
Gridifying IBM's Generic Log Adapter to Speed-up the Processing of Log
Data

Claudi Paniagua

IBM GTS, Virtualization and Grid Computing EBO
SPGIT IMT IT, Barcelona, Spain

cpaniagua@es.ibm.com

Fatos Xhafa
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
Barcelona, Spain
fatos@lsi.upc.edu

Thanasis Daradoumis

Open University of Catalonia
 Department of Computer Science, Multimedia, and Telecommunication

Rbla. Poblenou, 156. 08015 Barcelona, Spain
 adaradoumis@uoc.edu

Abstract

Problem determination in today's computing
environments consumes between 30 and 70% of an
organization’s IT resources and represents from one
third to one half of their total cost of ownership. The
first step to cutting down costs in this area and to
enable autonomic computing systems is to have all
parts of the system report status in a common log data
format and semantics in order to be able to exploit the
status information of the system as a whole. The
Generic Log Adapter (GLA) is a generic parsing
engine shipped with the IBM’s Autonomic Computing
Toolkit that has been conceived to convert proprietary
log data into a standard log data event-based format in
real time. However, in order to provide generic
support for parsing the majority of today’s
unstructured log data formats the GLA makes heavy
use of regular expressions that incur in performance
limitations. Until now all the approaches that have
been proposed to increase GLA’s performance have
revolved around fine-tuning the set of regular
expressions used to configure the GLA for a particular
log data format or writing specific parsing code. In
this work we propose a very new approach consisting
in transparently parallelizing the GLA by taking

advantage of its internal architecture and the fact that
structuring log data is a task that lends itself very well
to parallelization. We present a master-worker
strategy that “gridifies” the GLA efficiently in a
completely transparent way for the user.

1. Introduction

The goal of problem management, as defined by the
IT Infrastructure Library (ITIL) [3], the de facto global
service management standard, is to minimize the
impact of situations in the IT infrastructure that
adversely affects the business and to prevent those
situations by initiating actions to permanently correct
their root cause.

Problem management in today enterprise
information systems is not an easy task:
troubleshooting IT problems in medium and large
companies can consume anywhere from 30 to 70
percent of the company’s IT resources, however
problem management is a critical task, for instance,
outage costs per hour on business-critical information
systems can range from thousands to millions of
dollars [2].

One of the factors contributing to the difficulty of
problem management is the multitude of different ways
in which the different parts of an enterprise
information system do report status. Log files are a
common strategy for this, but even then a simple web-
based business application may easily contain as many
as 25 to 40 different log files, each one reporting status
information using its own (often inconsistent) data
format and semantics. Extracting out what’s going on
in the business application as a whole from these
fragmented and inconsistently formatted data sources
is a time-consuming and error-prone manual process
that is only done reactively and off-line after a problem
has occurred in order to diagnose it. The disparity and
lack of consistency in both the format and semantics of
log data makes it more difficult to write management
tools that ease problem determination; less, proactively
monitoring and correlating this log data in real time in
order to automatically identify problems as they
happen (or even before they happen).

The goal of autonomic computing [4] is to provide
open, intelligent, resilient systems with self-
management characteristics. This sounds rather
ambitious; however, there’s an evolutionary roadmap
to get to autonomic computing. The first step is
obvious: standardize log data format and semantics in
order to enable the automation of problem management
activities across the entire enterprise information
system.

The Common Base Event (CBE) format [5] is
IBM’s implementation of the WSDM Event Format
(WEF) OASIS standard [6]. CBE is an XML based
universal log data format defined in XML Schema that
organizes log data in events. An event is defined as the
occurrence of a situation of interest. Log data sources
are supposed to report status information as a temporal
succession of discrete events, i.e., occurring situations.
In CBE each situation is represented as an XML
document that has a structure based on a “3-tuple”
format which includes: (1) the component that
originates the situation, (2) the component that
observes the situation, and (3) the data that describes
the situation, including correlation information.

If we had the components of our enterprise
information system logging data as discrete events in
the CBE format we could then move to the next step in
the roadmap to autonomic computing, that is, since
autonomic computing depends on being able to
monitor changes in state of each part of the system as
soon as they occur we need to deploy a
communications infrastructure that allows us to
connect in real time CBE sources to CBE consumers
such as correlation engines, problem management
tools, autonomic managers, etc. that automate
monitoring and problem management.

An Event Driven Architecture (EDA) [7] allows
connecting event emitters to event consumers in real
time without introducing any coupling between them
and is extremely well suited for supporting powerful
techniques for monitoring and problem management
such as complex event processing [8]. The Common
Event Infrastructure (CEI) [9] is IBM’s
implementation of the main building blocks of an
Event Driven Architecture and a fundamental piece of
IBM’s autonomic computing architecture that mediates
between the CBE emitters and the problem
management and monitoring tools.

The conclusion we can draw is that once a common
data model to represent situations is in place and a
suitable communications infrastructure is deployed to
flexibly and selectively deliver those situations to
interested parties in real time, there’s no limit to the
sophistication of problem management techniques and
abstractions that can be constructed and self-managing
systems become possible. Nonetheless, the whole thing
depends on the log data sources publishing status
information as dictated by the common data model.

Because there is no cost-effective way to change
existing products and legacy applications or solutions
to log data in the CBE format, the IBM autonomic
computing architecture includes adapters to translate
disparate existing logs to the CBE format. The IBM’s
Generic Log Adapter (GLA) [10] is an implementation
of such an adapter conceived to ease the transformation
of existing log data to the CBE format in real time. We
will call log data normalization the process of
transforming existing log data to the CBE format. The
GLA uses a rules-based approach to normalize log
data.

In this paper we are concerned with the efficiency
of processing log data introduced above. Indeed, the
computational cost is the main obstacle to processing
this data in real time [4] as it is very costly and due to
this in real situations this processing tends to be done
offline in order to avoid harming the performance of
the logging application. But as it takes place afterwards
the solution to the problem management definition in
IT enterprises, it is not satisfactory solved. Certainly,
sequential approaches for the processing of log data
cannot overcome this problem due to the huge amount
of data to be processed. Grid technology is increasingly
being used to reduce the overall, censored time in
processing data by offloading these computationally
costly tasks from the computing elements running
them onto the Grid. Computational Grids [11] have
emerged as a way to offer large computing capacity for
solving complex problems by coupling together
heterogeneous resources through interconnection
networks. Computational Grids are thus an attracting
alternative for the problem of processing in real time or

in quasi real time large amounts of log data collected
during the daily activity of IT enterprises.

By considering a Grid-based approach for
processing log data, we show the benefits of the Grid
by offloading the online processing of log data onto the
grid. Moreover, we show how a simple Master-Worker
scheme sufficed to achieve considerable speed-up. We
notice that our approach is generic and can be applied
for structuring event log data in general.

The rest of the paper is organized as follows. In
Section 2 we explain how the normalization of Log
Data with IBM’s Generic Log Adapter is done. Section
3 presents some considerations about the performance
of the Generic Log Adapter. Section 4 introduces how
the problem of structuring log data can be parallelized
using the Master-Worker paradigm to parallelize
IBM’s Generic Log Adapter. Finally in Section 5 we
give details on the implementation and in section 6 we
present the most relevant results of this work.

2. Normalizing Log Data with IBM’s
Generic Log Adapter

This section describes how the GLA is architected
and how it processes log data sources to generate and
output CBE instances [12] in order to get a general
understanding.

The GLA is written in Java and is architected
following a chain of responsibility design pattern [13]
that chains five different types of components
corresponding to the five different phases in which the
GLA organizes the normalization of log data (see Fig.
1). These component types are in the order in which
they are arranged in the chain:

i. the sensor component: this component monitors
one log data source (i.e. a log file) reading it
line by line as it changes. When the sensor has
read a preconfigured number of new lines it
passes them to the extractor component.

ii. the extractor component: this component
receives a collection of lines from the sensor
component and parses it to delimit the log
record boundaries (i.e. a log record may span
multiple lines)

iii. the parser component: this component receives
a collection of log records from the extractor
component and parses them to map each one to
a set of CBE attributes;

iv. the formatter component: this component
receives a collection of sets of CBE attributes
from the parser component and for each one
builds the corresponding CBE instance based
on the attributes of the set, and

v. the outputter component: this component
receives a collection of CBE instances from the
formatter component and persists or sends them
to somewhere else in the infrastructure, usually
the CEI.

At runtime a component is an instance of a Java

class. All GLA components implement the
IComponent interface that defines methods for
managing the component properties and for starting
and stopping the component. The IComponent
interface is furtherly extended by two additional
interfaces, IContext and IProcessUnit. The
IProcessUnit interface defines the handler method of
the chain, public Object[] processEventItems(Object[]
msgs), this method is implemented by each component
in the chain to provide its specific processing.

Figure 1: Architecture of the GLA

The chain is managed and orchestrated by a context

component, i.e. a component implementing the
IContext interface. The remaining interfaces, ISensor,
IExtractor, IParser, IFormatter and IOutputter extends
the IProcessUnit interface to provide specific methods
for each one of the sensor, extractor, parser, formatter
and outputter components respectively (see Fig. 2
below).

The context component is a runnable (i.e. active)
component that runs in its own thread the main log
data processing loop for normalizing a particular log
data source in real time. The loop’s step is depicted in
Fig. 3, where the context component calls the ISensor’s
method public Object[] getNext() which blocks until
the configured number of new lines of log data is
available and returns these; then the context component
calls the IProcessUnit method processEventItems in
each of the processing components in the order
explained, passing as argument to the next call the
results returned by the previous call.

Runnable

IContext IComponent

IProcessUnit

ISensor IExtractor IParser IFormatter IOutputter

*

GLA *

 Figure 2: Diagram of GLA’s Class Hierarchy

IContext ISensor IExtractor IParser IFormatter

run()
txt=getNext()

msgs=processEventItems(txt)

cbeattrs=processEventItems(msgs)

cbes=processEventItems(cbeattrs)

IOutputter

processEventItems(cbes)

 Figure 3: The sequence diagram of the context
component

The GLA provides default implementations for all

these interfaces but it is also architected following a
plug-in design that allows the user to plug custom
developed components. In fact, the specific java
classes that conform a context (i.e. a chain of
components) to normalize a particular log data source,
together with their configuration parameters, can be
specified using an XML file, called the adapter
configuration file. The GLA takes this configuration
file as an initial argument and instantiates the chain as
configured. One can define more than one context in
the same adapter file, thus the same GLA instance is
able to normalize more than one different log data
source.

The GLA ships with a very rich Eclipse [14] based
development environment that allows to visually
configuring contexts in a very user-friendly way, as
well as to test and debug those contexts on sample log
data (see [15]). The output of the development
environment is an XML file (i.e. the adapter file) that

you can use to instantiate a GLA instance that will
transform the log data sources as described by the
XML file.

3. Considerations of the Performance of
the Generic Log Adapter

In this section we analyze some performance

considerations regarding the GLA that later motivated
our approach to parallelize it. We start by taking a
slightly more formal look at the process of normalizing
log data.

Log data normalization can be modeled using
elements of formal language theory [16]. The log data
generated by a log data source between two instants in
time can be represented by a word (i.e. a string), ω,
from a given alphabet, Σ, that contains all the
characters that the log data source may possibly use to
represent log data. The sensor component then reads
this word as it is being generated, thus outputs a
sequence of sub-words of ω, say, ω1, ω2 ,…, ωm. The
extractor component acts on these sub-words one at a
time, outputting a collection of sub-words, E(ωi) =
ωi1,…,ωin, of ωi each one corresponding to a different
log record or message and thus verifying one simple
but very important property: they are independent units
of structure, that is, each one of these sub-words
contains all the information the parser component
needs to access in order to be able to map it into a set
of CBE attributes, P(ωij), that the formatter component
will transform into a CBE instance, F(P(ωij)).

Now we can see that to normalize a piece of log
data ωi, we need to compute F(P(E(ωi)) where
P(E(ωi))=P(ωi1)…P(ωin) and F(P(E(ωi))=F(P(ωi1))…
F(P(ωin)). Let’s roughly compare the relative time
complexity of the computations E and P for the case of
the default implementations for the extractor and parser
components that come with the GLA1. Both
implementations use regular expressions specified by
the user at configuration time through the eclipse-based
tooling, however, the way in which the two types of
components use the regular expressions differ
considerably and have direct implications in
performance.

The extractor component default implementation
uses two regular expressions, one to define the pattern
that starts a new log record and another one to define
the pattern that ends a log record. The extractor scans
ωi looking for these patterns, each time it finds a match
for the start pattern it includes the characters that

1 The computation, F, that the formatter component performs
is essentially different from P and E and thus cannot be
compared. It boils down to creating n CBE instances, ej, and
then filling it as specified by P(ωij).

follow into a new sub-word ωij until it finds a match
for the end pattern2.

On the other hand the sensor component default
implementation uses an ordered collection of regular
expressions for each CBE attribute that is to be filled
from log data. It works as follows, for each sub-word
ωij, for each CBE attribute to be filled and for each
regular expression associated to the CBE attribute (in
the order they were defined by the user) the sensor
component scans ωij looking for a match, if one is
found the matching characters are used as the value for
the CBE attribute and no more regular expressions
associated to this CBE attribute are essayed for ωij. If
no match is found the CBE attribute if left with an
undefined value.

Now the time complexity of matching a regular
expression in a string is directly proportional to (1) the
length of the regular expression, (2) the complexity of
the regular expression and (3) the length of the string.
While the length of the string that the extractor and
parser implementations need to scan is the same (i.e.
ωi=ωi1…ωin), the extractor implementation only needs
to essay at most two, usually very simple and short3,
regular expressions, while the sensor component needs
to essay usually a large number of regular expressions
that tend to be complex and lengthy [17]. This has
serious implications for performance and is the reason
why some attention has been put in suggesting how to
write efficient regular expressions for the GLA
[17,18,19].

Since the GLA’s main processing loop is a chain of
synchronous calls that must all finish before the next
iteration can start, the parser component becomes a
bottleneck: this may not be a problem if log data is
generated at a slower rate than that at which the GLA
is able to process it, however if this is not the case a
remnant of log data pending to be processed is
produced introducing thus a delay that may even
increase over time and might eventually defeat the
objective of being able to normalize log data in real
time. On the other hand, even in scenarios where the
GLA is able to process the aggregated log data
generation rate in time, it might not be acceptable for
the GLA to “steal” the CPU and memory resources
required from production applications. It should be
noticed that in today enterprise information systems
log data is often tuned to be generated at slow rates for
performance reasons, often leaving unlogged crucial
information for problem determination. Being able to
process more log data efficiently would allow to
increase the amount of information logged thus easing

2 One can specify whether the characters that match the start
and end patterns should be included in the sub-word or not.
3 Most of the time log records are separated by line breaks.

problem determination. On the other hand when
considering log data generation rates we should
consider the aggregated rate of all log data sources
running in the same machine which might considerably
higher than that of a single log data source.

4. A Master-Worker Strategy to Parallelize
IBM’s Generic Log Adapter

Motivated by the previous considerations on
performance we present in this section a high level
approach of how the GLA can be parallelized using the
Master-Worker (MW) paradigm at the interface
between the extractor and the parser components.

The MW paradigm [20,21] has been widely used
for developing parallel applications. In this model there
are two different types of entities: master and worker.
The master is in charge of the main flow of the
program; it decomposes the main task into subtasks
(sometimes this reduces to splitting the problem’s
input into parts) and sends these to the workers. The
workers process the subtasks as soon as they receive
them and send back the result to the master, which
uses them in its main flow of computation.

The MW model has proved to be efficient in
developing parallel applications with different degrees
of parallel granularity and is particularly useful when
the partitioning of the problem is easy to compute and
the dependencies between tasks are low or inexistent.
As can be seen from the description of GLA from
Sections 2 and 3, this is precisely the case for the GLA
since:

i. the extractor component outputs independent
units of structure (i.e. individual log records)
which means that if the problem is partitioned
using the boundaries of these units no
dependencies between tasks will exist, and

ii. the input of the problem can be easily
partitioned in these units of structure since, as
we have seen, these can be done using at most
two simple regular expressions.

Given all the above, the GLA can be naturally

parallelized using the MW paradigm by grouping the
sensor and extractor components at the master side
and leaving the parser, formatter and outputter
components at the workers side, see Fig. 4.

MASTER

WORKERS

Figure 4: The scheme of MW paradigm applied to
structuring log data

The advantage of using MW approach is threefold.

On the one hand we decouple the sensor and extractor
components from the parser, formatter and outputter
components, that is, in our approach the master’s main
processing loop does not need to wait for the parser,
formatter and outputter components to finish its
processing, the extractor component just passes the
collection of log records to some worker and returns
immediately. The worker then performs the rest of the
processing asynchronously in another machine. This
effectively shortens the main processing loop at the
master side, where the log data is being generated, to
just the sensor and extractor components, thus
increasing the rate at which log data sources are
monitored for changes. On the other hand we are able
to offload the bulk of log data normalization
computation to machines other than the ones that are
producing the log data, which usually require as much
resources as possible for their production running
applications. Last but not least, we are able to
normalize log data in parallel thus speeding-up the
processing nad making it more real-time.

However it should be noticed that there’s a
drawback on the approach: the master is not in full
control of the size of the tasks that it sends to workers
since log records can have arbitrary size and we do not
control neither the rates at which log data sources do
produce log data. This fact reduces the capacity of the
master to play with the task size in order to better adapt
to the different computational capacities of the workers
and/or to their variable workloads, especially if the
sizes of log records are too large or the log data
generation rate is too low. In general we will be only
able to play with the task size if the real time
processing requirements are not very strict thus
allowing us to accumulate log data of low volume log
data sources until the task of the size is “big enough”.

We can conclude that a parallel implementation of
log data normalization is applicable to high volume log
data sources, but also to low volume ones provided that
they have low real time processing requirements.

5. Transparent Parallelization of IBM’s
Generic Log Adapter

In order to experimentally test the feasibility of the
MW paradigm for parallelizing the normalization of
log data we have implemented a minimal Grid
prototype that parallelizes the GLA. We used the
Globus Toolkit 3.2 and we deployed the prototype on
the Planetlab platform. Both GlobusToolkit 3.2 and
Planetlab are briefly described next.

The Globus Toolkit (GT) [29] is the actual defacto
Grid middleware standard. Version 3 of GT (GT3) is a
refactoring of version 2 in which every functionality is
exposed to the world via a Grid service. Grid services
are basically stateful web services. The core of the GT
is a Grid service container implemented in Java that
leverages and extends the Apache’s AXIS web services
engine.

Planetlab [30] is an open platform for developing,
deploying and accessing planetary-scale services. It is,
at the time of this writing, composed up of 726 nodes
hosted in 354 different sites. Each Planetlab node is an
IA32 machine that must comply with minimum
hardware requirements (i.e. 1GHz PIII + 1Gb RAM)
running the same base software, basically a modified
linux operating system offering services to create
virtual isolated partitions in the node, called slivers,
which look to users as the real machine. Planetlab
allows every user to dynamically create up to one
sliver in every node, the set of slivers assigned to a
user form what is called a slice. It is said that a
Planetlab node can run up to 100 concurrent slivers.

In order to test our GLA grid prototype we turned
Planetlab into a Grid by installing the GT3’s Grid
service container in every sliver of our slice. Moreover,
our objective was to transparently parallelize the GLA,
that is, to allow users to run their adapter files
unmodified on the parallelized GLA (PGLA). In order
to achieve this we reused the GLA code to make two
versions of it: the master GLA and the worker GLA.
The worker GLA is a grid service that exposes a single
operation akin to the original GLA handler operation
processItemEvents but that also receives the adapter
file as an additional argument to the array of log
records to be processed. The implementation of this
operation uses the original GLA code to instantiate the
chain of components as specified by the adapter file,
then a minor modification is introduced that allows the
chain to be initiated in its own thread at the parser

component, bypassing the sensor and extractor
components. This is the only modification required to
the original GLA code to implement the worker GLA.
In other words, the worker GLA executes exactly the
same java bytecode (except at initialization time) to
process the log data as the original GLA. This makes
very easy and consistent the performance comparison
between the sequential and parallel approaches. We
deployed the worker GLA grid service on the GT3’s
containers of every sliver of our Planetlab slice.

On the other hand, the master GLA is again the
original GLA code with a minor modification that
forces the instantiation in the chain of a proxy
component in between the extractor and parser
components and modifies the chain execution so that
only the third first components are called, that is, the
sensor, extractor and proxy components. The proxy
component reads in its processItemEvents from a
configuration file the available GLA worker services
method and implements a simple list scheduling
strategy to forwards calls to the worker GLAs by
invoking the corresponding grid services. This is a
very simple scheduling strategy but notice that our
objective was not to create a full-blown GT3-based
MW implementation of the GLA but rather to show the
feasibility of a transparent parallel Grid-based
implementation of the GLA using the MW paradigm
minimizing the amount of code to be modified from
the original GLA.

6. Conclusions

 In this paper, we first have motivated the need to
structure and process in real time the large amount of
information generated in IT enterprises. The problem
of structuring and processing log data is gaining
importance due its usefulness in problem
determination, which is shown to be very costly and
needing time superior to that of a single computer or of
LAN of computers. We have considered the case of
IBM's Generic Log Adapter and shown how to use a
grid-based approach to efficiently speed-up the
processing of log data. Although we have
particularized our approach for the IBM's Generic Log
Adapter, our approach is applicable in general to the
structuring and processing of log data [26] .

Thus, our results show the feasibility of
parallelizing the problem of structuring any plain text
event log data, achieving considerable speed up,
provided that (1) the normalization algorithm’s running
time function, f(n), be of strictly upper order than the
transmission time function, n/B, that measures the time
required to transmit a piece of data of size n for a
bandwidth B. (i.e. f(n) = ω(n/B)), and (2) the log data

can be easily parsed (i.e. with few and simple regular
expressions) in order to be broken in independent units
of structure (i.e. log records). These conditions are
expected to be satisfied by both log data and
structuring algorithms, especially the ones that can be
found in generic log data structuring/normalizing
frameworks such as the GLA which are implemented
using regular expressions.

Acknowledgments

This work has been partially supported by the Spanish
MCYT project TSI2005-08225-C07-05.

7. REFERENCES

1. D.A. Patterson, A. Brown, P. Broadwell, G.

Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox,
E. Kiciman, M. Merzbacher, D. Oppenhiemer, N.
Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft,
Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case
Studies, U.C. Berkeley Computer Science
Technical Report, UCB//CSD-02-1175, University
of California, Berkeley (March 15, 2002)

2. Brad Topol, David Ogle, Donna Pierson, Jim
Thoensen, John Sweitzer, Marie Chow, Mary Ann
Hoffmann, Pamela Durham, Ric Telford, Sulabha
Sheth, Thomas Studwell, Autonomic problem
determination : A first step towards self-healing
computing systems, IBM Autonomic Computing
(October 2003)

3. IT Infrastructure Library, http://www.itil.org
4. Hausi A. Müller, Liam O’Brien, Mark Klein, Bill

Wood, DTIC report, Autonomic Computing,
(April 2006)

5. David Ogle, Heather Kreger, Abdi Salahshour,
Jason Cornpropst, Eric Labadie, Mandy Chessell,
Bill Horn, John Gerken, James Schoech, Mike
Wamboldt, Canonical Situation Data Format:
The Common Base Event V1.0.1, IBM
Corporation (2003)

6. Web Services Distributed Management:
Management Using Web Services (MUWS 1.1)
Part 1, OASIS Standard (August 2006)

7. Hohpe, Gregor, “Programming Without a Call
Stack – Event-driven Architectures”,
http://www.eaipatterns.com/docs/EDA.pdf (2006)

8. Luckham, David C. Frasca, Brian, Complex
Event Processing in Distributed Systems (1998)

9. Best Practices for the Common Base Event and
Common Event Infrastructure - Guidelines for
Using IBM's Initial Implementation of the
WSDM Event Format, IBM Corporation 2006,
ftp://www6.software.ibm.com/software/developer/l
ibrary/autonomic/books/cbepractice/Common
Base Event Best Practices-1.0_final.pdf

10. Problem Determination Using Self-Managing
Autonomic Technology, IBM Redbook (June
2005)

11. I. Foster and C. Kesselman. The Grid – Blueprint
for a New Computing Infrastructure. Morgan
Kaufmann Publishers, 1998

12. Giguere, Eric, Create GLA components using
Release 2 of the Autonomic Computing Toolkit,
IBM Corporation, developerWorks tutorial
(December 2004)

13. Gamma, Erich, Helm, Richard, Johnson, Ralph,
Vlissides, John, Design Patterns, Addison-Wesley
(2000)

14. Eclipse, http://www.eclipse.org/
15. An introduction to the Generic Log Adapter

(video),
http://dev.eclipse.org/viewcvs/indextools.cgi/hyad
es-
home/docs/gla/GLA_Intro/GLA_Intro.viewlet/GL
A_Intro_viewlet_swf.html

16. J. E. Hopcroft, R. Motwani, and J. D. Ullman,
Introduction to automata theory, languages, and
computation, 2nd ed., Addison-Wesley, 2001.

17. Balan Subramania. Improve the run-time
performance of the Generic Log Adapter, Part
1: A guide to writing efficient rule sets,
developerWorks, http://www-
128.ibm.com/developerworks/autonomic/library/a
c-savvy/index.html (web page as of june 2004)

18. Balan Subramania. Improve the run-time
performance of the Generic Log Adapter, Part
2: A guide to writing efficient custom plug-ins,
developerWorks, http://www-
128.ibm.com/developerworks/autonomic/library/a
c-savvy2/index.html (web page as of june 2004)

19. Rohit Shetty, High-performance rule writing for
the Generic Log Adapter, developerWorks,
http://www-
128.ibm.com/developerworks/autonomic/library/a
c-glaperf/ (web page as of march 2004)

20. Goux, J.P., Kulkarni, S., Linderoth, J. and Yoder,
M. (2000): An enabling framework for master-
worker applications on the computational Grid.
In 9th IEEE International Symposium on High
Performance Distributed Computing (HPDC'00).
IEEE Computer Society.

21. Elisa Heymann, Miquel A. Senar, Emilio Luque, Miron
Livny (2000) Adaptive Scheduling for Master-
Worker Applications on the Computational
Grid. Proceedings of the First IEEE/ACM International
Workshop on Grid Computing. LNCS, Vol. 1971, 214 -
227

22. Felix Salfner, Steffen Tschirpke, Miroslaw Malek,
Humboldt-University Berlin (2004)
Comprehensive Logfiles for Autonomic
Systems. 18th International Parallel and
Distributed Processing Symposium (IPDPS'04) -
Workshop 11

23. David Bridgewater, Standardize messages with
the Common Base Event model,
developerWorks, http://www-
128.ibm.com/developerworks/autonomic/library/a
c-cbe1/index.html (web page as of february 2004)

24. Using the Generic Log Adapter with the Log
and Trace Analyzer, developerWorks Tutorial

25. John P. Rouillard, Real-time log file analysis
using the Simple Event Correlator (SEC), 18th
Large Installation System Administration
Conference (november 2004)

26. Fatos Xhafa, Santi Caballé, Thanasis Daradoumis,
Nan Zhou, A Grid-Based Approach for
Processing Group Activity Log Files, First
International Workshop on Grid Computing and
its Application to Data Analysis (october 2004)h

27. Genady Grabarnik, Abdi Salahshour, Balan
Subramanian, Sheng Ma, IBM T.J. Watson
Research Center (2004) Generic Adapter Logging
Toolkit. International Conference on Autonomic
Computing (ICAC'04)

28. Autonomic Computing Toolkit : http://www-
106.ibm.com/developerworks/autonomic/overview
.html (web page as of February 2005)

29. The Globus Toolkit, http://www.globus.org/toolkit/
30. Planetlab, http://www.planet-lab.org/

