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Abstract

In this paper we will mainly discuss about dynamical systems and the notion of attractor, an

important concept which allow us to obtain a lot of information about the behaviour of dynam-

ical systems. The first chapters are mainly dedicated to give the definition of both concepts, as

well as some of their most important properties. We will see there are two types of dynamical

systems depending on the time set we consider.

Afterwards, we will show some examples of attractors focusing on fixed points and two

important examples of attractor in the literature: the Feigenabum attractor, which appears on

the study of the quadratic family, in both real and complex spaces, and the Lorenz attractor,

which appears on the study of a three-dimensional linear system. In both cases, we will do a

MATLAB simulation of the attractors in order to visually see how they behave and the various

shapes they are able to adopt.
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Chapter 1

Introduction

1.1 Context and justification of the Work

Until the end of the 19th century, all mathematical studies were mainly concerned with describ-

ing the quantitative properties of the problem in question, something that allowed us to achieve

great mathematical advances in many areas, but which did not allow major breakthroughs in

the n-Body Problem (the problem that tries to understand the performance of the planetary

system given n planets). In order to carry out a more exhaustive study of the 3-body problem

(Sun-Earth-Moon), given that it was impossible to obtain explicit formulas for its equations,

Poincaré used a totally innovative method based on the study of the system as a whole, giving

priority to the qualitative properties of the system instead of the quantitative ones. This new

method defined the basis of the Dynamical Systems Theory.

As one could expect, since the beginning the utility of the dynamical systems has been

deeply rooted to Celestial Mechanics and Analytical Mechanics, but little by little it has been

making its way into different areas of great importance. Within the area of mathematics, it is

naturally related to practically all its branches (analysis: theory of functions, functional analy-

sis, measure theory; numbers theory; geometry: differential geometry, algebraic geometry, etc.)

but, also it is related to areas more distant from mathematics, such as biology or economics.

In this context, which seems so favourable for the application of dynamic systems, there are

also some problems that are important to highlight. A basic problem is to calculate what can

be called “the skeleton of the Dynamical System”, i.e. the geometrical objects that guide the

dynamics of the system. They are invariant objects under the action of the system which allow

us to obtain a lot of information about the system by simply making a study in a neighborhood

close to them. In this dissertation, the geometric objects in which we will focus will be fixed

3



4 Introduction

points and periodic points which act like an attractor. The aim of this work is to show some of

the attractors that can be found in both linear and quadratic functions that allow us to deduce

from the information gathered some general properties of the system.

If we put together all the information obtained from these objects, we can find a path that

lead us to the general solutions to the problem. But, if the path is complicated, invariant

objects may appear that are not varieties, such as the so-called “strange attractors”.

Another problem we may encounter in the study of these dynamical systems is how to prove

the existence of certain solutions. Using topological and geometrical methods, to find a solution

can be quite exhausting and often all the work done does not mean significant progress. To

solve this problem, well-known solutions of simpler systems (reductions of the original system)

may be tackled by analytical methods which can provide us with really interesting properties

of the original system. Between these two approaches there is a very large land where rigorous

numerical methods are also indispensable.

The computation of these geometrical objects presents significant challenges even for the

most refined numerical methods, and it is one of the most important problems to be tackled

nowadays.

1.2 Aims of the Work

1. To explain the utility of the concept of attractor in the field of dynamical systems.

2. To state the different definitions of attractor that have appeared since its beginnings,

classifying them from the most restrictive to the least restrictive.

3. To state the formal definition of attractor that we have chosen to use in this disserta-

tion. Important concepts related to the concept of attractor are also given for a better

understanding.

4. To show some of the best-known examples of attractors, with special emphasis on fixed

and periodic points in both discrete and continuous dynamical systems.

5. To present the Feigenabum Attractor and the Lorenz Attractor, two important attractors

of special relevance at present.



1.3. Approach and method followed 5

1.3 Approach and method followed

At first, I started reading articles about dynamical systems that allowed me to get introduced to

the field. Once I had an idea about how dynamical systems worked and the role that attractors

played on them, I started to read more specific articles dealing with the concept of attractors,

from the easiest to the most elaborated ones. Among them, the main articles on which I have

based part of my work have been Milnor [7] for Chapters 3-5, Lyubich [6] for Chapter 5 and

Tucker [11] for Chapter 6.

Once I had read all the articles, I made a video call with Antonio Garijo (my tutor) to

discuss the work and present the idea I had in mind. Once we have decided about the best

structure of this dissertation, I started working on it. Firstly I wrote a first version of the work

that I sent to Antonio, and after he gave me his approval, we worked hand-in-hand to improve

each of the chapters until we obtained the final version of the dissertation.

In the performance of this work, I have mainly focused on the mathematical study of the

attractors, although I have also used my computer skills to simulate some of the attractors

described in theory for a better understanding of the problem.

1.4 Planning of the Work

This work has been carried out since the beginning of the academic year (end of September)

until now. From September to December I was reading all the readings and articles related

to attractors to get into the subject and make up my mind about the path I wanted to take

in this dissertation. Once I had a good idea of the subject, at the end of December (before

Christmas) I did a video call with Antonio Garijo and we discussed what was the better path

I had to take to do this project. In this video call everything was very clear, so shortly after, I

started to write all the pages of the work.

From January to June I have been in constant contact con Antonio, firstly (from January

to March) I did a first version of the dissertation (it was about 30 pages) where I had already

wrote about dynamical systems, the definition of attractor, fixed points and something about

the Feigenbaum attractor. Then, I sent it by email to Antonio so he could tell me about what

other things I could add to the dissertation to make it better. Antonio told me to add some

more examples in each chapter, as well as some simulations to show better what the behaviour
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of the attractor was, then I had also the idea to include the Lorenz attractor since it is an

important example of attractor in the literature. For May, I had written the second version of

the work. I sent him another version of the project with 50 pages which was nearer to the final

version of the work, but still needed some complementary explanations to some parts of the

theory that were still very confusing.

From May to June I have been exchanging a few versions of the work with Antonio, mainly

with improvements in the theory that allowed the reader to have an easier reading as well as

more elaborate explanations which provides a better understanding of the concepts.

1.5 Brief summary of products obtained

1. The definition of dynamical systems.

2. The definition of attractor.

3. Examples of attracting points in both discrete and continuous dynamical systems.

4. A detailed study of the Feigenbaum attractor, in the real and complex space. Some

simulations of the attractor are also given.

5. A detailed proof that demonstrate the Lorenz attractor indeed exists. Some simulations

of the attractor are also given together with some of its most important properties.

1.6 Brief description of the others chapters of the mem-

ory

This dissertation is divided into six chapters, the first one (the current one as an introduction)

and five more which are organized in the following way.

The second chapter consists of four sections. The first one gives a brief historical introduc-

tion to the concept of dynamical systems and the second section gives the formal definition of a

dynamical system and a detailed description of how it works. After reading these two chapters

it should be clear what a dynamical system is and the role of attractors in them. In the third

section we present the concepts of “Lyapunov stable” and “asymptotically stable” that we will

use in future chapters (these concepts have been closely related to the concept of attractor since

its beginnings) and finally, in the fourth one, we present the Cantor set, a set that appears more
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than once during the work and that is necessary to know in order to understand the structure

of some attractors.

The third chapter introduces the concept of an attractor. It is divided in two sections, in

the first one our aim is to present different definitions of attractor since their emergence, while

in the second one we introduce the formal definition we will use throughtout the work. At the

end of this chapter it should be clear what is an attractor and what are their most important

properties.

In the fourth chapter we present some the easiest examples of attractor we can find in the

literature, the fixed points. This chapter is divided in two sections, in the first one we define

what are fixed and periodic points in discrete continuous systems, together with six examples

of attractors. In the second section, we define what is a critical point and the different types

of critical points we can find (some will be attractor, some will not) as well as we show seven

examples for a better understanding of the subject.

In chapters five and six, we present two important attractors in the literature. In chapter

five, the Feigenbaum attractor (which is an attractor given in a discrete dynamical system),

while in chapter six we have the Lorenz attractor (an attractor given in a continuous dynamical

system). In the first one our aim is to study the Feigenbaum attractor in both real and complex

spaces while in the last chapter our aim is to show some simulations about the Lorenz attractor,

to explain some of its more important properties and finally, to proof it indeed exists (even

though this attractor was found by Lorenz in the beginning of the 20th century, nobody was

able to demonstrate that it indeed exists until a few years ago).
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Chapter 2

Introduction to Dynamical Systems

2.1 History

For a better understanding of attractors, which is their role and how important are they, firstly,

we need to take a look at the origins of the dynamical systems (see [8] for more historical in-

formation about them).

Unexpectedly, its origins are based in a contest that was arranged in 1889 in commemo-

ration to the 60th anniversary of Oscar II, King of Sweden. Mathematicians from all Europe

were invited to write an original paper addressing one of four questions put by Weierstrass,

who was in that moment a central figure in mathematics. One of these questions concerned

celestial mechanics, Weierstrass’ purpose was to find a person who was able to demonstrate the

stability of the solar system proving the convergence of the series derived from the solutions of

the equations that governed celestial mechanics, something that he was not able to do, even

though he firmly believed in it.

Soon after, Poincaré presented to this contest a wide and complex paper proving the long-

awaited stability of the solar system using a new (and unique) geometrical perspective that

allowed him to visualize a global picture of the dynamics, instead of using series as Weierstrass

expected. The judges were so impressed by his work that Poincaré was claimed the winner of

the contest. Unfortunately, shortly after it was proven that he was wrong.

Poincaré needed two years to revise his proof and submit a new paper, a long and exhausting

task that led to the emergency of the theory of dynamical systems. In this revised paper, named

“Sur le problem des trois corps et les equations de la dynamique”, Poincaré defined some imagi-

nary portraits called “phase space” that served as the backdrop for the geometrical shapes and

9



10 Introduction to Dynamical Systems

flows that represents the totality of the solutions of any differential equation. These geometri-

cal portraits revealed instability and a perplexing dynamical domain of wondrous complexity

which shattered any theory of stability of the solar system. Unknowingly, this investigations

knocked softly what we know nowadays as dynamical chaos.

Poincaré’s explorations of this curious parallelism between chaos and order, in which a

clock’s pendulum or a solar system governed by the laws of Newtonian mechanics can display

such complicated dynamics, provoked a host of new questions (most of them remain open nowa-

days).

Over the next 70 years, only a handful of mathematicians continued along the course that

Poincaré had set in the geometrical study of dynamical systems. Among them was George

Bikhoff, who proved in 1913 Poincaré’s last geometric theorem (a special case of the Three-

Body Problem) and Vladimir Arnol’d, who finally managed to solve Poincaré’s problem in 1963

with astonishing results. It was proven that under certain conditions, the series used to describe

motions in the three-body problem did converge, but under another set of conditions they did

not. Thus, the conclusion obtained was that depending on the initial conditions, motion in a

system of three or more bodies is sometimes regular and sometimes chaotic, defining what we

call nowadays chaotic dynamics.

Apart from this, no great discoveries appeared on this field until the concept of attractor

was discovered. In this complex part of the dynamics, where “phace spaces” show the rates of

change of each of the coordinates through a direction of travel for each particle at any instant,

we can see “trajectories” and “orbits” which do not follow a defined structure but wander

around some well-defined movement (see figure 2.1). When this happens, the system is said to

be attracted to some ”kind” of motion, i.e. an attractor.

Figure 2.1: Phase space of the Lorentz attractor.
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2.2 What is a dynamical system?

Roughly speaking, a dynamical system is a system in which a function describes the time

dependence of a point in a geometrical space. Our aim in this section is to give a detailed

explanation of what they are and how they work.

Definition 2.1 It is called a dynamical system to the set (S, T, φt) where S is the set of states

(i.e. set of variables), T is the time set and {φt} is the set of maps φt : S → S that satisfy:

1. φ0 = id.

2. φt1+t2 = φt2 ◦ φt1 = φt1 ◦ φt2 ∀t1, t2 ∈ T.

In the case we set T = N or Z, it is called a discrete dynamical system. Otherwise (if we set

T = R for example) it is called a continuous dynamical system.

A dynamical system can be expressed as an iterative method, such as the one-dimensional

Newton’s method xi+1 = xi − f(xi)
f ′(xi)

, i ∈ N. But, also, dynamical systems can be defined using

a continuous map φt as in the following examples.

Example 2.1 We consider the time set T = R, the set of states S = R and the map φt(x) =

eatx for a ∈ R. We prove it is indeed a dynamical system, to do so, we check the two conditions

that must satisfy φt.

1. φ0(x) = e0x = x.

2. φt1+t2 = ea(t1+t2)x = eat1at2x = φt2 ◦ φt1 X

Example 2.2 We consider the time set T = Z, the set of states S = R and the map φt(x) =

x2t. As before, we prove it is a dynamical system as follows,

1. φ0(x) = x20 = x1 = x.

2. φt1+t2 = x2t1+t2 = x2t12t2 = (x2t1)2t2 = φt2 ◦ φt1 X

From Definition 2.1 we deduce the variables of a dynamical system are constantly being

modified to produce changes over time. The way these changes occur defines the behaviour of

the system.
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In this dissertation, we will focus in dynamical systems where this behaviour involves some

kind of attraction to a particular point or set.

Dynamic systems can also be used to analyse how small changes that occur only in one part

of the system can affect the behaviour of the whole system. In particular, we will see how small

changes in the initial conditions of a system can derive in a completely different behaviour of

the system.

2.2.1 Discrete Dynamical Systems

A discrete dynamical system is given by an equation of the form

xk+1 = f(xk), k = 0, 1, 2, ... (2.1)

where f represents a map f : M → M where M can be considered as M = Cn, M = Rn,

a Riemann Surface or even a topological space (in particular, for our examples we will mainly

consider the first two cases). This set receives the name of the “phase space”. Also, we will

always assume f is a smooth map, it means, a function with continuous derivatives of all nec-

essary orders (generally, f ∈ C1).

The variables xk that describe the system are called “state variables”. They are grouped

into a vector, known as the “state vector”, which stores the complete information about the

state of the system. Bearing this in mind, the phase space can be considered as the set of all

possible state vectors of the system.

The equation of a dynamical system can be interpreted as follows. If the system adopts

at an instant k a state described by a certain element xk, then, at instant k + 1 the state of

the system will be xk+1. Our smooth map f therefore represents the law of evolution of the

dynamical system which transforms each state into the next state the system adopts.

If the system has as initial state x0, then, the following states the system will go through

over time corresponds to the sequence {(x0, x1, ..., xn), n ∈ N} which is called the solution of

the system given an initial condition x0. Therefore, the solution of a dynamical system can be

obtained recursively as follows:

{x0, x1 = f(x0), x2 = f(x1) = f 2(x0), ...}
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In general, each term of the sequence is given by xk = fk(x0) where fk represents the com-

position of f with itself k times. Without considering any initial condition, we can define the

function fk(x) which represents the general solution to the system, also called, the flow of the

discrete dynamical system. This function allow us to know the state of the dynamical system

at any instant k given an initial condition x0 just evaluating the function in x0.

Once we know how these dynamical systems work, we can focus on studying their behavior.

The easiest way to do it is to understand the nature of all the orbits of the map. In many

cases, orbits can be quite complicated sets of points, even for linear mappings, however, there

are some orbits which are especially simple and which play a central role on the study of the

systems.

Definition 2.2 The set of points {x, f(x), f 2(x), ...} is called the forward orbit of x and is

denoted by O+(x). If f is a homeomorphism (a function f one-to-one, onto and continuous

with f−1(x) also continuous), we may define the full orbit of x denoted as O(x) as the set

of points {fn(x), n ∈ Z} and the backward orbit of x denoted by O−(x) as the set of points

{x, f−1(x), f−2(x), ...}.

To see how an orbit works, it is easy to carry out the following experiment. Firstly, we put

a number on the calculator (for example, 0.20) and then, we press the 10x-key repeatedly. We

will obtain the forward orbit of x = 0.20 given by

{0.20, 100.20, 10100.20 , ...}.

Actually, if we keep repeating it for several times, sometime we will obtain an error message

from the calculator. This happens because the orbit tends to infinity (and then, the sequence

diverge), but, if we take for example f(x) = sin x or f(x) = cos x, we will see that in this

case the error does not appear (this is because those sequences are convergent). This is just an

example of different behaviours that a dynamical system can adopt.

2.2.2 Continuous Dynamical Systems

In this dissertation, we will only work with continuous dynamical systems which are given by

a differential equation of the form

ẋ = f(t, x) (2.2)
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where the notation ẋ represents the derivative of x by t defined as ẋ = dx
dt

. As before, x

defines a vector in Rn or Cn depending the case we consider and t ∈ R, also f represents a

smooth map f : M ⊂ Kn+1 → M ⊂ Kn where K = R or C depending on the case we study.

This set is called the “phase space” of the dynamical system and it describes the behaviour of

the state variables x1, ..., xn. In particular, a point (x1(t0), ..., xn(t0)) at a particular moment t0

is called a phase-point, and if we increase the value of t to obtain a solution x(t) over a greater

period of time (let t ∈ I) the point is supposed to move through the phase-space drawing a

trajectory in the plane.

In continuous dynamical systems, the vector function x(t0) defined as x(t0) = (x1(t0), ..., xn(t0))

represents a particular solution of Equation (2.2) at an instant t0. In general, we can define

the function x(t) as the general solution of the system, also called, the flow of the continuous

dynamical system, if it is defined on an interval I ⊂ R of t, the map x : I → Rn or Cn is

smooth (generally, f ∈ C1) and of course satisfies Equation (2.2). This function allow us to

know the state of a dynamical system at any instant t0 just evaluating the function in this point.

Throughout the work, we will only consider differential equations in which the independent

variable t does not occur explicitly, it means, of the form ẋ = f(x) such that x ∈ Rn or Cn.

This kind of equations are called “autonomous” equations. In the following lines, we define

what is an orbit for this type of differential equations.

Definition 2.3 Reformulating the autonomous equation in components as ẋi = fi(x). Let

Oi(x) for i = 1, ..., n− 1 be the solutions of the system

dx2

dx1

=
f2(x)

f1(x)
...

...
dxn
dx1

=
fn(x)

f1(x)

given f1(x) 6= 0. Then, the solutions Oi(x) are called orbits.

Orbits from the phase space will never intersect (this is a result from the existence and

uniqueness theorem given in [13], page 3). In the case where f1(x) = 0 but fi(x) 6= 0, for i 6= 1,

we can interchange the roles of these functions to be able to apply the previous definition.
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2.3 Main concepts about Stability

Another important concept we will study is the stability of a dynamical system, a concept

closely related to attractors since their emergence. The most important definitions of stability

that we will use throughout the work are defined below.

Definition 2.4 Let f : M →M be a fixed smooth map where M can be considered as M = Cn,

M = Rn or a smooth compact manifold. We say a closed subset A ∈ M with f(A) = A is

Lyapunov stable if it has arbitrarily small neighborhoods U such that f(U) ∈ U .

Definition 2.5 Let f : M →M be a fixed smooth map where M can be considered as M = Cn,

M = Rn or a smooth compact manifold. Let a closed subset A ∈ M with f(A) = A. If A is

not stable in the sense of Lyapunov, it is called unstable.

Definition 2.6 Let f : M →M be a fixed smooth map where M can be considered as M = Cn,

M = Rn or a smooth compact manifold. We say it is asymptotically stable if it is Lyapunov

stable and the realm of attraction is an open set.

The concept of ”realm of attraction” will be defined in the next chapter. Until then, it is

worth noting that not all attractors are Liapunov stable, but, the most interesting examples of

attractors usually are asymptotically stable.

2.4 Cantor Set

Some of the most interesting attractors found so far are Cantor sets, among them the Feigen-

baum attractor, which will be studied in Chapter 5. Hence, it is worth to mention a section

about the Cantor Set and its most important properties. To do so, firstly we give the formal

definition of a Cantor set (together with some definitions needed for a well understanding of

the concept), and secondly, an example is explained.

Definition 2.7 A set is totally disconnected if all the connected components of the set are

points.

Definition 2.8 A set is perfect if every point in it is an accumulation point or limit point of

other points in the set.

Definition 2.9 A set A is a Cantor Set if it is closed, totally disconnected, and perfect subset

of I.
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The Cantor Set, discovered by George Cantor, is a very important fractal set defined in the

real interval I = [0, 1]. A very curious property about it is that it has zero measure but it is

neither empty nor numerable. Let me build one as an example.

We start taking the interval I = [0, 1], we subtract the open interval (1
5
, 2

5
) from I, giving

rise to two new intervals I1 = [0, 1
5
] ∪ I2 = [2

5
, 3

5
]. Repeating the same process we subtract the

interval (3
5
, 4

5
), giving rise to the last interval [4

5
, 1]. Repeating the same steps subtracting the

interior intervals of each resultant interval, we obtain numerous disjoint intervals inside I.

Since it can seem a bit complex to figure out, the cantor set of the example is given in figure

2.2.

Figure 2.2: Cantor set.

For more information of the Cantor Set, you can take a look at [12].



Chapter 3

Definition of Attractor

3.1 First Definitions of Attractor

From now on, our main focus will be on the study of attractors. The concept of attractor has

raised many different definitions since it appeared in the middle of the 20th century. However,

it is important to remark that there is still no agreement on the most accurate definition of an

attractor.

Coddingtong and Levinson ([2],1955), and later on, Auslander, Bhatia, and Seibert ([1],1964),

were the first ones to use the concept of attractor as a compact invariant set M where all the

orbits that stayed in a neighborhood of M approached M . The first ones only applied it to

the case of a single invariant point while the second ones applied it to a set of invariant points.

Even though this definition can seem clear to us, many experts at that time thought orbits that

wander far away before converging back to M cannot be considered as attractors, and these

cases were explicitly included in their definition. Hence, newer definitions appeared excluding

these unstable cases. The most popular one was the“Axiom A attractor”, defined by Smale

([10],1967).

This new and complex definition of attractors defined what we call nowadays Smale’s at-

tractors. Since the definition of Smale can seem complicated and unfamiliar to us, let us use

the definition that Williams gave one year later to define the same objects in a simpler way.

Definition 3.1 A subset A of Ω(f) is an attractor of f , provided it is indecomposable and has

a neighborhood U such that f(U) ∈ U and
⋂
i>0 f

i(U) = A.

Remark. In this definition, Ω(f) denotes the non-wandering set of f which consists on all

the non-wandering points x ∈M such that for every open set U containing x and N > 0, there

17
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is some n > N such that µ(fn(U) ∪ U) > 0 for some measure µ.

Although it is considered one of the most important definitions in the history of attractors,

it did not stop the emergence of newer definitions of attractor.

Actually, the moment when Ruelle and Takens ([9],1971) suggested the existence of some

kind of “strange attractors” causing the turbulent behaviour in fluids, the concept of attractor

drew attention among the scientific community. The new definition they considered was:

Definition 3.2 A closed subset A of the non-wandering set Ω is an attractor if it has a neigh-

borhood U such that
⋂
t>0DX,t(U) = A, where DX,t denoted the flow on a smooth manifold

generated by a vector field X.

Nevertheless, it should be pointed out that Ruelle and Takens were not the first ones to

consider this idea, since Lorenz made an experiment supporting the same idea few years before,

even though he never gave an explicit definition of these kind of attractors.

In the following years, all of these definitions seemed very restrictive (most of the examples

of attractors considered nowadays would not be an attractor following the previous definitions),

therefore, it appeared newer definitions less restrictive. For example, Guckenheimer ([5],1976)

defined an attractor as a fundamental system of neighborhoods, each of which is forward in-

variant under the flow generated by a vector field X. But this definition can seem too broad

considering not every Liapunov stable set should be called an attractor.

Hence, between all the definitions existing in the literature, from now on we will consider a

definition very near to the one given by Collet and Eckemann ([3],1980), which formally defines

an attractor as the set of points to which most points evolve under iterations of a given map f .

3.2 Our definition of attractor

To start this section, let us give some indispensable definitions needed to understand the concept

of attractor. We assume M = Rn, M = Cn or a smooth compact manifold.

Definition 3.3 We define the omega limit set ω(x) of a point x ∈ M to the collection of all

accumulation points of the sequence {x, f(x), f 2(x), ...} of successive images of x ∈ M given a

smooth map f .
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If we choose some metric for M , then ω(x) can also be described as the smallest closed set S

such that the distance from fn(x) to the nearest point of S tends to zero as n→∞. We should

point out that ω(x) is always closed and nonvacuous, and also satisfies that f(ω(x)) = ω(x).

Moreover, ω(x) is always contained in the non-wandering set Ω(f) defined in the previous page.

Definition 3.4 The realm of attraction ρ(A) of a closed subset A ⊂ M consists of all points

x ∈M for which ω(x) ∈ A.

Once these concepts are clear, we give the formal definition of an attractor.

Definition 3.5 A closed subset A ⊂M will be called an attractor if it satisfies two conditions:

• the realm of attraction ρ(A) must have strictly positive measure (in other words, the

probability of a point x ∈M falling into the realm of attraction must always be positive).

• there is no strictly smaller closed set A′ ⊂ A so that ρ(A′) coincides with ρ(A) up to a

set of measure zero.

It should be pointed out that when we talk about “measure”, we mean some measure µ on

M equivalent to the Lebesgue measure. This can be constructed using a partition of unity, or

using the volume form associated with a Riemannian metric.

Property 3.1 Let A be an attractor, then ρ(A) is necessarily a Borel set, and hence is mea-

surable.

As a consequence of this property is that any finite union of attractors is an attractor and

the closure of an arbitrary union of attractors is also an attractor.

In conclusion, we can summarise the concept of attractor as a closed and non-vacuous subset

A ⊂M contained in the non-wandering set Ω(f) satisfying f(A) = A with f a continuous map

from M to itself.

For those who would like to expand their knowledge on this subject, it should be noted that

the realm of attractor may be called by different names in the literature. It is usually called the

“basin of attraction” if it is an open set and the “stable manifold” if it is a lower dimensional

smooth manifold.

We define two important attractors in the literature.
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Definition 3.6 A closed set A ⊂M is a minimal attractor if and only if its realm of attraction

ρ(A) has positive measure (considering a measure µ on M equivalent to the Lebesgue measure as

before) and there is no strictly smaller closed set A′ ⊂ A for which ρ(A′) has positive measure.

Some important properties about this kind of attractors are given below.

Property 3.2 Let A be a minimal attractor, then ω(x) must be precisely equal to A for almost

every x in the realm of attraction.

Property 3.3 The number of minimal attractors that can have a continuous function f is at

most countably infinite.

Given that minimal attractors exist, the question of whether there are also maximal attrac-

tors should come to mind. As expected, there exist some kind of maximal attractors called

“the likely limit set”.

Definition 3.7 The likely limit set Λ = Λ(f) is the smallest closed subset of M with the

property that ω(x) ∈ Λ for every point x ∈M outside of a set of measure zero.

Lemma 3.1 The likely limit set Λ is well defined and is an attractor of f . In fact, Λ is the

unique maximal attractor, which contains all others.

The definition of attractor given in this section is the definition to the one we are referring

from now on. Te previous ones are an attempt to show to the reader the many possible ways

in which an attractor could be defined, as a consequence of the large number of attractors

that have been discovered, some theoretically and some others experimentally. The easiest

examples can be found in fixed points and periodic orbits, but also there are more difficult ones

including the fascinating and intriguing strange attractors, about the ones we are including

some information in the last chapter. Throughout this paper, we are dedicated to the study of

some of these examples attending to our definition of attractor.



Chapter 4

Fixed points

In this chapter, we are going to study the different properties we can find about fixed and

critical points in the discrete and continuous cases respectively. To do so, firstly we study

the discrete case giving some basic definitions about fixed points together with some examples

where we apply those definitions. Secondly, we study the continuous case also giving some basic

definitions related to critical points and their most important properties, together with some

examples for a better understanding of the problem.

4.1 Discrete Dynamical systems

We start this section giving the definitions of fixed and periodic points in discrete dynamical

systems, together with some basic properties we are going to use in the study of the following

examples.

Definition 4.1 A fixed point x is a point that satisfy f(x) = x.

Definition 4.2 A periodic point x of period n is a point x that satisfies fn(x) = x. In partic-

ular, for n = 1, we have a fixed point. The set of iterations of a periodic point form a periodic

orbit.

Maps with hyperbolic periodic points are the ones that occur typically in many dynamical

systems, and therefore, it is important to analyze what is its behaviour.

Definition 4.3 Let f ∈ C1 and p be a periodic point of prime period n. We denote hyperbolic

points to the points p which satisfy |(fn)′(p)| 6= 1 and non-hyperbolic points to the points p

which satisfy |(fn)′(p)| = 1.

Only hyperbolic points can be attractors according to the following definition:

21
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Definition 4.4 Let p be a hyperbolic periodic point of period n with |(fn)′(p)| < 1. The point

p is called an attracting periodic point.

Definition 4.5 Let p be a hyperbolic periodic point of period n with |(fn)′(p)| > 1. The point

p is called a repelling periodic point.

But these are not the only attractors we can find. If we study the local behaviour of a

dynamical system in the neighbourhood of a non-hyperbolic equilibrium point we can find an-

other type of attractors called “weekly attracting points”, which attracts points near them with

a lower force.

However, it is important to keep in mind that non-hyperbolic points are unpredictable and

their behaviour changes depending on the map we study. It can sometimes act like a weekly

attracting point (and hence, it would be an attractor) but it can also act like a weekly repelling

point or even it is possible that it is weekly repelling from one side and weekly attracting from

the other.

Most maps have only hyperbolic periodic points, however, non-hyperbolic periodic points

often occur in families of maps. When this happens, the periodic point structure often undergoes

a bifurcation (defined in Chapter 5) and the subsequent unleashing of chaos (we will see two

examples in the last chapters of the dissertation).

Example 4.1 Let f : R→ R defined as f(x) = x2.

The fixed points of the function f(x) are the same as the roots of the function g(x) = f(x)−x
which is g(x) = x2 − x. Since the solutions of x2 − x = 0 are x = 0 and x = 1, we have that

both points are fixed points.

If we do the derivative f ′(x) = 2x, we obtain f ′(0) = 0 and f ′(1) = 2 respectively. Therefore,

we have both are hyperbolic fixed points and since the value of f ′(0) is lower than 1 we have

x = 0 is an attracting fixed point.

Example 4.2 Let f : R→ R defined as f(x) = sin x.

The fixed points of the function f(x) are the same as the roots of the function g(x) =

sinx− x. Since the root of sinx− x = 0 is x = 0, we have it is a fixed point.

If we do the derivative f ′(x) = cos x, we obtain f ′(0) = 1. Henceforth, it is a non-hyperbolic

fixed point. To study the behaviour of the function near this point we do a graphical analysis
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in picture 4.1.

Figure 4.1: Graphic Analysis of f(x) = sinx in a neighbourhood of x = 0.

As we can see in the picture, taking random values from both sides triggers a series of

iterations that approach slowly x = 0. Henceforth, we have a weekly attracting point.

Example 4.3 Let f : M → M , where M is the circle of real numbers modulo 2π defined as

f(α) = α + 1− cos(α) (mod 2π).

To find the fixed points of f(α) (mod 2π) we look for the roots of the function g(α) =

1 − cos(α) (mod 2π). Since the only root is α = 0, we conclude α = 0 is the only fixed point

of our function. All that remains for us to do is to demonstrate that it is indeed attractive.

Since f(α) ∈ C∞, we take f ′(α) = 1 + sen(α) (mod 2π). Evaluating α = 0 we obtain

f ′(0) = 1. It is a non-hyperbolic fixed point, so it does not guarantee attraction. We need to

do a graphical analysis to see the behaviour of the function at this point.

On the one hand, if we take as initial value x = −4 and we iterate the function several

times, we see in figure 4.2 that the following iterations are getting closer to α = 0, therefore, it

is weakly attracting from the left. On the other hand, if we take as initial value α = 2, we see

in figure 4.2 that the following iterations are moving away from α = 0, therefore, it is weakly

repelling from the right.

About the stability of this map, we know it is not Liapunov stable since we cannot take

a neighborhood sufficiently small of α = 0 mapped into itself by f . Indeed, we can find a
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Figure 4.2: Graphic Analysis of f(α) in a neighbourhood of x = 0.

neighborhood U with such properties for points in the left side of α = 0, but points in the right

side will escape from U as they are iterated by f . In this case, we call α = 0 an attractor which

is one-sided stable.

Let me do a modification of the previous example.

Example 4.4 Let f : M → M , where M is the circle of real numbers modulo 2π defined as

f(α) = α + sin2(α) (mod 2π).

To find the fixed points of f(α) (mod 2π) we look for the roots of the function g(α) =

sin2(α) (mod 2π) and we find two fixed points in α = 0 and α = π. Since f(α) ∈ C∞, we

take f ′(α) = 1 + 2 sen(α) cos(α) (mod 2π). Evaluating α = 0 and α = π we obtain f ′(0) = 1

and f ′(π) = 1 respectively. Hence, both points are non-hyperbolic fixed points and it does not

guarantee attraction. We need to do a graphical analysis to see the behaviour of the function

at this point.

In figure 4.3 we observe that there are arbitrary points closed to either one whose successive

images converge to the other. For example, points 0 < α < π that are closer to α = 0 than

α = π converge to α = π, and points π < α < 2π that are closer to α = π converge to

α = 0 (mod 2π). In this case, we say we have two attractors in α = 0 and α = π which are not

stable.

Example 4.5 Let f : R ∪∞ → R ∪∞ defined as f(x) = x+ 1.
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Figure 4.3: Graphic Analysis of f(α) in a neighbourhood of α = 0 and α = π.

It does not have any fixed points. Does it have any attractors? If we take as initial value

a random value x0 = a ∈ R, limn→∞ f
n(x) = ∞. So, x = ∞ is the unique attractor of the

function.

All of the attractors of these examples are in fact minimal attractors for obvious reasons.

Example 4.6 Let f : R→ R defined as f(x) = 3
√

3(x−x3)
2

An important property of this function is that if x ∈ I1 = [−1, 0], then we have that

f(x) = 3
√

3
2

(x − x3) ∈ I1, and more generally, fn(x) ∈ I1 for all x ∈ I1. The same property is

satisfied for I2 = [0, 1], therefore, we have that each of these intervals maps precisely into it-

self. If we take as initial value x0 ∈ Ii for i = 1, 2, we can see visually this property in figure 4.4.

Each of these intervals form two unstable minimal attractors, but the union of both inter-

vals I = [−1, 1] is asymptotically stable. And even more, the likely limit set of f(x) consists of

Λ = [−1, 0] ∪ [0, 1].

Now, if we take as initial value x0 /∈ I, we can see its image by f increase enormously as we

take values outside the interval (this phenomenon is represented in figure 4.5). Hence, we have

{∞} is an stable attractor.
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Figure 4.4: Graphic Analysis of f(x) in I1 = [−1, 0] and I2 = [0, 1]

Figure 4.5: Graphic Analysis of f(x) in {∞}.

4.2 Continuous Dynamical Systems

In this section, we will focus on the study of equilibrium and periodic solutions. To do so, we

start considering an important property about autonomous equations which is essential in the

study of periodic solutions.

Lemma 4.1 Suppose that we have a solution φ(t) of equation ẋ = f(x) in the domain D ⊂ Rn,

then φ(t− t0) with t0 a constant is also a solution.

Proof. Let γ = t − t0 be a change of variable. If we use it in the equation ẋ = f(x), the

equation does not change since the variable t does not appear explicitly. Hence, if φ(t) is a

solution of the equation, φ(γ) must be also a solution of the transformed equation. �
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Remark: Although the two solutions defined in the previous lemma correspond to different

solutions of the equation, they correspond with the same orbital curves in the phase space.

Definition 4.6 Let a point a ∈ Rn be a zero of the vector function f(x) = (f1(x), ..., fn(x)).

We will call this point a critical point (sometimes it is also called equilibrium point).

Example 4.7 The harmonic oscillator: ẍ+ x = 0.

Doing the change of variable {x = x1, ẋ = x2}, we obtain the autonomous equation

ẋ1 = x2

ẋ2 = −x1.

If we define the following equation

dx2

dx1

= −x1

x2

,

then, the solutions of the equation provide us with the orbits of the phase-space

x2
1 + x2

2 = c (c ∈ R).

This is a family of concentric circles in the phase-space, where the origin (0, 0) is a critical

point. See figure 4.6.

Figure 4.6: Graphic of the phase space of the harmonic oscillator ẍ+ x = 0.
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Example 4.8 Modified equation of the harmonic oscillator: ẍ− x = 0.

Doing the previous change of variable, we obtain the autonomous equation

ẋ1 = x2

ẋ2 = x1.

If we define the following equation

dx2

dx1

=
x1

x2

,

then, the solutions of the equation provide us with the orbits of the phase-space

x2
1 − x2

2 = c (c ∈ R).

Even though the equation is very similar to the previous one, in this case we obtain a family

of hyperboles in the phase-space, where the origin (0, 0) is again a critical point. See figure 4.7.

Figure 4.7: Graphic of the phase space of the modified harmonic oscillator ẍ− x = 0.

Definition 4.7 Let a solution x(t) satisfy the autonomous equation for all time, i.e., x(t) = a

with a ∈ Rn. It is usually called an equilibrium solution (or stationary solution).

Remark. Critical points always corresponds with an equilibrium solution. Also, equilibrium

solutions can never be reached in finite time, otherwise, the solutions would intersect (this is a

result from the existence and uniqueness theorem given in [13], page 3).
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Example 4.9 Let ẋ = −x, x(0) = x0 for t > 0, x0 6= 0.

The solution of this initial value problem is x(t) = x0e
−t. We study the behaviour of the

solution in the infinity, to do so, we do the limit of the function as follows,

lim
t→+∞

x(t) = lim
t→+∞

x0e
−t = 0.

We can see x = 0 is an equilibrium solution for the system. Moreover, x = 0 is a critical

point. See figure 4.8.

Figure 4.8: Graphic of the solutions for different initial values x0 6= 0 of the function x(t) =
x0e
−t.

Example 4.10 Let ẋ = −x2, x(0) = x0, for t ≥ 0, x0 6= 0.

The solution of this initial value problem is x(t) =
(

1
x0

+ t
)−1

. If we study the solution for

t→∞, the solutions tend to the limit toward the equilibrium solution x = 0 as follows,

lim
t→+∞

x(t) = lim
t→+∞

=
( 1

x0

+ t
)−1

= 0.

Moreover, we can say the orbits in one-dimensional phase space tend towards the critical

point x = 0. This phenomenon is called attraction. We can see it in figure 4.9.

Definition 4.8 A critical point x = a of the equation ẋ = f(x) in Rn is called a positive

attractor if there exists a neighbourhood Ua ⊂ Rn of x = a such that x(t0) ∈ Ua implies

limt→∞x(t) = a. If a critical point x = a has this property for t → −∞, then x = a is a

negative attractor.
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Figure 4.9: Graphic of the solutions for different initial values x0 6= 0 of the function x(t) =(
1
x0

+ t
)−1

.

In analysing critical points and equilibrium solutions, we need to study the local behaviour

of dynamical systems in the neighbourhood of each hyperbolic equilibrium point. To do so, the

following theorem shows the topological structure of a non-lineal differential equation is the

same than the linear system with A = Df(x0).

Theorem 4.1 Hartman-Grobman Theorem. Let E be an open set of Rn that contains

the origin, let f ∈ C1(E) and let φt the flow of the non-linear system. Suppose f(0) = 0 and

the Jacobian matrix A = Df(0) has eigenvalues with real part different from 0. Then, there

exists an homemorphism H : U → V such that U and V contains the origin and for all x0 ∈ U ,

there exists an open interval I0 ⊂ R that contains the zero point and it is satisfied

H ◦ φt(x0) = eAtH(x0) ∀x0 ∈ U, t ∈ I0.

It means, H projects the trajectories from the non-linear system over the trajectories from

the linear system in a neighborhood of the origin.

Hence, we can conclude from this theorem that every time we want to analyse critical points

and equilibrium solutions we shall start always by linearising the equation in a neighbourhood

of the critical point. That means, if we assume that f(x) has a Taylor series expansion of terms

of degree one plus other terms of degree higher than one, then, we only take the term of degree

1 in the neighborhood of the critical point x = a. So, in the case of an autonomous equation
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ẋ = f(x), we would study the linear equation ẋ = ∂f
∂x

(a)(x − a), where ∂f
∂x

(a) can be a matrix

Anxn with constant coefficients. Therefore, from now on, the linearised system which we will

study will be denoted as ẋ = Ax, where we consider the case in which |A| 6= 0 (we assume the

critical point is non-degenerate).

Also, it is important to point out that a consequence of this theorem is that all the critical

points for which the jacobian matrix has eigenvalues of negative real part will be attractors. It

does not mean that there cannot be attractors if this situations does not happen (it is not a

necessary condition) but in the case it is happening, we will know we have an attractor at hand.

There are also some theory that proof the existence of periodic orbits which are attractors but

since this theory is out of the context of this chapter, we do not do a detailed study of this.

Example 4.11 The Volterra-Lotka equations.

Consider the system

ẋ = ax− bxy

ẏ = bxy − cy

with x, y ≥ 0 and a,b,c positive constants. This system was formulated by Volterra and

Lotka to describe the interaction of two species, where x denotes the population density of the

prey, y the population density of the predator.

In this model the survival of the predators depends completely on the presence of prey, this

means in a formal way that considering x(0) = 0 then, limt→∞ y(t) = 0 where y(t) = y(0) · e−ct

(it means, the predator would disappear).

The equilibrium solutions correspond with the critical points (0, 0) and ( c
b
, a
b
). To study

both cases, firstly, we put our system in the matrix form(
ẋ

ẏ

)
=

(
ax− bxy
bxy − cy

)
=

(
x

y

)
where f(x, y) = (ax − bxy, bxy − cy). On the one side, doing the linearised system in a

neighborhood of (0, 0) we obtain ẋ = ax, ẏ = −cy. Therefore, the solutions of the linearised

form are x(t) = x(0)eat and y(t) = y(0)e−ct. On the other side, doing the linearised system in

a neighborhood of ( c
b
, a
b
) we obtain ẋ = −c(y− a

b
), ẏ = a(x− c

b
). Therefore, the solutions of the

linearised form are x(t) = x0 cos(
√
act) + x1 sin(

√
act) and y(t) = y0 cos(

√
act) + y1 sin(

√
act).
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Definition 4.9 Suppose that x = φ(t) is a solution of the equation ẋ = f(x), x ∈ D ⊂ Rn and

suppose that there exists a positive number T such that φ(t + T ) = φ(t), ∀t ∈ Rn. Then, φ(t)

is called a periodic solution of the equation with period T .

Remark: Suppose T is the smallest period, then we call φ(t) T -periodic. Moreover, for a

periodic solution we have that after a time T , x = φ(t) assumes the same value in Rn. So,

a periodic solution produces a closed orbit or cycle in the phase-space. This is formalized as

follows,

Lemma 4.2 A periodic solution of an autonomous equation ẋ = f(x) corresponds with a closed

orbit in phase-space and a closed orbit corresponds with a periodic solution.

We have already seen a linear example where closed orbits exist (the harmonic oscillator),

now we are going to see some nonlinear examples.

Example 4.12 The mathematical pendulum.

The pendulum can be described by the equation ẍ+sinx = 0. Doing the change of variables

ẋ = x1 and ẋ = x2 we have,

ẋ1 = x2

ẋ2 = − sinx1

In this case the phase-space is two dimensional (see figure 4.10) and the orbits are described

by the equation

dx2

dx1

= −sinx1

x2

,

whose integration yields

x2
2 − 2 cosx1 = c.

Once we have got the linearized transformation of the autonomous equation, we can char-

acterize the different critical points we get depending on the eigenvalues and eigenvectors of

the function. To do so, let me study first the cases we have for two-dimensional linear systems.

Since we are in dimension 2, we have two eigenvalues λ1 and λ2, which are real or complex

conjugate. The general solution of our equation has to be of the form x(t) =

(
c1 e

λ1t

c2 e
λ2t

)
where

c1, c2 are arbitrary constants.
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Figure 4.10: Graphic of phase space of the function x2
2 − 2 cosx1 = c for different values of c.

In the case where the eigenvalues are real and have the same sign, we assume λ1 6= λ2. Since

the solutions are of the form x1(t) = c1 e
λ1t and x2(t) = c2 e

λ2t, we can deduce the form of the

orbits in the phase-space taking the modulo of both functions. Since the equality we obtain is

|x1| = c |x2|
λ1
λ2 , which are some kind of parabolas as we can see in figure 4.11.

Figure 4.11: Graphic of the phase space of the function |x1| = c |x2|
λ1
λ2 for two real eigenvalues

λ1 = −1 and λ = −3.

The critical point we have in (0, 0) is called a node. In the case λ1, λ2 < 0, we have a

positive attractor. In the case λ1, λ2 > 0, we have a negative attractor.

In the case where the eigenvalues are real and have different sign, we have the solutions

are also x1(t) = c1 eλ1t and x2(t) = c2 eλ2t, therefore, we can deduce the form of the or-

bits in the phase-space taking the modulo of both functions. Since the equality we obtain is
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|x1| = c |x2|
−
∣∣∣λ1λ2 ∣∣∣, we have some kind of hyperbolas as we can see in figure 4.12.

Figure 4.12: Graphic of the phase space of the function |x1| = c |x2|
−
∣∣∣λ1λ2 ∣∣∣ for two real eigenvalues

λ1 = −1 and λ = 3.

In this case the critical point (0, 0) is a saddle point, and hence, it is not an attractor. More-

over, since we have one positive eigenvalue (assume λ1 > 0) and another one negative (assume

λ2 < 0), there exist two solutions such that (x1(t), x2(t)) → (0, 0) for t → ∞ which are called

the stable manifolds of the saddle point and two solutions such that (x1(t), x2(t)) → (0, 0) for

t→ −∞ which are called the unstable manifolds.

In the case where the eigenvalues are complex conjugate λ1,2 = µ ± wi with µw 6= 0, the

complex solutions we obtain are z1(t) = e(µ+wi)t and z2(t) = e(µ−wi)t, therefore, we can deduce

from the definition of the complex exponential that eµt cos(wt) and eµt sin(wt) are also real

solutions of our problem. This means, the orbits of the phase-space are spiralling in and out

with respect to the critical point (0, 0) (this is called a focus). In the case of spiralling in as in

figure 4.13 (left side) the critical point is a positive attractor, this happens when µ < 0. But in

the case of spiralling out as in figure 4.13 (right side) the critical point is a negative attractor,

this happens when µ > 0.

The last special case we could have is when the eigenvalues are purely imaginary. It means,

if λ1,2 = ±wi. Then, we have the critical point (0, 0) is a centre and the solutions can be written

as a combination of cos(wt) and sin(wt). Moreover, if we draw the phase-space we can see the

trajectories we have are circles. Hence, in this case the critical point (0, 0) is not an attractor.

See figure 4.14.

To end this section, we are going to introduce an important theorem in dynamical systems.



4.2. Continuous Dynamical Systems 35

Figure 4.13: Graphic of phase space for two complex eigenvalues. On the left, we can see a
stable focus. On the right, an unstable focus.

Figure 4.14: Graphic of phase space for two eigenvalues purely imaginary.

Theorem 4.2 Consider the equation ẋ = Ax + g(x), x ∈ Rn. The constant n × n-matrix A

has n eigenvalues with nonzero real part, g(x) is smooth (i.e. g ∈ C1) and

lim
‖x‖→0

‖g(x)‖
‖x‖

= 0.

Then, in a neighbourhood of the critical point x = 0, there exist stable and unstable manifolds

Ws and WU with the same dimensions ns and nu as the stable and unstable manifolds Es and

EU of the linearised system ẋ = Ax. Moreover, in x = 0, Es and EU are tangent to Ws and

WU .

Proof. Since the proof is far from the purpose of our work, some references where you can

find it are given: Hartman(1964), Chapter 9 and Knobloch and Kappel (1974), Chapter 5.
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Example 4.13 Dynamical system in R2.

ẋ = −x
ẏ = 1− x2 − y2

}
To find the critical points of the system we define the vector function f(x, y) = (−x, 1−x2−y2).

The critical points are the points (x, y) that satisfy f(x, y) = 0, which means,

(−x, 1− x2 − y2) = (0, 0)→
x = 0

1− y2 = 0→ y = ±1.

Hence, the critical points we have are (0, 1) and (0,−1). To characterize them we need to

calculate the Jacobi matrix of the function f(x, y),

Jf(x,y) =

(
−1 0

−2x −2y

)
If we substitute (x, y) = (0, 1) in this matrix and we calculate the eigenvalues, we obtain

λ1 = −1 and λ2 = −2, so, doing the analysis previously studied we have a node which is a

positive attractor. Now, if we substitute (x, y) = (0, 1) in the Jacobian matrix, we obtain as

eigenvalues λ1 = −1 and λ2 = 2, so, we have a saddle point (which is not an attractor). Also,

the conditions of the theorem 4.2 has been satisfied, therefore, there exist stable and unstable

manifolds WS and WU with the properties defined in the theorem.

Remark: the stable manifolds of the saddle point separate the phase-plane into two do-

mains, where the behaviour of the orbits is qualitatively different. Such a manifold we call a

separatrix. In numerical calculations of stable and unstable manifolds it is convenient to start

in a neighborhood of the saddle in points ES and EU , which have been obtained for the linear

analysis (in the special case of example 3.1 we have EU = WU). In the case of a stable manifold

we are integrating of course for t ≤ t0.



Chapter 5

The Feigenbaum Attractor

In this chapter we are going to do a detailed review about the Feigenbaum Attractor, an attrac-

tor which reveals one of the most important features of the quadratic functions, the transition

from stable periodic behaviour to chaotic behaviour. The study will be initially focused on the

real space, and later on we will extend it to the complex space.

In order to start the study of the quadratic function, it is essential to understand firstly

the concept of bifurcation. A bifurcation means a split in two different parts, a change in

the dynamical system. These changes often involve the periodic point structure, but may also

involve other changes as well.

To understand how and when the periodic point structure of the family changes, we need

to know which bifurcation occurs in the map considered. In the case of the quadratic family,

it occurs a period-doubling bifurcation. Dynamically, the period-doubling bifurcation involves

a change from an attracting to a repelling fixed point, together with the birth of a new period

2n, n ∈ N orbit. This phenomenon is discussed below in the real space.

5.1 The real quadratic family

It is considered the function Qc : R → R defined as Qc(x) = x2 + c. If we take the value

c = 1
4
, we can observe on figure 5.1 a non-hyperbolic attracting fixed point in x = 1

2
. But

if we decrease this value until c = −3
4

and c = −5
4
, we can see in figure 5.2 the fixed point

bifurcates into an attracting periodic orbit of period 2 and an attracting periodic orbit of period

4 respectively. In fact, if we keep decreasing the value of c, we can observe a sequence of period-

doubling bifurcations {c1, ..., cn} emerge very quickly up to a point where they converge (see the

37
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bifurcation diagram on figure 5.3). This point is the value c0 = −1, 4011551890... the so-called

Feigenbaum point. In particular, this first ten elements of the sequence {c1, ..., cn} of period

doubling bifurcations occurs for the values of c shown in Table 5.1.

Figure 5.1: Graphic of the functions y = Q0.25(x) (red line), y = Q2
0.25(x) (green line) and

y = Q4
0.25(x) (black line). The red point is the fixed point of y = Q0.25(x).

Figure 5.2: On the left, we have the graphic of the functions y = Q−1(x) (red line), y = Q2
−1(x)

(green line) and y = Q4
−1(x) (black line). On the right, we have the graphic of the functions

y = Q−1.30(x) (red line), y = Q2
−1.30(x) (green line) and y = Q4

−1.30(x) (black line). The black
points are the points of period 2 we have and the light blue points are the points of period 4.
As we can see, there appear new periodic points as we decrease the values of c.

Also it is known that the ratio of convergence is exponential as we can see in the following

property.

Property 5.1 The sequence of period doubling bifurcations {c1, ..., cn} satisfies the equality

cn − c0 ≈ Cρ−n for n ∈ N with constant ρ = 4, 6689...

Initially, the value of ρ could be considered a completely casual value, but after doing some

observations, it was found that the quadratic function was not the only function where this

ratio of convergence appeared. For example, if we take the family of functions f : R → R
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Figure 5.3: Bifurcation diagram of the quadratic function Qc(x) = x2 + c. A bifurcation
diagram shows how bifurcations occur as the value of c decrease in a simple graphic. We plot
the location of fixed and periodic points at the Y-axis versus the parameter of c at the X-axis
of the graphic. A line is drawn at c = −1.40 to show in a more visual way the change in the
behaviour of the dynamical system at the Feigenabum point (from stability to chaos).

defined as fb(x) = b sinx for b ∈ [0, π], we observe a similar sequence of period-doubling bi-

furcations {b1, ..., bn} exponentially converging to a limit point b0 with rate ‖b0 − bn‖ ≈ Cρ−n

with ρ = 4, 669 (for more information, see [6]). Therefore, one would think the rate of conver-

gence appears to be universal, independent of the particular family of maps under consideration.

In order to formalize what was happening in a mathematical definition, Feigenbaum and

Coullet-Tresser formulated a conjecture (which later on became a theorem) that would com-

pletely explain the above universality.

Theorem 5.1 Let us consider an infinite-dimensional space U of unimodal maps, and consider

the doubling renormalization operator R in this space (for more information about this operator

see [6], page 1046). It satisfies:

• R has a unique fixed point f0 with an appropriate scaling factor µ.

• R is hyperbolic at this fixed point, that is, there exist two transverse R-invariant manifolds

W S and WU such that the orbits {Rn f} with f ∈ W S exponentially converge to f0, while

the orbits {Rn f} with f ∈ WU are exponentially repelled from f0.

• Dim WU = 1.
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n Period = 2n Bifurcation parameter cn ratio ρ
1 2 -0.75 –
2 4 -1.25 –
3 8 -1.3680989 4.2337
4 16 -1.3940462 4.5515
5 32 -1.3996312 4.6458
6 64 -1.4008287 4.6639
7 128 -1.4010853 4.6682
8 256 -1.4011402 4.6689
9 512 -1.401151982029 4.66899
10 1024 -1.401154502237 4.668999

Table 5.1: Bifurcation parameters cn for n = 1, ..., 10.

• WU transversely intersects the doubling bifurcation locus B1, where an attracting fixed

point bifurcates into an attracting periodic orbit of period 2.

A sketch of the proof can be seen on [6], page 1050. Since the doubling bifurcations loci Bn

of higher periods (from 2n to 2n+1) are obtained by taking preimages of B1 under Rn, we can

deduce that any one-parameter family of unimodal maps that is transverse to W S intersects

the Bn at the points bn. These points have the property of converging exponentially to a limit

point b0 ∈ W S, where the rate of convergence ρ is the unstable eigenvalue of the jacobian

matrix A = DR(f0), which is independent to the family we are considering.

To do the study of the quadratic function in the real space we take the Feigenbaum point

c0 previously considered, which is the smallest real value of c for which the function Qc(x) has

infinitely many distinct periodic orbits. Following the definition of attractor from section 3.2,

to be able to describe the Feigenbaum attractor, firstly we need to restrict our function into a

function Q : M → M where M must be a smooth compact manifold. To do so, we look for a

compact domain containing the origin, for example, the interval I = [−1, 1]. Therefore, from

now on, we are considering the function Q : I → I defined as Q(x) = x2 + c0 which satisfies

Q(I) ⊂ I.

To be able to describe the dynamic structure of the function, let me take an initial value

x0 ∈ I which allows me to construct the successive iterations xn given by xn = Qn(x0). It

is satisfied that the succession of points {x0, x1, ..., xn} converge towards a Cantor set A, to

demonstrate this affirmation is true, let me take the value x0 = 0 (remember we took an

interval I containing the origin) and we build the orbit O+(0) as described in Definition 2.2.
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O+(0) = {0,−1.40115518, 0.56208065,−1.08522052,−0.22345160,−1.35122456,

0.42465263,−1.22052532, 0.08852682,−1.39331818, 0.540179869, ...}

As we can see above, O+(0) is an almost periodic sequence where all the numbers are dif-

ferent (if we look closely, Q5(0) is near to Q1(0), and Q9(0) is even nearer to Q1(0). Same for

Q2(0), Q6(0) and Q10(0) and so on...). This is just an example of what is happening in the long

term.

Taking two random elements from the orbit Qn(0) and Qm(0) such that m 6= n. We have

the difference Qm(0) − Qn(0) is very small whenever m − n is divisible by a power of 2. The

higher the power of 2 is, the smaller will be the difference between them. Thus, we have the

closure of this orbit (let me call it A) is a Cantor set, homeomorphic to the ring lim( Z
2k Z

) of

2-adic integers in such a way that each Qn(0) corresponds to a 2-adic integer n (i.e. each value

Qn(0) can be written as Qn(0) =
∑n

i=0 ai 2
i).

Henceforth, we have already proven there exists a Cantor set A. And since the iterations

xn = Qn(x0) converge towards A, we can conclude A is an attractor, and not any attractor, it

corresponds to the likely limit set Λ(f). A picture of the attractor is given by figure 5.4.

Now, if we consider the restriction to Q : A→ A, we have an homomorphism which adds one

to each 2-adic integer (i.e. each value x ∈ A can be written as x =
∑n

i=0 ai 2
i + 1), from which

we can conclude that all the points of A are different from each other and therefore we do not

have periodic points inside. However, we can prove there are periodic points arbitrarily close

to every point of A whose period is n = 2k, with k ∈ R. All of these periodic points are unstable.

There are also a countable infinity of points x ∈ I whose successive iterations do not con-

verge towards A. Furthermore, these exceptional points are everywhere dense in I (although

the tendency to converge to A remains strong) which leads to an important characteristic about

the stability of the attractor. According to Guckenheimer [5], if Q has no periodic attractor,

any arbitrarily small open interval U ⊂ I has some forward image Qn(U) which contains the

origin. If we consider a point x in U which maps to a periodic point in the neighborhood of the

origin, we see that ω(x) is a periodic orbit disjoint from A. Then, we have that A is certainly

not asymptotically stable.
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However, just because it is not asymptotically stable does not mean that it cannot be Lia-

punov stable. In fact, if we take the intersection of a nested sequence of asymptotically stable

sets we have that indeed A is Liapunov stable. A sketch of the proof is given below.

If U is an arbitrary small neighborhood of A, let me choose a smaller neighborhood V

so that f(V ) ⊂ V . If we start at any point x0 in I and we obtain the successive iterations

xn = Qn(x0) it can happen two things depending on the initial point x0 we take.

1. This orbit eventually hits the open set V and remains trapped in V ⊂ U forever after.

2. It manages to precisely hit one of the finitely many periodic points which lie outside of

V , and remains trapped in a finite periodic orbit outside of V thereafter.

And this would conclude that A is indeed Liapunov stable.

Figure 5.4: The Feigenbaum Attractor on the defined Cantor Set.

A simulation of the quadratic function Q(x) = x2 + c0 has been made using Matlab to vi-

sualize better the conclusions obtained. The code considered and a simulation taking as initial

value x = 0 are given in figure 5.5.

We can see in the previous picture that the iterations of the function remain inside the

interval [−1.5, 0.5], therefore, we can deduce it remains trapped in a neighborhood of x = 0

forever after.

If we do other simulations considering other values x0 as the initial condition (values near to

x = 0, in particular, we consider initial values x0 contained in the interval I = [−1, 1]) , we can

see the iterations of the function remain inside of a neighborhood of x0 too. To visualize this

situation, we simulate the quadratic function Q(x) = x2 + c0 taking as initial values x0 = 0.5
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Figure 5.5: Simulation of the Feigenbaum attractor taking x = 0 as initial value.

and x0 = −0.5, an the graphics we obtain for both of them are given in figure 5.6.

On the other side, if we take values of x0 /∈ I, the simulation goes to infinity very quickly.

To visualize it, it is simulated the quadratic function considering x0 = 5 and x0 = 50, whose

respective graphics are given in figure 5.7.

Figure 5.6: On the left, we can see a simulation of the Feigenbaum attractor taking as initial
value x0 = +0.5. On the right, the same simulation taking as initial value x0 = −0.5

.

With this simulation we have been able to verify experimentally that the closure of the

interval I chosen previously in theory, i.e. the Likely Limit Set Λ, acts as an attractor, while if

we move away from the interval the function tends to {∞}.
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Figure 5.7: On the left, we can see a simulation of the Feigenbaum attractor taking as initial
value x0 = 5. On the right, the same simulation taking as initial value x0 = −50.

5.2 The complex quadratic family

If we expand the study to the complex quadratic maps we can find more interesting properties

which are worth to mention. For example, if we consider the function Qc : C → C defined as

Qc(z) = z2 + c with arbitrary value c ∈ C, it is always satisfied that the orbits placed near {∞}
will escape to ∞ (something we have also seen for the real case). Hence, we can say we have a

stable attractor in {∞} , whose basin of attraction is defined as the set of all escaping orbits

denoted as:

Df (∞) = {z : fnz →∞ s.t. n→∞}.

However, the really fascinating properties of quadratic functions are to be found in the

complementary of this set, the so-called filled Julia Set, denoted as K(f) = C \ Df (∞), and

its boundary the so-called Julia Set J(f) = ∂K(f), which we will consider from now on. An

example of the Julia set is given in figure 5.8, from which we can deduce the much richer topo-

logical and geometric structure that have complex quadratic functions compared to the real case.

To build The Julia Set, we use the following algorithm:

1. Choose an equal size grid in the square [−2, 2]× [−2, 2].

2. Given N > 0, it is defined the grid points using the following expression

zl,m = −2 + 4
l

n
+
−2 + 4m

N
i, forl,m = 0, ..., N.

3. For every complex number zl,m in the grid, it is checked if it escapes or not under Qc. Let
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Figure 5.8: The Julia Set of the Fibonacci Attractor f(z) = z2 − 1.401 from z = −2 − 2i to
z = 2 + 2i [4].

M > 0, it is computed the first M iterates of zl,m under Qc.

4. If, at any iteration k < M , ‖Qk
c (zl,m)‖ > 10, we stop the iteration since it means the

point zl,m escapes to ∞. If ‖Qk
c (zl,m)‖ < 10 for all k < M , then it is assumed that zl,m

belong to the filled Julia Set of Qc.

The structure of the Julia Set can be either Cantor or connected depending on whether the

critical point 0 escapes to infinity or not. In the cases where the Julia Set is connected (the

ones we are considering in this paper), there exists a Mandelbrot set M in the c-plane which

looks like in figure 5.9. For this figure, it is considered the parameter values c ∈ I = [−2, 1
2
]

where it is satisfied I = M∩R. It is clear that the Julia Set is connected for these values of c, in

other case, we would not have been able to draw the Mandelbrot Set. Another example of the

Mandelbrot set would be considering the parameter values c ∈ I = [−1.25− 0.1i,−1.5 + 0.1i],

which is closer interval to the Feigenabum point. We can see how is the Mandelbrot Set on

the left of figure 5.10. And even we can take a look closer to the Feigenbaum point considering

the parameter values c ∈ I = [−1.35 − 0.05i,−1.45 + 0.05i]. In this case, the Mandelbrot Set

is given on the right side of 5.10. A formalized definition of the Mandelbrot set would be the

following:

Definition 5.1 The Mandelbrot set is the subset of the c-plane given by

M = {c | Qn
c (0) 9∞}.

Equivalently, M = {c | K(c) is connected}.
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Figure 5.9: The Mandelbrot Set of the set of maps f(z) = z2 + c with c ∈ I = [−2, 1
2
]. [4].

To build The Mandelbrot Set, we use the following algorithm:

1. Let c ∈ C, we simply compute the first N points on the orbit of c under Qc.

2. If, at any iteration k < N , ‖Qk
c (c)‖ > 2, we stop the iteration because c /∈ M . If

‖Qi
c(c)‖ ≤ 2 for all i ≤ N , we assume that c ∈M .

From this algorithm we observe that M is contained inside the disk of radius 2 in the c-

plane since Qn
c (c) → ∞ for ‖c‖ > 2, and so, these values of c does not belong to M . Also, if

‖Qk
c (c)‖ > 2 for some k ≥ 0, it similarly follows that Qn

c (c)→∞.

Moreover, if we look closer of figure 5.9, we can notice the large cardioid-shaped region in

the center. This main cardioid is the region of parameters c for which the quadratic function

Qc(x) has an attracting fixed point. It consists of all parameters of the form

c =
µ

2
(1− µ

2
)

for some µ in the open unit disk. To the left of the main cardioid, attached to it at the point

c = −3
4
, a circular-shaped bulb is visible. This bulb consists of those parameters c for which

fc has an attracting periodic orbit of period 2. The set of parameters c is a circle of center

c = −1 and radius r = 1
4
. And we could keep doing this forever, since there are infinitely many

other bulbs tangent to the main cardioid. A correspondence between the Mandelbrot set and

the bifurcation diagram of the quadratic map is in figure 5.11.
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Figure 5.10: The Mandelbrot Set of the set of maps f(z) = z2 + c with c ∈ I = [−1.25 −
0.1i,−1.5 + 0.1i] on the left, and c ∈ I = [−1.35− 0.05i,−1.45 + 0.05i] on the right [4].

In the following, we present a variety of examples of the Julia Set we can find in the

quadratic family depending on the values of c we take. The first case considered is the function

f(z) = z2 + c for an arbitrary value of c near to zero. Taking into account that f(z) = z2 has

an attracting fixed point on z = 0 and the Julia Set J(z2) is the unit circle (given in figure

5.12), the circle clearly bounds both of the basins of attraction at z = 0 and {∞}.

In our example, since |c| is small a similar phenomenon occurs. As shown in figure 5.13,

we still have an attracting fixed point near 0 for the values c = 0.1 and c = 0.2. We can also

see the boundary of the Julia Set is a simple closed curve (which is far from being a smooth

curve). But if we turn to the function at c = 0.5, figure 5.14 shows how the previous simple

curve starts to degenerate into something else.

What we have observed in these pictures can be generalized in the following proposition:

Proposition 5.1 If c < |1
4
|, then the Julia Set of Qc(z) is a simple closed curve which contains

no smooth arcs.

Property 5.2 If c < |1
4
|, then the function Qc(z) has a repelling fixed point at z0 =

(
1 +

√
1− 4c

)
/2. Moreover, Q′c(z0) is a complex number which is not pure imaginary, it means, z0

does not lie in a smooth arc in z(θ).

The last stated property allows us to extend Proposition 5.2 to other values of c bigger than
1
4

as follows:
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Figure 5.11: A correspondence between the Mandelbrot set and the bifurcation diagram for
Qc(x).

Proposition 5.2 If the quadratic function Qc has an attracting point for some value of c, then

the Julia Set of Qc(z) is a simple closed curve which contains no smooth arcs.

Property 5.2 is satisfied for all the values of c inside the cardioid in the c-plane. Moreover,

one can actually prove that the Julia Set for these Qc is actually non-differenciable at every

point on the simple closed curve.

Now we turn to the case of an attracting periodic point rather than a fixed point. To do

so, it is studied the function Q(z) = z2 − 1. Since Q(0) = −1, Q2(0) = 0 and Q′(0) = 0, we

can deduce z = 0 lie on an attracting periodic orbit of period 2 of the form {0,−1}.

To study the dynamics of Q(z) on the real line, firstly, we calculate the fixed points of the

function which are z1 = 1−
√

5
2

and z2 = 1+
√

5
2

, both repelling fixed points as we can see iterating

the function. The point z1 corresponds to a dividing point between the basin of attraction

of 0 and −1 (if we iterate Q(z) with z0 = −0.5 we obtain Q(−0.5) = −0.75 and so on, but

if we iterate Q(z) with z0 = −0.8 we obtain Q(−0.8) = −0.36 and so on...). Also, from

preposition we deduce there are two simple closed curves γ0 and γ1 in J(Qc) which surround

0 and −1 respectively. Both curves meet at the fixed point 1−
√

5
2

. There is much more to

J(Qc) however. Unlike the situation for Qc, the basin of attraction of 0 is not completely

invariant. One preimage of the interior of γ0 is clearly γ1, but there must also be another

surrounding the other preimage of 0, namely 1. That is, there is a third simple closed curve

in J(Qc) surrounding 1 as well. Now both 1 and -1 must have a pair of distinct preimages,
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Figure 5.12: The Julia Set of f(z) = z2 [4].

Figure 5.13: The Julia Set of f(z) = z2 + c with c = 0.1 and c = 0.2. [4].

each surrounded by a simple closed curve in J(Qc). Continuing in this fashion, we see that

J(Qc) must contain infinitely many different simple closed curves. This fact is generalized in

the following proposition:

Proposition 5.3 Suppose a generic function f(z) is a polynomial of degree 2. Then the stable

set of P consists of either one, two, or infinitely many connected components.

As a final example, we will consider the quadratic function Qc(z) = z2 +c with c ∈ R. Since

Q′c(0) = 0, z = 0 is a critical point of the function. Moreover, it is eventually periodic since

Q3
c(0) is a repelling fixed point.
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Figure 5.14: The Julia Set of f(z) = z2 + c with c = 0.5. [4].

In a more general way, it is satisfied that the repelling periodic points of Qc contained

in the interval [−p, p] (where −p = Q3
c(0)) is dense on C. This interval has the important

property that it is contained in the Julia Set, and since it is invariant, all the preimages of the

interval also lie in the Julia Set. Indeed, The Julia Set J(Qc) is the closure of this set of intervals.

Now consider we have a second repelling fixed point at point q, it is satisfied that [−q, q] ∈
J(Qc). Since c ∈ [−q, q], the preimage of this interval consists of two intervals ([−q, q] and

a second interval located symmetrically from z = 0 but on the imaginary axis). This second

interval can be calculated as the preimage of [−q, c], therefore, we have the preimage of this

two intervals consists on four curves that intersect z = 0 and z = Q−1
c (0). In general, we

deduce that Q−nc ([−q, q]) consists of 2n disjoint curving linear segments and the Julia Set J(Qc)

therefore is formed by the closure of this set of preimages.

This structure given by

∞⋃
n=0

Q−nc [−q, q]

is called a dentrite, which is depicted in figure 5.15. In this figure we show an example of a

dentrite given by the function Q(z) = z2 + i, but of course there are other values of c we could

use to obtain a similar behaviour of the Julia Set. For example, Q(z) = z2−1+i or Q(z) = z2−i.

A conclusion from the study of the Feigenbaum attractor is that depending on the value of

c we consider we can obtain a vast array of different phenomena, from the ones obtained for
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Figure 5.15: The Julia Set of f(z) = z2 + i. [4].

the real case to the ones obtained for the complex case. The resulting locus in the parameter

plane obtained by The Mandelbrot Set is still a subject of much contemporary research.
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Chapter 6

The Lorenz Attractor

6.1 The Lorenz Equations

In this chapter, we will focus on the study of one of the best-known attractors so far, the Lorenz

attractor. As mentioned in the introduction, the meteorologist E. Lorenz was the first person

to relate the phenomenon of convection in the earth’s atmosphere to the concept of attractors.

To find out more about them, he defined a continuous dynamical system governed by the

following differential equations.

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz

 (6.1)

in which σ, r and b are positive parameters. Even though the use of the system (6.1) is highly

questionable as a model for convection in the atmosphere, it allowed us to glimpse different

behaviours of the system depending on the values we take as initial conditions. To visualize

this phenomenon, some simulations of the Lorenz attractor will be displayed taking the same

values for σ, r and b, but different initial values.

6.1.1 Simulations of the Lorenz Attractor

In this section, we carry out different simulations of the Lorentz attractor in order to see the

different shapes that the Lorenz attractor can take. For this purpose, we carry on some numer-

ical experiments considering the values σ = 10, b = 8
3

and some positive value r (we will take

several ones to make different simulations of the system). For now, let r = 28. The following

53
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code in figure 6.1 (written entirely in MATLAB) allow us to simulate the Lorenz attractor for

an arbitrary initial condition.

As an example, four simulations are given in figure 6.2 considering the same values of the

parameters σ, r and b but different initial conditions. Now, let r = 15 and r = 128, we can

observe in figure 6.3 that the lower the value of r is, the more incomplete is the graphic. In the

same way, the greater the value of r is, the fuller the graph looks. This curious shape of the

Lorenz attractor is usually named as ”the butterfly’s Lorenz” since it seems to have a similar

form of a butterfly.

Figure 6.1: MATLAB Code of the simulation of the Lorenz Attractor.

To execute this program, we need to put as input arguments the values of ρ, σ and b we want

to consider to do the graphic of the Lorenz attractor. In case the program does not recognize

the inputs as correct values, it will print “Not enough input arguments”. To be able to solve

the ordinary differential equations given by (6.1), it is used the Runge-Kutta of 4th/5th order

method. We take a sufficiently small error “eps=0.000001” to obtain a good approximation



6.1. The Lorenz Equations 55

of the graph of the Lorentz attractor. Also, we take as initial value (0, 0.22, 0.5) since our

purpose is to build a numerical approximation of a solution which starts in a neighborhood of

the unstable equilibrium solution (x0, y0, z0) = (0, 0, 0) (let us call this neighborhood U). Since

we start in U , the orbit follows the unstable manifold WU(0) as near as possible.

Figure 6.2: Simulation of the Lorenz Attractor using r = 28, σ = 10 and b = 8/3 considering
as initial value (0, 1, 1.05) up, on the left; (0, 0.22, 0.5) up, on the right; (0, 0.05, 0.05) down, on
the left; and (0, 0.10, 0.15) down, on the right.

As stated above, it can be visualized different behaviours of the attractor only by changing

the initial conditions. This result, intriguing and fascinating at the same time, paved the way

to the study of what it is called nowadays the chaos theory. However, this is not the only

conclusion to be drawn from the simulations. On the one side, we can see the orbit is not

closed. On the other side, the orbit does not represent a transition stage to well-known reg-

ular behaviour, instead of it, the orbit continues describing loops on the left and on the right

without apparent regularity in the number of loops. Moreover, if we do different simulations,

we can see the simulation is roughly the same picture. This suggests there exists an attractor

with a dimension bigger than two, which, in the perspective of the equilibrium point x0, has a

complicated topological structure. This complicated structure is known as ”strange attractors”.
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Figure 6.3: Simulation of the Lorenz Attractor using the values σ = 10, b = 8
3

and two different
values of r (r = 15 on the left, r = 128 on the right).

6.1.2 Critical Points and Equilibrium Solutions

In order to do a major study of the behaviour of the system, it is obtained the different equi-

librium solutions of the system (6.1) depending on the values of r we consider.

In the case we take 0 < r < 1, there is only one critical point in (x, y, z) = (0, 0, 0) which

is asymptotically stable. But, if we take |r| = 1, one eigenvalue becomes zero and hence a

bifurcation occurs. This means, new critical points appear for |r| > 1. In particular, for

|r| > 1 we have three critical points in x0 = (0, 0, 0), x1 = (
√
b(r − 1),

√
b(r − 1), r − 1) and

x2 = (−
√
b(r − 1),−

√
b(r − 1), r − 1).

To study these critical points in more depth, firstly, let me see what is the behaviour of

the system at the origin for any value of r. To do so, we define the vector function of the

Lorenz system as F (x, y, z) = (ẋ, ẏ, ż). The critical points of the system are given by the

solutions of the equation F (x, y, z) = (0, 0, 0). Hence, if we take the point (x, y, z) = (0, 0, 0)

and we substitute it on the function F (x, y, z) = (σ(y − x), rx − y − xz, xy − bz), we deduce

F (0, 0, 0) = (0, 0, 0) and the origin is a critical point.

To be able to characterize this point, we calculate the Jacobian matrix of the function F ,

JF =

 −σ σ 0

(r − z) −1 −x
y x −b

 ,
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which allow us to obtain the following system of differential equations

ẋẏ
ż

 =

 −σ σ 0

(r − z) −1 −x
y x −b

 ·
xy
z

 .

Evaluating this system of equations at the origin, we are able to characterise this point

obtaining the eigenvalues and eigenvectors of the system. To do so, we solve the equality

|JF (0, 0, 0)− λI| = 0 as follows,

∣∣∣∣∣∣∣
−σ − λ σ 0

r −1− λ 0

0 0 −b− λ

∣∣∣∣∣∣∣ = 0 →
(
(−σ − λ)(−1− λ)− σr

)
(−b− λ) = 0.

The equation obtained provide us with two new easier equations to obtain the eigenvalues.

The first one is (−b−λ) = 0, from which we obtain λ1 = −b. The second one is (−σ−λ)(−1−
λ)− σr = 0, from which we obtain λ2 and λ3,

λ2 =
1

2

(
−
√
σ2 + (4r − 2)σ + 1− σ − 1

)
,

λ3 =
1

2

(
+
√
σ2 + (4r − 2)σ + 1− σ − 1

)
.

The value of λ1 is always negative since the parameter b is positive (we defined it at the

start of the chapter). Also, the value of λ2 is always negative since −
√
σ2 + (4r − 2)σ + 1

and −σ are always negative values (we defined σ as a positive value also at the start of the

chapter). Hence, we have that for any value of r, λ1 and λ2 will be negative. Let me study

what is happening with the third eigenvalue.

We know λ3 will be positive if
√
σ2 + (4r − 2)σ + 1 > σ+ 1. To deduce for which values of

σ and r the inequality is satisfied, we solve it as follows,
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1

2

(
+
√
σ2 + (4r − 2)σ + 1− σ − 1

)
> 0⇐⇒

√
σ2 + (4r − 2)σ + 1− σ − 1 > 0

⇐⇒
√
σ2 + (4r − 2)σ + 1 > 1 + σ

⇐⇒ σ2 + (4r − 2)σ + 1 > (1 + σ)2

⇐⇒ 1 + σ2 − 2σ + 4σr > 1 + σ2 + 2σ

⇐⇒ 4σr > 4σ

⇐⇒ r > 1, σ 6= 0.

Therefore, we can say λ3 will be positive if r > 1. On the other side, we know λ3 will be

negative if
√
σ2 + (4r − 2)σ + 1 < σ + 1. Therefore, we can say λ3 will be negative for r < 1.

Remark. The previous study has been made assuming the value σ2 + (4r− 2)σ + 1 is posi-

tive, and hence we have real eigenvalues. In the case this value is negative, we would have two

complex eigenvalues with real part −σ − 1 < 0, which means we would have two eigenvalues

with negative real part. We know in this case we would have also an attractor.

This leads to the following preposition.

Proposition 6.1 The critical point x0 = (0, 0, 0) will be an attractor in two cases. First case,

if r < 1 and σ 6= 0. Second case, if σ2 + (4r − 2)σ + 1 is negative.

Remark. We do have an attractor in the origin when we have three negative eigenvalues

(which means λ3 must be negative), otherwise, the origin cannot be an attractor.

In particular, if we take the values of σ = 10, b = 8
3

and r = 28 we have been considering

through the chapter and we substitute them on the eigenvalues, we obtain the following values:

λ1 = −8
3
≈ −2.66, λ2 ≈ −22.82 and λ3 ≈ 11.82. Since we have λ3 is positive, we have a

saddle-point. Moreover, if we calculate the eigenspace (the set of all eigenvectors) associated

to each eigenvalue we obtain:

Sλ1 = {(0, 0, z), z ∈ R}, Sλ2 = {(0.77y, y, 0), y ∈ R}, Sλ3 = {(0.46y, y, 0), y ∈ R}.

Hence, the following property is satisfied.

Property 6.1 For b = 8
3
, ρ = 28 and σ = 13, the eigenvalues of the Jacobian matrix at

the critical point (0, 0, 0) are real, they have multiplicity equal to one and also opposite signs.
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Therefore, we can conclude the critical point (0, 0, 0) is a saddle point with a one-dimensional

unstable manifold.

Now we study what is happening in the critical points x1 and x2 we found for r > 1. In

this case, both eigenvalues must satisfy the following equation,

λ3 + λ2(σ + b+ 1) + λb(σ + r) + 2σb(r − 1) = 0,

where we can see depending on the value of r the roots can be the following:

• First case, if 1 < r < σ(σ+b+3)
σ−b−1

, there exist three roots of the equation. All of them have

negative real parts, hence, there exist two unstable periodic solutions corresponding with

two critical points.

• Second case, if r = σ(σ+b+3)
σ−b−1

, two eigenvalues are purely imaginary and the previous two

critical points vanish. A Hopf bifurcation occurs.

• Third case, if r > σ(σ+b+3)
σ−b−1

, we have two critical points. Each of them has one negative real

eigenvalue and two eigenvalues with real part positive, i.e., they are unstable solutions.

For example, if we take the previous values of σ = 10, b = 8
3

and r = 28, the Hopf bifurca-

tion would occur at σ(σ+b+3)
σ−b−1

= 24.74. To visualize the behaviour of the attractor depending if

we take a value of r in the first, in the second or in the third case, a simulation of the Lorenz

attractor for r = 0, r = 24.74 and r = 28 is given at figure 6.4.

6.1.3 Properties

Property 6.2 The Lorenz-equations have reflection symmetry.

Proof. Given the solution (x, y, z), we know the Lorenz equations look as equation (5.1).

Now, if we consider the solution (−x,−y, z), the Lorenz equations looks as follows:

−ẋ = σ(x− y)

−ẏ = −rx+ y + xz

ż = xy − bz


And if we multiply the first and second equations by (-1) on the left and on the right side,

we obtain:
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Figure 6.4: Simulation of the Lorenz Attractor using r = 0, r = 24.74 and r = 28 respectively.

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz


which is of the same form as the Lorenz equations. �

As a conclusion, we obtain that given some particular solution (x0, y0, z0), we know there

exists another solution of the form (−x0,−y0, z0).

Property 6.3 The set {(x, y, z)/x = 0, y = 0, z ∈ R} is an invariant set. Moreover, these

solutions (x, y, z) tend to the equilibrium point (0, 0, 0) for t→ 0. A sketch of the proof is given

in {[13], page 206}.

It is possible to obtain bounded, invariant sets in which the solutions are contained for a

number of iterations. For this purpose, we consider the following Lyapunov function:

V (x, y, z) = rx2 + σy2 + σ(z − 2r)2.

The orbital derivative with respect to the system is given by:
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LtV = −2σ(rx2 + y2 + bz2 − 2brz).

It is satisfied that LtV ≥ 0 in the domain of

D = {(x, y, z) ∈ R3, rx2 + y2 + b(z − 2r)2 ≤ 4br2.}

If we denote by M the maximum value of V in the ellipsoid bounded by rx2+y2+b(z−2r)2 =

4br2, we define another ellipsoid denoted by

E = {(x, y, z) ∈ R3, V (x, y, z) ≤M + ε.}

Let P be a point of the phase-space outside of E, then, it is also outside D so that

LtV (P ) ≤ −σ < 0, given σ > 0. That means, the function V must decrease along the or-

bit which starts in P , and this means, after some iterations the orbit must enter in E and it

will never leaves it.

Therefore, we can conclude for the case σ = 10, b = 8
3

and r = 28 the flow enters an ellip-

soidal domain E which contains three unstable equilibrium solutions (see figure 6.5). Moreover,

from the boundness of E and the shrinking of each volume-element in the flow, the ω−limit

set may contain irregular orbits which give rise to the name ”strange attractor”.

Figure 6.5: A simulation of the ellipsoid bounded by rx2 + y2 + b(z − 2r)2 = 4br2 with σ = 10,
b = 8

3
and r = 28.
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6.2 Proof of existence of a strange attractor

Once we have seen some of the most important properties of the Lorenz attractor, we prove it

indeed exists. To do so, we base our study on the geometric model used to describe the dy-

namics of the flow introduced by Guckenheimer and widely explained by Warwick Tucker at [11].

At the beginning of the section we define the main concepts we will use throughout the

demonstration. Firstly we define what is the Poincaré map and the problem involved in its

study and secondly we perform a change of variable that will transform the Lorenz equations

into a normal form suitable for further study. Our aim with this study is to find the evolution

of the trajectories analytically. Once we have done this, our next goal is to prove an attracting

set N is in fact the basin of attraction of the Lorenz attractor.

In what follows, we base our work on the proof given in ([11], pages 1199-1202). All the

codes and data needed to carry out the proof are given in

http://www2.math.uu.se/∼warwick/main/thesis 2.1.html

Hence, to do so, we start considering a Poincaré section Σ (see figure 6.6). The flow of (6.1)

can be defined as a Poincaré map Q acting on the section Σ ∈ {z = r − 1}, except for the

line Γ = Σ ∩W S(0), i.e., the intersection between Σ and the stable manifold of the origin. By

the definition of W S(0) we know all points inside this manifold tend to z = 0 (in the previous

section a extended study of the origin has been made) and consequently, these points never

come back to the Poincaré section Σ. Therefore, if we take some point p ∈ Γ, it will lead to

a serious problem in numerical approximation. To overcome this problematic, we introduce a

local change of coordinates of the form t = s+ φ(s).

Our main objective by applying the above change of variable is to transform the Lorenz

equations given in the Jordan normal form ẋ = Ax + F (x) into a normal form which is virtu-

ally linear in a small cube centered at z = 0. Hence, inside this cube, we are able to estimate

the evolution of trajectories analytically, and thereby we avoid the problem of having to use

computers in regions where the flow times are unbounded.

Afterwards, we use a linearization method introduced by Poincaré based on an analytic

change of coordinates to obtain the desired estimates of these trajectories. All of these steps

are summarized in the following preposition, which provides us with the estimates we are

looking for.
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Proposition 6.2 There exists a close to identity change of variables t = s+ φ(s) satisfying

‖φ‖r ≤
r2

2
, r ≤ 1,

such that the Lorenz equations in Jordan normal form ṫ = At + F (t) are transformed into

the normal form ṡ = As+G(s), where G(s) ∈ O10(s1) ∪O10(s2, s3) and also satisfies,

‖G‖r ≤ 7 · 10−9 · r20

1− 3r
, r <

1

3
,

Remark: Some clarifications of the notation used in the above proposition are given below:

• The vector notation s = (s1, s2, s3) and the multi-index notation ans
n = an1,n2,n3s

n1
1 s

n2
2 s

n3
3 .

• We suppose sn ∈ O10(s1) ∪O10(s2, s3) if n1 ≥ 10 and n2 + n3 ≥ 10.

• All the prove will be done inside a neighbourhood V ⊂ C of the point z = 0.

• We consider the following norms,

|s| = max {|Si| , i = 1, 2, 3}

‖f‖r = max {|fi| , |si| ≤ r} .

Figure 6.6: The Poincaré map acting on Σ.

Since the change of variable used and its inverse are analytic, as well as the function G

obtained before, we can use the Cauchy-Riemann estimates to obtain information about its

derivatives, and consequently, to estimate the exit of any trajectory and the entering of any
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tangent vector into the cube. To do this, we split the 3-space of natural numbers N3 into two

disjoint sets U and V such that

V = {(n1, n2, n3) ∈ N3, n1 < 10 or n2 + n3 < 10}

and U is the complementary set of V . Also, considering a function f such that f(s) =∑
n αns

n, we have the images of f by U and V are defined as follows,

{f(s)}u =
∑
n∈U

αns
n,

{f(s)}v =
∑
n∈V

αns
n.

If we apply now the linear operator LA to the function φ(s) we obtain,

LAφ(s) = Dφ(s)As− Aφ(s)

which leaves the spaces of homogeneous vector-valued polynomials of any degree invariant.

In particular, taking it component to component we have,

L∆,i (s
n) = (nλ− λi) · sn, i = 1, 2, 3

and if we substitute it into the following equation

LAφ(s) = F (s+ φ(s))−Dφ(s)G(s)−G(s),

we obtain the two equalities

LA,iφi(s) = {Fi(s+ φ(s))}V , Gi(s) = {Fi(s+ φ(s))}U −
3∑
j=1

∂φi
∂sj

(s)Gj(s), i = 1, 2, 3.

To solve the equation LA,iφi(s) = {Fi(s+ φ(s))}V we will make use of the following series

φi(s) =
∞∑

inl=2

ai,ns
n, i = 1, 2, 3.

Remark: to avoid high-order resonances, any sn appearing in the power series of φ must

satisfy that n ∈ V . This property allows us to prove the following lemma, which gives the

existence of a formal series of φ with the aid of some computer calculations.

Lemma 6.1 For any n ∈ V with |n| ≥ 2, the divisors nλ − λi, i = 1, 2, 3 are bounded away
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from zero. Furthermore, for |n| ≥ 58, there exists a sharp lower bound on the modulus of these

divisors:

|nλ− λi| ≥ |9λ1 + (|n|+ 9)λ3 − λi| , i = 1, 2, 3.

To prove the divisors are bounded away from zero, it is necessary to compute it using the

computer, but we can do an analytic prove to demonstrate the sharp lower bound on the higher-

order divisors. Our goal is to prove that the power series defined before is in fact convergent.

To do so, the problem can be reduced to proving the convergence of a single variable power

series of the form ψ(r) =
∑∞

k=2Ckr
k satisfying ‖φ‖r ≤ ψ(r). The coefficients of φ are given by

the following recursive scheme:

ckr
k =

5

Ω(k)

(r +
k−1∑
i=2

cir
i

)2

k

, k ≥ 2.

where we denote [
∑
αns

n]k = αkS
k and Ω(k) = min {|λn− λi| , |n| = k, n ∈ V, i = 1, 2, 3}.

Due to the recursiveness, the first coefficients have a large effect on the radius of con-

vergence. In order to enlarge the radius, we estimate the 186,576 first coefficients ai,n of φ

and we set ck =
∑
|n|=k maxi=1,2,3 |ai,n| for k = 2, ..., 70 before using the recursive scheme.

This gives a very good bound on the bound of ‖φ‖r. Using similar techniques in Gi(s) =

{Fi(s+ φ(s))}U −
∑3

j=1
∂φi
∂sj

(s)Gj(s), i = 1, 2, 3. we can also get a bound on the normal form G

(in a simpler way since no divisors appear in this equation).

Considering the return plane {z = ρ− 1} where we defined previously our Poincaré section,

we define a region N composed by two disjoint components N− and N+, each one formed by

350 adjacent rectangles (denoted by N±i ) which belongs to the return plane as follows

N = N− ∪N+ =

(
350⋃
i=1

N−i

)
∪

(
3⋃
i=1

N+0
i

)
.

Our main goal in this section will be to prove this region N is in fact the basin of attraction

of the Lorenz attractor. As we have seen in the previous section, one of the most important

properties of the Lorenz attractor is that it has reflection symmetry. This property is preserved

on the two components of the region N , i.e., N+ = S(N−), where S is the symmetry function.

This property allows us to simplify our demonstration, since we only need to do the prove for

one of the components of N .
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Therefore, we consider each of the rectangles Ni of the component N (the sign is omitted

since both of the components can be taken) and we compute a pseudo-path which strictly

contains the flow of Ni. To obtain this pseudo-path, we need to introduce several intermedi-

ate return planes Πm which are either xy−planes if it is satisfied the inequality |ẋ| ≤ |ż| or

yz−planes if |ż| ≤ |ẋ| respectively. We start computing the pseudo-path of the rectangle N1

introducing the first plane Π1, to do so, the rectangle Ni is flowed to the first plane Π1 by using

the Euler Method for a sufficiently large error. In Π1, we take the rectangular hull of the largest

image of N1, giving us a new starting rectangle R1. This rectangle is then flowed to the second

plane Π2 and so on until we return to the Poincaré section Σ as we can see in figure 6.6. In the

case that we have a rectangle Rm too large to continue with the process, we need to partition

it into smaller rectangles, to be able to treat them separately.

In this section, rectangles Ni are being used to simplify the computations needed to sketch

the prove. When a rectangle Ni is flowed between two intermediate planes Πm and Πm+1,

usually the corners of the new rectangle Rm are the ones that yield the largest rectangular

hull Rm+1 ⊂ Πm+1. Hence, we can reduce the error analysis to small pieces of Rm which will

significantly reduce local errors. However, since computers work with finite precision, to be

sure this property holds we need to test it in every step of the method.

We now move on to the cone field, to define this field we associate each rectangle Ni with

a cone ci. Each cone is given by two angles αi and αj whose boundary vectors are ui and vj

respect to the x-axis (see figure 6.7).

Figure 6.7: Cone Ci associated to Ni.

Then, taking the angle θ = π
18

given by θ = αi − αj we use similar techniques as the ones

used in the previous paragraph. Once a rectangle Rm has been flowed from the return plane Πm

to Πm+1, we obtain a box containing the path of the rectangle. Not only that, the method also
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provides us with both upper and lower bounds on the flow time involved. Also, when we solve

the nine equations governing the partial derivatives of the flow, we obtain rigorous bounds on

the evolution of the tangent vectors flowing through the box. If we translate the flowed vectors

onto the plane Πm+1 and we select some pair of vectors um+1 and vm+1 making the largest angle

θm+1, we ensure that the resulting cone contains all images of tangent vectors from the initial

cone. Therefore, at the pseudo-return of Ni (which consists on many overlapping rectangles

Qi,j for j = 1, ..., k(i) such that R(Ni) ⊂
⋃
i,j Qi,j), each rectangle Qi,j is this associated to a

cone represented in the same way as before for j = 1, ..., k(i).

Now taking the widest pair of vectors um and vm at each intermediate plane Πm and con-

sidering that we have θm+1 ≤ θm, then, the minimal expansion of each cone (denoted by εm) is

the smallest growth factor of the images of um and vm. But, if we have θm ≤ θm+1, we must

adjust this estimate by a factor which is quadratically close to unity in θm+1. Hence, at the

return each rectangle Qi,j is associated with an expansion estimate of the form εi,j =
∏n

m=0 ε
m
i,j.

Also, an estimate of all the vectors of the cone associated with Ni are given by εi = minj εi,j.

Using this method, we can avoid the errors associated with computer’s floating point cal-

culations using a high-dimensional analogue of interval arithmetic. This means, each object a

we consider (it could be a rectangle or a tangent vector for example) subjected to computation

is associated with a maximal absolute error ∆a that can be represented as a Cartesian product

of the form

a±∆a = [a1 −∆a1 , a1 + ∆a1 ]× · · · × [an −∆an , an + ∆an ].

As we said before, when an object is flowed from an intermediate plane to another, we

obtain upper and lower bounds of this object. In particular, we can compute upper and lower

bounds of ai+∆ai and ai−∆ai for i = 1, ..., n obtaining a new Cartesian product which strictly

contains a ± ∆a. Moreover, this gives us an error ”sufficiently large” to accept any rounding

error cause by the computation (as we assumed in the beginning of the prove).

This process is valid as far as we do not flow close to a fixed point, since in this case the local

Poincare maps are well defined diffeomorphisms, and the computer can handle all calculations

involved. If some rectangle approaches a fixed point, the process would be interrupted.

Therefore, we have obtained that the program previously defined verifies that
⋃k(i)
j=1 is strictly

contained in Ni for each i, and we conclude Q(N \ Γ) ⊂ int(N), as desired. It also proves the

existence of a forward invariant cone field, i.e., ∀x ∈ N, DQ(x) · C(x) ∈ C(Q(x)).
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We have found regions in N which were contracted in all directions under Q. However, we

prove that all tangent vectors within the cone field are eventually expanded under DQ. This

means, we have been able to prove that given any pseudo-orbit O(x0) = {x0, x1, ..., x0} (where

xi = Qi(x0) the i-iteration of Q) we can divide it into disjoint intervals of the form [x0, ..., xk0 ],

[xk0+1, ..., xk1 ], ..., [xkn−1+1, ..., xkn ] where all but the first piece accumulate an expansion factor

greater than 2 (which leads to the transitivity of the function).



Chapter 7

Conclusion

• After reading this paper, it is important clear out that the field of dynamical systems is

a fairly new branch of mathematics and there is still a long way to be explored. The aim

of this paper is to introduce the concept of the attractor, and to show its great relevance

in the study of dynamical systems. Although my aim was to show some of the most

important properties discovered so far of easier attractors as the fixed points and most

elaborated ones as the Lorenz attractor, there are still many unanswered questions about

this subject.

• In the process of writing this paper I have discovered the exciting world of dynamical

systems where practically any physical system whose state evolves over time can be mod-

elled by a dynamical system (regardless of the area to which it belongs). In addition, the

number of attractors that exist in nature is enormous, from natural events such as the

swirl of water that appears when the bathtub is unclogged or the tides of the ocean to

stranger ones discovered experimentally, all of them of a formidable complexity that is

not possible to describe even on five papers like this. The great variety of attractors that

exist, from the easiest to the most complex, can give rise to surprising results. And these

attractors can occur not only in complex functions, a simple linear function can have a

lot of different attractors.

• In my opinion I have reached all the goals I had in mind, but maybe I would have liked

to do a deeper study on the strange attractors at the end of this dissertation. However,

due to time constraints and the complexity of the subject we have at hand, it has not

been possible for me to do so.

• The planning of the work made since the beginning has been successful, but maybe I

should have started writting earlier to have been able to add this last section about

69



70 Conclusion

strange attractors (anyways, an introduction to them has been presented with the Lorenz

attractor).

• In a future work I would love to dive deeper on attractors. In this dissertation I was only

able to show the different kind of attractive points there exist (together with a brief expla-

nation of the Feigenabum attractor and the Lorenz attractor), but in the future I would

love to know something more about periodic orbits who are also attractive (there is also

a whole theory about this). I think there are many things that have remained unexplored

and my aim would be to study them in future projects if I have the opportunity.
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