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Abstract: Currently, individuals leave a digital trace of their activities when they use their smart-
phones, social media, mobile apps, credit card payments, Internet surfing profile, etc. These digital
activities hide intrinsic usage patterns, which can be extracted using sequential pattern algorithms.
Sequential pattern mining is a promising approach for discovering temporal regularities in huge
and heterogeneous databases. These sequences represent individuals’ common behavior and could
contain sensitive information. Thus, sequential patterns should be sanitized to preserve individuals’
privacy. Hence, many algorithms have been proposed to accomplish this task. However, these
techniques add noise to the candidate support before they are validated as, frequently, and thus, they
cannot be applied without having access to all the users’ sequences data. In this paper, we propose a
differential privacy graph-based technique for publishing frequent sequential patterns. It is applied
at the post-processing stage; hence it may be used to protect frequent sequential patterns after they
have been extracted, without the need to access all the users’ sequences. To validate our proposal, we
performed a detailed assessment of its utility as a pattern mining algorithm and calculated the impact
of the sanitization mechanism on a recommender system. We further evaluated its information loss
disclosure risk and performed a comparison with the DP-FSM algorithm.

Keywords: sequential pattern mining; differential privacy; frequent pattern mining; edge differential
privacy; graph differential privacy; anonymization of big data

1. Introduction

Sequential pattern mining techniques are used to discover frequent correlations from
data describing the temporal behavior of studied phenomena. Sequential pattern mining is
applied in several domains, such as environmental care [1,2] or public health [3,4], among
others. The datasets used for the sequential pattern mining task could contain sensitive
information that could be exposed when patterns are shared. Indeed, a sequential pattern
represents a frequent behavior belonging to a percentage of the individuals under study.
For instance, in [5], Nuñez-del-Prado et al. studied the possibility of re-identifying an
individual from a set of sequential patterns through the unicity metric. In this context,
privacy-aware sequential pattern mining techniques arise to overcome this problem. If the
unicity assessment of a published set of frequent sequential patterns shows that there is a
risk of re-identification, such patterns may be protected through differential privacy. This
contrasts with traditional methods for providing differential privacy to frequent sequential
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patterns since they use the entire dataset of users’ sequences. The proposed method
takes as input a dataset of sequences, which are processed to extract a set of frequent
patterns first. Then, the method represents the relation of individuals and their behavior
through a bipartite graph of users and frequent patterns. After that, the sanitization
mechanism protects the bipartite graph by adding noise graphs [6] to obtain differential
privacy guarantees [7]. Finally, the sequential patterns with differential privacy are obtained
from the sanitized bipartite graph.

Later on, this method is compared with a baseline method called Differential Private
Frequent Sequence Mining (DP-FSM), which introduces Laplace noise when patterns are
built using the Breadth-First Search (BFS) strategy. Thus, graph-based and DP-FSM-based
techniques are compared using information loss, disclosure risk, and utility metrics for the
Statlog, Bank Transaction, and NYC and Tokyo Check-in datasets. We observed that our
approach outperforms the baseline in terms of disclosure risk for ε values from 0.05–1.

The rest of the paper is organized as follows. Section 2 depicts the state-of-the-art
about sequential pattern mining and differential privacy. Section 3 details the materials and
methods used in the present effort. The main results are shown in Section 4 and discussed
in Section 5. Finally, Section 6 gives the conclusion and future directions.

2. Related Works

In the present subsection, we describe the works on differential privacy for sequential
pattern mining. Most of them add Laplace noise to the prefix tree while building the
sequential patterns [8–11]. Chen et al. [12] applied differential privacy to publish prefix
trees for transit data by adding Laplace noise to the prefix tree count at each h level.
Afterward, they calculated the frequent patterns using the PrefixSpan algorithm on the
sanitized data and measured the utility as the true and false positives for the top-k frequent
sequences. They performed their experiments on data from Canada’s metro and bus
networks. Similarly, in [8], differential privacy was added to n-grams. They experimentally
evaluated their solution in terms of the data analysis tasks of count query and frequent
sequential pattern mining, with data from the page views of msnbc.com (i.e., MSNBC) and
from the sequences of stations visited by passengers in the Montreal transportation system
(i.e., STM). Bonomi and Xiong [13,14] applied a two-phase algorithm for differential privacy
in sequential pattern mining. The first phase adds Laplace noise to release a differentially
private prefix tree T′. The second phase constructs a dataset sketch and refines the candidate
patterns count, finally using the remaining ε-budget to retrieve the final counts, obtaining
the top-k most frequent patterns. Their utility measure was the F1-score. Xu et al. [9,10]
observed that in differentially private frequent sequence mining (FSM), the amount of
required noise is proportionate to the number of candidate sequences, and they proposed
the PFS2 privacy-aware algorithm to extract frequent patterns. To improve the utility and
privacy trade-off, they leveraged a sampling-based candidate pruning technique. Then,
they performed the experimental evaluation on the MSNBC, House Power, and Bible
datasets to compare PFS2 with the Prefix [12] and n-gram [8] algorithms, in terms of the
F-score and relative error measures. Zhou and Lin [11] proposed to truncate frequent
patterns to add noise to the pattern support based on the geometric mechanism to satisfy
ε-differential privacy. Differential Private Frequent Sequence Mining (DP-FSM) aims to
generate all candidate sequences and add noise to each candidate sequence’s support. Later
on, the algorithm selects frequent sequences according to the amount of noise added to
the candidate. The noise depends on the sensitivity that should be reduced for accurately
estimating which candidate sequences are frequent. The sensitivity depends on the size of
the sequence candidate. The authors showed that their approach outperformed the PFS2

algorithm [10] in terms of the false negative rate and relative support error. Lee et al. [15]
suggested a framework to minimize privacy leaks from medical distributed records. The
first step is to extract frequent patterns from each data source. Thus, the authors applied
differential privacy over the support count of the extracted patterns. Then, the frequent
patterns from all local data sources were aggregated in the case and control lists. Once
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the lists were aggregated in a centralized location, they computed the union of patterns
and carried out the summation of the support counts of each pattern. Finally, based on
the aggregated list of patterns, the top-k patterns were chosen to be used as the feature
representation.

3. Materials and Methods

In this project, we compared a new technique for adding privacy guarantees (i.e.,
sanitized) sequential patterns. Indeed, our proposal is based on adding noise to a bipartite
graph representing, on the one hand, users and, on the other hand, their patterns. This new
method was tested on three databases and compared with the Differential Private Frequent
Sequence Mining (DP-FSM) [11] reference algorithm in terms of the disclosure risk and
information loss measures, as well as the utility.

The following paragraphs describe the methodology performed in this effort. Fist,
the sequential pattern mining is described (see Section 3.1). Later, once the patterns are
obtained, they are used as the input in our proposal (see Section 3.4). Finally, our proposal
is compared with a baseline algorithm [11] using three measures to validate our approach
(see Section 3.5).

3.1. Sequential Pattern Mining

The sequential pattern mining problem aims to extract temporal correlations hidden
from a sequences dataset. To better understand the sequential pattern mining problem, we
present some key definitions in this section.

Definition 1 (Item and itemset). An item I is a literal value for purchase categories. An itemset,
IS = (I1 I2 . . . Iu), is a non-empty set of items such that Ii ∈ dom(items) ∀ i ∈ [1..u− 1].

Definition 2 (Inclusion of itemsets). An itemset IS = (I1 I2 . . . Iu) is included, denoted ⊆, in
another itemset IS′(I′1 I′2 . . . I′v), iff ∀Ik ∈ IS, ∃ ik, such that Ik = I′ik .

Definition 3 (Sequence). A sequence S is an ordered list of itemsets, denoted S = [IS1 IS2 . . . ISv]
where ISi, ISi+1 satisfy the constraint of temporal sequentiality for all i ∈ [1..v− 1].

Definition 4 (Inclusion of sequences). A sequence S = [IS1 IS2 . . . ISu] is included in another
sequence S′ = [IS′1 IS′2 . . . IS′v], denoted as S ⊆ S′, iff ∃ i1 < i2 < . . . < iu such that IS1 ⊆
IS′i1 , IS2 ⊆ IS′i2 , . . . , ISu ⊆ IS′iu .

Definition 5 (Support of a sequence). We define the support of a sequence S, denoted as supp(S),
as the number of sequences in the database sDB that include S.

Definition 6 (Problem of sequential pattern mining). Given a positive integer σ (minimal
support) and a sequence in the database sDB, a sequence can be considered frequent if its support
supp(S) is greater than or equal to σ, i.e., supp(S) ≥ σ. All frequent sequences are called sequential
patterns, and they are stored in a pattern database pDB.

Several algorithms have been proposed to tackle the problem of extracting sequential
patterns [16–18]. These algorithms can be divided into two main strategies: Depth-First
Search (DFS) and Breadth-First Search (BFS). BFS-based techniques [17] discover patterns
by level, in which a pattern is built combining patterns of size k with patterns of size k + 1.
For each level, patterns should appear more than a threshold called the minimal support.

3.2. Noise Graph Addition

We consider the sequential pattern extraction here as a preprocessing step for our
algorithm. After this step, we need to represent the frequent patterns and users as a
bipartite graph. In [6], a formalization of graph perturbation was proposed as noise graph
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addition. It was shown in [7] that it provides ε-edge-differential privacy. We adapted the
basic definitions and notations from [6,7] for our use-case.

Definition 7 (Bipartite graph). A bipartite graph G = G(N, M, E) is defined by two sets of
nodes (N and M) and a set of edges E, which are pairs of nodes ij with i ∈ N and j ∈ M.

Definition 8 (Graph addition). Let G1 = G1(N, M, E1) and G2 = G2(N, M, E2) be two
bipartite graphs with the same sets of nodes N, M; then, the addition of G1 and G2 is the graph
G = G(N, M, E) where the edges E are defined as:

E = {e|e ∈ E1 ∧ e /∈ E2} ∪ {e|e /∈ E1 ∧ e ∈ E2}.

We denote G as:
G = G1 ⊕ G2.

Therefore, after defining the graph-addition procedure, to define the bipartite noise
graph mechanism, we must sample a graph from a family of random graphs and show that
it is edge-differentially private.

Definition 9 (Gilbert model). The family of random bipartite graphs generated by the Gilbert
model is the set G(n, m, p) of bipartite graphs G(N, M, E), such that |N| = n, |M| = m and
such that for each possible pair of nodes ij, with i ∈ N and j ∈ M, then ij ∈ E, with probability p.

Definition 10 (Bipartite noise graph mechanism). For a bipartite graph G = G(N, M, E),
such that |N| = n, |M| = m. We define the bipartite noise graph mechanism An,m,p to be the
randomization mechanism that for a given probability 1

2 < p < 1 outputs An,m,p(G) = E(G⊕ g)
with g ∈ G(n, m, p).

Theorem 1 ([7]). The bipartite noise graph mechanism An,m,p is ε-edge-differentially private for
ε = 1−p

p .

3.3. Differential Privacy

Differential privacy provides a formal guarantee that the privacy risk remains similar
whether or not an individual provides his/her data [19]. It has been successfully applied
to frequent sequential pattern mining, but its strict privacy guarantees oftentimes involve
considerable information loss. To reduce such information loss, we propose an in-process
approach to protect the relation of the patterns to users with differential privacy. Here, we
include the definition for edge-differential privacy adapted from [20].

Definition 11 (Edge-differential privacy). It is said that a randomized functionA is ε-differentially
private if for all graphs G and G′ differing on at most one edge and all S ⊆ Range(A), it holds that:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S].

Therefore, an adversary will not be able to infer the existence of an edge in the graph
by observing the output of the function A.

3.4. Graph-Based Differential Privacy for Frequent Sequential Patterns

Previous methods start from the sequences and provide differential privacy when
extracting the frequent patterns, while the proposed method can be applied to protect
frequent patterns. Hence, it does not require having access to users’ sequences, only to
their patterns. It consists of the following steps (as depicted in Figure 1):

1. Frequent sequential pattern mining (pre-processing);
2. Graph representation of frequent patterns;
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3. Adding noise to the client-pattern graph;
4. Publishing the frequent sequential patterns with noise.

Figure 1. Process of sequential patterns’ sanitization through our graph-based differentially pri-
vate algorithm.

For graph representation of frequent patterns, we mine the sequential patterns from
the sequences dataset to obtain the frequent sequential patterns pDB and associate each
user i with its patterns through a dictionary D = {client : pattern}. This can be considered
as a pre-processing step. After extracting the frequent patterns, we generate a bipartite
graph G from the dictionaryD, as follows: We define N as the set of clients i in the sequence
database sDB and M as the set of frequent sequential patterns j in pDB and E as the pairs
ij, for each client i and each pattern j ∈ D[i]. Thus, G = G(N, M, E) is the bipartite graph
with nodes N, M and edges E. We assume that |N| = n and |M| = m.

To add noise to the client-pattern graph, we apply the bipartite noise graph mechanism,
after obtaining the graph G = G(N, M, E), which provides differential privacy from
Theorem 1. We obtain a protected bipartite graph G̃ = An,m,p(G) as a result.

Finally, to publish the frequent sequential patterns with noise from the protected
graph G̃, we obtain a protected client-pattern dictionary D̃ = {client : pattern}. From
the client-pattern dictionary D̃, we re-calculate the supports of the frequent patterns and
publish the frequent sequential patterns with differential privacy guarantees; see Figure 1.

3.5. Measures

In the present subsection, we introduce different metrics to quantify information loss,
disclosure risk, and utility.

Definition 12 (Information loss [8]). We define the information loss for p̃DB as the average
Relative Error (RE) of the published frequent itemset. The RE is calculated over all published
frequent patterns X ∈ p̃DB, as follows:

RE( p̃DB) =
1

|( p̃DB)|
∑

X∈ p̃DB

|noisy f req(X)− f req(X)|
max{ f req(X), 0.01n} ,

where n denotes the number of users in sDB and 0.01n is a sanity bound that mitigates the effect of
the queries with values close to zero (as in [8]).

Definition 13 (Disclosure risk). We define the disclosure risk based on the Jensen–Shannon
distance as:

DR( p̃DB) = 1− JS(pDB, p̃DB),

where the Jensen–Shannon distance is:

JS(pDB, p̃DB) =

√
D(pDBdist||m) + D( p̃DBdist||m)

2
,

where p̃DB is the sanitized version of the frequent sequential pattern pDB, m is the pointwise mean
between pDBdist and p̃DBdist, and D is the Kullback–Leibler divergence [21].
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Concerning the utility, different metrics have been proposed in the literature. For
instance, References [9,13,22] used the F-score, while [11] used the False Negative Rate
(FNR) as defined in [12]. We consider that the F-score is more general than the FNR, since it
combines the precision and recall, while the FNR only measures 1− recall.

Definition 14 (F-score [22]). Denote as p̃DB the set of frequent itemsets generated by a differen-
tially private frequent itemset mining algorithm, and pDB is the set of correct frequent itemsets, then:

precision( p̃DB) =
| p̃DB ∩ pDB|
| p̃DB|

, recall( p̃DB) =
| p̃DB ∩ pDB|
|pDB| ,

and:

F-score( p̃DB) =
2 ∗ precision( p̃DB) ∗ recall( p̃DB)

precision( p̃DB) + recall( p̃DB)

To validate the utility of the protected sequential patterns in a recommendation task,
we implemented the Extended Patricia Trie (EPT) that takes, as input, a set of sequential
patterns and a set of item weights (i.e., some value associated with an item, for instance
a cost) to predict the next items. Our implementation inspired by [23] uses a Patricia trie
structure to represent sequential patterns. Once the trie is built, the algorithm searches, in a
depth manner, the next items as a recommendation.

To measure the utility in the recommendation task, we propose two metrics:

Definition 15 (Confidence Value (CV)). To measure how accurate the recommendation is, we
use the following equation:

CV(SPtest) =
1

|SPtest| ∑
S∈SPtest

f (S),

where:

f (S) =


1, if the next item of SPtrain ∈ SPtest

0, if the next item of SPtrain /∈ SPtest

where SPtrain is the sequential patterns used for training the model and PC is the set of sequences
used in the testing step.

Thus, it assigns a value to the items that are correctly predicted. In this equation, if the
evaluated item belongs to the set SPtest, then the function returns 1; otherwise, it returns 0.

Definition 16 (Coverage). This metric allows measuring if the EPT is sufficiently varied to make
predictions of different cases. Specifically, the Coverage (CG) shows the percentage of cases that
could be evaluated from the test set. The CG value is calculated as follows:

CG(SPtest) =
|SPtrain| −UN
|SPtrain|

,

where the UN variable quantifies the number of cases in the test set, where a prediction was not
possible, and |SPtrain| represents the number of sequential patterns used for building the EPT.

There are two reasons for computing the coverage measure: first, when a pattern has
never been seen before in the EPT; second, when a pattern is in the EPT, but does not have
a suffix. It is important to measure whether the EPT is able to propose a pool of suitable
candidates for prediction.
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Regarding the impact of the sanitization mechanism in the recommendation task,
we developed the following pipeline: The process begins with the sequence dataset from
which the frequent patterns are extracted using the PrefixSpan algorithm. These frequent
patterns are the input for the graph-based algorithm that outputs privacy-aware frequent
patterns. On the other hand, the DP-FSM algorithm builds the privacy-aware frequent
patterns directly from the sequence dataset. Thus, the patterns extracted from the DP-FSM
and graph-based algorithms are used to build an EPT (model training step), which allows
predicting the next events from the sequences. Therefore, the extracted patterns from
PrefixSpan are used to test the EPT in terms of the confidence, coverage measure, and the
number of cases that cannot be predicted.

4. Experiments and Results

In the present section, we describe the results of applying different measures to quan-
tify the information loss (Section 4.1), disclosure risk (Section 4.2), and utility (Section 4.3)
of the differential private sequential pattern and DP-FSM algorithms for three different
datasets, which are described in the following paragraphs:

1. Statlog or German Credit Data: This dataset was provided by Prof. Hofmann. It
contains categorical attributes to clients having good or bad credit risk (German
Credit Data: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data),
accessed on 13 February 2022). In this work, the characteristics of each client having
credit are represented as a sequence. For instance, A40 represents if the client has a
new car, and A71 represents if the client is unemployed;

2. Bank Transactions: this private dataset contains credit and debit card transactions
in monetary units, grouped by the Classification of Individual Consumption by
Purpose (COICOP), the international reference classification of household expendi-
ture (COICOPs https://unstats.un.org/unsd/class/revisions/coicop_revision.asp,
accessed on 13 February 2022). Each bank user is represented by a sequence of
COICOPs (C1 to C12). For instance, C1 represents food and non-alcoholic beverages,
and C3 groups clothing and footwear;

3. NYC and Tokyo Check-in: this dataset contains 801131 check-ins in NYC and Tokyo
collected from April 2012 to February 2013. Each check-in is associated with its
timestamp, GPS coordinates, and venue categories (NYC and Tokyo Check-in: https:
//sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_46, accessed
on 13 February 2022). To build the sequences, the venue categories (represented by
letters) of the visited place were grouped for each user. For example, A represents a
pet store, and B represents a beauty store.

The sequence <[C1, C3, C3, C5]> is an example of the bank transaction dataset. Each
Ci represents one of the twelve COICOPs. In the same way, other sequences’ datasets have
the same shape.

Table 1 shows the main characteristics of the datasets. The number of sequences
represents the number of rows in the database. The number of different items represents
all the different objects in the database. The maximum and minimum sizes represent the
maximum and the minimum number of items belonging to a sequence. Finally, the last
column of Table 1 shows the average number of items in all sequences.

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://unstats.un.org/unsd/class/revisions/coicop_revision.asp
https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_46
https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_46
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Table 1. Main characteristics of sequences’ datasets.

Metrics German Bank NYC

Sequences 1000 548,263 1083

Different items 90 12 14

Max size 21 4028 2697

Min size 21 1 100

Avg size 21 111 210

Freq. Patterns 75 22 14,494

Rel. Support 0.5 0.8 0.9

License Public Private Public

It is worth noting that, before extracting the patterns, each dataset was encoded as
sequences grouping the transaction ID per timestamp. In the following subsection, we
present the different metrics performed over the aforementioned datasets. We highlight that
all experiments were run on a PC Intel(R) Xeon(R) 2.10 GHz with 32 cores, RAM: 200 GB.
All algorithms were implemented in Ubuntu 20.04.3 LTS using Python 3 using Jupyter,
Pandas, Diffprivlib, Numpy, and Networkx.

4.1. Information Loss

The two techniques compared in this paper add noise to the sequential patterns in
two different manners. On the one hand, the DP-FSM technique adds noise to sequences as
the patterns are constructed, level by level. In this technique, noise is added to the supports
of the candidate sequences. If the candidate support does not reach the minimal support, it
is not considered as a pattern, even though it may appear in the patterns extracted with
the PrefixSpan algorithm. On the other hand, the graph-based algorithm represents the links
between users and patterns. Thus, the support of a pattern is computed using the degree
of the nodes representing the patterns. In this context, the privacy mechanism removes
and adds links using a differential privacy mechanism causing the supports to change.
Nonetheless, the privacy mechanisms cause information loss. Therefore, to quantify this
loss, we rely on the relative error index, as introduced in Definition 12, for ε values 0.01, 0.1,
0.5, and 1.

Figure 2 depicts the information loss results for the different datasets. In general, we
observed how the relative error decreases as ε increases. Concerning the Bank dataset,
Figure 2A,B illustrates “for different top-k patterns” that the error using the graph-based
algorithm decreases more smoothly. For the German dataset, the top extracted patterns
range from 10 to 60. Besides, we note that the curves are smooth, and the top-k impacts the
measure. Thus, the higher the top-k, the smaller the error is (see Figure 2D), while for the
DP-FSM, the top-k parameter does not affect the error level, which could be a disadvantage
(see Figure 2C). Finally, for the NYC dataset, Figure 2E,F shows the highest number of
extracted patterns from 50 to 300. In that case, we observed a different behavior for the
DP-FSM algorithm influenced by the top-k parameter. Therefore, even if the DP-FSM
algorithm introduces less error, it needs hundreds of extracted patterns to present different
performances affected by the top-k parameter.
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Figure 2. Information loss measured as the relative error. Where (A) DP-FSM Bank, (B) Graph-based
Bank, (C) DP-FSM German, (D) Graph-based German, (E) DP-FSM NYC, and (F) Graph-based NYC.

4.2. Disclosure Risk

To measure the disclosure risk, we compare the support distribution difference be-
tween the patterns obtained without a privacy mechanism, using the classical PrefixSpan
algorithm, compared to the patterns obtained by the privacy mechanisms described above.
Therefore, this metric quantifies the certainty of the obtained patterns.

Thus, if the patterns are known with high certainty, it can be assumed that the adver-
sary’s knowledge is more accurate to perform an inference attack. To assess the disclosure
risk, we used the Jensen–Shannon divergence, which is computed between the support dis-
tributions of the patterns obtained by the PrefixSpan, DP-FSM, and graph-based algorithms.
Intuitively, when the Jensen–Shannon divergence is close to zero, the difference between
the patterns with and without noise is minimal, and the disclosure risk is maximized.
Conversely, the greater the Jensen–Shannon divergence, the greater the difference between
the patterns with and without noise is, minimizing the disclosure risk.

Figure 3 depicts the results of the disclosure risk assessment. In this case, we con-
sidered all the extracted patterns to calculate the Jensen–Shannon divergence. Figure 3A
shows that the DR is larger for the DP-FSM than for the graph-based algorithm, for ε values
from ε = 0.05, while it is smaller only for ε = 0.01 for the German and NYC datasets. This
illustrates that our mechanism improves the modulation of the disclosure risk.
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Figure 3. Disclosure risk measures’ comparison between the graph-based and DP-FSM algorithms.
Where (A) is the Bank dataset, (B) is the German dataset, and (C) NYC dataset.

4.3. Utility

In this section, we measure the performance of a differentially private frequent pattern
mining algorithm on finding the top-k most frequent patterns. For this, we considered the
F-score classification measure.

Figure 4 illustrates the F-score obtained from the experiments using the DP-FSM
and graph-based algorithms. We note in Figure 4A that the F-score is not affected by the ε
parameter for the DP-FSM algorithm in the Bank dataset, while in Figure 4B, we observe
the influence of the parameter over the F-score. The same behavior is depicted for the Bank
and German datasets. Besides, we observe the influence of the top-k parameter over the
F-score: the smaller the k value, the lower the F-score is.

0.01 0.05 0.1 0.5 1

ε value

0.6

0.8

1.0

F
-S

co
re

k = 50

k = 100

k = 150

k = 200

k = 250

0.01 0.05 0.1 0.5 1

ε value

0.2

0.4

0.6

0.8

F
-S

co
re

k = 50

k = 100

k = 150

k = 200

k = 250

(A) (B)

0.01 0.05 0.1 0.5 1

ε value

0.6

0.8

1.0

F
-S

co
re

k = 10

k = 20

k = 30

k = 40

k = 50

k = 60

0.01 0.05 0.1 0.5 1

ε value

0.2

0.4

0.6

0.8

F
-S

co
re

k = 10

k = 20

k = 30

k = 40

k = 50

k = 60

(C) (D)

0.01 0.05 0.1 0.5 1

ε value

0.6

0.8

1.0

F
-S

co
re

k = 50

k = 100

k = 150

k = 200

k = 250

k = 300

0.01 0.05 0.1 0.5 1

ε value

0.2

0.4

0.6

0.8

1.0

F
-S

co
re

k = 50

k = 100

k = 150

k = 200

k = 250

k = 300

(E) (F)

Figure 4. Utility measures using the F-score for DP-FSM and Graph-based applied to different dataset.
Where (A) DP-FSM Bank, (B) Graph-based Bank, (C) DP-FSM German, (D) Graph-based German,
(E) DP-FSM NYC, and (F) Graph-based NYC.

4.4. Utility for Recommendation Tasks

To complement the F-score metric, we quantified the utility of the graph-based method
through a recommendation task algorithm. This section describes the process, the technique,
and the main results.
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We performed a recommendation using the EPT algorithm from two methods of
protecting a sequential pattern dataset as the input: (1) graph-based differentially private
publication of sequential patterns and (2) differentially private sequential pattern mining
through the DP-FSM algorithm. Both recommendations sets were compared with the results
using classical patterns (without noise) to measure the utility for the recommendation
of both sanitization techniques. Two metrics were used for this task: Confidence and
Coverage values. The first metric allows us to perceive how reliable the prediction is using
the constructed EPT, besides the second measure will enable us to realize if the EPT is
sufficiently varied to make predictions of different cases. Figure 5 shows the coverage and
confidence measures for the recommendations’ comparison between the graph-based and
the DP-FSM algorithms for the three datasets at our disposal. They show that for ε values
smaller than one, the DP-FSM algorithm preserves better the metrics than the graph-based
algorithm, which equalizes its performance from values ε = 1.
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Figure 5. Coverage and confidence measures for the recommendations’ comparison between the
graph-based and DP-FSM algorithms. Where (A) Coverage Bank, (B) Confidence Bank, (C) Coverage
German, (D) Confidence German, (E) Coverage NYC, and (F) Confidence NYC.

5. Discussion

A sequence represents the temporal correlation of a set of features describing a phe-
nomenon (such as a customer’s purchases at different times). From a set of sequences, the
task of sequence pattern mining allows extracting the sub-sequences that appear frequently
called sequence patterns. In this paper, a new graph-based technique to add noise to sequen-
tial patterns is proposed. This technique builds a bipartite graph of users and patterns.
Later on, a ε-differential privacy mechanism removes or adds edges between users and
patterns, making the patterns change their support (i.e., pattern nodes’ degree). This new
technique was compared with the DP-FSM algorithm, which adds noise to the candidate
sequences before they become frequent. Since both techniques add noise to a sequence
in different ways, the aim of this work was to compare them on three different datasets
through different measures. In addition, both algorithms were compared in terms of utility
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using a sequence-based recommendation algorithm. The main results showed that our
proposal outperformed the baseline algorithm DP-FSM.

An advantage of the graph-based technique is the noise addition at the post-processing
stage instead of at the extraction stage, as the DP-FSM method. In detail, with the graph-
based technique, it is possible to sanitize frequent pattern data, while with DP-FSM, it is not:
DP-FSM needs to access all the sequences data and possibly more sensitive data. Besides,
the graph-based technique uses coarse-grained data (i.e., frequent patterns), which could
even be produced by a third party. Therefore, this third party could have access to the
sequences to produce the input patterns to be sanitized in an agnostic way, through the
bipartite graph, without knowing what the sequences in the patterns represent.

The limitation of our approach is the dependency of an algorithm to extract patterns.
Thus, the frequent pattern extraction performance will impact the accomplishment of the
sanitization process.

One of the important characteristics of our approach is that it enables performing
users/patterns and patterns’ sanitizations. The former sanitization lets the data curator
report the patterns by users providing a privacy guarantee depending on the noise addition
level of the ε-differential privacy mechanism. The latter allows reporting only the sanitized
support of patterns, which provides stronger privacy by adding an aggregation step after
the output of the ε-differential privacy mechanism.

6. Conclusions

In this work, we proposed a graph-based sanitization algorithm for frequent sequential
patterns. We compared our approach to the baseline sanitization algorithm for extracting
privacy-aware frequent patterns (DP-FSM) considering the information loss, disclosure
risk, and utility measures. Besides, we quantified the impact of the privacy mechanisms
for a recommendation task. We observed that our approach outperformed the baseline in
terms of disclosure risk for ε values from 0.05–1. Furthermore, we showed that it provides
more flexibility for reporting users/patterns of patterns. As new research avenues, we will
analyze the constructed trees in the EPT to assess whether an adversary could extract some
knowledge about the dataset used to build the tree.
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