aimed at disambiguating declarative specifications can be classified in three
main groups: (1) methods that extend the contract with additional information, (2)
methods that add implicit semantics to the contract expressions and (3) methods that
try to characterize all possible new states satisfying the contract postcondition and let
the modeler choose the one he/she prefers. This latter group (see [27] and [22] as
examples) is not so well-explored and, currently, no method exists that is able to
handle contracts defined in a language as expressive as the OCL.

Regarding the first group of methods, several formal languages (such as Z, VDM
or JML) force the conceptual modeler to define in the contracts a new clause
indicating which objects and links cannot change during the operation execution
(frame axioms). [13] adapts the notion of frame axioms to OCL contracts. [4] uses a
slightly different approach and asks modelers to specify which operations could have
effected a change to a particular element. Other approaches, such as [2], combine the

14

OCL with imperative extensions to clarify the semantics of the contract. The main
limitations of all these approaches are: (1) they burden the modeler with the task of
defining additional information in the contracts, (2) the addition of new elements to
the structural diagram may require changing the frame axioms (now there are more
elements that “cannot change”) and (3) the high expressiveness of the OCL limits
their feasibility (for instance, postconditions may state, both, additions and removals
over the set of objects returned by a navigation; it is not clear how frame axioms
could be used to deal with this situation).

These problems can be avoided when adding implicit semantics to the expressions
appearing in a postcondition, as we do in our heuristics proposal. We are aware that
our heuristics require some strong assumptions about how the postconditions are
specified, yet we believe the assumptions reflect the way conceptual modelers tend to
(unconsciously?) specify the postconditions. We are not the first ones in proposing
the use of default semantics to simplify ambiguity problems of operation contracts.
[4] recognizes that frame axioms could be (semi)automatically generated from the
postcondition if assuming some implicit semantics. [26] proposes some basic
assumptions regarding object (and collection) creations and removals. [6] proposes a
minimal change heuristic (the preferred final state is the one with fewer changes wrt
the initial one). However, this simple heuristic does not suffice to cover all possible
ambiguities (see the different ambiguities commented in Section 3). Some ambiguous
OCL expressions and their default interpretation were presented in a preliminary
paper [7].

As a trade-off, this kind of methods requires modelers to agree in a given
semantics when defining the contracts (either the ones we have assumed in our
heuristics or alternative ones). We reckon that alternative approaches could be helpful
when dealing with the inherently ambiguous postconditions of Section 5.

7.2. Methods for Code-generation from Declarative Specifications

As far as we know, ours is the first approach to deal with the declarative-to-
imperative translation of OCL operation specifications. Most methods and tools only
support imperative specifications (see [16] as a representative example).

There exist several OCL tools allowing the definition of operation contracts (see,
among others, [3,5,10,9]). However, during the code-generation phase, contracts are
simply added as validation conditions. They are transformed into if-then clauses that
check at the beginning and at the end of the operation if the pre and postconditions
are satisfied (and raise an exception otherwise). The actual implementation of the
operation must be manually defined. [1] checks the correctness of an implementation
with respect to its contract but does not generate it.

A similar problem is faced in the database field when computing a sequence of
updates that make the database to satisfy a given query (see [29] as an example). A
typical example is the integrity maintenance problem (see [15] for a survey).
Nevertheless, the limited expressivity of these methods (in terms of, both, the
constraint definition language and the different types of structural events supported)
prevents directly reusing them in the translation of UML/OCL operations.

15

8. Conclusions and further research

We have proposed a new method to transform an operation contract (declarative
specification) into a set of structural events (imperative specification). The
transformation process uses several heuristics that help draw the events from the OCL
expressions included in the contract whenever their interpretation may be ambiguous.

Our translation may be useful to leverage current model-driven development tools,
which up to now only support code-generation from imperative specifications. It may
also be helpful for validation purposes, since modelers could immediately check
which would be the implementation of their declarative specifications.

Our translation process has been validated against two case studies of real-life
applications, a Car Rental System [11] and an e-marketplace system [23] as well as
with other examples appearing in different books, papers and tutorials. Our patterns
have proven to be complete enough to translate most of the examples. Moreover,
during the analysis we have detected several inherently ambiguous postconditions. In
most cases, and according to the contract information in natural language, the original
modelers were unaware of such ambiguities. We believe this is an additional benefit
of applying our method.

As a further work, we plan to extend our translation process by combining the
basic patterns presented up to now (this has been the main flaw of the method
detected during its validation) and by considering the integrity constraints in the
generation process to ensure that the generated implementation is consistent with the
constraints and, at the same time, that the operation effect is preserved [25]. We are
also interested in studying the applicability of our method in the reverse process, that
is, in the translation from imperative to declarative specifications. Finally, we plan to
work on the integration of our results and our prototype within an existing model-
driven development tool.

Acknowledgements

Thanks to the anonymous referees and the people of the GMC group (especially to
Anna Queralt) for their useful comments to previous drafts of this paper. This work
was partially supported by the Ministerio de Ciencia y Tecnologia and FEDER under
project TIN2005-06053.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P. H.: The KeY tool, Integrating object
oriented design and formal verification. Software and Systems Modeling 4 (2005) 32-54

2. Baar, T.: OCL and Graph-Transformations - A Symbiotic Alliance to Alleviate the Frame
Problem. In: Proc. MODELS'05 Workshop on Tool Support for OCL and Related
Formalisms, Technical Report, LGL-Report-2005-001 (2005) 93-109

3. Babes-Bolyai. Object Constraint Language Environment 2.0. http://lci.cs.ubbcluj.ro/ocle/

16

4. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure specifications.
IEEE Transactions on Software Engineering 21 (1995) 785-798

5. Borland. Borland® Together® Architect 2006
6. Broersen, J., Wieringa, R.: Preferential Semantics for Action Specifications in First-order

Modal Action Logic. In: Proc. of the ECAI'98 Workshop on Practical Reasoning and
Rationality (1998)

7. Cabot, J.: Ambiguity issues in OCL postconditions. In: Proc. OCL for (Meta-) Models in
Multiple Application Domain (workshop co-located with the MODELS'06 Conference),
Technical Report, TUD-FI06-04-Sept (2006)

8. Cabot, J., Teniente, E.: Transformation Techniques for OCL Constraints. Science of
Computer Programming, to appear

9. Dresden. Dresden OCL Toolkit. http://dresden-ocl.sourceforge.net/index.html
10. Dzidek, W. J., Briand, L. C., Labiche, Y.: Lessons Learned from Developing a Dynamic

OCL Constraint Enforcement Tool for Java. In: Proc. MODELS 2005 Workshops, LNCS,
3844 (2005) 10-19

11. Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. LSI Technical Report,
LSI-03-59-R (2003)

12. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base (1982)

13. Kosiuczenko, P.: Specification of Invariability in OCL. In: Proc. 9th Int. Conf. on Model
Driven Engineering Languages and Systems, LNCS, 4199 (2006) 676-691

14. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. 2nd edn. Prentice Hall (2001)

15. Mayol, E., Teniente, E.: A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating. In: Proc. ER'99 Workshops, 1727 (1999) 62-73

16. Mellor, S. J., Balcer, M. J.: Executable UML. Object Technology Series. Addison-Wesley
17. Meyer, B.: Object-oriented software construction. 2nd edn. Prentice Hall (1997)
18. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information

Systems Research. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE'05), LNCS, 3520 (2005) 1-15

19. Olivé, A., Raventós, R.: Modeling events as entities in object-oriented conceptual modeling
languages. Data Knowl. Eng. 58 (2006) 243-262

20. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)
21. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-02)
22. Penny, D. A., Holt, R. C., Godfrey, M. W.: Formal Specification in Metamorphic

Programming. In: Proc. VDM '91-Formal Software Development, LNCS, 551 (1991) 11-30
23. Queralt, A., Teniente, E.: A Platform Independent Model for the Electronic Marketplace

Domain. LSI Technical Report, LSI-05-9-R (2005)
24. Queralt, A., Teniente, E.: Specifying the Semantics of Operation Contracts in Conceptual

Modeling. Journal on Data Semantics VII (2006) 33-56
25. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta

Informatica 36 (1999) 97-141
26. Sendall, S., Strohmeier, A.: Using OCL and UML to Specify System Behavior. In: Object

Modeling with the OCL, The Rationale behind the Object Constraint Language. Springer-
Verlag (2002) 250--280

27. Wahls, T., Leavens, G. T., Baker, A. L.: Executing Formal Specifications with Concurrent
Constraint Programming. Autom. Softw. Eng. 7 (2000) 315-343

28. Wieringa, R.: A survey of structured and object-oriented software specification methods
and techniques. ACM Computing Surveys 30 (1998) 459-527

29. Wüthrich, B.: On Updates and Inconsistency Repairing in Knowledge Bases. In: Proc. 9th
Int. Conf. on Data Engineering, (1993) 608-615

