
Verification of UML/OCL Class Diagrams using
Constraint Programming

Jordi Cabot, Robert Clarisó and Daniel Riera
Universitat Oberta de Catalunya

{jcabot, rclariso, drierat}@uoc.edu

Abstract

In the MDD and MDA approaches, models become the
primary artifacts of the development process. Therefore,
assessment of the correctness of such models is a key is-
sue to ensure the quality of the final application. In that
sense, this paper presents an automatic method that uses
the Constraint Programming paradigm to verify UML class
diagrams extended with OCL constraints. In our approach,
both class diagrams and OCL constraints are translated
into a Constraint Satisfaction Problem. Then, compliance
of the diagram with respect to several correctness proper-
ties such as weak and strong satisfiability or absence of con-
straint redundancies can be formally verified.

1 Introduction

Software veri cation is one of the long-standing goals of
software engineering. The need for correct software spec-
i cations is even more relevant in the context of the MDD
and MDA communities where software models are used to
(semi)automatically generate the implementation of the -
nal software system.
Unfortunately, formal veri cation of software models is

known to be undecidable in general. This is also the case
when focusing on the veri cation of UML class diagrams
extended with OCL constraints: rst-order logic (FOL) it-
self is undecidable in general and OCL is more expres-
sive than FOL. Therefore, to avoid undecidability, existing
methods able to reason on UML/OCL diagrams either (a)
limit the UML/OCL constructs that may appear in the dia-
grams, (b) are not automatic or (c) are semi-decidable.
We believe that these limitations impair a wide adoption

of formal methods within the MDD community. As a con-
sequence, speci cation and design errors are not detected
until the implementation stage, increasing the cost of the
development process.
In this paper we advocate for using the Constraint Pro-

gramming paradigm as a complementary method for the
fully automatic, decidable and expressive veri cation of
UML/OCL class diagrams. Decidability is achieved by
de ning a finite solution space, i.e. establishing nite
bounds for the number of instances and nite domains for
attribute values to be considered during the veri cation

process. This way, the constraint solver is able to perform
a complete search within the solution space. We will argue
that considering a nite solution space is a reasonable trade-
off regarding the features offered by other existing veri ca-
tion methods.
The main goal of this paper is to present a systematic

procedure for the transformation of a UML class diagram
annotated with OCL constraints into a Constraint Satisfac-
tion Problem (CSP). A prede ned set of correctness prop-
erties about the original UML/OCL diagram can then be
checked on the resulting CSP.
One of the most well-known correctness properties is

satisfiability. A model is satis able if it is possible to cre-
ate a correct and non-empty instantiation of the model, i.e.
if a user can possibly create a nite set of new objects and
links over the classes and associations of the model so that
no model constraint is violated. As an example, consider
the class diagram of Fig. 1. This model is unsatis able due
to two different reasons:

1. The multiplicities of association Reviews re-
quire exactly three distinct researchers per paper
(|Researcher| = 3 · |Paper|). Meanwhile, the multi-
plicities of Writes requires one or two researchers per
paper (|Researcher| ≤ 2 · |Paper|). Only an in nite
or empty instantiation may satisfy both constraints
simultaneously.

2. Students cannot be referees according to constraint
NoStudentReviewers. However, all researchers must
be authors (due to the multiplicities in Writes), all au-
thors must review papers (Reviews) and there must
be at least one student paper (LimitsOnStudentPapers)
with an student author (AuthorsOfStudentPaper).

Therefore, the model we have presented is completely
useless1. Every time a user tries to instantiate the model
some of the constraints will become violated.
Roughly, to detect the unsatis ability of this model our

method would proceed as follows. The diagram is trans-
lated into a CSP, such that if the CSP has a solution, the
model is satis able. Intuitively, the CSP describes an in-
stance of the model using variables that encode the number

1Fig.1 becomes satis able if the multiplicities of manuscript and
submission are changed to 0..1. This version of the model will be used
later in the paper to illustrate a successful search.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

Paper
title: String
wordCount: int
studentPaper: boolean

manuscript 1 1 submission

Writes Reviews

author 1..2 3 referee
Researcher

name: String
isStudent: boolean

context Researcher inv NoSelfReviews:
self.submission−>excludes(self.manuscript)

context Paper inv PaperLength:
self.wordCount < 10000

context Paper inv AuthorsOfStudentPaper:
self.studentPaper = self.author−>exists(x | x.isStudent)

context Paper inv NoStudentReviewers:
self.referee−>forAll(r | not r.isStudent)

context Paper inv LimitsOnStudentPapers:
Paper::allInstances()−>exists(p | p.studentPaper) and
Paper::allInstances()−>select(p | p.studentPaper)−>size()< 5

Figure 1. Running example: a UML class diagram with OCL constraints

of objects and links, the values of attributes, etc. In the CSP,
there are also several constraints that restrict the legal val-
ues for these variables and that represent, for instance, OCL
constraints or multiplicities of the initial model. Satis abil-
ity (non-emptiness of the instantiation) can be imposed as
an additional constraint: a lower bound on the number of
objects and links.
To nd a solution, the constraint solver tries to assign a

value to all variables without violating any constraint. If
no legal assignment is possible, the model is determined as
unsatis able. Likewise, other correctness properties can be
checked.
The rest of the paper is structured as follows. Section 2

introduces Constraint Programming concepts and notation.
Later, Section 3 describes how to transform a UML/OCL
model into a CSP. Section 4 presents some correctness prop-
erties and their representation as additional constraints in
the CSP. The resolution of the generated CSP is shown in
section 5. The veri cation tool that implements our ap-
proach is introduced in Section 6. Previous work and theo-
retical aspects are analysed in Section 7. Finally, Section 8
draws some conclusions and highlights future work.

2 Basic concepts of Constraint
Programming

Constraint Programming [2, 10] is a declarative problem
solving paradigmwhere the programming process is limited
to the de nition of the set of requirements (constraints). A
constraint solver is in charge of nding a solution that sat-
is es the requirements.
Problems addressed by Constraint Programming are

called constraint satisfaction problems (CSPs). A CSP is
represented by the tuple CSP = 〈V,D,C〉 where V denotes
the nite set of variables of the CSP, D the set of domains,
one for each variable, and C the set of constraints over the
variables. A solution to a CSP is an assignment of values to
variables that satis es all constraints, with each value within
the domain of the corresponding variable. A CSP that does

not have solutions is called unfeasible.
The most traditional technique for nding solutions to a

CSP is backtracking. A possible backtracking implemen-
tation called labeling orders variables according to some
heuristic and attempts to assign values to variables in that
order. If any constraint is violated by a partial solution, the
solver reconsiders the last assignment, trying a new value in
the domain and backtracking to previous variables if there
are no more values. This systematic search continues un-
til a solution is found or all possible assignments have been
considered. To ensure termination, the search space must
be nite, thus, all variable domains must be nite.
The ef ciency of the search process is largely improved

by constraint propagation techniques: using information
about the structure of constraints and the decisions taken
so far in the search process, the unfeasible values in the do-
mains of unassigned variables can be identi ed, pruning the
search tree. Theses techniques are an effective mechanism
to reduce the search space.
In this paper, we will describe CSPs using the syntax

provided by the ECLiPSe Constraint Programming System
[2,15]. In ECLiPSe, constraints are expressed as predicates
in a logic Prolog-based language while variables may be
either simple, structured (tuples) or lists. The environment
provides several solvers and it is capable of reasoning about
boolean, interval, linear and arithmetic constraints among
others.

3 Translation of UML/OCL Class
Diagrams

This section describes the transformation of a class dia-
gram into a Constraint Satisfaction Problem. A class dia-
gram CD is de ned as CD = 〈Cl, As, AC, G, IC〉, where
Cl is the set of classes,As is the set of associations,AC the
set of association classes, G the set of generalisation sets
and IC the set of constraints (either graphical or textual)
included in CD.

2

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

Each element is translated into a set of variables, do-
mains and constraints in the CSP system. As stated before,
domains must be nite. These nite domains can be en-
sured in several ways: rst of all, arbitrary bounds for the
domains can be chosen or provided by the designer during
the translation process. On the other hand, the analysis of
the constraints in IC may reveal a nite set of relevant val-
ues in the domain. From the point of view of ef ciency, we
are interested in the smallest domains that suf ce to identify
inconsistencies in the model, but the automatic computation
of these domains from the constraints in IC is a complex
problem which will not be addressed in this paper. Instead,
we will assume in this section that these values are provided
as inputs (parameters) of our translation procedure.
In the following we present the transformation of the el-

ements of a class diagram into the CSP.

3.1 Transformation of classes

The set of variables and domains to be de ned for each
class c ∈ Cl is:

• A variable Instancesc of type list. Each element in
the list represents an instance of c. Therefore, the do-
main of these elements is represented by the structure
struct(c) = (oid, f1, . . . , fn), where: oid represents
the explicit object identi er for each object, and each
fi corresponds to an attribute at ∈ c.ownedAttribute2.

The domain of the oid eld is the set of positive inte-
gers. The domain of an f i eld is de ned as a nite
subset of the domain of the corresponding at attribute
in c. Boolean and enumerated types are already -
nite. Finite domains for integer types requires at least a
lower and upper bound for the attribute. For real types
we need also a maximum decimal precision. For string
types, the possible �alphabet� and the maximum string
length should be de ned.

To increase the ef ciency of the generated CSP, dur-
ing the translation we discard all attributes that do not
participate in any of the constraints in IC. A correct
instantiation may contain any value in those attributes.

• A variable Sizec of type integer, encoding the
number of instances of class c. Its domain
is domain(Sizec) = [0, PMaxSizec], where
PMaxSizec is a parameter that indicates the maxi-
mum number of instances of class c that must be con-
sidered when looking for a solution to the CSP.

Additionally, the following constraints are added to the
CSP:

2ownedAttribute is the UML metamodel navigation that returns the set
of attributes of a class.

• Number of instances: Sizec = length(Instancesc)

• Distinct oids: ∀x, y ∈ Instancesc : x �= y →
x.oid �= y.oid

3.2 Transformation of associations

For each association as ∈ As between classesC1 . . . Cn,
the following variables and domains must be created in the
CSP:

• A variable Instancesas of type list. Every member of
the list represents an instance of the association (i.e. a
link), each being of type struct(as) = (p1, . . . , pn),
where p1 . . . pn are the role names of the participant
classes. The domain of each pi is that of positive in-
tegers, that is, each link records the set of oids of the
participant objects, not the objects themselves.

• A variable Sizeas encoding the number of instances
of the association. Its domain is domain(Sizeas) =
[0, PMaxSizeas]. As before, PMaxSizeas is the pa-
rameter indicating the maximum number of links of as
to be considered when looking for valid solutions of
the CSP.

Let n be the number of roles in the association as, and
given a role i, let T (i) be its type and [mi, Mi] be its multi-
plicity. Then, the following constraints must also be added
to the CSP:

• Number of links: Sizeas = length(Instancesas)

• Existence of referenced objects: ∀l ∈ Instancesas :
∀i ∈ [1, n] : ∃x ∈ InstancesT (i) : x.oid = l.pi

• Uniqueness of links: ∀x, y ∈ Instancesas : x �=
y → (∃i ∈ [1, n] : x.pi �= y.pi) unless the property
isUnique of the association is set to false.

• Bounds on cardinalities: The multiplicities of an asso-
ciation impose constraints on the number of instances
of the participant classes and the association. These
constraints are presented in Fig. 2. First, the set of links
is a subset of the cartesian product of the participant
classes, so its size (product of class sizes) de nes an
upper bound for the number of links. Also, minimum
and maximummultiplicities of roles de ne a lower and
upper bound relationship between the number of links
and the number of objects of each participant class.

• Multiplicities of the association: Multiplicity con-
straints must also be satis ed by each individual object
of the participant classes. For instance, for a binary as-
sociation, the condition

3

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

Class X ma..Ma Assoc A mb..Mb Class Y
rolea roleb

SizeA ≤ SizeX · SizeY

ma · SizeY ≤ SizeA ≤ Ma · SizeY

mb · SizeX ≤ SizeA ≤ Mb · SizeX

Figure 2. Implicit cardinality constraints due
to the association multiplicities [5]

(∀x ∈ InstancesT (1) :
m2 ≤ {#l : l ∈ Instancesas : l.p1 = x} ≤ M2) ∧

(∀y ∈ InstancesT (2) :
m1 ≤ {#l : l ∈ Instancesas : l.p2 = y} ≤ M1).

is the constraint imposed by min/max multiplicities.

3.3 Transformation of association classes
An association class ac ∈ Ac is, at the same time, a class

and an association. Therefore, transformation of associa-
tion classes can be regarded as the union of the translation
process for classes plus the translation process for associa-
tions.

3.4 Transformation of generalisation sets

Generalisation sets do not imply the de nition of new
variables but the addition of new constraints among the
classes involved in the generalisation set.
Let class sub ∈ Cl be a subclass of a class super ∈ Cl.

The following constraints should be added:

• Existence of oids in supertype: ∀x ∈ Instancessub :
∃y ∈ Instancessuper : x.oid = y.oid

• Number of instances: Sizesub ≤ Sizesup

• Disjointness: For a disjoint generalization set among a
supertype S and subtypes S1..Sn:

– SizeS ≥ ∑
i SizeSi

– ∀i, j ∈ [1, n] : ∀o1 ∈ InstancesSi,∀o2 ∈
InstancesSj : o1.oid = o2.oid → i = j

• Completeness: For a complete generalization set
among a supertype S and subtypes S1..Sn:

– SizeS ≤ ∑
i SizeSi

– ∀o1 ∈ InstancesS : ∃i ∈ [1, n] : ∃o2 ∈
InstancesSi : o1.oid = o2.oid

3.5 Translation of OCL invariants

Integrity constraints in OCL [11] are represented as in-
variants de ned in the context of a speci c type, named the
context type of the constraint. Its body, the boolean con-
dition to be checked, must be satis ed by all instances of

the context type. In our approach, each OCL constraint is
translated into an equivalent constraint in the CSP. Fig. 3
shows an example of the translation process presented in
this section. Note that the same translation process could be
seamlessly used to translate other OCL expressions like pre
and postconditions.
An OCL constraint can be viewed as an instance of the

OCL metamodel with a tree shape (see the simpli ed tree
representation for PaperLength constraint in Fig. 3). Leave
nodes of the tree correspond to the constants (e.g. 2, true,
�John�) and variables (e.g. self, x) of the constraint. Each
internal node corresponds to one atomic operation of the
constraint, e.g. logical or arithmetic operation, access to an
attribute, operation calls, iterator, etc. The root of the tree is
the most external operation of the constraint. Packages like
the Dresden OCL toolkit [6] can parse textual OCL con-
straints and build the corresponding trees.
As a preliminary step, we express all constraints in terms

of the allInstances operation using the following expansion
rule:

context T inv: B ⇒
context T inv: T::allInstances()−>forAll(v|B�)

where B� is obtained by replacing all occurrences of self in
B with v.
Then, the translation procedure is de ned as a post-order

traversal of the corresponding OCL metamodel tree that
translates all the children (subexpressions) of a node be-
fore translating the node (expression) itself. Each node of
the tree is translated into an ECLiPSe Prolog compound
term with an unique functor name that identi es the subex-
pression and three arguments, e.g. nodeX(Instances,
Vars, Result), with the following meaning:

1. Instances is a list with the set of instances for each
class and association. The i-th position of this list
holds all the instances of class/association i. The or-
der within this list is de ned in auxiliary Prolog rules
generated during the translation. This argument is re-
quired, for instance, to implement the OCL operation
allInstances and navigation in associations.

2. Vars contains the list of the quantified variables avail-
able in the subexpression. The rst position of this list
holds the value of the quanti ed variable de ned in the
innermost iterator (e.g. forAll or exists). The second
position holds the following variable in the next inner-
most iterator and so on. This argument will be used
when evaluating attribute, operation or navigation ex-
pressions over variables de ned in an iterator.

3. Result holds the result of the subexpression. The type
of the result depends on the operation applied in the
node.

4

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

context Paper inv PaperLength:
Paper::allInstances−>
forAll(x|x.wordCount < 10000)

(a)

% Position of class Paper
% within the list of instances
index("Paper", 1).

% Position of attribute wordCount
% within the list of attributes
attIndex("Paper", "wordCount", 2).

nodeConstant(, , Result):-
Result = 10000. (b)

nodeVariable(, Vars, Result):- % x = var of the innermost iterator
nth1(1, Vars, Result). % Result = Vars[1] = value of x

nodeAttrib(Instances, Vars, Result):-
nodeVariable(Instances, Vars, Object), % An object of class Paper
attIndex("Paper", "wordCount", N), % N = Index of field wordCount
arg(N, Object, Result). % Result = Object[N] = wordCount value

nodeAllInstances(Instances, Vars, Result) :-
index("Paper", N), % N = Position of class Paper
nth1(N, Instances, Result). % Result = Instances[N] = Inst of Paper

nodeLessThan(Instances, Vars, Result) :-
nodeAttrib(Instances, Vars, Value1), % 1st subexpression
nodeConstant(Instances, Vars, Value2), % 2nd subexpression
#<(Value1, Value2, Result). % Result = (Value1 < Value2)?

nodeForAll(Instances, Vars, Result) :-
nodeAllInstances(Instances, Vars, L), % L = Result of allInstances
(foreach(Elem, L), foreach(Eval, Out), param(Instances,Vars) do

% Eval = Result of evaluating nodeLessThan on an element of L
nodeLessThan(Instances, [Elem|Vars], Eval)),

% Out = List of truth values. Out[i]= Result of nodeLessThan(L[i])
length(L, N), % N = length(L)
#=(N, sum(Out), Result). % Result = (N = ΣOut[i])?

% Translation of the constraint PaperLength
paperLength(Instances) :-

nodeForAll(Instances,[],Result), % Evaluate the root node
Result #= 1. % Result should be true

(c)

Figure 3. Translation of OCL constraints: (a) Class invariant after preprocessing, (b) OCL metamodel
tree, (c) Constraint represented by means of Prolog rules in the CSP

5

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

The behaviour of each node is formalised by means of a
Prolog rule. This rule evaluates the subexpressions of the
node and computes the result of the node in terms of the
results of its subexpressions. Basic types (e.g. boolean,
integer or real) and basic operations (e.g. logical and arith-
metic) have a direct implementation in the ECLiPSe con-
straint libraries. For more complex operations, such as it-
erators or operations on Collections, we have developed a
new ECLiPSe library [16] that implements the operations
de ned in the OCL Standard Library [11]. This library
is implemented such that embedded constraint propagation
techniques in ECLiPSe can be applied. Nevertheless, for
the sake of simplicity, in Fig. 3 we have directly added to
each node the required computation without relying in our
external library.
Once the translation has been completed, we add to the

CSP a new constraint representing the original OCL invari-
ant, de ned as: nameConstraint(Instances):-
rootNode(Instances,[],Result),Result#=1,
i.e. a constraint is true when rootNode evaluates to true.
For example, see the paperLength constraint in Fig. 3(c).

4 Definition of correctness properties

A model is expected to satisfy several reasonable as-
sumptions. For instance, it should be possible to instantiate
the model in some way that does not violate any integrity
constraint. Moreover, it may be desirable to avoid unneces-
sary constraints in the model. Failing to satisfy these criteria
may be a symptom of an incomplete, over-constrained or in-
correct model. Designers can select which of these criteria
should be satis ed by a model.
In our approach, correctness properties are represented

as additional constraints in the CSP. If the CSP still has a
solution once the new constraint is added, we may conclude
that the model satis es the property. The set of correctness
properties that can be checked by designers is the following:

Strong satisfiability: The model must have a nite instan-
tiation where the population of all classes and associa-
tions is at least one.

Weak satisfiability: The model must have a nite instan-
tiation where the population of at least one class is at
least one.

Liveliness of a class c: The model must have a nite in-
stantiation where the population of c is non-empty.

Lack of constraint subsumptions: Given two integrity
constraints C1 and C2, the model must have a nite
instantiation where C1 is satis ed and C2 is not. Oth-
erwise, we say that C1 subsumes C2. C2 could be re-
moved.

Figure 4. De nition of the CSP for the running
example

Lack of constraint redundancies: Given two integrity
constraints C1 and C2, the model must have a nite
instantiation where only one constraint is satis ed.
Otherwise, constraints C1 and C2 are called redun-
dant, e.g. both have always the same truth value. One
of them should be removed.

Other types of correctness properties, such as the ap-
plicability of an operation op (that is, verifying the exis-
tence of at least a valid instantiation where the precondition
of op is satis ed), may be similarly de ned.
Designers may be also interested in checking these prop-

erties over speci c (partially de ned) instantiations, e.g.
checking satis ability when a class c has an instance with a
value v in an attribute a. Our approach allows the de nition
of additional constraints that characterise this desired state.

5 Resolution of the generated CSP

The nal CSP is obtained as a combination of the trans-
lation excerpts generated using the rules of section 3 (for
the transformation of the UML/OCL diagram) and section
4 (for the de nition of the quality properties to be veri ed).
Remember that if this generated CSP has a solution, we
can determine that the model satis es the indicated quality
properties.
The CSP is organized in two subproblems. In the rst

one, we de ne the cardinality variables for the number of in-
stances of each class and association (the Sizex variables),

6

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

their domains and all constraints restricting them. In this
phase, the goal is to nd a legal assignment of values to
these variables [5]. If no assignment is possible, the CSP is
directly unfeasible.
In the second subproblem, the valid values assigned to

the Sizex variables are used to instantiate the correspond-
ing Instancesx variables. Now the goal is to nd legal
values for properties (either attributes or roles) of all ele-
ments in the Instancesx lists. Intuitively, the procedure
tries to nd a valid solution for this second subproblem for
each assignment satisfying the rst one. If there is no such
solution, the CSP is determined as unfeasible.
Both phases follow the typical Constraint Programming

outline: de ne the variables and their domains, de ne the
constraints on the variables, and nally, nd a legal assign-
ment to these variables. In the initial phase, we work on
cardinality variables (Sizex), while in the second phase we
are interested in the set of instances (Instancesx) of classes
and associations.
As an example, Fig. 4 depicts the CSP corresponding to a

satis able version of our running example. The colored ar-
eas highlight the two subproblems of the CSP. On the left of
the gure, the organisation of several code excerpts (some
of them taken from previous gures) is described. On the
right, a possible search tree is depicted, where a dotted line
shows the direction of the search. In this tree, after an ini-
tial attempt, a solution to the rst subproblem is found, but
it is not possible to complete the second subproblem using
those values as cardinalities for the Instancesx variables.
Therefore, it is necessary to nd another solution to the rst
subproblem, which can then be completed to nd a valid
solution to the CSP.

6 Tool implementation

Our prototype tool [16] is implemented as a set of
ECLiPSe constraint libraries (2000 LoC) and Java classes
(11500 LoC) extended with the libraries of the Dresden
OCL toolkit [6] (for the parsing and loading of OCL con-
straints) and MDR (for the import/export of UML mod-
els from XMI). This prototype addresses the veri cation
of UML class diagrams with OCL invariants, i.e. the sta-
tic component of OCL. Solutions to the CSP are displayed
graphically as an object diagram which satis es all con-
straints.

7 Related work

Typically, approaches devoted to the veri cation of
UML/OCL class diagrams (as our own approach) transform
the diagram into a formalism where ef cient solvers or the-
orem provers are available. However, there are complex-
ity and decidability issues to be considered. Reasoning on
UML class diagrams is EXPTIME-complete [3] and, when

general OCL constraints are allowed, it becomes undecid-
able. By choosing a particular formalism, each method
commits to a different trade-off regarding the veri cation
of correctness properties of UML/OCL diagrams.
Table 1 brie y compares the tool described in this paper,

UMLtoCSP, to other related tools. For each approach, the
following information is listed: the underlying formalism,
the translation procedure from UML/OCL to the formalism
(manual or automated), the degree of automation in the ver-
i cation (user-assisted or automated) and other limitations
of the method. UMLtoCSP offers both automated trans-
lation and veri cation procedures and supporting general
OCL constraints. Additionally, our tool is able to provide
valid instantiations for satis able models.
Among all these tools, the most similar in terms of

features is the combination of two tools, Alloy [8] and
UML2Alloy [1]. Alloy is a mature tool for the auto-
mated analysis of software speci cations with a consoli-
dated implementation, but its input notation has differences
with respect to UML/OCL. A separate front-end called
UML2Alloy [1] can transform UML class diagrams anno-
tated with OCL constraints into the Alloy notation, for a
speci c subset of UML constructs and OCL expressions.
UMLtoCSP offers some advantages with respect to the

combination of UML2Alloy and Alloy. First, Alloy works
by transforming the entire problem into an instance of SAT
(satis ability of a boolean formula in conjunctive normal
form). Numerical constraints must also be expressed in
terms of boolean variables, meaning that arithmetic and
relational operations (e.g. addition, difference, less-than,
. . .) must be encoded as boolean formulas operating at the
bit-level. All these factors lead to a combinatorial explo-
sion in the size of the formula when the bit-width of inte-
gers increases. Moreover, it is not possible to encode con-
straints involving multiplications or divisions, and oating
point values are not allowed. In a CSP, increasing the range
of a numeric value also increases the search space, but en-
coding complex arithmetic expressions on integers or oats
is straightforward. Finally, another bene t of UMLtoCSP
is a minor advantage in terms of usability, as UML2Alloy
and Alloy are separate tools. Meanwhile, UMLtoCSP offers
an integrated environment for veri cation, providing results
completely automatically in a notation (an object diagram)
which is directly linked to the original UML model.
Even though our current tool implementation does not

support yet all the features in the OCL 2.0 speci cation
(e.g. constraints on strings), our approach does not impose
theoretical limitations that restrict any UML or OCL con-
structs, unlike other approaches. On the other hand, like
all bounded veri cation methods, our approach is decidable
but not complete: results are only conclusive if a solution to
the CSP is found. In that sense, our method only guarantees
that if a solution to the CSP exists within the parameters

7

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

Table 1. Comparison of several methods for the veri cation of UML/OCL class diagrams.
Tool Formalism Translation Verification Limitations
[3, 14] Description Logics Automatic Automatic No OCL support
[5, 9] CSP Manual Automatic No OCL support, bounded veri cation
Alloy [8] Relational Logics Manual or [1] Automatic Bounded veri cation, limited arithmetic support
HOL-OCL [4] Higher-Order Logics Automatic User-assisted Undecidability
CQC [12] Deductive DB queries Manual Automatic No support for OCL arithmetic expressions,

non-termination for in nitely satis able models
USE [7] ASSL Manual Automatic Validation only
UMLtoCSP CSP Automatic Automatic Bounded veri cation

provided by the user, it will be discovered. Nevertheless,
the absence of solutions within a nite search space cannot
be used as a proof: a solution may still exist outside the
search space de ned by the parameters.
Nonetheless, an ef cient decidable procedure may pro-

vide more useful information than a semidecidable proce-
dure, even if the answer is not conclusive. For example,
when checking for satis ability, the maximum population
value for classes and associations can be always kept low. In
practice, it may be as problematic to have a non-satis able
model as to have a model that to be satis able requires pop-
ulating the classes with too many instances, e.g. a model
that requires creating more than fty instances of each class
to be satis able may be unusable in practice and may de-
serve further inspection anyway.

8 Conclusions and Further Work
We have presented a fully automatic, decidable and ex-

pressive method for the formal veri cation of UML/OCL
class diagrams. Our method is based on the translation of
the class diagram into a CSP. This approach has been im-
plemented in a prototype tool [16].
As a trade-off the veri cation procedure is not complete:

the user must provide a set of parameters to limit the search
space. Our procedure guarantees that this search space will
be explored exhaustively. We believe this is a reasonable
trade-off given the advantages of our method.
As a further work we would like to re ne our transla-

tion process to improve the ef ciency of the obtained CSP.
In particular we plan to better study heuristics to guide the
search and advance in the automatic de nition of appropri-
ate ranges for attribute domains (based on the semantics of
the OCL constraints that reference them). We plan to vali-
date these improvements by means of applying our method
over industrial case studies, including domain-speci c lan-
guages [13]. Finally, we plan to integrate into our method
the veri cation of other UML diagrams.

References

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.
Uml2alloy: A challenging model transformation. In
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems, pages 436�450, 2007.

[2] K. R. Apt and M. G. Wallace. Constraint Logic Program-
ming using ECLiPSe. Cambridge University Press, Cam-
bridge, UK, 2007.

[3] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning
on UML class diagrams. Artificial Intelligence, 168:70�118,
2005.

[4] A. D. Brucker and B.Wolff. The HOL-OCL book. Technical
Report 525, ETH Zurich, 2006.

[5] M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini.
Finite satis ability of UML class diagrams by Constraint
Programming. In Proc. Int. Workshop on Description Logics
(DL’2004), volume 104 of CEUR Workshop Proc., 2004.

[6] B. Demuth. The Dresden OCL toolkit and its role in In-
formation Systems development. In Proc. of the 13th Inter-
national Conference on Information Systems Development
(ISD’2004), Vilnius, Lithuania, 2004.

[7] M. Gogolla, J. Bohling, and M. Richters. Validating UML
and OCL models in USE by automatic snapshot generation.
Journal on Software and System Modeling, 4(4):386�398,
2005.

[8] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(2):256�290, 2002.

[9] H. Malgouyres and G. Motet. A UML model consis-
tency veri cation approach based on meta-modeling for-
malization. In Proc. ACM Symp. on Applied Computing
(SAC’2006), pages 1804�1809. ACM Press, 2006.

[10] K. Marriott and P. J. Stuckey. Programming with Con-
straints: An Introduction. MIT Press, Cambridge, Massa-
chussetts, 1998.

[11] Object Management Group. UML 2.0 OCL Specification,
2003.

[12] A. Queralt and E. Teniente. Reasoning on UML class di-
agrams with OCL constraints. In D. W. Embley, A. Olivé,
and S. Ram, editors, ER, volume 4215 of Lecture Notes in
Computer Science, pages 497�512. Springer-Verlag, 2006.

[13] S. Sen, B. Baudry, and H. Vangheluwe. Domain-speci c
model editors with model completion. In Proc. of the Multi-
Paradigm Modeling Workshop (MPM’2007), 2007.

[14] R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonck-
ers. Using description logic to maintain consistency between
UML models. In Proc. of UML’03., volume 2863 of LNCS,
pages 326�340. Springer, 2003.

[15] The ECLiPSe Constraint Programming System. http://
www.eclipse-clp.org, mar 2007. version 5.10.

[16] UMLtoCSP. http://gres.uoc.edu/UMLtoCSP.

8

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: CBUC/IEL Consortium. Downloaded on June 07,2010 at 14:26:59 UTC from IEEE Xplore. Restrictions apply.

