
MISTIC - UOC. SECURITY PROTOCOLS AND APPLICATIONS. JUNE 1, 2021 1

How P2P framework can help mitigate trust and
security risks of IoT applications

Abstract—The rapid growth of IoT devices and its impact in
our day to day is one of the biggest challenges for information
security nowadays. Privacy in IoT is one of these challenges
since IoT devices collect massive amounts of personal data about
users and its environment unbeknownst to them and, due to the
hardware limitations of the devices, they cannot apply traditional
encryption schemes and other privacy centered architectures.
We must search new ways to connect these devices without
forfeit user privacy and to guarantee same security standards
as other current user based applications. Currently, there are
many ways to provide user privacy in several contexts but there
is no standard to provide users and developers ways to achieve
it IoT applications. This paper presents a framework proposal
to connect one or several IoT devices to create applications with
user privacy in its design through The Onion Router (TOR) to
send data over the net anonymously. Our main contribution is
to adapt a device whose capabilities to use a heavy encryption-
based technology are limited into a fully extendable system that
closes the gap between anonymity and IoT.

Index Terms—Internet of Things (IoT), privacy, The Onion
Router (TOR), Anonymous Communication.

I. INTRODUCTION

INTERNET of things (IoT) have gained lots of presence
in many different aspects of our lives and a produced

huge impact with a great amount of devices connected to the
internet whose applications are embedded in its infrastructure
and to be reused for different purposes. These devices form
a network of physical sensors constantly monitoring and
sending high volumes of data over internet. However, privacy
in these communication schemes presents a challenge for its
applications since IoT devices gather lots of personal user
data and have a specific design lacking of required processing
capabilities to execute security tasks. Therefore, there is a
considerable quantity of sensible data flowing over the internet
without a privacy assurance which presents a big risk for these
devices and its users.

This work focuses on the analysis of the current private
and non-private communication architectures between IoT
devices, identify its limitations and develop a new product
from there. We make a .onion based framework to address
trust and privacy issues for the IoT capable of establishing
communications between IoT devices having privacy by de-
sign. The proposed framework lays the groundwork for the
development of applications that can guarantee privacy in
between device communication with low computation cost.
Finally, we elaborated a POC with a simulated health device
that tracks health information and sends it to a remote hospital
application.

II. TOR & HIDDEN SERVICES

TOR project is a non-lucrative organization researching
privacy and anonymity online. This project offers a technology
that routes the internet traffic over several relays maintained by
thousands of volunteers around the world making really hard
to identify the origin and destination of a user’s connection.
The TOR project develops a product called onion services and
can only be accessed from the TOR network, this is why they
are also called hidden services.

The hidden service protocol makes use of the TOR net-
work so a rendezvous point between client and service can
be created and they can exchange messages with end-to-
end encryption and authentication. In order to establish a
hidden service the service will select 3 random relays from
the TOR network to act as introductory points and create a
anonymized circuits to them. These introductory points are
the only ones that know how to connect to the hidden service
and the connection can only be done through them. After
that, the hidden service will publish a privately signed service
descriptor containing the list of its introduction points that can
only be decrypted with the hidden service address which is
also the public key of the before mentioned private signature.
The descriptor will be uploaded to a distributed hash table
available to clients. When a client wants to connect to a hidden
service gets the hash table and asks for the service descriptor.
By using the public key encoded in its .onion address it verifies
the signature of the descriptor itself; inside this descriptor
there are the introductory points that can provide access to
the hidden service. Then, the client will pick an introductory
point and establish a circuit to it, it will ask to the relay to
become an introductory point by providing a nonce that will
be used later. Now, the introductory point is ready to notify
the service that a client wishes to establish a connection by
providing the nonce and a rendezvous address to continue the
exchange, to which the service will run some verifications and
ultimately decide if it wants to connect or not. If the service
finally decides to establish a connection it will connect to the
rendezvous point and send the nonce to it. The rendezvous
point finally will relay messages between the client and the
service by verifying the same nonce in both sides [11].

III. STATE OF THE ART

One of the biggest challenges for IoT is to successfully
establish a connection with some degree of privacy. These
devices also have limited capabilities to perform computational
costly tasks such as encryption in a regular basis making
hard to integrate these new system in actual privacy based
systems. However, there are solutions that allow to establish
communications between devices with some privacy degree,



MISTIC - UOC. SECURITY PROTOCOLS AND APPLICATIONS. JUNE 1, 2021 2

for instance, in [6] Hoang, N. P., and Pishva, D. consider
different privacy related IoT challenges and make a list of
multiple well-known vulnerabilities applied to IoT systems,
however, by connecting these devices to a more powerful client
such as a laptop it is possible to use the powerful anonymous
capabilities of TOR and thus it is possible to send all home
appliances data anonymously. Similarly, in [?] it shows the
limitations of IoT to establish secure communications due to
its hardware limitations and to solve this problem they propose
to use more powerful clients capable to route communications
anonymously, again, over TOR in different manners and
mitigate the problem.
Currently, IoT technology is a vibrant and constantly studied
field; many IoT tools and development frameworks emerge
offering different solutions to developers that want to make
use of this technology. Currently there are several frameworks
and middleware solutions to develop IoT apps but they don’t
usually include user or location privacy and other aspects of
privacy, they are left to the developer to consider. However,
there are some guidelines for the creation of a development
framework with privacy at its core. In [3] P. Porambage, M.
Ylianttila, C. Schmitt, P. Kumar, A. Gurtov and A. V. Vasilakos
establish a set of attributes to include in a development frame-
work for IoT. They propose a series of guidelines to determine
the quality of a framework and present a novel Privacy by
Design (PbD) concept that exposes several characteristics to
focus such as transparency and purpose, identity privacy data
minimization and more. Also, 7 principles to consider in the
creation of an privacy-focused IoT framework were defined
making privacy a top priority and anticipating security issues.

In Privacy by Design concept in [5] a framework guideline
it is also proposed in order to assess privacy capabilities
for IoT and introduces the lifecycle of a communication
between devices and a methodology to evaluate privacy in
IoT frameworks:

1) Consent and data acquisition
2) Data preprocessing
3) Data processing and Analysis
4) Data storage
5) Data Dissemination
Similarly, in [7] E. Al Alkeem, C. Y. Yeun and M. J.

Zemerly expose how Man In The Middle (MITM) attack
affect IoT devices such as wearables and propose a framework
which overcomes the most security requirements along with
the privacy issues that mitigates those attacks.

A more domain suited framework proposal exists in [8]
where Juacaba Neto, Mérindol and Theoleyre tackle the mul-
tidomain applications problem and how meet its privacy needs
by introducing and applying the Named Data Networking
(NDN) technology to bring scalable privacy. The concept of
multidomain applications is assumed by Onu, Mireku, Kwakye
and Barker in [9] and introduce an IoT framework for the smart
environments with privacy policies and taxonomy that can be
applied in multiple environments.

IV. CONTRIBUTION

IoT devices typically don’t have enough encryption power to
establish a connection through TOR themselves, this is why
we use an auxiliary entry device, a powerful client, to gain
access to the TOR network making a device-gateway pair
where the latter will send data anonymously. The gateway
can create a TOR circuit and deliver device communications
to a hidden service. Hidden services addresses will be stored
in the gateway and can be dynamically selected to suit the
application and device needs. When the IoT device wishes to
transmit will indicate a previously known ’id’ of a recipient
device, much like a traditional communication structure, and
the gateway will map this ’id’ to a hidden service address to
build the circuit and relay the same information anonymously.
By doing this we can considerably reduce the overhead of an
IoT device and delegate computational costly tasks to a more
powerful client.

A hidden service, unlike a centralized service, may not have
the same availability and other benefits of reliability, this is
why it is important to make a service agreement before hand
in order to accomplish successful transmissions. In our case, a
gateway may be ready to send but the hidden service may not
be available, to avoid this, it is crucial to establish a connection
schedule or any other sort of window to guarantee a successful
transmission attempt for both parties. On the other hand, an
asynchronous scheme may be another choice by signaling the
end device when a device is ready to transmit and to make
sure the hidden service will be available to receive the sensible
payload.

Using Privacy by Design [5] guidelines we propose a
framework with same priorities that focuses on communication
between IoT devices.

1) Consent and data acquisition. It is implicit in our
contribution and it’s left to the developers to implement
solutions to authorize other channels to gather data.

2) Data preprocessing. There is no data preprocessing
in our contribution. Data minimization is accomplished
transmitting the minimum amount of information

3) Data processing and analysis. Our contribution is not
constrained to a single type of data and further analysis
made to the transmitted data is out of our scope

4) Data storage. Our contribution will gather data regard-
ing acknowledgement of sending, a logging system.

5) Data dissemination. We send data anonymously to
another device leaving the data encapsulated in a single
transmission between both parties.

To comply with local and temporal privacy we send the
data through the TOR network and access control can be
accomplished through hidden services.
We will leave the data lifecycle and store system against loss,
destruction or revelation open to implementation.

A. Introducing a privacy framework for IoT

Current IoT devices have multiple embedded solutions for
many uses cases and many technologies can work in one single
device but for our case we will focus in data transmission over
the internet.



MISTIC - UOC. SECURITY PROTOCOLS AND APPLICATIONS. JUNE 1, 2021 3

Fig. 1. Framework architecture

For our experiment we have programmed a simulation of a
sanitary device that sends a patients health information such as
arterial pressure and beats per minute. This information is sent
to a MQTT broker installed on a Raspberry. Another program
is subscribed to all broker topics and sends all information to
the main application hub.

MQTT is an OASIS lightweight message protocol standard
for IoT. It works with a publish subscribber architecture
where a broker receives a message and sends them to all
devices subscribed to a topic [12]. The architecture, though, is
protocol independent and can work with multiple technologies
negotiated in the before mentioned service agreement phase;
for instance, it could also send the health information in a
more traditional HTTP server-client architecture.

We keep a logging register when data gets transmitted
but the framework is implementation independent as well so
developers may choose another logging technology if any. To
register an IoT device transmission we will use an external
logging service whose main goal is also privacy. Matrix is
decentralized communication protocol for IP in real time. It
consist in a federated ecosystem for instant messaging and
VoIP whose messages are stored in a distributed network
where users participate in conversations called rooms [13].

Our framework divides the connection and data transmission
as below:

1) The IoT device sends data to its connected gateway with
a selected destination ’id’.

2) The gateway resolves the hidden service address with the
given ’id’ and will establish a TOR circuit to transmit.

3) An acknowledgement of send will be registered in the
Matrix homeserver.

4) A webapp running behind the hidden service address
gathers and shows the data. This webapp is accessed
through a TOR browser.

To handle MQTT connections a mosquitto broker [14]
listens for connections and relayed to a previously subscribbed
gateway. The gateway module consist in a modified Python
built-in server receiving both HTTP PUT connections and
MQTT pub messages. When a data transmission is received,
the gateway will resolve its .onion address through the manda-
tory ’id’ and relay the message through TOR.

Fig. 2. POC: ESP32 as IoT device and Raspberry as gateway

To integrate the gateway with TOR the requests library [20]
was modified in order to use the SOCKS protocol instead of
plain HTTP.

Authorized users can the access anonymously to the .onion
address with TOR browser and get to a webpage presenting the
sensor data to evaluate the current state. We created a simple
hidden service with docker, Flask microframework [15] and
Redis cache system [16] in order to present this information.
The TOR service creates a connection to the TOR network
and a hidden service with it that listens to default port 80
for new connections and forwards to port 5000 where the
app is running. The web service receives HTTP PUT requests
sent by the main app and registers them in the cache system.
Data can then be accessed with HTTP GET requests through
anonymous connection via TOR browser.

B. Experimental methodology and results

The simulation consists in a ESP32 chip programmed with
Arduino that publishes beats per minute and arterial tension
in a fixed rate of 10 seconds to the broker.

As mentioned in the previous section, we installed all
needed software in a Raspberry Pi 4 8GB Model B with
1.5GHz 64-bit quad-core CPU (8GB RAM). The gateway
is a collection of software tools and libraries running in the
Raspberry:

• MQTT Eclipse mosquitto server. Acts as a broker for the
ESP32 MQTT client.

• Matrix Synapse homeserver.
• TOR. We install TOR to get access to SOCKS protocol

in order to properly send data over TOR network.
• Python3. We extended the built-in Python3 http server

in order to receive HTTP requests and send them over a
TOR relay.

• Python-Requests: A modified version of a python-request
session object to work with SOCKS and send data to a
hidden service.

• Paho-mqtt: An MQTT Python client library [17] to sub-
scribe to the mosquitto broker and receive the device
messages.

Synapse in a Matrix implementation in Python that executes
a local server (homeserver) to generate the ecosystem. We
have installed a Synapse homeserver in the Raspberry to run
a Matrix local server to register all message sending devices.



MISTIC - UOC. SECURITY PROTOCOLS AND APPLICATIONS. JUNE 1, 2021 4

These devices are registered as users and both devices and
users have access to the room so the user can see what or when
is being sent to the hidden service. A room can have multiple
users registered, third party users can also join the conversation
and keep a track of the patient health state (doctors, hospital
staff, patient’s relatives, etc.). Through Synapse command line
interface we register new users to observe what is being logged
by the system. Fig.3 shows a user registration.

Fig. 3. Registering new user through Synapse CLI

Element.io is a chat app that connects to Matrix homesever
[18] and manages users and rooms. We used Element.io to
create a private chat room for authorized users as seen in Fig.4
and Fig. 5.

Fig. 4. Chat application: Creating a distributed room in Synapse homeserver

For the IoT device we used the ESP32 ESP-WROOM-32
chip. It runs an Arduino program to connect to the WLAN
and an MQTT publisher to publish messages to the running
mosquitto broker. Published data is a static simulated health
constants of a patient pacemaker which sends beats per minute
and arterial pressure 6.

The gateway stores .onion addresses matching with a hidden
service in the TOR network. To generate an .onion address we
need a running hidden service beforehand and store it in the
gateway.

We use Docker virtualization tool to create a hidden service,
it consists in a TOR client running in port 80 and a forwarded
connection to port 5000 where a Flask app is running and
storing in a Redis cache service the received data over HTTP
PUT. The Docker virtualization is running in another com-
puter, acting as a hospital computer where authorized users

Fig. 5. Chat application: Using homeserver as a logger

Fig. 6. Simulation results for the network.

have access. Finally, we can access the webapp through a
regular connection with TOR browser as shown in Fig. 6.

Note this is a regular webapp running behind a TOR relay
and therefore it can be easily modified to accept other HTTP
requests, WebSockets or store or present the information in
another way.

The IoT framework is publicly available in GitHub [19] to
serve as blueprint for similar applications as shown in Fig.7.

V. CONCLUSIONS & FUTURE WORK

IoT devices and applications are more and more common.
They generate high volumes of data unbeknownst to their users
and can deal with pretty sensitive data such as location or
health stats. These devices do not have needed capabilities to
perform tasks to integrate into our current security systems
hence they are not able to guarantee some privacy to its users
transmitting unsecured over internet. In this paper, we studied
the current security needs of IoT and IoT frameworks, some
solutions to this problems and we presented a proposal of
IoT framework with privacy concerns in its design following
strategies and guidelines presented by other authors in what



MISTIC - UOC. SECURITY PROTOCOLS AND APPLICATIONS. JUNE 1, 2021 5

Fig. 7. Software framework publicly available in GitHub

a privacy by design IoT framework should be. This frame-
work gives the blueprints to integrate several devices from
different sources and technologies and transmit information
anonymously over distributed networks such as TOR. An IoT
application was developed following this new framework with
ease to build and deploy. We use distributed architectures such
as hidden services and the Matrix ecosystem to develop an
example of IoT application that can send sensitive health data
over the net and access that data in a secure manner.

In the future, we will perform experiments that can de-
termine more precisely how secure the resulting apps are
following previous studies that provide metrics and other tools
to measure privacy.

Development frameworks are usually in constant growth and
improvement and we plan to keep working in this presented
tool in order to become a fully functional framework that can
make use of the potential of distributed technologies to develop
more secure IoT applications. A next iteration of the software
will be able to integrate the Matrix ecosystem to give users a
command and control (C&C) chat with third party apps that
can be connected or federated to the ecosystem. We will also
give users more tools to allow other apps, rooms and users
in a more flexible way. Furthermore, we will also implement
the Consent and data acquisition step in order to give the user
a more controlled experience with its connected IoT devices.
Finally, we will make the installation process more accessible
to developers by providing a command line interface in order
to interact in the first stages of the app development process
and provide a plugin-like structure to integrate or disengage
different modules allowing developers integrate their own.

ACKNOWLEDGMENT

The author would like to thank the SmartUIB institutional
project of the University of the Balearic Islands (UIB), Silvia

Puglisi (UPC) and Vı́ctor Garcı́a (UOC).

REFERENCES

[1] Hiller, J., Pennekamp, J., Dahlmanns, M., Henze, M., Panchenko, A.,
& Wehrle, K. (2019). Tailoring Onion Routing to the Internet of
Things: Security and Privacy in Untrusted Environments. 2019 IEEE
27th International Conference on Network Protocols (ICNP), Network
Protocols (ICNP), 2019 IEEE 27th International Conference On, 1–12.
https://doi.org/10.1109/ICNP.2019.8888033

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The Web Never Forgets: Persistent
Tracking Mechanisms in the Wild. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’14). Association for Computing Machinery, New York, NY, USA,
674–689. DOI:https://doi.org/10.1145/2660267.2660347

[3] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov and A.
V. Vasilakos, ”The Quest for Privacy in the Internet of Things,” in
IEEE Cloud Computing, vol. 3, no. 2, pp. 36-45, Mar.-Apr. 2016, doi:
10.1109/MCC.2016.28.

[4] A. Ukil, S. Bandyopadhyay and A. Pal, ”IoT-Privacy: To be private or
not to be private,” 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2014, pp. 123-124, doi: 10.1109/IN-
FCOMW.2014.6849186.

[5] Charith Perera, Ciaran McCormick, Arosha K. Bandara, Blaine A.
Price, and Bashar Nuseibeh. 2016. Privacy-by-Design Framework for
Assessing Internet of Things Applications and Platforms. In Proceedings
of the 6th International Conference on the Internet of Things (IoT’16).
Association for Computing Machinery, New York, NY, USA, 83–92.
DOI:https://doi.org/10.1145/2991561.2991566

[6] Hoang, N. P., & Pishva, D. (2015). A TOR-based anonymous commu-
nication approach to secure smart home appliances. 2015 17th Interna-
tional Conference on Advanced Communication Technology (ICACT),
517–525.

[7] E. Al Alkeem, C. Y. Yeun and M. J. Zemerly, ”Security and privacy
framework for ubiquitous healthcare IoT devices,” 2015 10th International
Conference for Internet Technology and Secured Transactions (ICITST),
2015, pp. 70-75, doi: 10.1109/ICITST.2015.7412059.

[8] R. C. Juacaba Neto, P. Mérindol and F. Theoleyre, ”A Multi-Domain
Framework to Enable Privacy for Aggregated IoT Streams,” 2020 IEEE
45th Conference on Local Computer Networks (LCN), 2020, pp. 401-404,
doi: 10.1109/LCN48667.2020.9314825.

[9] E. Onu, M. Mireku Kwakye and K. Barker, ”Contextual Pri-
vacy Policy Modeling in IoT,” 2020 IEEE Intl Conf on De-
pendable, Autonomic and Secure Computing, Intl Conf on Per-
vasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), 2020, pp. 94-102,
doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00030.

[10] P. Panagiotou, N. Sklavos and I. D. Zaharakis, ”Design and Implemen-
tation of a Privacy Framework for the Internet of Things (IoT),” 2018
21st Euromicro Conference on Digital System Design (DSD), 2018, pp.
586-591, doi: 10.1109/DSD.2018.00103.

[11] TOR Project - Onion Services
”How do onion services work?”
https://community.torproject.org/onion-services/overview/

[12] MQTT: The Standard for IoT Messaging
https://mqtt.org/

[13] Matrix - An open network for secure, decentralized communication
https://matrix.org/

[14] Eclipse Mosquitto
An open source MQTT broker
https://mosquitto.org/

[15] Flask
https://flask.palletsprojects.com/en/2.0.x/

[16] Redis.io
https://redis.io/

[17] paho-mqtt 1.5.1
https://pypi.org/project/paho-mqtt/

[18] Element.io
Secure collaboration and messaging
https://element.io/

[19] GitHub - pablorgr/private-iot
Send IoT data with fair privacy
https://github.com/pablorgr/private-iot

[20] Requests: HTTP for Humans
https://docs.python-requests.org/en/master/


