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Abstract 

 
Problem determination in today's computing 
environments consumes between 30 and 70% of an 
organization’s IT resources and represents from one 
third to one half of their total cost of ownership. The 
first step to cutting down costs in this area and to 
enable autonomic computing systems is to have all 
parts of  the system report status in a common log data 
format and semantics in order to be able to exploit the 
status information of the system as a whole. The 
Generic Log Adapter (GLA) is a generic parsing 
engine shipped with the IBM’s Autonomic Computing 
Toolkit that has been conceived to convert proprietary 
log data into a standard log data event-based format in 
real time. However, in order to provide generic 
support for parsing the majority of today’s 
unstructured log data formats the GLA makes heavy 
use of regular expressions that incur in performance 
limitations. Until now all the approaches that have 
been proposed to increase GLA’s performance have 
revolved around fine-tuning the set of regular 
expressions used to configure the GLA for a particular 
log data format or writing specific parsing code. In 
this work we propose a very new approach consisting 
in transparently parallelizing the GLA by taking 

advantage of its internal architecture and the fact that 
structuring log data is a task that lends itself very well 
to parallelization. We present a master-worker 
strategy that “gridifies” the GLA efficiently in a 
completely transparent way for the user. 
 

 
1. Introduction 
 

The goal of problem management, as defined by the 
IT Infrastructure Library (ITIL) [3], the de facto global 
service management standard, is to minimize the 
impact of situations in the IT infrastructure that 
adversely affects the business and to prevent those 
situations by initiating actions to permanently correct 
their root cause.  

Problem management in today enterprise 
information systems is not an easy task: 
troubleshooting IT problems in medium and large 
companies can consume anywhere from 30 to 70 
percent of the company’s IT resources, however 
problem management is a critical task, for instance, 
outage costs per hour on business-critical information 
systems can range from thousands to millions of 
dollars [2]. 



One of the factors contributing to the difficulty of 
problem management is the multitude of different ways 
in which the different parts of an enterprise 
information system do report status. Log files are a 
common strategy for this, but even then a simple web-
based business application may easily contain as many 
as 25 to 40 different log files, each one reporting status 
information using its own (often inconsistent) data 
format and semantics. Extracting out what’s going on 
in the business application as a whole from these 
fragmented and inconsistently formatted data sources 
is a time-consuming and error-prone manual process 
that is only done reactively and off-line after a problem 
has occurred in order to diagnose it. The disparity and 
lack of consistency in both the format and semantics of 
log data makes it more difficult to write management 
tools that ease problem determination; less, proactively 
monitoring and correlating this log data in real time in 
order to automatically identify problems as they 
happen (or even before they happen).  

The goal of autonomic computing [4] is to provide 
open, intelligent, resilient systems with self-
management characteristics. This sounds rather 
ambitious; however, there’s an evolutionary roadmap 
to get to autonomic computing. The first step is 
obvious: standardize log data format and semantics in 
order to enable the automation of problem management 
activities across the entire enterprise information 
system.  

The Common Base Event (CBE) format [5] is 
IBM’s implementation of the WSDM Event Format 
(WEF) OASIS standard [6]. CBE is an XML based 
universal log data format defined in XML Schema that 
organizes log data in events. An event is defined as the 
occurrence of a situation of interest. Log data sources 
are supposed to report status information as a temporal 
succession of discrete events, i.e., occurring situations. 
In CBE each situation is represented as an XML 
document that has a structure based on a “3-tuple” 
format which includes: (1) the component that 
originates the situation, (2) the component that 
observes the situation, and (3) the data that describes 
the situation, including correlation information. 

If we had the components of our enterprise 
information system logging data as discrete events in 
the CBE format we could then move to the next step in 
the roadmap to autonomic computing, that is, since 
autonomic computing depends on being able to 
monitor changes in state of each part of the system as 
soon as they occur we need to deploy a 
communications infrastructure that allows us to 
connect in real time CBE sources to CBE consumers 
such as correlation engines, problem management 
tools, autonomic managers, etc. that automate 
monitoring and problem management.  

An Event Driven Architecture (EDA) [7] allows 
connecting event emitters to event consumers in real 
time without introducing any coupling between them 
and is extremely well suited for supporting powerful 
techniques for monitoring and problem management 
such as complex event processing [8]. The Common 
Event Infrastructure (CEI) [9] is IBM’s 
implementation of the main building blocks of an 
Event Driven Architecture and a fundamental piece of 
IBM’s autonomic computing architecture that mediates 
between the CBE emitters and the problem 
management and monitoring tools.  

The conclusion we can draw is that once a common 
data model to represent situations is in place and a 
suitable communications infrastructure is deployed to 
flexibly and selectively deliver those situations to 
interested parties in real time, there’s no limit to the 
sophistication of problem management techniques and 
abstractions that can be constructed and self-managing 
systems become possible. Nonetheless, the whole thing 
depends on the log data sources publishing status 
information as dictated by the common data model. 

Because there is no cost-effective way to change 
existing products and legacy applications or solutions 
to log data in the CBE format, the IBM autonomic 
computing architecture includes adapters to translate 
disparate existing logs to the CBE format. The IBM’s 
Generic Log Adapter (GLA) [10] is an implementation 
of such an adapter conceived to ease the transformation 
of existing log data to the CBE format in real time. We 
will call log data normalization the process of 
transforming existing log data to the CBE format. The 
GLA uses a rules-based approach to normalize log 
data. 

In this paper we are concerned with the efficiency 
of processing log data introduced above.  Indeed, the 
computational cost is the main obstacle to processing 
this data in real time [4] as it is very costly and due to 
this in real situations this processing tends to be done 
offline in order to avoid harming the performance of 
the logging application. But as it takes place afterwards 
the solution to the problem management definition in 
IT enterprises, it is not satisfactory solved. Certainly, 
sequential approaches for the processing of log data 
cannot overcome this problem due to the huge amount 
of data to be processed. Grid technology is increasingly 
being used to reduce the overall, censored time in 
processing data by offloading these computationally 
costly tasks from the computing elements running 
them onto the Grid. Computational Grids [11] have 
emerged as a way to offer large computing capacity for 
solving complex problems by coupling together 
heterogeneous resources through interconnection 
networks. Computational Grids are thus an attracting 
alternative for the problem of processing in real time or 



in quasi real time large amounts of log data collected 
during the daily activity of IT enterprises.  

By considering a Grid-based approach for 
processing log data, we show the benefits of the Grid 
by offloading the online processing of log data onto the 
grid. Moreover, we show how a simple Master-Worker 
scheme sufficed to achieve considerable speed-up. We 
notice that our approach is generic and can be applied 
for structuring event log data in general. 

The rest of the paper is organized as follows. In 
Section 2 we explain how the normalization of Log 
Data with IBM’s Generic Log Adapter is done. Section 
3 presents some considerations about the performance 
of the Generic Log Adapter. Section 4 introduces how 
the problem of structuring log data can be parallelized 
using the Master-Worker paradigm to parallelize 
IBM’s Generic Log Adapter. Finally in Section 5 we 
give details on the implementation and in section 6 we 
present the most relevant results of this work. 

 
2. Normalizing Log Data with IBM’s 
Generic Log Adapter 
 

This section describes how the GLA is architected 
and how it processes log data sources to generate and 
output CBE instances [12] in order to get a general 
understanding. 

The GLA is written in Java and is architected 
following a chain of responsibility design pattern [13] 
that chains five different types of components 
corresponding to the five different phases in which the 
GLA organizes the normalization of log data (see Fig. 
1). These component types are in the order in which 
they are arranged in the chain:  

i. the sensor component: this component monitors 
one log data source (i.e. a log file) reading it 
line by line as it changes. When the sensor has 
read a preconfigured number of new lines it 
passes them to the extractor component. 

ii. the extractor component: this component 
receives a collection of lines from the sensor 
component and parses it to delimit the log 
record boundaries (i.e. a log record may span 
multiple lines)  

iii. the parser component: this component receives 
a collection of log records from the extractor 
component and parses them to map  each one to 
a set of CBE attributes;  

iv. the formatter component: this component 
receives a collection of sets of CBE attributes 
from the parser component and for each one 
builds the corresponding CBE instance based 
on the  attributes of the set, and 

v. the outputter component: this component 
receives a collection of CBE instances from the 
formatter component and persists or sends them 
to somewhere else in the infrastructure, usually 
the CEI. 

 
At runtime a component is an instance of a Java 

class. All GLA components implement the 
IComponent interface that defines methods for 
managing the component properties and for starting 
and stopping the component. The IComponent 
interface is furtherly extended by two additional 
interfaces, IContext and IProcessUnit. The 
IProcessUnit interface defines the handler method of 
the chain, public Object[] processEventItems(Object[] 
msgs), this method is implemented by each component 
in the chain to provide its specific processing. 

Figure 1: Architecture of the GLA 
 
The chain is managed and orchestrated by a context 

component, i.e. a component implementing the 
IContext interface. The remaining interfaces, ISensor, 
IExtractor, IParser, IFormatter and IOutputter extends 
the IProcessUnit interface to provide specific methods 
for each one of the sensor, extractor, parser, formatter 
and outputter components respectively (see Fig. 2 
below). 

The context component is a runnable (i.e. active) 
component that runs in its own thread the main log 
data processing loop for normalizing a particular log 
data source in real time. The loop’s step is depicted in 
Fig. 3, where the context component calls the ISensor’s 
method public Object[] getNext() which blocks until 
the configured number of new lines of log data is 
available and returns these; then the context component  
calls the IProcessUnit method processEventItems in 
each of the processing components in the order 
explained, passing as argument to the next call the 
results returned by the previous call. 

 



Runnable

IContext IComponent

IProcessUnit

ISensor IExtractor IParser IFormatter IOutputter

*

GLA *

 Figure 2: Diagram of GLA’s Class Hierarchy 
 
 

IContext ISensor IExtractor IParser IFormatter

run()
txt=getNext()

msgs=processEventItems(txt)

cbeattrs=processEventItems(msgs)

cbes=processEventItems(cbeattrs)

IOutputter

processEventItems(cbes)

 Figure 3: The sequence diagram of the context 
component 

 
The GLA provides default implementations for all 

these interfaces but it is also architected following a 
plug-in design that allows the user to plug custom 
developed components. In fact, the specific java 
classes that conform a context (i.e. a chain of 
components) to normalize a particular log data source, 
together with their configuration parameters, can be 
specified using an XML file, called the adapter 
configuration file. The GLA takes this configuration 
file as an initial argument and instantiates the chain as 
configured. One can define more than one context in 
the same adapter file, thus the same GLA instance is 
able to normalize more than one different log data 
source.  

The GLA ships with a very rich Eclipse [14] based 
development environment that allows to visually 
configuring contexts in a very user-friendly way, as 
well as to test and debug those contexts on sample log 
data (see [15]). The output of the development 
environment is an XML file (i.e. the adapter file) that 

you can use to instantiate a GLA instance that will 
transform the log data sources as described by the 
XML file. 

 
3. Considerations of the Performance of 
the Generic Log Adapter 

 
In this section we analyze some performance 

considerations regarding the GLA that later motivated 
our approach to parallelize it. We start by taking a 
slightly more formal look at the process of normalizing 
log data. 

Log data normalization can be modeled using 
elements of formal language theory [16]. The log data 
generated by a log data source between two instants in 
time can be represented by a word (i.e. a string), ω, 
from a given alphabet, Σ, that contains all the 
characters that the log data source may possibly use to 
represent log data. The sensor component then reads 
this word as it is being generated, thus outputs a 
sequence of sub-words of ω, say, ω1, ω2 ,…, ωm. The 
extractor component acts on these sub-words one at a 
time, outputting a collection of sub-words, E(ωi) = 
ωi1,…,ωin, of ωi each one corresponding to a different 
log record or message and thus verifying one simple 
but very important property: they are independent units 
of structure, that is, each one of these sub-words 
contains all the information the parser component 
needs to access in order to be able to map it into a set 
of CBE attributes, P(ωij), that the formatter component 
will transform into a CBE instance, F(P(ωij)). 

Now we can see that to normalize a piece of log 
data ωi, we need to compute F(P(E(ωi)) where 
P(E(ωi))=P(ωi1)…P(ωin) and F(P(E(ωi))=F(P(ωi1))… 
F(P(ωin)). Let’s roughly compare the relative time 
complexity of the computations E and P for the case of 
the default implementations for the extractor and parser 
components that come with the GLA1. Both 
implementations use regular expressions specified by 
the user at configuration time through the eclipse-based 
tooling, however, the way in which the two types of 
components use the regular expressions differ 
considerably and have direct implications in 
performance. 

The extractor component default implementation 
uses two regular expressions, one to define the pattern 
that starts a new log record and another one to define 
the pattern that ends a log record. The extractor scans 
ωi looking for these patterns, each time it finds a match 
for the start pattern it includes the characters that 
                                                           
1 The computation, F, that the formatter component performs 
is essentially different from P and E and thus cannot be 
compared. It boils down to creating n CBE instances, ej, and 
then filling it as specified by P(ωij). 



follow into a new sub-word ωij until it finds a match 
for the end pattern2. 

On the other hand the sensor component default 
implementation uses an ordered collection of regular 
expressions for each CBE attribute that is to be filled 
from log data. It works as follows, for each sub-word 
ωij, for each CBE attribute to be filled and for each 
regular expression associated to the CBE attribute (in 
the order they were defined by the user) the sensor 
component scans ωij looking for a match, if one is 
found the matching characters are used as the value for 
the CBE attribute and no more regular expressions 
associated to this CBE attribute are essayed for ωij. If 
no match is found the CBE attribute if left with an 
undefined value. 

Now the time complexity of matching a regular 
expression in a string is directly proportional to (1) the 
length of the regular expression, (2) the complexity of 
the regular expression and (3) the length of the string. 
While the length of the string that the extractor and 
parser implementations need to scan is the same (i.e. 
ωi=ωi1…ωin), the extractor implementation only needs 
to essay at most two, usually very simple and short3, 
regular expressions, while the sensor component needs 
to essay usually a large number of regular expressions 
that tend to be complex and lengthy [17]. This has 
serious implications for performance and is the reason 
why some attention has been put in suggesting how to 
write efficient regular expressions for the GLA 
[17,18,19]. 

Since the GLA’s main processing loop is a chain of 
synchronous calls that must all finish before the next 
iteration can start, the parser component becomes a  
bottleneck: this may not be a problem if log data is 
generated at a slower rate than that at which the GLA 
is able to process it, however if this is not the case a 
remnant of log data pending to be processed is 
produced introducing thus a delay that may even 
increase over time and might eventually defeat the 
objective of being able to normalize log data in real 
time. On the other hand, even in scenarios where the 
GLA is able to process the aggregated log data 
generation rate in time, it might not be acceptable for 
the GLA to “steal” the CPU and memory resources 
required from production applications. It should be 
noticed that in today enterprise information systems 
log data is often tuned to be generated at slow rates for 
performance reasons, often leaving unlogged crucial 
information for problem determination. Being able to 
process more log data efficiently would allow to 
increase the amount of information logged thus easing 
                                                           
2 One can specify whether the characters that match the start 
and end patterns should be included in the sub-word or not. 
3 Most of the time log records are separated by line breaks. 

problem determination. On the other hand when 
considering log data generation rates we should 
consider the aggregated rate of all log data sources 
running in the same machine which might considerably 
higher than that of a single log data source. 

 
 

4. A Master-Worker Strategy to Parallelize 
IBM’s Generic Log Adapter 
 

Motivated by the previous considerations on 
performance we present in this section a high level 
approach of how the GLA can be parallelized using the 
Master-Worker (MW) paradigm  at the interface 
between the extractor and the parser components. 

The MW paradigm [20,21] has been widely used 
for developing parallel applications. In this model there 
are two different types of entities: master and worker. 
The master is in charge of the main flow of the 
program; it decomposes the main task into subtasks 
(sometimes this reduces to splitting the problem’s 
input into parts) and sends these to the workers. The 
workers process the subtasks as soon as they receive 
them and send back the result to the master, which 
uses them in its main flow of computation. 

The MW model has proved to be efficient in 
developing parallel applications with different degrees 
of parallel granularity and is particularly useful when 
the partitioning of the problem is easy to compute and 
the dependencies between tasks are low or inexistent.  
As can be seen from the description of GLA from 
Sections 2 and 3, this is precisely the case for the GLA 
since: 
 

i. the extractor component outputs independent 
units of structure (i.e. individual log records) 
which means that if the problem is partitioned 
using the boundaries of these units no 
dependencies between tasks will exist, and  

ii. the input of the problem can be easily 
partitioned in these units of structure since, as 
we have seen, these can be done using at most 
two simple regular expressions. 

 
Given all the above, the GLA can be naturally 

parallelized using the MW paradigm by grouping the 
sensor and extractor components at the master side 
and leaving the parser, formatter and outputter 
components at the workers side, see Fig. 4. 

 



MASTER

WORKERS

Figure 4: The scheme of MW paradigm applied to 
structuring log data 

 
The advantage of using MW approach is threefold. 

On the one hand we decouple the sensor and extractor 
components from the parser, formatter and outputter 
components, that is, in our approach the master’s main 
processing loop does not need to wait for the parser, 
formatter and outputter components to finish its 
processing, the extractor component just passes the 
collection of log records to some worker and returns 
immediately. The worker then performs the rest of the 
processing asynchronously in another machine. This 
effectively shortens the main processing loop at the 
master side, where the log data is being generated, to 
just the sensor and extractor components, thus 
increasing the rate at which log data sources are 
monitored for changes. On the other hand we are able 
to offload the bulk of log data normalization 
computation to machines other than the ones that are 
producing the log data, which usually require as much 
resources as possible for their production running 
applications. Last but not least, we are able to 
normalize log data in parallel thus speeding-up the 
processing nad making it more real-time. 

However it should be noticed that there’s a 
drawback on the approach: the master is not in full 
control of the size of the tasks that it sends to workers 
since log records can have arbitrary size and we do not 
control neither the rates at which log data sources do 
produce log data. This fact reduces the capacity of the 
master to play with the task size in order to better adapt 
to the different computational capacities of the workers 
and/or to their variable workloads, especially if the 
sizes of log records are too large or the log data 
generation rate is too low. In general we will be only 
able to play with the task size if the real time 
processing requirements are not very strict thus 
allowing us to accumulate log data of low volume log 
data sources until the task of the size is “big enough”.  

We can conclude that a parallel implementation of 
log data normalization is applicable to high volume log 
data sources, but also to low volume ones provided that 
they have low real time processing requirements. 
 
5. Transparent Parallelization of IBM’s 
Generic Log Adapter 
 

In order to experimentally test the feasibility of the 
MW paradigm for parallelizing the normalization of 
log data we have implemented a minimal Grid 
prototype that parallelizes the GLA. We used the 
Globus Toolkit 3.2 and we deployed the prototype on 
the Planetlab platform. Both GlobusToolkit 3.2 and 
Planetlab are briefly described next. 

The Globus Toolkit (GT) [29] is the actual defacto 
Grid middleware standard. Version 3 of GT (GT3) is a 
refactoring of version 2 in which every functionality is 
exposed to the world via a Grid service. Grid services 
are basically stateful web services. The core of the GT 
is a Grid service container implemented in Java that 
leverages and extends the Apache’s AXIS web services 
engine.  

Planetlab [30] is an open platform for developing, 
deploying and accessing planetary-scale services. It is, 
at the time of this writing, composed up of 726 nodes 
hosted in 354 different sites. Each Planetlab node is an 
IA32 machine that must comply with minimum 
hardware requirements (i.e. 1GHz PIII + 1Gb RAM) 
running the same base software, basically a modified 
linux operating system offering services to create 
virtual isolated partitions in the node, called slivers, 
which look to users as the real machine. Planetlab 
allows every user to dynamically create up to one 
sliver in every node, the set of slivers assigned to a 
user form what is called a slice. It is said that a 
Planetlab node can run up to 100 concurrent slivers. 

In order to test our GLA grid prototype we turned 
Planetlab into a Grid by installing the GT3’s Grid 
service container in every sliver of our slice. Moreover, 
our objective was to transparently parallelize the GLA, 
that is, to allow users to run their adapter files 
unmodified on the parallelized GLA (PGLA). In order 
to achieve this we reused the GLA code to make two 
versions of it: the master GLA and the worker GLA. 
The worker GLA is a grid service that exposes a single 
operation akin to the original GLA handler operation 
processItemEvents but that also receives the adapter 
file as an additional argument to the array of log 
records to be processed. The implementation of this 
operation uses the original GLA code to instantiate the 
chain of components as specified by the adapter file, 
then a minor modification is introduced that allows the 
chain to be initiated in its own thread at the parser 



component, bypassing the sensor and extractor 
components. This is the only modification required to 
the original GLA code to implement the worker GLA.  
In other words, the worker GLA executes exactly the 
same java bytecode (except at initialization time) to 
process the log data as the original GLA. This makes 
very easy and consistent the performance comparison 
between the sequential and parallel approaches. We 
deployed the worker GLA grid service on the GT3’s 
containers of every sliver of our Planetlab slice.  

On the other hand, the master GLA is again the 
original GLA code with a minor modification that 
forces the instantiation in the chain of a proxy 
component in between the extractor and parser 
components and modifies the chain execution so that 
only the third first components are called, that is, the 
sensor, extractor and proxy components. The proxy 
component reads in its processItemEvents from a 
configuration file the available GLA worker services 
method and implements a simple list scheduling 
strategy to forwards calls to the worker GLAs by 
invoking the corresponding grid services. This is a 
very simple scheduling strategy but notice that our 
objective was not to create a full-blown GT3-based 
MW implementation of the GLA but rather to show the 
feasibility of a transparent parallel Grid-based 
implementation of the GLA using the MW paradigm 
minimizing the amount of code to be modified from 
the original GLA. 
 
6. Conclusions 
 

     In this paper, we first have motivated the need to 
structure and process in real time the large amount of 
information generated in IT enterprises. The problem 
of structuring and processing log data is gaining 
importance due its usefulness in problem 
determination, which is shown to be very costly and 
needing time superior to that of a single computer or of 
LAN of computers. We have considered the case of 
IBM's Generic Log Adapter and shown how to use a 
grid-based approach to efficiently speed-up the 
processing of log data. Although we have 
particularized our approach for the IBM's Generic Log 
Adapter, our approach is applicable in general to the 
structuring and processing of log data [26] . 

Thus, our results show the feasibility of 
parallelizing the problem of structuring any plain text 
event log data, achieving considerable speed up, 
provided that (1) the normalization algorithm’s running 
time function, f(n), be of strictly upper order than the 
transmission time function, n/B, that measures the time 
required to transmit a piece of data of size n for a 
bandwidth B. (i.e. f(n) = ω(n/B) ), and (2) the log data 

can be easily parsed  (i.e. with few and simple regular 
expressions) in order to be broken in independent units 
of structure (i.e. log records). These conditions are 
expected to be satisfied by both log data and 
structuring algorithms, especially the ones that can be 
found in generic log data structuring/normalizing 
frameworks such as the GLA which are implemented 
using regular expressions. 
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