
Collaborative group membership and access control
for JXTA

Joan Arnedo-Moreno and Jordi Herrera-Joancomartı́
Estudis d’Informàtica, Multimèdia i Telecomunicacions

Universitat Oberta de Catalunya
Rb. Poble nou 156, 08018 Barcelona

{jarnedo,jordiherrera}@uoc.edu

Abstract— This paper presents a proposal for group member-
ship and access control services for JXTA, both based on the
principle of self-organization and collaboration of peer group
members. The need for collaboration strengthens the resistance
against free riding and eases management of revocation data.
The proposal prioritizes group autonomy and makes use of the
concepts of web of trust and small world phenomenon in order
to achieve its ends, distancing itself from approaches based on
centralized PKI models or trusted third parties external to the
group. It also offers an alternative to the basic group membership
services distributed with the JXTA platform implementations.

Keywords: Access control, peer-to-peer, security, group mem-
bership, JXTA, distributed systems, web of trust, Java.

I. INTRODUCTION

In a peer-to-peer environment, all involved parties must col-
laborate in order to provide basic services, such as content or
messaging. It is also assumed[1] that all peers have equivalent
capabilities, and then the existence of a central server with
more processing power is no longer necessary. Usually, peer-
to-peer environments are conceptualized as a global overlay
network without any kind of logical segmentation or segrega-
tion as far as resource availability is concerned.

JXTA [2] introduces the concept of peer group: a collection
of peers with a common set of interests. This concept is one of
the main foundations of the JXTA architecture and is prevalent
throughout all its specification[3]. Offering the possibility to
create different (but not necessarily disjoint) groups of peers
operating under the same overlay network allows to segment
the network and offers a context to peers for publishing and
accessing different services.

Peer group boundaries provide a secure framework in order
to grant or deny access to the offered services. Peer groups
form logical regions whose boundaries limit access to group
resources, in a way similar to a VPN [4], but operating at
the application layer. Other interesting uses are the ability to
provide a scoping or monitoring environment, where different
classes of traffic and advertisements are limited to peer group
members. In order to enable peer group security, JXTA defines
the basic primitives for group membership and access control.

This work was partially supported by the Spanish MCYT and the FEDER
funds under grant TSI2007-65406-C03-03 E-AEGIS and CONSOLIDER
CSD2007-00004 ”ARES”, funded by the Spanish Ministry of Science and
Education.

In this paper, a specification for group access control using
the core JXTA services is presented. The idiosyncracies of
the JXTA platform are taken into account in order to create a
system which is fully compliant with its specification.

This paper is organized as follows. Section II presents an
overview of the generic JXTA group access control framework,
formed by the Membership and Access Services, describing
the current proposals for such services. In section III, the base
model for group access control used for our specification is
briefly introduced. Section IV describes the group membership
specification details, explaining how the Membership and
Access Services are deployed using the JXTA framework and
which are the required support services. Section V concludes
the paper and gives some guidelines for further research.

II. AN OVERVIEW OF GROUP MEMBERSHIP IN JXTA

In order to achieve full control of group membership,
JXTA uses the Membership and the Access Services. Both
are core services which make use of the base JXTA protocol
specification in order to achieve their ends. The Membership
Service manages identities within a peer group, providing each
group member a credential. Peers may include this credential
in messages exchanged within a group in order for each
other member to know who is making a request. With this
information, the JXTA Access Service evaluates the credential
when a service is accessed and decides whether the request
will be granted or denied.

A. Membership Service

The Membership Service allows every peer to establish
its identity within a group and obtain a credential, it must
successfully join it. Before a peer may join a group, it
must be authenticated by providing a correct Authenticator
to the Membership Service. An Authenticator contains all the
required information in order for the Membership Service to
check that the requested identity can be granted. Each different
Membership Service specification provides its own definition
of an Authenticator, suited to its needs and inner workings.

The join process is divided in three distinct steps: setup,
application and validation, as depicted in Figure 1.

In the setup step, the peer chooses which authentication
method will be used for the whole process. This is achieved
by choosing an AuthenticationCredential and sending it to the



Membership Service via the apply() method. Some examples
of specific authentication methods are interactive authentica-
tion (via a GUI), plain text authentication (programatical), etc.
The AuthenticatorCredential also serves as a way to identify
and allow interaction with the peer even though it is not
part of the group yet. If all parameters are correct and the
choice is feasible, the peer receives an Authenticator from the
Membership Service.

In the application step, the peer completes the Authenticator
with all necessary information and tests its correctness with
the isReadyforJoin() method. It will not be possible to join the
group until the Authenticator is correctly initialized.

Finally, in the validation step, joining the group is possible if
the Authenticator is correct. The Membership Service checks
whether the peer may assume the claimed identity and creates
a credential. Since the join method is provided by each imple-
mentation of the Membership Service, the identity ownership
check may be as complex as necessary.

Fig. 1. Peer group join process

In case that a peer decides to give up membership to a
specific group, a resign method exists. When this happens,
the credential generated in the join process is discarded.
Group resignation is voluntary, the Membership Service does
not support active membership revocation triggered by other
members.

B. Access Service

The credentials generated in the join process may be sent
whenever a group service is accessed, as part of the protocol
exchanges. The JXTA Access Service provides mechanisms
in order to check them, allowing services to decide whether
access should be granted or not.

The sequence diagram for using the Access Service is
shown in figure 2. A single operation is offered to the peer
group in order to check a credential for a privileged operation.

Fig. 2. Access control check via Access Service

The possible results are DISALLOWED, PERMITTED,
PERMITTED EXPIRED (the operation would be permitted
but the credential has expired) and UNDETERMINED.

It is very important to remark that the Access Service is
fundamental in order deploy any group access control model
under JXTA. The reason is that JXTA platform allows a peer to
directly instantiate any group and access its published services
without credentials (using a ”nobody”-like default identity).
The use of credentials is optional. As a result, unless the use
of credentials is enforced via the Access Service, the process
of joining a group via the Membership Service and obtaining
a proper credential becomes pointless.

C. Existing service specifications

The JXTA reference implementation, as far as version
2.5[5], provides three Membership Services.

The None Membership Service is intended for peer groups
which need no authentication. Since any peer may claim any
identity, it is recommended that credentials should only be
used within the group for purely informational purposes.

The Passwd Membership Service relies on a Unix-like
username and password pair for peer authentication. In order to
claim an identity, the correct password must be provided. The
list of pairs (username and password) is distributed to all group
members, which means that the password file equivalent roams
freely through the overlay network. This group membership
service was created as a sample and a means of testing, since
it is completely insecure. For that reason, it is advised in
the JXTA documentation that it should never be used in any
serious application.

The default Membership Service is PSE, which stands for
Personal Security Environment. This service provides creden-
tials based on PKIX[6] certificates. However, it must be taken
into account that the Authenticator for this service exclusively
relies on passwords: the peer is authenticated to the group
by being able to access the keystore which holds its private
key. This means that the join method itself is not based on
digital signatures or certificates, just the credential format
itself. In fact, as presented, PSE is more of a kind of toolbox
that allows the implementation of different models based on
securing identities via digital certificates, since it provides no
clear structure of how trust is managed in a peer group (whose
signatures are trusted and which peers are allowed to sign
certificates).

It is interesting to point out the implications of the fact that
under the PSE Membership Service peers are authenticated
only by being able to access a keystore. The Membership



Service is not concerned with the validity (signed by a proper
Certification Authority or not revoked) of certificate chains. As
a result, anybody with access to a private key and a certificate
(a self-signed one is sufficient) will be able to join a group
using PSE. Those peers which hold the necessary information
in order to generate a correct PSE Authenticator, but are not
really group members because their certificate is not properly
signed are named interlopers. These peers can become an
annoyance, but are easily dealt with.

Apart from those in the basic implementation of JXTA,
other Membership Service proposals exist, such as the one
presented in [7], based on a centralized PKI and a basic
challenge-response [8] protocol as a means for authentication,
instead of passwords. This proposal also goes beyond the basic
group membership services, providing a method which peers
may use in order to authenticate the group itself in the join
process. However, this implementation heavily relies on both
an external centralized LDAP server and a sign server. The
LDAP server provides peer certificate management and the
sign server deals with group authentication. In order to do
this, it keeps a secure copy of a private key which represents
the whole group. The existence of those external entities
goes completely against the basic principles of peer-to-peer
and makes the system unfeasible in ad hoc environments.
Furthermore, the proposal does not specify who configures or
manages both central servers. It is assumed that some group
administrator will do it out-of-band, which moves the proposal
away from a pure peer-to-peer model.

Another proposal can be found in [9], but it is very similar
to the passwd Membership Service, sharing most of its pros
and cons.

As far as the Access Service is concerned, the current JXTA
reference implementation offers three kinds of access control.

The Always Access Service, which does not really check
for access control and allow any operation. It is the default
Access Service for peer groups.

The simpleACL Access Service uses Access Control Lists
in order to establish which identities may perform the different
group operations. The access lists are distributed as parameters
within the peer group advertisement.

The PSE Access Service provides an interface to PKIX cer-
tificate path validation. A trust anchor is set for the validation
process and all credentials are validated against this anchor in
order to decide whether the the operation is permitted or not.

It is very interesting to point out that all currently provided
approaches to the Access Service are strictly tied to peer
identity (operations are evaluated according to the claimed
identity) and do not check group membership itself. Mem-
bership is assumed, even though it may not be always the
case, as previously exposed.

III. COLLABORATIVE PEER GROUP ACCESS CONTROL

A proposal for group access control in peer-to-peer environ-
ments is presented in [10]. This proposal takes into account
the nature of peer-to-peer networks, being fully decentralized
and paying special attention to the autonomy of its members
and self-organization. All necessary services are provided by

its members and are based upon their collaboration, avoiding
dependency from external group entities. For that very rea-
son, this proposal may be specially suited for JXTA group
membership and access control services.

This model uses the concept of web of trust defined in
PGP[11], but in this case trust relationships are used as proof
of group membership, instead of establishing an identity.
Whenever peer A creates a trust relationship with peer B,
it is vouching for B’s group membership to other group
members. It must be pointed out that this model is specifically
concerned in providing proof of peer group membership, not
peer identity.

Two different sets of peers exist within a peer group: those
which are allowed to register new members, named patron
peers, and those who are not. No initial assumption is made
regarding the cardinality of both sets, how a peer becomes part
of each set or which are the restrictions in order to do so. A
peer may decide to switch sets at any time.

Since two different sets of peers exist, two different types of
trust relationships are distinguished between peers, depending
on which set both peers belong.

Patron relationships are established from peers which may
register to peers which do not. These trust relationships are
unidirectional, like web of trust relationships. When peer A
signs peer B’s key, it will be considered to be its patron within
the group.

Backbone relationships are established between peers which
both may register, and are considered to be bidirectional. In
order to create, backbone relationships, both peers always
sign each other’s public key.

Both types of trust relationships are created in the same way
as in a standard web of trust, by signing the trusted peer public
key, generating a certificate with a specific date of expiration.
This certificate specifies which kind of trust relationship it is
for, reinforcing the fact that a peer is member of the group.
Trust relationships are bound to a specific peer group, they are
not usable across different groups.

Since peers are autonomous, each one exclusively manages
the information concerned about itself. This means that each
peer will have information related to:

• Its own private/public key pair.
• The signatures from other peers.
• The list of peers trusted by him.
To access any other information, other peers must be asked

to provide it.
In order for a new peer, B, to register to the group, it

must apply for membership to any patron peer, such as A.
If agreement is reached, a patron relationship is established
and A becomes B’s patron for this group. The model does
not impose any restriction on deciding why a new peer is
accepted into the group. This decision will be up to the group
policies or the individual decision of A, and goes beyond the
scope of the model.

Under this model, in order for a peer C to provide proof of
membership, a trust path must exist between the peer which
must grant access and C. Both kinds of trust relationships
are eligible when searching this path. However, this trust path



must accomplish an additional condition that all contained
signatures must be bound to the peer group C is trying to
access. In figure 3 a case is shown where A may be able to
correctly recognize C as a group member.

Fig. 3. Finding a trust path between peers A and C

In order to minimize the length of trust paths chains and
provide better redundancy, when A successfully authenticates
C, A checks whether it shares a backbone relationship with
C’s patron. If it does not exist, A may ask C’s patron to create
a backbone relationship between both of them. As the group
life progresses, connection between patron peers will provide
a better operation framework.

The model also accommodates to the possibility that n
peers may become patrons of B. Under this assumption, such
relationships may be created once B is already part of the
group during group registration. Any peer may ask for more
patrons at any time. This assumption enables the group to
provide redundancy in order to solve possible availability
problems, such as cases when authentication might fail be-
cause insufficient peers are online, a key issue in peer-to-peer
and adhoc newtorks. Furthermore, this enables implementing
stricter group policies or scenarios where a minimum number
of patrons must be collected before B is considered to be part
of the group.

IV. GROUP ACCESS CONTROL SPECIFICATION FOR JXTA

In order to adapt the model presented in the previous section
to the JXTA specification, all its processes must be integrated
into the core JXTA group membership and access control
services: the Membership and Access Services. Additional
support services are specified when necessary in order to
encompass the full trust path creation and evaluation.

The summarized steps that a peer B must follow in order
to access a service under this model follow:

1) B searches a patron peer for that group.
2) B requests to the patron its signature of B’s public key.
3) If the patron agrees, a group credential which will act

as proof of group membership is obtained.
4) (Optional) B is free to repeat steps 1-3 with additional

patrons at any later stage.
5) B accesses a group service through peer A.
6) A asks for B’s credential(s).
7) A tries to find a trust path from itself to B.
8) The path is evaluated. If correct, access based in group

membership is granted.
9) (Optional) A new backbone relationship is created be-

tween A and B’s patron

Our specification meshs with JXTA by using the Member-
ship Service for steps 1-4, those concerned with credential
generation, whereas the Access Service is to be concerned
with steps 5-9, those concerned with service access.

A. Membership Service

A peer which wants to join a peer group must apply for
membership via the Membership Service. Accessing the Mem-
bership Service, as well as all its available services, is based
on the precondition that a peer has previously instantiated the
group via a group advertisement. Group advertisements are
sent by those peers which want to publicize the group (usually,
at least, the group creator), and must be periodically updated,
since it has a set lifetime. Once no more advertisements are
available in the network, it will be impossible to instantiate a
group.

Such advertisements contain all the required information
parameters specific for its Membership Service implementa-
tion. For that reason, deploying a new Membership Service
means defining the format of a group advertisement. For
this Membership Service specification, a list of patron node
ID’s known by the peer which published the advertisement
is included as a service parameter. This way, prospective
members may know where to get a properly signed certificate
in order to access group services. As the list of patron nodes
changes, new advertisements may take it into account when
published.

An example of peer group advertisement is shown in listing
1 (Note: ID’s have been shortened).

XML Listing 1 - Peer group advertisement
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jxta:PGA>
<jxta:PGA xml:space="preserve" xmlns:jxta="http://jxta.org">
<GID>urn:jxta:uuid-2AD...5F02</GID>
<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAF...000000010306</MSID>
<Name>SampleGroup</Name>
<Desc>Collaborative Membership Service Group</Desc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000505</MCID>
<Parm type="jxta:PatronList">
<PeerGroup>urn:jxta:uuid-2AD...5F02</PeerGroup>
<Patrons>
<Patron>urn:jxta:uuid-596...4003</Patron>
<Patron>urn:jxta:uuid-596...1B03</Patron>
</Patrons>
</Parm>
</Svc>
</jxta:PGA>

In our Membership Service specification, an interface
named CryptoManager is defined in order to arbitrate the
join process. This interface is passed as the authenticating
parameter to the Authenticator and is used in the application
and validation steps, authenticating the peer using a challenge-
response protocol invoked via a callback mechanism.

The main reason for the CryptoManager is acting as a
proxy for any cryptographic provider. It enables the integration
of peer group authentication with any kind of cryptographic
provider such as hardware cryptographic tokens. This ap-
proach takes into account the fact that not all cryptographic
providers are accessed via plain text passwords (for example,



using biometrics). Even in cases were passwords are used,
sometimes, each provider has its methods for accessing private
keys (for example, a special GUI integrated into the operating
system in the the Windows CryptoAPI[12]). Applications will
implement the CryptoManager interface according to the needs
of the specific cryptographic provider being used. Decoupling
cryptographic providers from the Membership Service also
allows to manage credentials via out-of-band methods, instead
of necessarily relying on the application.

This is in contrast with PSE, which by default uses pass-
words in order to access a java keystore. This keystore may
be stored in the peer local cache or as a file accessed via a
URL. In the former case, its management is encapsulated in a
transparent way via the JXTA Cache Manager. Unfortunately,
in this case, it is not possible to easily manage certificates via
out-of-band methods. In the latter case, it is not possible to
use any other kind of cryptographic provider which does not
rely on files protected by a plain text password.

The basic methods of CryptoManager are:

• initialize: Sets up the cryptographic provider, in order to
be correctly accessed later. Usually, complex providers
need some initialization. If not really necessary, this
method may be left blank. If additional parameters are
needed to use the provider, it is possible to define
additional methods which may be called before this one.

• check: Checks whether initialization has been success-
fully completed and it will be really possible to access
stored keys and certificates.

• getCerts: Obtains the list of stored certificates in the
cryptographic token. The Authenticator processes this list
in order to assemble only those certificates related to the
peer group to be joined.

• sign: Signs data. During this method call, the crypto-
graphic provider prompts for the necessary information
in order top access the key.

A sequence diagram summarizing the full process is shown
in figure 4. The full join process is not shown in this figure,
but only the part which is specific for our Membership
Service specification: from the moment an Authenticator has
been made available up to the final step. Once the join is
successfully invoked, a group credential is generated.

Our Membership Service uses a list of certificates as a
credential. Even though open to different types of certificates,
as will be further explained in subsection IV-A.2, in the current
specification, X.509 certificates are used. X.509 certificates
have been chosen because they are the most widely used in
cryptographic providers. The peer group ID is stored in the
O certificate field, whereas peer ID is stored between the
OU and CN fields (so peer ID = OU + CN ), because of
space restrictions in the X.509 format. The type of relationship
(backbone/patron) is stored on the Location Field.

A sample credential is shown in listing 2 (Note: X.509
Certificates have been shortened).

Fig. 4. Peer group join process using CryptoManager

XML Listing 2 - Peer Credential
<!DOCTYPE jxta:CollabCred>
<jxta:CollabCred algorithm="SHA1withRSA"
type="jxta:CollabCred" xml:space="preserve"
xmlns:jxta="http://jxta.org">
<X509Certificate>MIIC...BIBUAMw==</X509Certificate>
<X509Certificate>MIID...8dLvZ96==</X509Certificate>
</jxta:CollabCred>

Even though a credential has been established, the Cryp-
toManager will still operate within the Membership Service
as an interface to the cryptographic provider until the peer
resigns from the group.

It is possible that no proper group credentials are available
(basically, when a new member tries to join the group). In that
case, the credential is nevertheless generated, but such peer
is only able to access a very specific set of group services:
the Patron Discovery and Sign Services. These services serve
as methods in order to provide peers with proper credentials.
They are also a special case, since they do not check group
membership and are available to any peer which is able to
instantiate the group, as it will be made obvious.

Once a proper credential is created, the peer will
reauthenticate, so a proper credential is eventually generated
by the Membership Service.

1) Patron Discovery Service: This service retrieves a list of
peer group patrons. Even though the peer group advertisement
includes a list of patrons, it enables updating the patron list
for someone who has already joined the peer group without
reinstantiating it. This service also takes into account the fact
that some patrons may go offline.

Any group member may run this service. Non-patron peers
response with a list obtained from its own stored patron
relationships. Patron peers response a list obtained from its
acknowledged backbone relationships.



The format of the patron discovery service query and
response is shown in listings 3 and 4 (Note: ID’s have been
shortened).

XML Listing 3 - Patron Discovery query
<collab:PatronDiscoveryQuery>
<PeerGroupID>urn:jxta:uuid-282...8C02</PeerGroupID>
<Threshold>4</Threshold>
</collab:PatronDiscoveryQuery>

XML Listing 4 - Patron Discovery response
<collab:PatronDiscoveryResponse>
<PeerGroupID>urn:jxta:uuid-282...8C02</PeerGroupID>
<Patrons>
<Patron>urn:jxta:uuid-596...CB03</Patron>
<Patron>urn:jxta:uuid-596...DB03</Patron>
<Patron>urn:jxta:uuid-596...6003</Patron>
<Patron>urn:jxta:uuid-596...EE03</Patron>
</Patrons>
</collab:PatronDiscoveryResponse>

The fields used in the messages are the following ones.
• PeerGroupID - The unique identifier of the peer group

whose patrons are being discovered. This identifier is
included in the response in order to allow proactive
responses, those sent without a previous query, to be
correctly processed.

• Threshold - A number specifying the maximum number
of patrons that should be sent by the responding peer.

• Patrons - An element containing a list of patron peer
identifiers. The identifiers are relative to the peer group
being asked.

It should be noted that the response has the same format as
the service parameter included in the peer group advertisement
shown in section IV-A.

2) Sign Service: In order for a prospecting member to
become a fully fledged group member, a proper credential
must be obtained by getting a certificate signed by a patron
peer. The Sign Service allows the request of such signatures
without the need of out-of-band methods. This service supports
both the creation of both patron and backbone relationships.
By using this service, it is also possible to obtain credentials
from several patrons.

The moment a patron must decide whether to accept or not
a query is a very important step. The outcome of such decision
is left up to each specific application, since it is impossible to
develop a policy that may apply to any scenario. Acceptance
will generally be based on the fulfillment of some requirements
before joining the group (such as committed resources). An
interesting possibility is using trust evaluation schemes [13],
[14]. Another acceptable possibility is just sending the request
to the upper level application and relying on direct user
input. The user will decide according to some out-of-band
information, such as in an invitation based system.

Registering the signing service in a non-patron peer is point-
less, since the certificate will not be a valid one. Even though
this behaviour may be potentially disrupting for unsuspecting
peers, it is easy to identify which rogue peers are signing

requests by comparing patron lists retrieved from different
peers, or as soon as a service access is denied.

The details of the Sign Service are shown in the query and
response formats in listings 5 and 6.

XML Listing 5 - Sign Service query
<collab:SignQuery>
<PeerID>urn:jxta:uuid-596...CB03</PeerID>
<PeerGroupID>urn:jxta:uuid-282...8C02</PeerGroupID>
<Data type="pkcs#10">MIIB...PYNvDvHf1</Data>
<Commendation>...</Commendation>
</collab:SignQuery>

XML Listing 6 - Sign Service response
<collab:SignResponse>
<Status>OK</Status>
<PeerID>urn:jxta:uuid-596...CB03</PeerID>
<PeerGroupID>urn:jxta:uuid-282...8C02</PeerGroupID>
<Data type="x509certificate">MIIC...BIBUAMw==</Data>
</collab:SignResponse>

The sign query and response parameters are listed here.
• Status - Sign request result. The request may have been

granted (OK) or denied (DENIED). The responding peer
may also respond that the query has been correctly
received but it is still to be processed (PENDING). This
status is specially useful for application which rely on
direct user input in order to accept or deny a sign request.

• PeerID - The unique identifier of the peer who is asking
for a signature.

• PeerGroupID - The unique identifier of the peer group
for which a credential is being requested.

• Data - The request/credential raw data (base64 encoded
in case of binary data). This element will only exist
if a sign request has been accepted (the Status field is
OK). It also contains a type attribute, which denotes a
special identifier specifying the type of request (for a sign
request) or credential (for a sign response). In the case of
the sign response, the identifiers chosen for the different
types of sign responses are those defined in xmldsig[15].
This will allow an easy integration with XML signature.
This is a desirable feature since all JXTA protocols are
based on XML. In our current specification, PKCS#10
and X.509 certificates are used.

• Commendation - Additional optional information that
a peer may provide in order to get the sign request
accepted. Since the acceptance of a sign request is
solved at application level, this field may contain any
kind of data. The specific data format will be defined
by each individual application, according to its own
needs. The query message just acts as a transparent
envelope. Nevertheless, an existing valid trust path may
be used as a commendation when creating redundancy
and shortening long paths, as explained in section III.

Both the Patron Discovery and Sign Services are not encap-
sulated into the Membership Service. Since the model allows
the creation of multiple trust relationships during standard
group operation (steps 4 and 9 in the summary list at the
beginning of this section). Then, it must be possible to create



them once the group has been joined without the need of
rejoining via the Membership Service.

B. Access Service
As exposed in subsection II-B, proof of peer group member-

ship must be required when accessing remote resources. This
is done via de Access Service. It should not be done during the
join process, since group instantation and the join process are
locally executed. That means that it would be trivial for a rogue
peer to modify the local code in order to always successfully
join the group. In our proposal, this may still happen, but it
will be pointless since proper credentials cannot be generated
only using local data, they are generated through collaboration
with other peers. And unless a proper credential is somehow
generated, no access will be granted at a later stage.

Since the group membership and access control model is
based on collaboration between peers, the Access Service must
operate in a fully asynchronous way in order to take into
account the nature of adhoc environments. Some delay is to
be expected between access to the service being asked and
a final decision regarding access control being reached. For
that reason, in our specification the doAccessCheck operation
will return UNDEFINED until it is ready to provide a definite
answer. The final behaviour is similar to that of the isReady-
ForJoin in the join process (see section II-A), which must be
periodically polled in order to know when it is possible to
proceed.

In order to retrieve and evaluate a trust path under this
premises, the doAccessCheck operation defined by the JXTA
Access Service uses two additional auxiliary services: the
Trust Path Discovery Service and the Credential Retrieval
Service.

1) Trust Path Discovery Service: The Trust Path Discovery
Service provides a mechanism to learn whether a trust path
between two peers exists, and through which peers this trusted
path passes. This service correctness requires collaboration be-
tween different peers in the group, since the group membership
model is based on the principle that each peer is autonomous
and only holds data mostly related to itself. It also assumes
that no peer maintains memory or state regarding processed
queries and the whole process acts in a fully asynchronous
way.

In order to retrieve the trust path between two peers, the
source peer propagates queries across all its trusted peers. This
query contains the final peer ID in the trust path and its own
ID as the source peer. In the case that peers receiving the
query are not able to retrieve a trust path to the final peer by
themselves, they propagate the same query to its own trusted
peers, but including its own ID as an intermediate peer. As
this query reaches new peers, the query grows to collect the
trust path, adding its own ID at the end of the current list, until
a peer which knows a trusted path to the final destination is
reached. That peer sends the final answer directly to the source
peer. A summary of this whole process is depicted in figure
5.

Loops are avoided by comparing the currently retrieved trust
path in the query with the list of trusted peers in the processing

Fig. 5. Trust path discovery query propagation

peer. If a peer already appears in the list, the query is not
propagated across that trust relationship.

It must be pointed out that this service may generate several
responses to the source peers, since several trust paths may
exist. It must also be noted that the trust path does not need
to be retrieved one peer at a time. If a peer already knows
a path to the final peer, even though there is no direct trust
relationship (for example, because of cached responses to its
own queries), it may still respond the query constructing the
full trust path. In that case, the peer stops propagating queries.

The Trust Path Discovery query format is detailed in listing
7. The contents of the response are the same.

XML Listing 7 - Trust Path Discovery query/response
<collab:TrustPathQuery>
<SourcePeerID>urn:jxta:uuid-596...CB03</SourcePeerID>
<FinalPeerID>urn:jxta:uuid-596...6003</FinalPeerID>
<PathPeerID>
<Position>1</Position>
<PeerID>urn:jxta:uuid-596...DB03</PeerID>
</PathPeerID>
</collab:TrustPathQuery>

The query and response parameters follow.
• SourcePeerID - Identifier of the starting peer in the trust

path.
• FinalPeerID - Identifier of the final peer in the trust path.
• PathPeerID - Identifier of an intermediate peer in the

trust path. These fields are ordered according to transit
from the source peer to the final peer.

Since each peer manages its own list of trusted peers, the
trust discovery path also allows to check revocation status,
since no queries will be propagated through revoked trust
memberships. This is in contrast with other membership
services such as PSE, where revocation does not exist. It is
only possible to voluntarily resign from a group.

2) Credential Retrieval Service: The Credential Retrieval
Service provides a method for peers in the group in order to
retrieve credentials from other peers, as well as asking for
its current revocation status. Once a trust path is located, all
credentials may be retrieved using this service in order to



proceed to its validation. Several retrieval petitions may be
encapsulated in a single request, in order to improve efficiency.
Again, responses may be sent in a proactive way without the
need of a previous query.

All requests are only relative to the information stored
within a peer (see section III).

The Credential Retrieval Service query and response format
are shown in listings 8 and 9.

XML Listing 8 - Credential Status query
<collab:CredRetrievalQuery>
<PatronPeerID>urn:jxta:uuid-596...CB03</PatronPeerID>
<TrustedPeerID>urn:jxta:uuid-596...6003</TrustedPeerID>
/<collab:CredRetrievalQuery>

XML Listing 9 - Credential Status response
<collab:CredRetrievalResponse>
<TrustedPeerID status="OK">urn:jxta:uuid-596...6003</TrustedPeerID>
<Data type="x509certificate">MIIC...BIBUAMw==</Data>
</collab:CredRetrievalResponse>

• PatronPeerID - The credential generated by the patron
peer with this ID for the peer which receives the request
is being asked. This field may appear multiple times,
containing different ID’s.

• TrustedPeerID - The credential status for the peer with
this ID is being asked.

• TrustedPeerID and status- Response tied to a Trusted-
PeerID request field.Credential status for a peer with a
specific ID. The status attribute may be OK, REVOKED
or UNKNOWN. The latter case may occur if the query
asks for the status of a credential which was not generated
by the responding peer.

• Type and Data - This field is a response to a PatronPeerID
request field. It accomplishes the same function as the
ones used in the Sign Service, explained in subsection
IV-A.2. The ID from the original request may be obtained
form the credential content.

V. CONCLUSIONS AND FURTHER WORK

A specification of peer group membership and access con-
trol for JXTA using a web of trust based model has been
presented. This specification integrates with the core services
provided by JXTA in order to control peer group membership:
the Membership and Access Services. Group management
is achieved via additional services that take into account
the idiosyncracies of JXTA’s messaging capabilities: the Pa-
tron Discovery, Sign, Trust Path Discovery and Credential
Retrieval services. Furthermore, the specification seamlessly
integrates with different cryptographic providers, through the
CryptoManager, in order to attain key management.

A concern in the current implementation is how the sign
service is able to be sure that the presented public key to be
signed is associated to the claimed identity. Even though the
fact that the response is directly sent to the claimed ID’s peer,
which means that the attacker will not necessarily receive it, it
is not a completely secure procedure yet, since the certificate

will still be sent through the overlay network. Right now, some
out-of-band procedure is necessary (which may be fine in some
applications, but inconvenient). This problem may be solved
using self-certifying keys[16], but at this stage it is still under
research.

In addition, the Trust Path Discovery Service is still open
to optimization, since right now it is entirely based in flooding
backbone relationships, which is not efficient. It must be noted
that it is not a full flooding mechanism, since requests are only
propagated to trusted peers (which may be limited in number
and are not necessarily equal no neighbouring peers), but it
could be improved in terms of efficiency. Further efforts in
research will be focused on this topic.

REFERENCES

[1] Andrew Oram, Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[2] Sun Microsystems, “Project JXTA”, http://www.jxta.org.
[3] Sun Microsystems, “JXTA v2.0 protocols specification”,

https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html.
[4] Huston G. Ferguson, P., “What is a vpn?”, Tech. Rep., Cisco Systems,

1998.
[5] “Jxta 2.5 rc1”, June 2007, http://download.java.net/jxta/build.
[6] CCITT, “The directory authentication framework. recommendation”,

1988.
[7] Zielinski K. Kawulok L. and Jaeschke M., “Trusted group membership

service for jxta”, in Computational Science - ICCS 2004, 2004, Lecture
Notes in Computer Science Volume 3038.

[8] “Rfc 1994”, http://tools.ietf.org/html/rfc1994.
[9] Lei Zhuang Zupeng Li, Yuguo Dong and Jianhua Huang, “Implementa-

tion of secure peer group in peer-to-peer network”, in Communication
Technology Proceedings, 2003. ICCT 2003, 2003, pp. 192–195.

[10] Joan Arnedo-Moreno and Jordi Herrera-Joancomartı́, “Providing col-
laborative mechanism for peer group access control”, in Proceedings of
the Workshop on Trusted Collaboration. 2006, IEEEPress.

[11] S. Garfinkel, Pgp: Pretty good privacy., O’Reilly and Associates Inc.,
1994.

[12] Microsoft, “Msdn library. cryptography”, 2007.
[13] Yeager W. Chen R., “Poblano: a distributed trust model for peer-to-peer

networks”, Tech. Rep., Sun Microsystems, 2001.
[14] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open

networks”, Proc. 3rd European Symposium on Research in Computer
Security – ESORICS ’94, pp. 3–18, 1994.

[15] W3C, “Xml-signature syntax and processing”, 2002.
[16] M. Girault, “Self-certified public keys.”, Advances in Cryptology -

EUROCRYPT ’91, pp. 490–497, 1991.


