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Abstract The use of different network security compo-
nents, such as firewalls and network intrusion detection
systems (NIDSs), is the dominant method to monitor
and guarantee the security policy in current corporate
networks. To properly configure these components, it is
necessary to use several sets of security rules. Never-
theless, the existence of anomalies between those rules,
particularly in distributed multi-component scenarios, is
very likely to degrade the network security policy. The
discovery and removal of these anomalies is a serious
and complex problem to solve. In this paper, we present
a complete set of mechanisms for such a management.
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1 Introduction

Generally, once a security administrator has specified a
security policy, he or she aims to enforce it in the infor-
mation system to be protected. This enforcement con-
sists in distributing the security rules expressed in this
policy over different security components of the informa-
tion system — such as firewalls, intrusion detection sys-
tems (IDSs), intrusion prevention systems (IPSs), prox-
ies, etc. — both at application, system, and network
level. This implies cohesion of the security functions sup-
plied by these components. In other words, security rules
deployed over the different components must be consis-
tent, not redundant and, as far as possible, optimal.
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CS 17607, 35576, Cesson Sévigné Cedex, France
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An approach based on a formal security policy refine-
ment mechanism (using for instance abstract machines
grounded on set theory and first order logic) ensures co-
hesion, completeness and optimization as built-in prop-
erties. Unfortunately, in most cases, such an approach
has not a wide following and the policy is more often
than not empirically deployed based on security admin-
istrator expertise and flair. It is then advisable to an-
alyze the security rules deployed to detect and correct
some policy anomalies — often referred to in the lit-
erature as intra- and inter-configuration anomalies [6].
These anomalies might be the origin of security holes
and/or difficulty of the intrusion prevention and detec-
tion processes. Firewalls [10] and network intrusion de-
tection systems (NIDSs) [20] are the most commonly
used security components and, in this paper, we focus
particularly on their security rules.

Firewalls are prevention devices ensuring access con-
trol. They manage the traffic between the public net-
work and the private network zones on one hand and
between private zones in the local network on the other
hand. Undesirable traffic is blocked or re-routed by such
a component. NIDSs are detection devices ensuring a
monitoring role. They are components that monitor the
traffic and generate alerts in the case of suspicious traf-
fic. The attributes used to block or to generate alerts are
almost the same. The challenge, when these two kinds
of components coexist in the security architecture of an
information system is then to avoid inter-configuration
anomalies.

In [12,13], we presented an audit process to manage
intra-firewall policy anomalies, in order to detect and re-
move anomalies within the set of rules of a given firewall.
This audit process is based on the existence of relation-
ships between the condition attributes of the filtering
rules — such as coincidence, disjunction, and inclusion
— and proposes a transformation process which derives
from an initial set of rules (potentially misconfigured)
to an equivalent one which is completely free of errors.
Furthermore, the resulting rules are totally disjoint, i.e.,
the ordering of rules is no longer relevant.



In this paper we extend our proposal for detecting
and removing intra-firewall policy anomalies to a dis-
tributed setup where both firewalls and NIDSs might be
in charge of the network security policy. In this way, and
assuming that the role of both prevention and detection
of network attacks is assigned to several components, our
objective is to avoid intra and inter-component anoma-
lies between filtering and alerting rules. The proposed
approach is based on the similarity between the param-
eters of a filtering rule and those of an alerting rule.
We can therefore check whether there are errors in those
configurations regarding the policy deployment over each
component which matches the same traffic.

The advantages of our approach are the following.
First, as opposite to the closest related work shown in
Section 2, our approach not only considers the analysis
of relationships between rules two by two but also a com-
plete analysis of the whole set of rules. This way, those
conflicts due to the union of rules that are not detected
by other proposals (such as [4,5,15]) are properly dis-
covered by our intra- and inter-component algorithms.
Second, after applying our intra-component algorithms
the resulting rules of each component are totally disjoint,
i.e., the ordering of rules is no longer relevant. Hence, one
can perform a second rewriting of rules in a close or open
manner, generating a configuration that only contains
deny (or alert) rules if the component default policy is
open, and accept (or pass) rules if the default policy is
close (cf. Section 4.5). Third, the use of a network model
to determine topological properties better defines all the
set of anomalies studied in the related work. Further-
more the lack of this model in other approaches, such as
[4–6], may lead to inappropriate decisions.

The rest of this paper is organized as follows. Sec-
tion 2 starts with an analysis of some related work. Sec-
tion 3 introduces a network model that is further used
in Sects. 4 and 5 when presenting, respectively, our intra
and inter-component anomaly classifications and algo-
rithms. Section 6 overviews a first implementation of our
proposals in order to validate its performance over real
multi-component scenarios. Section 7 closes the paper
giving some conclusions and further work.

2 Related Work

A first approach to addressing our problem domain is
the use of refinement mechanisms. In this way, we can
perform a top-down deployment of rules by unfolding
a global set of security policies into the configurations
of several components and guaranteeing that those de-
ployed configurations are free of anomalies. In [7], for
example, the authors present a refinement mechanism
that uses a formal model for the generation of filtering
rules by transforming general rules into specific configu-
ration rules. Indeed, the authors propose the use of roles
to better define network capabilities, and the use of an

inheritance mechanism through a hierarchy of entities
to automatically generate permissions and prohibitions.
However, their work does not fix, from our point of view,
clear semantics; and their concept of role becomes, more-
over, ambiguous. A second refinement approach based on
the concept of roles is presented in [16]. However, and
although the authors claim that their work is based on
the Role Base Access Control (RBAC) model [24], their
specification of network entities, roles, and permission
assignments are not rigorous and does not fit any real-
ity. Most of these limitations are solved in the approach
presented in [14], where a global set of rules based on the
Organization Based Access Control (OrBAC) model [1]
are further deployed into specific firewall configuration
files through a transformation process. Unfortunately,
and although we think this approach heads in the right
direction, we consider that the single use of refinement
mechanisms is not always enough. Generally, administra-
tors are reluctant to set up from scratch a whole network
security policy, and prefer recycling existing configura-
tions.

A second manner to address our problem domain is
through the use of automatic network support tools in-
tended for the creation of configurations for security de-
vices. Firewall Builder [17], for example, provides a com-
mon interface to specify a network access control pol-
icy and then this policy is automatically translated into
various firewall configuration languages, such as netfilter
[26], ipfilter [22], or Cisco PIX [9]. Similarly, the Cisco
Security Manager [11] is a commercial support tool de-
signed to manage security policy deployments on het-
erogeneous networks based on Cisco devices. However,
we consider that these two solutions do not offer a se-
mantic model rich enough to express complete security
policies; and, although they offer some routines for the
discovery of conflicts between rules, such functionality
requires the administrator’s assistance and only simple
redundancy that corresponds to trivial equality or inclu-
sion between zones is detected. A more complete taxon-
omy of anomalies (as the one we present in this paper)
should be addressed by these tools.

The closest works to ours are those of [2,4–6,15,18]
[27] which provide means to directly manage the discov-
ery of anomalies from the components’ configurations.
The authors in [2] consider that, in a configuration set,
two rules are in conflict when the first rule in order
matches some packets that match the second rule, and
the second rule also matches some of the packets that
match the first rule. This approach is very limited since
it just detects a particular case of ambiguity within a sin-
gle component configuration. Furthermore, it does not
provide detection in multiple-component configurations.
In [15], two cases of anomalies are considered. First, a
rule Rj is defined as backward redundant iff there exists
another rule Ri with higher priority in order such that all
the packets that match rule Rj also match rule Ri. Sec-
ond, a rule Ri is defined as forward redundant iff there
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exists another rule Rj with the same decision and less
priority in order such that the following conditions hold:
(1) all the packets that match Ri also match Rj ; (2) for
each rule Rk between Ri and Rj , and that matches all
the packets that also match rule Ri, Rk has the same
decision as Ri. Although this approach seems to head in
the right direction, we consider it as incomplete, since it
does not detect all the possible cases of intra-component
anomalies (as we do in this paper). For instance, given
the following set of filtering rules (where each rule is in
the form Ri : conditioni → decisioni, being i the rela-
tive position of the rule within the set of rules, decisioni

a boolean expression in {accept, deny}, and conditioni

the condition attribute source zone — szone for short):

R1 : szone ∈ [10, 50]→ deny
R2 : szone ∈ [40, 70]→ accept
R3 : szone ∈ [50, 80]→ accept

and since R2 comes after R1, rule R2 only applies over
the interval [51, 70] — i.e., R2 is not necessary, since, if
we remove this rule from the configuration, the filtering
policy does not change. The detection proposal defined in
[15] cannot detect the redundancy of rule R2 within the
configuration of such a given firewall. A similar but more
complete approach to detect those anomalies is presented
in [18]. However, neither [15] nor [18] provide detection
on multiple-component configurations.

The authors of [4–6] propose in their work an effi-
cient set of algorithms to detect policy anomalies in both
single- and multi-firewall configuration setups. Nonethe-
less, we also consider their approach as incomplete. First,
their intra- and inter-component discovery approach is
not complete since, given a single- or multiple-component
security policy, their detection algorithms are based on
the analysis of relationships between rules two by two.
This way, errors due to the union of rules are not explic-
itly considered (as our approach does). For example, the
following set of rules:

R1 : szone ∈ [10, 50]→ accept
R2 : szone ∈ [40, 90]→ accept
R3 : szone ∈ [30, 80]→ deny

may lead their discovery algorithms to inappropriate de-
cisions. The approach defined in [4] cannot detect that
rule R3 will never be applied due to the union of rules R1

and R2. Just a correlation signal — that is obviously a
weaker signal than a shadowing one — would be labeled.

Although in [5] the authors pointed out this problem,
claiming that they break down the initial set of rules into
an equivalent set of rules free of overlaps between rules,
no specific algorithms for solving it have been provided
in [4–6]. From our point of view, the proposal presented
in [27] best addresses this limitation, although it also
presents some limitations. For instance, giving again the
following set of rules:

R1 : szone ∈ [10, 50]→ deny
R2 : szone ∈ [40, 70]→ accept
R3 : szone ∈ [50, 80]→ accept

the proposal presented in [27] reports two partial re-
dundancies (respectively, between rules R1,R2; and rules
R2,R3), instead of the full redundancy of rule R2.

The inter-component discovery presented in [4–6], mo-
reover, considers as anomalies some situations that, from
our point of view, must be tolerated to avoid inconsistent
decisions between components used in the same policy to
control or monitor the access to different zones. For in-
stance, given the following scenario (where the condition
attributes of both rule FW1{R1} and FW2{R1} are, re-
spectively, (p)rotocol, (s)ource zone, (d)estination zone,
and destination port — dport for short):

FW1 FW2

111.222.1.[0,255]111.222.0.[0,255]

FW 1{R1} : p = tcp s  any  d  111.222.1.0/24  dport = 80  deny 

FW 2{R1} : p = tcp s  111.222.0.0/24  d  111.222.1.0/24  dport = 80  deny 

external

network DMZ private

their algorithms will inappropriately report a redundancy
anomaly between filtering rules FW1{R1} and FW2{R1}.
This is because rule FW1{R1}matches every packet that
also FW2{R1} does. As a consequence, [4] considers rule
FW2{R1} as redundant since packets denied by this rule
are already denied by rule FW1{R1}. However, this con-
clusion is not appropriate because rule FW1{R1} ap-
plies to packets from the external zone to the private
zone whereas rule FW2{R1} applies to packets from the
DMZ zone to the private zone. So, rule FW2{R1} is use-
ful and cannot be removed. Though in [4,5] the authors
claim that their analysis technique marks every rule that
is used on a network path, no specific algorithms have
been provided for doing so. The main advantage of our
proposal over their approach is that it includes a model
of the traffic which flows through each component. We
consider this is necessary to draw the right conclusion in
this case.

Finally, although in both [6,27] the authors consider
their work as sufficiently general to be used for verify-
ing many other filtering based security policies such as
intrusion detection and prevention systems, no specific
mechanisms have been provided for doing so.

3 Network Model and Topology Properties

The purpose of our network model is to determine which
components within the network are traversed by a given
packet, knowing its source and destination. It is defined
as follows. First, and concerning the traffic flowing from
two different zones of the distributed policy scenario,
we may determine the set of components that are tra-
versed by this flow. Regarding the scenario shown in Fig-
ure 1, for example, the set of components traversed by

3



the network traffic flowing from zone external network
to zone private3 equals [C1,C2,C4], and the set of compo-
nents traversed by the network traffic flowing from zone
private3 to zone private2 equals [C4,C2,C3].

Let C be a set of components and let Z be a set of
zones. We assume that each pair of zones in Z are mu-
tually disjoint, i.e., if zi ∈ Z and zj ∈ Z then zi∩zj = ∅.
We then define the predicate connected(c1, c2) as a sym-
metric and anti-reflexive function which becomes true
when there exists, at least, one interface connecting com-
ponent c1 to component c2. On the other hand, we de-
fine the predicate adjacent(c, z) as a relation between
components and zones which becomes true when the
zone z is interfaced to component c. Referring to Fig-
ure 1, we can verify that predicates connected(C1, C2)
and connected(C1, C3), as well as adjacent(C1, DMZ),
adjacent(C2, private1), adjacent(C3, DMZ), and so on,
become true. We then define the set of paths, P , as fol-
lows. If c ∈ C then [c] ∈ P is an atomic path. Simi-
larly, if [p.c1] ∈ P (be “.” a concatenation functor) and
c2 ∈ C, such that c2 /∈ p and connected(c1, c2), then
[p.c1.c2] ∈ P . This way, we can notice that, concerning
Figure 1, [C1, C2, C4] ∈ P and [C1, C3] ∈ P .

Fig. 1 Simple distributed policy setup.

Let us now define a set of functions related to the or-
der between paths. We first define functions first, last,
and the order functor between paths. We define func-
tion first from P in C such that if p is a path, then
first(p) corresponds to the first component in the path.
Conversely, we define function last from P in C such
that if p is a path, then last(p) corresponds to the last
component in the path. We then define the order functor
between paths as p1 ≤ p2, such that path p1 is shorter
than p2, and where all the components within p1 are also
within p2. We also define the predicates isF irewall(c)
and isNIDS(c) which become true when the compo-
nent c is, respectively, a firewall or a NIDS.

Two additional functions are route and minimal rou-
te. We first define function route from Z to Z in 2P , such
that p ∈ route(z1, z2) iff the path p connects zone z1 to
zone z2. Formally, we define that p ∈ route(z1, z2) iff the
predicates adjacent(first(p), z1) and adjacent(last(p),
z2) become true. Similarly, we define minimal route (or
MR for short) from Z to Z in 2P , such that p ∈
MR(z1, z2) iff the following conditions hold: (1) p ∈
route(z1, z2); (2) there does not exist p′ ∈ route(z1, z2)
such that p′ < p. Regarding Figure 1, we can verify that
the minimal route from zone private3 to zone private2

equals [C4, C2, C3], i.e., MR(private3, private2) = {[C4,

C2, C3]}. We finally conclude by defining the predicate
affects(Z, Ac) as a boolean expression which becomes
true when there is, at least, an element z ∈ Z such
that the configuration of z is vulnerable to the attack
category Ac ∈ V , where V is a vulnerability set built
from a vulnerability database, such as CVE/CAN [19]
or OSVDB [21].

4 Intra-component classification and algorithms

In this section we present our set of intra-component au-
dit algorithms, whose main objective is the complete dis-
covery and removal of policy anomalies that could exist
in a single component policy, i.e., to discover and warn
the security officer about potential anomalies within the
configuration rules of a given component.

For our work, we define the security rules of both
firewalls and NIDSs as filtering and alerting rules, re-
spectively. In turn, both filtering and alerting rules are
specific cases of a more general configuration rule, which
typically defines a decision (such as deny, alert, accept,
or pass) that applies over a set of condition attributes,
such as protocol, source zone (or szone), destination
zone (or dzone), classification, and so on. We define a
general configuration rule as follows:

Ri : {conditioni} → decisioni

where i is the relative position of the rule within the set
of rules, {conditioni} is the conjunctive set of condition
attributes such that {conditioni} equals A1∧A2∧...∧Ap

— being p the number of condition attributes of the given
rule — and decision is a boolean value in {true, false}.

We shall notice that, for our work, the decision of a
filtering rule will be positive (true) when it applies to
a specific value related to deny (or filter) the traffic it
matches; and will be negative (false) when it applies to
a specific value related to accept (or ignore) the traffic it
matches. Similarly, the decision of an alerting rule will be
positive (true) when it applies to a specific value related
to alert (or warn) about the traffic it matches; and will
be negative (false) when it applies to a specific value
related to pass (or ignore) the traffic it matches.

Let us continue this section by classifying the com-
plete set of anomalies that can occur within a single com-
ponent configuration. An example for each anomaly will
be illustrated through the sample scenario shown in Fig-
ure 2.

Intra-component Shadowing A configuration rule
Ri is shadowed in a set of configuration rules R when
such a rule never applies because all the packets that
Ri may match, are previously matched by another rule,
or combination of rules, with higher priority. Regarding
Figure 2, rule C1{R6} is shadowed by the overlapping of
rules C1{R3} and C1{R5}.
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(a) Example scenario of a filtering policy.

(b) Example scenario of an alerting policy.

Fig. 2 Example of filtering and alerting policies.

Intra-component Redundancy A configuration rule
Ri is redundant in a set of configuration rules R when
the following conditions hold: (1) Ri is not shadowed by
any other rule or set of rules; (2) when removing Ri from
R, the security policy does not change. For instance, re-
ferring to Figure 2, rule C1{R4} is redundant, since the
overlapping between rules C1{R3} and C1{R5} is equiv-
alent to the policy of rule C1{R4}.

Intra-component Irrelevance A configuration rule
Ri is irrelevant in a set of configuration rules R if one of
the following conditions holds:

(1) Both source and destination addresses are within
the same zone. For instance, rule C1{R1} is irrelevant
since the source of this address, external network, as
well as its destination, is the same.

(2) The component is not within the minimal route
that connects the source zone, concerning the irrelevant
rule which causes the anomaly, to the destination zone.
Hence, the rule is irrelevant since it matches traffic which
does not flow through this component. Rule C1{R2}, for
example, is irrelevant since component C1 is not in the
path which corresponds to the minimal route between

the source zone unix network to the destination zone
windows network.

(3) The component is a NIDSs, i.e., the predicate
isNIDS(c) (cf. Section 3) becomes true, and, at least,
one of the condition attributes in Ri is related with a
classification of attack Ac which does not affect the des-
tination zone of such a rule — i.e., the predicate af-
fects(zd, Ac) becomes false. Regarding Figure 2, we can
see that rule C2{R2} is irrelevant since the nodes in the
destination zone unix network are not affected by vul-
nerabilities classified as winworm.

4.1 Intra-component algorithms

Our proposed audit process is a way of alerting the secu-
rity officer in charge of the network about these configu-
ration errors, as well as to remove all the useless rules in
the initial firewall configuration. The data to be used for
the detection process is the following. A set of rules R as
a list of initial size n, where n equals count(R), and where
each element is an associative array with the strings
condition, decision, shadowing, redundancy, and irrele-
vance as keys to access each necessary value.
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Algorithm 1: exclusion(B,A)

C[condition] ← ∅;1

C[shadowing]← false;2

C[redundancy]← false;3

C[irrelevance]← false;4

C[decision]← B[decision];5

C[type]← B[type];6

forall the elements of A[condition] and B[condition] do7

if ((A1 ∩B1) 6= ∅ and (A2 ∩B2) 6= ∅8

and ... and (Ap ∩ Bp) 6= ∅) then9

C[condition] ← C[condition] ∪10

{(B1 − A1) ∧B2 ∧ ... ∧ Bp,11

(A1 ∩ B1) ∧ (B2 − A2) ∧ ... ∧ Bp,12

(A1 ∩ B1) ∧ (A2 ∩B2) ∧ (B3 − A3) ∧ ... ∧Bp,13

...14

(A1 ∩ B1) ∧ ... ∧ (Ap−1 ∩Bp−1) ∧ (Bp − Ap)};15

else16

C[condition] ← (C[condition] ∪B[condition]);17

return C;18

Algorithm 2: testIrrelevance(c, r)

zs ← source (r);1

zd ← dest (r);2

if (zs = zd) then3

warning (“First case of irrelevance”);4

else if zs 6= zd then5

p← MR (zs,zd);6

if c /∈ p then7

warning (“Second case of irrelevance”);8

else if ¬empty(r[Ac]) and ¬affects(zd, r[Ac])9

then
warning (“Third case of irrelevance”);10

else return false;11

return true;12

Algorithm 3: testRedundancy(R,r)

i← 1;1

temp← r;2

while i ≤ count(R) do3

temp← exclusion(temp,Ri);4

if temp[condition] = ∅ then5

return true;6

i← (i + 1);7

return false;8

For reasons of clarity, we assume one can access a
linked-list through the operator Ri, where i is the relative
position regarding the initial list size — count(R). We
also assume one can add new values to the list as any
other normal variable does (element ← value), as well
as remove elements through the addition of an empty set
(element← ∅). The internal order of elements from the
linked-list R keeps with the relative ordering of rules.

Each element Ri[condition] is a boolean expression
over p possible attributes. To simplify, we only consider
the following attributes: szone (source zone), dzone (des-

Algorithm 4: intra-component-audit(c, R)

n← count(R);1

/*Phase 1*/2

for i← 1 to (n− 1) do3

for j ← (i + 1) to n do4

if Ri[decision] 6= Rj [decision] then5

Rj ← exclusion (Rj ,Ri);6

if Rj [condition] = ∅ then7

warning (“Shadowing”);8

Rj [shadowing]← true;9

/*Phase 2*/10

for i← 1 to (n− 1) do11

Ra ← {rk ∈ R | n ≥ k > i and12

rk[decision] = ri[decision]};13

if testRedundancy (Ra,Ri) then14

warning (“Redundancy”);15

Ri[condition] ← ∅;16

Ri[redundancy]← true;17

else18

for j ← (i + 1) to n do19

if Ri[decision]=Rj[decision] then20

Rj ←exclusion (Rj ,Ri);21

if Rj [condition] = ∅) then22

warning (“Shadowing”);23

Rj [shadowing]← true;24

/*Phase 3*/25

for i← 1 to n do26

if Ri[condition] 6= ∅ then27

if testIrrelevance (c,Ri) then28

Ri[condition] ← ∅;29

Ri[irrelevance]← true;30

tination zone), sport (source port), dport (destination
port), protocol, and attack class — or Ac for short —
which will be empty when the component is a firewall.
In turn, each element Ri[decision] is a boolean variable
whose values are in {true, false}. Each element Ri[type]
is a boolean variable whose values are in {filtering,
alerting}. Finally, elements Ri[shadowing], Ri[redun-
dancy], and Ri[irrelevance] are boolean variables in {
true, false} — which will be initialized to false by de-
fault.

We split the whole process into four different algo-
rithms. The first algorithm (cf. Algorithm 1) is an auxil-
iary function whose input are two rules, A and B. Once
executed, this auxiliary function returns a further rule,
C, whose set of condition attributes is the exclusion of
the set of conditions from A over B. In order to simplify
the representation of this algorithm, we use the nota-
tion Ai as an abbreviation of the variable A[condition][i],
and the notation Bi as an abbreviation of the variable
B[condition][i] — where i in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean
function in {true, false}which applies the necessary ver-
ifications to decide whether a rule r is irrelevant for the
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configuration of a component c. To properly execute such
an algorithm, let us define source(r) as a function in Z
such that source(r) = szone, and dest(r) as a function
in Z such that dest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean
function in {true, false}which, in turn, applies the trans-
formation exclusion (cf. Algorithm 1) over a set of con-
figuration rules to check whether the rule obtained as a
parameter is potentially redundant.

The last algorithm (cf. Algorithm 4) performs the
whole process of detecting and removing the complete
set of intra-component anomalies. This process is split
into three different phases. During the first phase, a set
of shadowing rules are detected and removed from a top-
bottom scope, by iteratively applying Algorithm 1 —
when the decision field of the two rules is different. Let
us notice that this stage of detecting and removing shad-
owed rules is applied before the detection and removal
of proper redundant and irrelevant rules.

The resulting set of rules is then used when applying
the second phase, also from a top-bottom scope. This
stage is performed to detect and remove proper redun-
dant rules, through an iterative call to Algorithm 3 (i.e.,
testRedundancy), as well as to detect and remove all the
further shadowed rules remaining during the latter pro-
cess. Finally, during a third phase the whole set of non-
empty rules is analyzed in order to detect and remove
irrelevance, through an iterative call to Algorithm 2 (i.e.,
testIrrelevance).

We give in the following sections an outlook on ap-
plying these four algorithms over some representative ex-
amples, as well as a proof of their correctness, and an
analysis of their complexity.

4.2 Applying the intra-component algorithms

Let us start this section by showing how can we ap-
ply function exclusion (Algorithm 1) over a set of two
rules Ri and Rj , each one of them with two condition
attributes (szone and dzone), and where Rj has less pri-
ority than Ri.

In this first example,

Ri[condition] = (szone ∈ [80, 100])∧ (dzone ∈ [1, 50])
Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

since (szone ∈ [1, 50]) ∩ (szone ∈ [80, 100]) = ∅, the
condition attributes of rules Ri and Rj are completely
independent. Thus, the applying of exclusion(Rj, Ri) is
equal to Rj [condition].

The following three examples show the same execu-
tion over a set of condition attributes with different cases
of conflict. A first case is the following,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 30])
Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where there is a main overlap of attribute szone from
Ri[condition] which completely excludes the same at-
tribute on Rj [condition]. Then, there is a second over-
lap of attribute dzone from Ri[condition] which par-
tially excludes the range [1, 30] into attribute dzone of
Rj [condition], which becomes dzone in [31, 50]. This way,
exclusion(Rj, Ri) ← {(s ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}.
For reasons of clarity, we do not show the first empty set
corresponding to the first overlap. If shown, the result
should become as follows: exclusion(Rj, Ri)← {∅, (szo-
ne ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}. In the next example,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [20, 30])
Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

there are two simple overlaps of both attributes szone
and dzone from Ri[condition] to Rj [condition], such that
exclusion(Rj, Ri) becomes {(szone ∈ [1, 50])∧ (dzone ∈
[1, 19]), (szone ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}.

A more complete example is the following,

Ri[condition] = (szone ∈ [10, 40]) ∧ (dzone ∈ [20, 30])
Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where exclusion(Rj, Ri) becomes {(szone ∈ [1, 9]) ∧
(dzone ∈ [1, 50]), (szone ∈ [41, 50]) ∧ (dzone ∈ [1, 50]),
(szone ∈ [10, 40])∧ (dzone ∈ [1, 19]), (szone ∈ [10, 40])∧
(dzone ∈ [31, 50])}.

Regarding a full exclusion, let us show the following
example,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 60])
Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where the set of condition attributes of rule Ri com-
pletely excludes the ones of rule Rj . Then, applying
exclusion(Rj, Ri) returns an empty set (i.e., {∅, ∅} = ∅).
Hence, on a further execution of Algorithm 4 (and as-
suming that the decision field of both rules were differ-
ent) the shadowing field of rule Rj (initialized as false
by default) would become true (i.e., Rj [shadowing] ←
true).

In order to show the execution of Algorithm 4 over a
more complete set of rules, we sketch such an execution
over the following set of rules:

R1 : szone ∈ [10, 50]→ true
R2 : szone ∈ [40, 90]→ false
R3 : szone ∈ [60, 100]→ false
R4 : szone ∈ [30, 80]→ true
R5 : szone ∈ [1, 70]→ false

We start by showing the initial step within the first
phase of Algorithm 4, where i = 1, and applied over
the previous set of filtering rules. Let us notice that
on this first step, the execution of function exclusion,
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with rules R2 and R1, since their decision is different,
becomes the range [51, 90]. Similarly, the execution of
function exclusion, with rules R5 and R1 becomes the
range {[1, 9], [51, 70]}. The result of this first step is the
following:

R1 : szone ∈ [10, 50]→ true
R2 : szone ∈ [51, 90]→ false
R3 : szone ∈ [60, 100]→ false
R4 : szone ∈ [30, 80]→ true
R5 : szone ∈ {[1, 9], [51, 70]} → false

Let us now move to the second step, with i = 2.
In this step, the range of rule R4 decreases since the
execution of function exclusion, with rules R2 and R4,
whose decision is different, becomes the range [30, 50]:

R1 : szone ∈ [10, 50]→ true
R2 : szone ∈ [51, 90]→ false
R3 : szone ∈ [60, 100]→ false
R4 : szone ∈ [30, 50]→ true
R5 : szone ∈ {[1, 9], [51, 70]} → false

At the end of the first phase, once executed both third
and fourth steps, the resulting rules remain as above:

R1 : szone ∈ [10, 50]→ true
R2 : szone ∈ [51, 90]→ false
R3 : szone ∈ [60, 100]→ false
R4 : szone ∈ [30, 50]→ true
R5 : szone ∈ {[1, 9], [51, 70]} → false

Once the first phase is finished and running over the
first step of the second phase, i.e., i equals 1, we notice
that: (1) the result of applying function testRedundancy
with rule R1 as the second parameter becomes false; (2)
the execution of function exclusion, with rules R4 and
R1, completely excludes the condition attribute of rule
R4. Hence, rule R4, is reported as shadowed by the com-
bination of rules R1 and R2, and its condition attribute
becomes an empty set. Therefore, the status field shado-
wing of rule R4, i.e., R4[shadowing], switches its value
to true:

R1 : szone ∈ [10, 50]→ true
R2 : szone ∈ [51, 90]→ false
R3 : szone ∈ [60, 100]→ false
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 70]} → false

Then, we proceed to the second step of the second
phase, i.e., i equals 2, and notice that rule R2 disap-
pears since the result of applying function testRedun-
dancy with rule R2 as the second parameter becomes
true. Thus, the condition attribute of rule R2 becomes an
empty set, and its status field redundancy, i.e., R2[redun-
dancy], switches its value to true:

R1 : szone ∈ [10, 50]→ true
R2 : ∅ → false
R3 : szone ∈ [60, 100]→ false
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 70]} → false

At the end of the following step, where i equals 3,
the execution of function testRedundancy with rule R3

as the second parameter becomes false. Thus, we apply
function exclusion, with rules R5 and R3 as parameters.
As a result of this execution, the second subrange of rule
R5 scarcely decreases from [51, 70] to [51, 59]:

R1 : szone ∈ [10, 50]→ true
R2 : ∅ → false
R3 : szone ∈ [60, 100]→ false
R4 : ∅ → true
R5 : szone ∈ {[1, 9], [51, 59]} → false

We do not show the rest of the execution, since the
resulting set of filtering rules does not modify the previ-
ous one, which is the following:

R1 : szone ∈ [10, 50]→ true
R3 : szone ∈ [60, 100]→ false
R5 : szone ∈ {[1, 9], [51, 59]} → false

Let us recall that the following two warnings will no-
tify the security officer of the discovery of both shad-
owing and redundancy anomalies, in order to verify the
correctness of the whole detection and transformation
process:

Shadowing on R4 with R2,R1

Redundancy on R2 with R3,R5

To conclude this section, let us finally show the warn-
ings reported when executing Algorithm 4 over the con-
figuration of the two components we showed in Figure 2.

First case of irrelevance on C1{R1}
Second case of irrelevance on C1{R2}
Redundancy on C1{R4} with C1{R3},C1{R5}
Shadowing on C1{R6} with C1{R3},C1{R5}
Third case of irrelevance on C2{R2}

4.3 Correctness of the intra-component algorithms

Lemma 1 Let Ri : {conditioni} → decisioni and Rj :
{conditionj} → decisionj be two configuration rules.
Then {Ri, Rj} is equivalent to {Ri, R

′
j} where R′

j ←
exclusion(Rj, Ri).

Proof Let us assume that:

Ri[condition] = A1 ∧A2 ∧ ... ∧Ap, and
Rj [condition] = B1 ∧B2 ∧ ... ∧Bp.
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If (A1∩B1) = ∅ or (A2∩B2) = ∅ or . . . or (Ap∩Bp) =
∅ then exclusion(Rj, Ri) ← Rj . Hence, to prove the
equivalence between {Ri, Rj} and {Ri, R

′
j} is trivial in

this case.
Let us now assume that:

(A1 ∩ B1) 6= ∅ and (A2 ∩ B2) 6= ∅ and
... and (Ap ∩Bp) 6= ∅.

If we apply rules {Ri, Rj} where Ri comes before Rj ,
then rule Rj applies to a given packet if this packet satis-
fies Rj [condition] but not Ri[condition] (since Ri applies
first). Therefore, notice that Rj [condition]−Ri[condition]
is equivalent to:

(B1 −A1) ∧B2 ∧ ... ∧Bp or
(A1 ∩B1) ∧ (B2 −A2) ∧ ... ∧Bp or
(A1 ∩B1) ∧ (A2 ∩B2) ∧ (B3 −A3) ∧ ... ∧Bp or
...
(A1 ∩B1) ∧ ... ∧ (Ap−1 ∩Bp−1) ∧ (Bp −Ap)

which corresponds to R′
j = exclusion(Rj, Ri). This way,

if Rj applies to a given packet in {Ri, Rj}, then rule R′
j

also applies to this packet in {Ri, R
′
j}. Conversely, if R′

j

applies to a given packet in {Ri, R
′
j}, then this means

this packet satisfies Rj [condition] but not Ri[condition].
So, it is clear that rule Rj also applies to this packet
in {Ri, Rj}. Since in Algorithm 1 R′

j [decision] becomes
Rj [decision], this enables us to conclude that {Ri, Rj}
is equivalent to {Ri, R

′
j}. �

Theorem 1 Let R be a set of configuration rules and
let Tr(R) be the resulting rules obtained by applying Al-
gorithm 4 to R. Then R and Tr(R) are equivalent.

Proof Let Tr′1(R) be the set of rules obtained after
applying the first phase of Algorithm 4.

Since Tr′1(R) is derived from rule R by applying excl-
usion(Rj, Ri) to some rules Rj in R, it is straightfor-
ward, from Lemma 1, to conclude that Tr′1(R) is equiv-
alent to R.

Let us now move to the second phase, and let us con-
sider a rule Ri such that testRedundancy(Ri) (cf. Algo-
rithm 3) is true. This means that Ri[condition] can be
derived by conditions of a set of rules S with the same
decision and that come after in order than rule Ri.

Since every rule Rj with a decision different from the
one of rules in S has already been excluded from rules
of S in the first phase of the algorithm, we can conclude
that rule Ri is definitely redundant and can be removed
without changing the component configuration.

This way, we conclude that Algorithm 4 preserves
equivalence in this case.

On the other hand, if testRedundancy(Ri) is false,
then the transformation consists in applying function
exclusion(Rj, Ri) to some rules Rj which also preserves
equivalence. Similarly, and once in the third phase, let
us consider a rule Ri such that testIrrelevance(c, Ri)
is true. This means that this rule matches traffic that

will never traverse component c, or that it is irrelevant
for the component’s configuration. So, we can remove Ri

from R without changing such a configuration.
Thus, in this third case, as in the other two cases,

Tr′(R) is equivalent to Tr′1(R) which, in turn, is equiv-
alent to R. �

Lemma 2 Let Ri : {conditioni} → decisioni and Rj :
{conditionj} → decisionj be two configuration rules.
Then rules Ri and R′

j, where R′
j ← exclusion(Rj, Ri)

will never simultaneously apply to any given packet.

Proof Notice that rule R′
j only applies when rule Ri

does not apply. Thus, if rule R′
j comes before rule Ri,

this will not change the final decision since rule R′
j only

applies to packets that do not match rule Ri. �

Theorem 2 Let R be a set of configuration rules and
let Tr(R) be the resulting rules obtained by applying Al-
gorithm 4 to R. Then the following statements hold: (1)
Ordering the rules in Tr(R) is no longer relevant; (2)
Tr(R) is completely free of anomalies.

Proof For any pair of rules Ri and Rj such that Ri

comes before Rj , Rj is replaced by a rule R′
j obtained

by recursively replacing Rj by exclusion(Rj, Rk) for any
k < j.

Then, by recursively applying Lemma 2, it is possible
to commute rules R′

i and R′
j in Tr(R) without changing

the policy.
Regarding the second statement — Tr(R) is com-

pletely free of anomalies — notice that, in Tr(R), each
rule is independent of all other rules.

Thus, if we consider a rule Ri in Tr(R) such that
Ri[condition] 6= ∅, then this rule will apply to any packet
that satisfies Ri[condition], i.e., it is not shadowed.

On the other hand, rule Ri is not redundant because
if we remove this rule, since this rule is the only one
that applies to packets that satisfy Ri[condition], then
configuration of the component will change if we remove
rule Ri from Tr(R).

Finally, and after the execution of Algorithm 4 over
the initial set of configuration rules, one may verify that
for each rule Ri in Tr(R) the following conditions hold:

(1) szone = z1 ∩ source(r) 6= ∅ and dzone = z2 ∩
dest(r) 6= ∅ such that z1 6= z2 and component c is in
MR(z1, z2);

(2) if Ac = attack category(Ri) 6= ∅, the predicate
affects(Ac, z2) becomes true.

Thus, each rule Ri in Tr(R) is not irrelevant. �

4.4 Complexity of the intra-component algorithms
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Let us discuss in this section the degree of computational
complexity of our approach’s main algorithm, i.e., Algo-
rithm 1, with respect to the increase of the initial number
of rules due to the whole rewriting process of Algorithm
4. Indeed, in a worst case scenario (e.g., Figure 3b), Algo-
rithm 4 may generate a huge number of rules due to the
exclusion routine defined by Algorithm 1. For instance,
if we have two rules with p attributes, the second rule
can be replaced by p new rules in the worst case, leading
to p + 1 rules.

If we now assume that we have n rules (n > 2) with
p attributes, then each rule except the first one can be
replaced by p new rules in the first rewriting step of the
algorithm. In the second step, the p rules that replace
the second rule are combined with the p rules that re-
place rules 3 to n. Thus, each rule from 3 to n can be
replaced by p2 new rules. In the third step, the p2 rules
corresponding to rule 3 are combined with the p2 rules
corresponding to rules 4 to n. We can show that this may
lead to p3 new rules. And so on. Hence, in the worst case,
if we have n rules (n > 2) with p attributes, then we can
obtain 1 + p + p2 + . . . + pn−1 rules when applying Algo-

rithm 1 from Algorithm 4, that is pn−1
p−1 rules.

Although this complexity seems very high, in all the
experiments we have done (cf. Section 6), we were always
very far from this case. First, because only attributes
szone and dzone may significantly overlap and exert a
bad influence on our algorithm’s complexity. Other at-
tributes, such as protocol, sport, and/or dport , are gener-
ally equal or completely different when combining config-
uration rules. Second, administrators generally use over-
lapping rules in their configurations to represent rules
that may have exceptions. This situation is closer to the
normal case presented in Fig. 3a than to the worst case
scenario shown in Fig. 3b. Third, when anomalies are
detected by our algorithms, some rules are removed —
which significantly reduces the theoretical complexity.

4.5 Default policies

We assume in our work that each component implements
a positive (i.e., close) or negative (i.e., open) policy. If it
is positive, the default decision is to alert or to deny a
packet when any configuration rule applies. By contrast,
the negative policy will accept or pass a packet when no
rule applies.

After rewriting the rules with our intra-component-
audit algorithms, we can actually remove every rule whose
decision is pass or accept if the policy of this component
is negative (since this rule is redundant with the default
policy); and similarly we can remove every rule whose
decision is deny or alert if its policy is positive. Thus,
we can consider that our proposed intra-component-audit
algorithm generates a configuration that only contains
positive rules if the component default policy is nega-
tive, and negative rules if the default policy is positive.

5 Inter-component classification and algorithms

The objective of the inter-component audit algorithms
is the complete detection of policy anomalies that could
exist in a multi-component policy, i.e., to discover and
warn the security officer about potential anomalies be-
tween policies of different components.

The main hypotheses for applying our inter-component
algorithms assume the following:

(1) An upstream traffic flows away from the closest
component to the origin of this traffic (i.e., the most-
upstream component [5]) towards the closest component
to the remote destination (i.e., the most-downstream com-
ponent [5]);

(2) Every component’s policy in the network has been
rewritten using the intra-component algorithms defined
in Section 4, i.e., it does not contain intra-component
anomalies and the rules within such a policy are com-
pletely independent between them.

5.1 Inter-component Anomalies Classification

In this section, we classify the complete set of anoma-
lies that can occur within a multi-component policy. Our
classification is based on the network model presented in
Section 3. An example for each anomaly is illustrated
through the distributed multi-component policy setup
shown in Figure 4.

Inter-component Shadowing A shadowing anomaly
occurs between two components when the following con-
ditions hold: (1) The most-upstream component is a fire-
wall; (2) The downstream component, where the anomaly
is detected, does not block or report (completely or par-
tially) traffic that is blocked (explicitly, by means of pos-
itive rules; or implicitly, by means of its default policy),
by the most-upstream component.

The explicit shadowing as result of the union of rules
C6{R7} and C6{R8} to the traffic that the component C3

matches by means of rule C3{R1} is a proper example of
full shadowing between a firewall and a NIDS. Similarly,
the anomaly between C3{R2} and C6{R8} shows an ex-
ample of an explicit partial shadowing anomaly between
a firewall and a NIDS.

On the other hand, the implicit shadowing between
the rule C1{R5} and the default policy of component
C2 is a proper example of implicit full shadowing be-
tween two firewalls. Finally, the anomaly between the
rule C1{R6}, C2{R1}, and the default policy of compo-
nent C2 shows an example of an implicit partial shadow-
ing anomaly between two firewalls.

Inter-component Redundancy A redundancy ano-
maly occurs between two components when the following
conditions hold: (1) The most-upstream component is
a firewall; (2) The downstream component, where the
anomaly is detected, blocks or reports (completely or
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(a) Normal case example (b) Worst case example

Fig. 3 Normal and worst ruleset examples.

partially) traffic that is blocked by the most-upstream
component.

A proper example of full redundancy between two
firewalls is shown by rules C5{R3} and C6{R1}; rules
C4{R3} and C6{R5}, on the other hand, show an exam-
ple of full redundancy between a firewall and a NIDS.
Similarly, rules C5{R4} and C6{R2} show a proper ex-
ample of partial redundancy between two firewalls, whe-
reas rules C4{R4} and C6{R6} show an example of par-
tial redundancy between a firewall and a NIDS.

Although this kind of redundancy is expressly in-
troduced by network administrators sometimes (e.g., to
guarantee the forbidden traffic will not reach the des-
tination), it is important to discover it since, if such a
rule is applied, we may conclude that at least one of the
redundant components is working wrongly. For that rea-
son, our proposal does not advise the administrator to
remove the redundant rule from the set of rules; but it
advises the administrator to give a different meaning to
that rule — by adding, for instance, an extra attribute
to the rule (e.g., a log attribute pointing out to such a
situation).

Inter-component Misconnection A misconnection
anomaly occurs between two components when the most-
upstream component is a firewall that permits (explic-
itly, by means of negative rules; or implicitly, through
its default policy) all the traffic — or just a part of it
— that is then denied by a downstream firewall. For
example, we have a full explicit misconnection between
firewalls C5 and C2 due to rules C5{R1} and C2{R2}
(full misconnection); and a partial explicit misconnec-
tion due to rules C5{R2} and C2{R2}. Similarly, we can
observe a full implicit misconnection anomaly between
firewalls C1 and C2 due to rule C1{R5} and the default
policy of firewall C2; and a partial implicit misconnec-
tion anomaly due to rules C1{R6} and C2{R1}, together
with the default policy of C2.

5.2 Inter-component analysis algorithms

For reasons of clarity, we split the whole analysis process
into four different algorithms. The input for the first al-
gorithm (cf. Algorithm 5) is the set of components C,
such that for all c ∈ C, we note c[rules] as the set
of configuration rules of component c, and c[policy] ∈
{true, false} as the default policy of such a component
c.

In turn, each rule r ∈ c[rules] consists of a conjunc-
tive set of condition attributes (i.e., szone, dzone, sport,
dport, protocol, etc.) pointing out to a decision over the
values true or false.

Algorithm 5: inter-component-audit(C)

foreach c ∈ C do1

foreach r ∈ c[rules] do2

Zs ← {z ∈ Z | z ∩ source (r) 6= ∅};3

Zd ← {z ∈ Z | z ∩ dest (r) 6= ∅};4

foreach z1 ∈ Zs do5

foreach z2 ∈ Zd do6

audit (c,r,z1,z2);7

Algorithm 6: audit(c,r,z1,z2)

foreach p ∈ MR (z1,z2) do1

pathd ← tail (c,p);2

pathu ← head (c,p);3

if pathd 6= ∅ and r[decision] =”false” and4

isFirewall(c) then5

cd ← firstFirewall(pathd);6

downstream(r,c,cd);7

if pathu 6= ∅ then8

cu ← last(pathu);9

if isFirewall(cu) then upstream(r,c,cu);10
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Fig. 4 Example of a distributed network security policy setup.

Algorithm 7: downstream(r,c,cd)

if cd[policy] =“true” then1

Rdf ← {rd ∈ cd | rd ∽ r ∧ rd[decision] =“false”};2

if Rdf = ∅ then warning (“Full Misconnection ”);3

else if ¬testRedundancy(Rdf , r) then4

warning (“Partial Misconnection”);5

Let us recall here the functions source(r) = szone
and dest(r) = dzone. Thus, we compute for each com-
ponent c ∈ C and for each rule r ∈ c[rules], each one of
the source zones z1 ∈ Zs and destination zones z2 ∈ Zd

— whose intersection with respectively szone and dzone
is not empty — which become, together with a reference
to each component c and each rule r, the input for the
second algorithm (i.e., Algorithm 6).

Once in Algorithm 6, we compute the minimal route
of components that connects zone z1 to z2, i.e., [C1, C2,
. . . , Cn] ∈ MR(z1, z2). Then, we decompose the set of

components inside each path in downstream path (pathd)
and upstream path (pathu). To do so, we use functions
head and tail (defined below). The first component cd ∈
pathd, and the last component cu ∈ pathu are passed, re-
spectively, as argument to the last two algorithms (i.e.,
Algorithm 7 and Algorithm 8) in order to conclude the
set of necessary checks that guarantee the audit process.

Some other operators and routines called from these
algorithms are the following: (1) operator “∽”, which
denotes that two rules ri and rj are correlated if every
attribute in Ri has a non empty intersection with the
corresponding attribute in Rj ; (2) routine tail(ci, path),
which returns the downstream path cointaining those
components cj ∈ path placed just after component ci;
(3) routine head(ci, path), which returns the upstream
path of components cj ∈ path which are placed just be-
fore component ci; and (4) routine firstF irewall(path),
which returns the first component ci ∈ path such that
predicate isF irewall(ci) becomes true.
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Algorithm 8: upstream(r,c,cu)

Ruf ← {ru ∈ cu | ru ∽ r ∧ ru[decision] =“false”};1

Rut ← {ru ∈ cu | ru ∽ r ∧ ru[decision] =“true”};2

if r[decision] =“true” then3

if testRedundancy (Rut,r) then4

warning (“Full Redundancy”);5

else if Rut 6= ∅ then6

warning (“Partial Redundancy”);7

else if isFirewall(c) then8

if testRedundancy (Ruf ,r) then9

warning (“Full Misconnection”);10

else if Ruf 6= ∅ then11

warning (“Partial Misconnection”);12

else if Ruf = ∅ and Rut = ∅ and13

cu[policy] =“false” then14

warning (“Full Misconnection”);15

else if r[decision] =“false” then16

if testRedundancy (Rut,r) then17

warning (“Full Shadowing”);18

else if Rut 6= ∅ then19

warning (“Partial Shadowing”);20

else if Ruf = ∅ and cu[policy] =“true” then21

warning (“Full Shadowing”);22

else if ¬ testRedundancy (Ruf ,r)23

and cu[policy] =“true” then24

warning (“Partial Shadowing”);25

Let us conclude this section by giving in Figure 5 an
outlook to the set of warnings sent to the security offi-
cer after the execution of Algorithm 5 in the scenario of
Figure 4.

C1{R3} − C6{R3, R4}: Full Shadowing
C1{R4} − C6{R4}: Partial Shadowing
C1{R5} − C2{pol.}: Full Shadowing
C1{R6} − C2{R1, pol.}: Partial Shadowing
C2{R3} − C1{pol.}: Full Misconnection
C2{R4} − C1{R7, pol.}: Partial Misconnection
C3{R1} − C6{R7, R8}: Full Shadowing
C3{R2} − C6{R8}: Partial Shadowing
C4{R3} − C6{R5}: Full Redundancy
C4{R4} − C6{R6}: Partial Redundancy
C5{R1} − C2{R2}: Full Misconnection
C5{R2} − C2{R2}: Partial Misconnection
C5{R3} − C6{R1}: Full Redundancy
C5{R4} − C6{R2}: Partial Redundancy
C5{R5} − C6{pol.}: Full Misconnection

Fig. 5 Execution of Alg. 5 over the scenario of Fig. 4.

5.3 Correctness of the inter-component algorithms

To prove the correctness of our inter-component algo-
rithms, we first define what is a deployment of configu-
ration rules without anomalies. For this purpose, let us

consider a set R of configuration rules to be deployed
over a set C of components that partitions a network
into a set Z of zones. We assume that the set of rules
R has been rewritten by Algorithm 9 into Tr(R), which,
in turn, is equivalent to R, but completely free of any
possible relation between rules of the same type (e.g.,
filtering or alerting rules).

Algorithm 9 is a simplified version of Algorithm 4.
It automatically fixes any dependency between rules of
the same type (e.g., filtering or alerting rules). Like Al-
gorithm 4, the rewriting process defined in Algorithm 9
relies on a iterative execution of the auxiliary function
exclusion defined in Algorithm 1 (cf. Section 4). There-
fore, similar reasonings as used to prove the correctness
of Algorithm 4 allow us to prove the correctness of Al-
gorithm 9.

Algorithm 9: policy-rewriting(R)

for i← 1 to (count(R)− 1) do1

for j ← (i + 1) to count(R) do2

if Rj [type] = Ri[type] then3

Rj ← exclusion (Rj ,Ri);4

Let us now consider a rule r ∈ Tr(R) and let us
assume that r applies to a source zone z1 and a destina-
tion zone z2, i.e., szone = z1 ∩ source(r) 6= ∅ and dzone
= z2 ∩ dest(r) 6= ∅. Let r′ be a rule identical to r except
that source(r′) = szone and dest(r′) = dzone. Let us
also assume that [C1, C2, ..., Ck] ∈ MR(z1, z2). We then
define our deployment principle as follows.

Definition 1 Any rule r ∈ Tr(R) will be deployed over
the set C of components. There are two different cases:
r[decision] =“false” or r[decision] =“true”.

If r[decision] =“false” then, on every component
on the minimal route from source szone to destination
dzone, deploy a negative rule r′ (i.e., an accept filtering
rule r′ if the component is a firewall, or a pass alerting
rule r′ if the component is a NIDS).

Conversely, if r[decision] =“true”, then the two fol-
lowing possibilities hold:

(1) if r is a filtering rule, then deploy a deny filter-
ing rule r′ on the most-upstream firewall of the minimal
route (if such a firewall does not exist, then generate a
deployment error message);

(2) if r is an alerting rule, then deploy an alert rule
r′ on the first NIDS located before the most-upstream
firewall of the minimal route (if such a NIDS does not
exist, then generate a deployment error message).

Having defined our deployment principle, let us now
consider the aggregation process shown in Algorithm 10,
which is intended for the aggregation of configurations
rules from a set of components C into a global set of rules
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Algorithm 10: aggregation(C)

R ← ∅; i ← ∅;1

foreach c0 ∈ C do2

intra-component-audit (c0,c0[rules]);3

foreach c1 ∈ C do4

foreach r1 ∈ c1[rules] do5

Zs ← {z ∈ Z | z ∩ source (r1) 6= ∅};6

Zd ← {z ∈ Z | z ∩ dest (r1) 6= ∅};7

foreach z1 ∈ Zs do8

foreach z2 ∈ Zd do9

if (r1[decision] =“false”) then10

C2 ← {c2 ∈ head(c1, MR(z1, z2)) | isFirewall(c2) = true};11

foreach c2 ∈ C2 do12

c2rf ← {r2 ∈ c2[rules] | r1 ∽ r2 ∧ r2[decision] =“false”};13

if (empty(c2rf)) then14

c2rt← {r2 ∈ c2[rules] | r1 ∽ r2 ∧ r2[decision] =“true”};15

if (¬empty(c2rt)) or (c2[policy] =“true”) then16

aggregationError ();17

return ∅;18

else if (r1[decision] =“true”) then19

if (isFirewall(c1)) and (first(MR(z1, z2)) 6= c1) then20

aggregationError ();21

return ∅;22

else if (isNIDS(c1)) then23

C2 ← {c2 ∈ head(c1, MR(z1, z2)) | isFirewall(c2) = true};24

foreach c2 ∈ C2 do25

c2rf ← {r2 ∈ c2[rules] | r1 ∽ r2 ∧ r2[decision] =“false”};26

if (empty(c2rf)) then27

c2rt← {r2 ∈ c2[rules] | r1 ∽ r2 ∧ r2[decision] =“true”};28

if (¬empty(c2rt)) or (c2[policy] =“true”) then29

aggregationError ();30

return ∅;31

Ri ← Ri ∪ r1;32

Ri[szone]← z1;33

Ri[dzone]← z2;34

i← (i + 1);35

policy-rewriting (R);36

return R;37

R. (An earlier version of this algorithm is presented in
[3]). The input data of our aggregation process is the
set C of components whose configurations we want to
fold up. As we can notice in line 3 of Algorithm 10, the
configuration of each component ci ∈ C if first fixed by
applying the intra-component-audit algorithm presented
in Section 4.

The gathering of configuration rules is according to
the deployment principle stated in Definition 1. In this
way, for each negative rule configured in a component,
we expect to find an open flow of permissions within
every component in the minimal route from the source
zone to the destination zone of such a rule. Otherwise,
an aggregation error message is generated. On the other
hand, for each positive rule, if it is a filtering rule, we ex-
pect to find such a prohibition on the first firewall of the
minimal route from the source zone to the destination

zone; otherwise, an aggregation error message is gener-
ated; if such a rule is an alerting rule, we expect to not
find an upstream firewall on the minimal route from the
source zone to the destination zone blocking its traffic;
otherwise, an aggregation error message is generated.

Based on the deployment and aggregation processes
defined above, we can now prove the following theorem:

Theorem 3 Let C[rules] be the set of component con-
figurations obtained by applying Definition 1 over the set
R of configuration rules obtained, in turn, by applying
Algorithm 10 over C. Then, the audit process of Algo-
rithm 5 does not detect any inter-component anomaly in
the configurations of C[rules].
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Proof Let C be a set of components that partitions
the network into a set Z of zones, and whose compo-
nent configurations are aggregated into R by applying
Algorithm 10.

Let us first prove that if there exists, at least, one rule
ri ∈ C[rules] such that it presents an inter-component
anomaly (as defined in Section 5.1), then the aggregation
of rules R ← aggregation(C) through the use of Algo-
rithm 10 does not generate a consistent set of rules R
that can be further deployed over the network by using
the deployment principle stated in Definition 1.

For instance, let us assume that ri ∈ C[rules] presents
an inter-component shadowing. If so, ri is a negative rule
(i.e., either accept or pass) that applies to a source zone
z1 and a destination zone z2 such that szone = z1 ∩
source(ri) 6= ∅, dzone = z2∩dest(ri) 6= ∅; ri belongs to a
component Ci ∈ C which is in the path [C1, C2, ..., Ck] ∈
MR(z1, z2); and it exists at least one component Cj such
that the following conditions hold: (1) component Cj is
an upstream firewall, i.e., Cj ∈ head(Ci, MR(z1, z2)) ∧
isF irewall(Cj) = true; (2) component Cj explicitly or
implicitly blocks the traffic that ri matches, i.e., either
there exists a rule rj ∈ Cj [rules] such that rj ∽ ri ∧
rj [decision] =“true”; or Cj [policy] =“true” and there
is not rj ∈ Cj [rules] such that rj ∽ ri ∧ rj [decision] =
“false”.

If this situation applies, we can observe that during
the aggregation process specified by Algorithm 10, rule
ri matches statement 10, i.e., ri[decision] =“false” be-
comes true. Then, the process analyzes through state-
ments 12–18 whether there exists at least an upstream
firewall Cj such that it blocks the traffic that ri also
matches, i.e., it does not contain negative filtering rules
accepting that traffic (statement 14 becomes true) and
either it explicitly blocks that traffic through a positive
filtering rule (first condition of statement 16 becomes
true), or it implicitly blocks that traffic through its de-
fault policy (second condition of statement 16 becomes
true). If so, the process finishes with an error and returns
an empty set of rules (cf. statements 17 and 18).

Let us now assume that ri ∈ C[rules] presents an
inter-component redundancy. If so, ri is a positive rule
(i.e., either deny or alert) that applies to a source zone
z1 and a destination zone z2 (such that szone = z1 ∩
source(ri) 6= ∅, dzone = z2 ∩ dest(ri) 6= ∅); ri be-
longs to a component Ci ∈ C which is in the path
[C1, C2, ..., Ck] ∈ MR(z1, z2); and one of the following
conditions hold: (1) component Ci is a firewall and there
exists, at least, an upstream firewall Cj that either ex-
plicitly or implicitly blocks the traffic that ri already
blocks (without justifying ri such a redundancy by means
of an additional attribute like, for example, an attribute
for logs); (2) component Ci is a NIDS located after an
upstream firewall on the minimal route which blocks the
traffic of ri (without justifying ri such a redundancy by

means of an additional attribute like, for example, an at-
tribute for logs). If condition (1) of this situation applies,
we can observe that during the folding process specified
by Algorithm 10, rule ri matches statement 1919 , i.e.,
ri[decision] = “true” becomes true, and the two condi-
tions of statement 2020 , i.e., ri is placed within a firewall
and such a firewall is not the most-upstream component
of the minimal route from z1 to z2. Thus, the process
finishes with an error and returns an empty set of rules
(cf. statements 21 21 and 22

Similarly, if condition (2) of this situation applies,
we can observe that during the folding process speci-
fied by Algorithm 10 rule ri matches both statement 19,
i.e., ri[decision] =“true”, and statement 23, i.e., pred-
icate isNIDS(Ci) = true. Then, the process analyzes
through statements 25–31 whether there exists at least
an upstream firewall Cj that blocks the traffic that ri

also matches, i.e., it does not contain negative filtering
rules accepting that traffic (statement 27 becomes true)
and either it explicitly blocks that traffic through a posi-
tive filtering rule (first condition of statement 29 becomes
true), or it implicitly blocks that traffic through its de-
fault policy (second condition of statement 29 becomes
true). If so, the process finishes with an error and returns
an empty set of rules (cf. statements 30 and 31).

Let us finally assume that ri ∈ C[rules] presents
an inter-component misconnection. If so, ri is a posi-
tive filtering rule (i.e., deny) that applies to a source
zone z1 and a destination zone z2 such that szone =
z1∩source(ri) 6= ∅, dzone = z2∩dest(ri) 6= ∅; ri belongs
to a firewall Ci ∈ C which is in the path [C1, C2, ..., Ck] ∈
MR(z1, z2); and there exists, at least, an upstream fire-
wall Cj that either explicitly or implicitly accepts the
traffic that ri blocks. In order to avoid this situation it
suffices to detect whether firewall Ci is not the most-
upstream firewall. As we have shown in the previous
case, this situation is handled by the aggregation process
specified by Algorithm 10 through statement 19 state-
ment 20. placed within a firewall and such a firewall is
not the most-upstream component of the minimal route
from z1 to z2, the aggregation process finishes with an
error and returns an empty set of rules (cf. statements 30

It is straightforward, then, to conclude that when
no inter-component anomalies apply to the set of com-
ponent configurations C[rules], the aggregating process
specified by Algorithm 10 returns a global set of filtering
rules R with the union of all the configuration rules (cf.
statements 32–35 of Algorithm 10) previously deployed
over the set of components C.

Let us notice that we apply in line 36 of Algorithm 10
the rewriting process defined in Algorithm 9. In this way,
we can guarantee that there are no dependencies between
rules of the same type (i.e., alerting and filtering rules)
in the set of rules aggregated during the folding process
of Algorithm 10. As stated above, and similarly to Algo-
rithm 4 (cf. Section 4), Algorithm 9 relies on a iterative
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execution of the auxiliary function exclusion defined in
Algorithm 1 (cf. Section 4). Therefore, similar reasonings
as used to prove the correctness of Algorithm 4 (cf. Sec-
tion 4.3) enables us to prove that the set of rules returned
by Algorithm 10 is free of intra-component anomalies.

If we now deploy the set of rules R obtained from
Algorithm 10 by using the deployment principle stated
in Definition 1, and since we agree that R belongs to a
set of configuration rules C[rules] that is free of inter-
component anomalies, we can then guarantee that the
deployed set of configurations is also free of inter-compo-
nent anomalies, i.e., the audit process of Algorithm 5
does not detect any inter-component anomaly in the con-
figurations already deployed. �

6 Implementation and Performance Evaluation

We implemented the complete set of algorithms and pro-
cesses presented in this paper in a software prototype
called MIRAGE (which stands for MIsconfiguRAtion ma-
naGEr). MIRAGE has been developed using PHP, a gen-
eral purpose scripting language that is especially suited
for web services development and can be embedded into
HTML for the construction of client-side GUI based ap-
plications [8]. MIRAGE can be locally or remotely exe-
cuted by using a HTTP server (e.g., Apache server over
UNIX or Windows setups) and a web browser. The user
interface of MIRAGE not only allows the whole man-
agement of those processes described in this paper, but
also the management of the network properties described
in Section 3. In order to do so, MIRAGE extracts such
information from SKYBOX [25], an automatic network
tool that allows us to properly manage the set of compo-
nents, the set of configurations rules of each component,
the set of zones of the system, and so on. In fact, both
the network properties and the whole policies are derived
from — and represented into — SKYBOX-based XML
files.

We show in Figure 6 some screenshots of the graphi-
cal environment of MIRAGE. We first see in Figure 6(a)
the main interface of our tool. The top-left panel allows
the load of SKYBOX-based XML files, from which one
can supply the topology of the system and the set of
security rules already deployed over the network from a
single XML file based on SKYBOX. Through a set of
transformations, MIRAGE derives the specific instances
of the network model described in Section 3, and remains
ready to perform the complete set of processes defined
in this paper.

Figure 6 also shows some other options placed in its
middle panel, such as the selection of components, and
buttons to call its main functions/routines, which are
the following: (1) intra-component analysis of rules; (2)
inter-component analysis of rules; (3) aggregation of ex-
isting rules into a single global policy; (4) deployment

of the resulting global set of rules into a different set of
components. These four procedures can work in two dif-
ferent modes: (a) results mode, which is a quick mode
that only reports warnings and proper results of a given
process; (b) logs mode, which is a more detailed mode
that not only reports warnings and results, but also those
information generated and exchanged between functions
during the whole execution of a given process.

We can see in Figure 6(b) the output view of MI-
RAGE when performing the intra-component audit pro-
cess to the set of rules of a given component. In this
case, the set of filtering rules of a firewall are analyzed,
and two intra-component anomalies are detected. Fur-
thermore, the prototype leaves the option to the admin-
istrator to fix those anomalies by updating the network
model. Similarly, we can see in Figure 6(c) the result of
applying our inter-component audit process to the com-
plete set of components’ rules. Finally, we show in fig-
ures 6(d), 6(e), and 6(f) the output view after applying,
respectively, the aggregation and deploying processes de-
fined in Section 5.3.

In the following section, we show some experimental
results carried out by using the graphical user interface
of MIRAGE.

6.1 Performance evaluation

We evaluated the implementation of MIRAGE through
a set of experiments over different IPv4-based security
components and networks, and through the use of the
results mode of its four main routines. The experiments
were carried out on an Intel-Pentium M 1.4 GHz proces-
sor with 512 MB RAM, running Debian GNU/Linux 2.6,
and using Apache/1.3 with PHP/4.3 configured. We did
not measure in our evaluations the performance for pars-
ing and constructing the topological descriptions derived
from the XML files loaded into MIRAGE. This process
was performed just once at the beginning of each evalu-
ation, and we do not consider it as relevant.

We first evaluated the performance of our intra-com-
ponent audit algorithms by analyzing the average time
and memory space utilized when processing different set
of security rules for three different components. We cre-
ated the configuration of each component based on the
security policy characteristics of our real institutional
network. More specifically, the set of components utilized
for this first evaluation consisted of two firewalls based
on netfilter [26] and ipfilter [22], and a NIDS based on
snort [23].

Each component was configured towards three dif-
ferent zones with more than 50 hosts in each zone. The
configuration rules of those components consisted of the
following main attribute fields: source IP address, desti-
nation IP address, source port number, destination port
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Fig. 6 Samples of the graphical environment of MIRAGE.
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number, and protocol type. The configuration rules of
the NIDS included, moreover, two additional values to
take into account, the payload and the attack classifica-
tion associated to each rule.

Figure 7(a) shows the average execution times (in
seconds) for performing the intra-component analysis of
those three components versus the total number of rules
of their configurations. Three different curves are shown,
one for each of the following cases: (1) netfilter firewall
rules, of which 15% presented overlaps between their at-
tributes; (2) ipfilter firewall rules, of which 75% presented
overlaps between their attributes; and (3) snort-based
alerting rules, of which 90% presented overlaps between
their attributes. The horizontal axis indicates the total
number of rules and the vertical axis indicates the av-
erage process time. Similarly, Figure 7(b) indicates the
associated space memory consumption during the same
executions, where its horizontal axis indicates the total
number of rules and its vertical axis the memory space
consumption (in kilobytes).

As expected, according to the complexity analyzed
in Section 4.4, the first case scenario showed the least
processing time and memory space consumption (it took
less than 2 seconds and almost 27 kilobytes of memory
the analysis of 70 rules with 15% of overlaps); and the
third case scenario presented the highest processing time
and memory space consumption (it took more than 15s
and almost 150 kilobytes of memory for the analysis of
70 rules with 90% of overlaps).

We can notice, however, that even if the theoreti-
cal complexity of the third case should bound close to
O(pn), where p is the number of attributes, and n the
number of rules, we were far from this complexity, and
our implementation scaled well with the increase of rules.
We further verified that although the complexity of Al-
gorithm 4 is determined by the complexity of splitting
rules, the dynamic removal of anomalies, and the distri-
bution of overlaps between rule attributes, significantly
reduces the execution complexity.

We measured, in a second phase of our evaluations,
the average time and memory space consumption when
processing our inter-component audit algorithms through
a progressive increment of security rules, components
and networks. The configuration of every component was
previously analyzed with our intra-component audit pro-
cess, and any possible anomaly and/or overlap between
rule attributes was previously removed.

The results of these measurements are plotted in Fig-
ure 8(a) and Figure 8(b) as three different curves, accord-
ing to the three following topologies: (1) two subnetworks
with two firewalls and one NIDS; (2) four subnetworks
with three firewalls and two NIDSs; and (3) six subnet-
works with four firewalls and two NIDSs. These same
three topologies were also utilized for measuring the av-
erage time and memory space when performing the ag-

gregation process defined in Section 5.3. The results of
these last measurements are plotted in Figure 9(a) and
Figure 9(b), respectively.

From figures 8(a) and 8(b) we see that it took less
than 2 seconds and 200 kilobytes of memory for the
analysis of 70 security rules distributed between three
components and two subnetworks; and almost 5 seconds
and 260 kilobytes of memory for the analysis of the same
number of rules distributed between six components and
six subnetworks. The analysis of those same scenarios,
but through the aggregation process specified in Sec-
tion 5.3 increased both processing time and memory space
consumption. More specifically, it took almost 7s and 310
kilobytes of memory the aggregation of the 70 security
rules distributed between six components and six sub-
networks. We consider this increase reasonable, since it
is due to the rewriting of policies performed at the be-
ginning and ending stages of the aggregation process —
specified in lines 3 and 36 of Algorithm 10.

Clearly, the results presented in this section indicate
strong requirements of both processing time and space
memory. However, we consider that these requirements
are acceptable considering that all our approaches are
performed off-line and they do not affect the performance
of any component or network. Furthermore, we want to
recall that the implementation of our proposal has been
done by using a high level scripting language. We expect
that the use of a more efficient language will considerably
improve these results.

7 Conclusions

We presented in this paper a set of mechanisms for the
managing of anomalies on distributed network security
policies. More precisely, our proposal is intended for the
discovery of anomalies in network security policies de-
ployed over firewalls and network intrusion detection sys-
tems (NIDSs). Our approach was presented in two main
blocks. We first presented in Section 4 a set of algorithms
for the management of anomalies within the configura-
tion of single security components. We then presented,
in Sect. 5, a set of algorithms for the management of
anomalies between the configuration of different security
components implementing a single, but distributed, se-
curity policy.

The advantages of our proposal are the following.
First, our intra-component transformation process ver-
ifies that the resulting rules are completely independent
between them. Otherwise, each rule considered as use-
less during the process is reported to the security officer,
in order to verify the correctness of the whole process.
Second, we can perform a second rewriting of rules, gen-
erating a configuration that only contains positive rules
if the component default policy is negative, and nega-
tive rules if the default policy is positive. Third, the net-
work model presented in Section 3 allows us to determine
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Fig. 7 Intra-component analysis evaluations.
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which components are crossed by a given packet knowing
its source and destination, as well as other network prop-
erties. Thanks to this model, our approach better defines
all the set of anomalies studied in the related work, and
it reports, moreover, two new anomalies (irrelevance and
misconnection) not reported, as defined in our work, in
none of the other approaches.

The implementation of our approach in a software
prototype, moreover, demonstrates the applicability of
our work. We discussed this implementation, based on a
scripting language [8], and presented an evaluation of its
performance. Although the results of our experiments
showed strong processing time and memory space re-
quirements, we consider them reasonable and expect that
the use of a more efficient implementation language will
improve our initial evaluation.

As further work, we are currently working on an ex-
tension of our proposals in the case where the secu-
rity architecture will also include virtual private network
(VPN) tunnels and IPv6 devices, as well as those scenar-
ios where there exist a cooperation between routing and
tunneling policies. In parallel to this work, we are also
studying how to extend our approach to the analysis of
stateful policies.
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