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Abstract: Based on a real-world application in the semiconductor industry, this article models and
discusses a hybrid flow shop problem with time dependencies and priority constraints. The analyzed
problem considers a production where a large number of heterogeneous jobs are processed by a
number of machines. The route that each job has to follow depends upon its type, and, in addition,
some machines require that a number of jobs are combined in batches before starting their processing.
The hybrid flow model is also subject to a global priority rule and a “same setup” rule. The primary
goal of this study was to find a solution set (permutation of jobs) that minimizes the production
makespan. While simulation models are frequently employed to model these time-dependent flow
shop systems, an optimization component is needed in order to generate high-quality solution
sets. In this study, a novel algorithm is proposed to deal with the complexity of the underlying
system. Our algorithm combines biased-randomization techniques with a discrete-event heuristic,
which allows us to model dependencies caused by batching and different paths of jobs efficiently
in a near-natural way. As shown in a series of numerical experiments, the proposed simulation-
optimization algorithm can find solutions that significantly outperform those provided by employing
state-of-the-art simulation software.

Keywords: machine scheduling; hybrid flow shop; priority; batching; based-randomization; discrete-
event heuristics

1. Introduction

Increasing competition and the associated intensification of global business are charac-
teristic factors for modern manufacturing companies. Other factors, such as the ongoing
digital transformation and a growing demand for customized products have to be con-
sidered as well. An economically optimal utilization of the production chains was often
considered as the essential goal in the past. During the last years, however, this goal
has increasingly shifted towards a more customer-oriented production. Accordingly, the
focus of all companies is now on the time feasibility and adherence to promised delivery
dates, which confronts operational production planning with questions about the latest
possible release of a certain batch, so that it can still be manufactured and delivered on
time. A constantly increasing complexity of production systems, in conjunction with a high
degree of automation, repeatedly poses challenges for many production companies. As
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a result, there is an increasing need to use optimization algorithms in practice in order to
handle the complexity of planning problems. This is especially the case in the use case
of this study, which comes from the field of semiconductor manufacturing. The use of
simulation-optimization approaches [1] could provide a differentiated answer. In planning,
design, and ramp-up, these methods are well established but are not frequently used yet
for operational support in decision-making.

In our real-life scheduling application, and other production use cases, it is possible
for jobs to take different paths through the production system. The specific path might
depend upon a particular specification or parameter, which defines the machines to be
visited by the job. The existence of different paths through the production system might
cause time dependencies, so the order in which the jobs leave the system might be different
from the order in which the jobs entered it. Consequently, this can lead to problems in the
context of the planning of batch-related insertion dates, especially if batch processes are also
found within the production system. Therefore, we need a simulation to model our system.
In this study, a multi-path version of the hybrid flow shop scheduling problem [2] was
analyzed. This version also considers two batch processes at the same time, and it is based
on the real case from a German manufacturing industrial partner. Furthermore, a global
priority rule and a “same setup” rule were considered. The before-mentioned elements
make the computation of the makespan a non-trivial task: due to the existence of time-
dependencies and batches, the makespan cannot be computed using a closed analytical
expression anymore.

Accordingly, the main contributions of this study are described next: (i) a simulation
model of a hybrid flow shop problem with pre-determined paths, which are predefined by
individual parameters and specifications and batching; (ii) a fast discrete-event heuristic
that is able to deal with the complexity of the modeled system and compute the makespan
associated with a proposed solution; (iii) the extension of the previous heuristic to a
biased-randomized algorithm [3], which introduces some degree of randomness into the
heuristic constructive process; and (iv) the evaluation of computational experiments, which
show the performance of the proposed methodology for solving this scheduling problem.
Concepts of discrete-event simulation and heuristic algorithms can be combined into
discrete-event driven heuristics. Some typical applications include scenarios in which
synchronization issues are relevant [4] or in which rare events have to be modeled [5,6].
Furthermore, biased-randomized algorithms may generate alternative solutions based
on heuristic dispatching rules. By making use of Monte Carlo simulation and skewed
probability distributions, biased-randomized techniques introduce a non-uniform random
behavior into a dispatching rule. Employing parallelization techniques, these heuristics can
be applied in the same computational time as the original dispatching rule, thus making
these algorithms much more powerful than the original heuristics they build upon. In the
literature, applications of these algorithms can be found in flow shop problems [7]. Despite
its importance in the semiconductor industry, to the best of our knowledge, a flow shop
problem such as the one described here has never been solved in the related literature.

The article is organized as follows. Section 2 provides a more-detailed description of
the scheduling problem studied in this article. Section 3 reviews related work on similar
flow shop problems. Section 4 describes the algorithms proposed in this work in as much
detail as possible, so they can be reproduced by other researchers or practitioners. Section 5
carries out a series of numerical experiments to test our methodology and analyzes the
obtained results. Finally, Section 6 summarizes the main findings of this study and points
out some future research lines.

2. A Detailed Description of the Problem

This section describes a hybrid flow shop problem with realistic constraints. The
example described here is based on the specifics and constraints of a pre-assembly process
in semiconductor manufacturing, and notice that these constraints commonly appear in
semiconductor manufacturing in general.
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In parallel with the realistic use case, in this section, we formally categorize our
problem. Therefore, we use the notation first introduced by [8]. Using the scheme, any
scheduling problem can be described by means of a parameter tuple (α|β|γ) [9]. The
parameter α defines the number, the type, and the arrangement of the machines and stages.
The second parameter, β, can contain any number of entries. The entries are separated by
commas. β represents characteristic features and restrictions of the production process.
The last expression, γ, within the tuple stands for the objective function. Single objective
functions, combinations of objective functions in a mathematical expression, or different
tested objective functions can be specified here [9].

Due to production systems getting more complex and specified during the time, Gra-
ham’s notation [8] was further specified by [9,10] with additional production environments
(α), constraints (β), and objectives (γ). In this section, elements of their notations are also
utilized to characterize our problem. Further, we explain the specifics of the use case and
characterize the components of the problem by Graham’s notation in brackets.

Figure 1 shows the problem we are considering. The production contains 10 machines
and 2 batch processes. Flow shops with multiple machines on one of the processing
stages are referred to as hybrid or flexible flow shops (FHM) [9,10]. Hybrid flow shop
environments with machines that need different types (or a specified amount) of jobs
to start their production can be categorized as assembly flow shops [11,12]. In contrast,
hybrid flow shops with machines that may process jobs of different types simultaneously
(see machine Ba1 and Ba2 in Figure 1) are referred to as FHM with batching machines
(batch) [9,13].

The described machines i ∈ M process jobs j ∈ N of different product types tj ∈ T or
families (in Graham’s notation known as f mls) [9], where M = M1, ..., M10, Ba1, Ba2. The
four possible product types tj are T = A1, A2, B1, B2. Depending on the product type, the
jobs are processed along a specific route, which consists in a defined sequence of machines.

While the jobs j are all processed on machine M1 after being loaded into the modeled
system, the jobs j are subsequently divided into different paths depending on their product
types tj. On the one hand, jobs of product types j ∈ A1, A2 are processed by machines
M2, M4, and M5, while jobs of product type j ∈ A2 are processed on machine M9.
Jobs of product types B1 and B2 (j ∈ A1, A2) are not processed on machine M2 but on
machine M3 and, subsequently, by machine M6 in the case of product type B1. In the
case of product type B2, they are processed by machines M7 and M8. Our model includes
machine qualifications (Mj). In contrast, for example, jobs of type j ∈ A1 skip machine M9.
Accordingly, the model contains the constraint of skipping stages (skip). According to a
load of jobs with different product types—and thus different processing sequences—it is
possible that jobs are processed at different speeds through the flow production scenario.

In general, a global-priority-rule procedure applies to the modeled system. Accord-
ingly, the orders of product type A2 are prioritized, i.e., orders A2 (if available) are always
given priority on a machine (prec). In addition, a “same setup” priority rule applies to
the entire flow production scenario (apart from the batch processes). This rule sorts the
jobs in the queue depending on the setup status of the machines in order to keep setup
times and their influence on the makespan to a minimum. These constraints are based on a
“real-world use-case” from the field of semiconductor manufacturing and are depicted in a
simplified form in this model. Accordingly, in semiconductor manufacturing, countless
product types are often fed into the system, which requires a special setup on the machines.
In order to shorten the setup times and subsequently the overall makespan of the jobs, jobs
of the same product type are given priority if possible (same setup). The prioritization of a
specific product type (in this case, product type A2) is also used to prioritize product types
with a high order volume, high makespans, and/or complex setups.
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Figure 1. A simple example of the considered flow shop problem.
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Unlike other machines, the machines i ∈ Ba1, Ba2 process several jobs j simultaneously.
Hence, they are referred to as batch machines, whereby the product types are negligible.
Accordingly, six jobs j are processed simultaneously on machine Ba1. The processing of
the job j begins as soon as a total of six jobs of product types B1 and B2 are waiting in the
machine. The ratio of jobs j of product type j ∈ B1 or product type j ∈ B2 is irrelevant. On
machine Ba2, a total of ten jobs is processed simultaneously, whereby these can be jobs of
product types A1, A2, B1, and B2 [13].

The objective of the study was to find a permutation of jobs (solution) that reduces
the makespan Cmax (which is the last component of Graham’s notation). In Graham’s
notation [8], which was extend by [9,10], this problem can be completely formalized as:

FHM | Mj, batch, prec, skip, f mls | Cmax.

3. Related Work

Flow shop problems have been studied since the early 1950s [14]. Several authors have
employed mixed-integer programming, heuristics, and discrete-event simulation to deal
with hybrid flow shops in different application areas [13,15,16]. The flow shop problem
is NP-hard even for a problem with two-states, two identical parallel machines on one of
both stages, and one machine on the other stage [17]. Hence, the problem we analyzed in
this study is classified as NP-hard. In contrast to exact optimization methods, heuristics
cannot verify the optimality of a solution. However, they can provide high-quality (or even
near-optimal) solutions in short computational times, something that cannot be generally
achieved with exact methods [18,19].

Several reviews on assembly flow shops can be found in the literature [11,12]. A review
of hybrid flow shops with the integration of batching components is provided in [13]. As
stated by some authors, the makespan and time-based objectives dominate the literature in
flow shop environments [11,15]. Hence, the makespan is one of the most relevant objectives
both in theoretical as well as in applied works.

In the hybrid flow shop literature, two possible expressions of priority sets can be
observed. First, there is a fixed defined ranking of priority groups such as P1 = {j1},
P2 = {j2, j3}, P3 = {j4}. Secondly, for each job j, a set of preceding jobs Pj is defined [20].

Some studies consider hybrid flow shop problems with batching machines, priority
rules, and makespan objectives [20]. In the aforementioned work, a complex and realistic
flow shop problem with changeover times, machine qualifications, and priority rules was
analyzed. To deal with this problem, the authors have extended the NEH [21] considering
machine qualification, skipping stages, and rule priorities. The authors concluded that the
NEH heuristic provides good results for this type of flow shop problem.

Additionally, for the hybrid flow shop problem with setup times, machine qualifi-
cations, delayed machine availability, lag times between the stages, and the makespan
objective, other authors compared the priority rules of the “shortest processing time,”
the NEH, and the “longest processing time”, concluding that the NEH offers the best
results [22]. A genetic algorithm for a hybrid flow shop with batching machines was intro-
duced in [23]. In addition, the latter work allows jobs to skip stages. The initial solution
for the genetic algorithm was generated by a “longest processing time” dispatching rule,
followed by the “earliest completion time” heuristic for the following stages. A tabu search
has also been proposed for a hybrid flow shop in [24]. This algorithm swaps two jobs in
each iteration. The tabu list tracks pairs of jobs that were swapped in previous iterations
to avoid loops. Three dispatching rules were compared for generating the initial solution:
two variations of the “longest processing time,” with the sum of the processing times over
all stages per order, and an alphanumeric ordering. As a result, the authors showed that
none of these strategies performs significantly better than the other.

A “shortest processing time” heuristic for a two-stage hybrid flow shop problem
with polynomial runtime was introduced in [25]. Here, jobs can only be processed by
one dedicated machine on stage one. In the following stages, all jobs are processed on
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one machine in the batch processing mode. The “shortest processing time” heuristic was
employed for allocating the jobs on the first stage, and a combination of the “earliest
completion time” and a minimization of the processing times for all batches was employed
on the second stage. Due to the high complexity of the problem considered in our study,
a large number of possible permutations need to be explored. As mentioned before,
simulation can be useful for modeling, but it needs to be combined with optimization
components in order to generate high-quality or even near-optimal solutions.

4. A Biased-Randomized Discrete-Event Algorithm

In order to solve the hybrid flow-shop problem with batch processes, setup times,
and priorities, a multi-start approach is proposed in Algorithm 1. This multi-start method
calls a biased-randomized heuristic (Algorithm 2) that makes use of the NEH heuristic.
As discussed above, variations of this heuristic can provide good results for many hybrid
flow shops [6]. The original NEH was designed to minimize the makespan in a simple flow
shop environment.

Due to the complexity of the flow shop system considered in this work, we made use
of an original discrete-event based heuristic to compute the makespan. This procedure is
outlined in Algorithm 3. Our approach, which is depicted in Algorithm 1, receives as input
parameters a job list jobsList (where jobsList[i] is the job situated in the i− th position in
the sequence), some parameters params, and the β parameter (β ∈ (0, 1]) of the geometric
distribution employed to induce the biased-randomization effect [26]. This algorithm
works as follows: firstly, the initial solution best is generated by means of the heuristic
STNEH (β = 1) at line 2. In the main loop, the algorithm iterates until the termination
criterion is not reached. For each iteration, a new solution sol is generated by using the
biased-randomized version of the STNEH heuristic, BR-STNEH. This is achieved by setting
β in the interval (0, 1), as explained in [27]. If the makespan of sol is lower than solution
best, then best is replaced by sol; otherwise sol is discarded.

Concerning the biased-randomized algorithm BR-STNEH (Algorithm 2), it chooses
in each iteration the next job according to a two-level criterion: the setup times in the first
level and the processing times in the second-level. Consider the following parameters:
the jobs list jobList, the β parameter, the job processing times pT, job setup times sT, a list
of job types typesPriority, and a non-negative integer mL. The algorithm starts by listing
the job types typeJob ∈ {A1, A2, B1, B2} to split jobsList into a list of jobs of type typejob
called jobstypejob. The NEH heuristic is applied to each list jobstypejobs and collected in a list
of lists typesJobs (lines 3–7). In line 8, typesJobs is sorted in descending order according to
setup times. This is done because the setup time occurs mainly when two jobs, of different
types, are processed by the same machine consecutively. Hence, if we classify the jobs
by type, and then sort by the setup time sT, we can expect a reduction in the number of
times that two jobs of different types are processed by the same machine. In lines 9–12,
those jobs that are a priority (typejob ∈ typesPriority) must be scheduled at the beginning
of the jobsList. The main loop iterates until all jobs are scheduled. For each iteration, the
algorithm picks a type typeJob from typeJobs list and gets randomly an integer number
lgth between 1 and mL, i.e., the latter fixes the number of iterations of the inner loop. In
the inner loop, a random job is selected from the list jobsListtypeJob and appended to the
partial solution in each turn (lines 16–21). Finally, the complete solution jobsList is returned.
This procedure is then extended into a biased-randomized algorithm by introducing the
geometric distribution G(β) with parameter β ∈ (0, 1).
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Algorithm 1 Multi-Start Framework
1: Multi-Start(jobsList, β, params)
2: best← BR-STNEH(jL,β = 1, params)
3: while end criteria not reached do
4: sol← BR-STNEH(jL, β, params)
5: if makespan(sol,params) < makespan(best,params) then
6: best← sol
7: end if
8: end while
9: return best

Algorithm 2 Biased Randomized STNEH
1: BR-STNEH(jobsList, β, pT, sT, typesPriority, mL)
2: typesJobs← emptyList
3: for all typeJob ∈ types(jobsList) do
4: jobstypeJob ← {job | ∀job ∈ jobsList : type(job) = typeJob}
5: jobstypeJob ← SortingByNEH(jobstypeJob, pT)
6: typesJobs← append(typesJobs,jobstypeJob)
7: end for
8: typesJobs← SortingBySetupTimes(typesJobs,sT)
9: for all typeJob ∈ typesPriority do

10: jobsList← extend(jobsList,jobstypeJob)
11: typesJobs← remove(typesJobs,jobstypeJob)
12: end for
13: while jobsList is not complete do
14: typeJob← pickList(typesJobs,β)
15: lgth← randomInt(1,mL)
16: while lgth > 0 do
17: job← pickJob(jobstypeJob,β)
18: jobsList← append(jobsList,job)
19: jobstypeJob ← remove(jobstypeJob,job)
20: lgth← lgth− 1
21: end while
22: if jobstypeJob = emptylist then
23: typesJobs← remove(typesJobs,jobstypeJob)
24: end if
25: end while
26: return jobsList

In order to compute the makespan, we developed a discrete-event based procedure.
The idea of this methodology is to use a discrete-event list to manage complex time
dependencies that arise as events occur over time [4]. This event list is constantly sorted,
taking into account the chronological order of each event (e.g., the assignment of a job to an
available machine or the arrival of a job to a batch queue), and it is iteratively processed until
no events are left. Making all decisions in chronological order avoids complex and time-
consuming back-rolling issues. Hence, when a new event is scheduled , it is chronologically
inserted into a list eventList. The makespan is iteratively computed as this eventList is
processed, and others are scheduled, following a chronological order. Algorithm 3 shows
an overview of the proposed discrete-event procedure. The algorithm receives as input
parameters the jobsList, which is the complete list of jobs in the specific order that will
enter in the system to be processed the machine-dependent processing times of each job
(pT) and the setup times of each job-machine (sT). The algorithm requires auxiliary data
structures, such as: availableTime[m] (i.e., at which time a machine m will be available),
previousTypeMachine[m] (which keeps track of the machine that previously processed the
job), machinesTypes[m] (which stands for the type typeJob that machine m can process),
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and jobsWaiting[m] (which stores a set of jobs in the batch m). In the beginning, all jobs are
being processed in machine 1, in concordance with the scheduling jobsList. Therefore, the
algorithm is initialized, creating ending events at machine 1 and inserting them into the
event list eventList (lines 9 to 16). In line 17, eventList is sorted by time t of occurrence. The
main loop iterates until eventList is empty.

Algorithm 3 Discrete-Event Makespan Method
1: makespam(jobsList,pT,sT)
2: availableTime← initAvailableTimes()
3: previousTypeMachine← initPreviousTypeMachine()
4: machinesType← initMachinesType()
5: jobsWaiting← initJobsWaiting()
6: eventList← emptyList
7: mkSpn← 0
8: for all job ∈ jobsList do
9: setupTime← 0

10: if type(job) 6= previousTypeMachine[′machine1′] then
11: setupTime← sT[′machine1′][job]
12: end if
13: t← pT[′machine1′][job] + setupTime
14: event← createEndingEvent(t,job,′machine1′)
15: eventList← append(eventList,event)
16: end for
17: eventList← sortingByTime(eventList)
18: while eventList 6= emptylist do
19: event← first(eventList)
20: if isStarting(event) then
21: processingStartingEvent(event, pT, sT, availableTime, previousTypeMachine,

machineTypes,eventList)
22: else
23: processingEndingEvent(event, pT, sT, availableTime, previousTypeMachine,

machineTypes, WaitingJobs,eventList)
24: end if
25: mkSpn← time(event)
26: end while
27: return mkSpn

At each iteration, the next event, event, is selected, which can belong to one of
the following types: job starts in a machine (starting-event) or job ends in a machine
(ending-event):

• In case of a starting-event, job job is just placed at the entrance of machine j at time t.
Algorithm 4) proceed as follows: job job, machine machine, time t, and type typeJob
are recovered in lines 2–4; in line 6, we check whether job belongs to the machine path;
if it does not, then a new ending-event is created with the same job, machine, and time
(lines 18–19); otherwise, the algorithm advances the clock time t; next, the algorithm
determines the setupTime, which is set to 0 if the previous job type and the current
one match; otherwise, sT[machine][job]; hence, the new time t′ is set to previous time t
plus the job-processing time pT[machine][job] and the setupTime (lines 7–14); finally,
we create a new ending-event nEvent with the same job and machine but at time t′;
this event is insert into the event list.
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Algorithm 4 Processing Starting Events
1: processingStartingEvent(event, pT, sT, availableT, previousTypeMachine,

machineTypes,eventList)
2: job← job(event)
3: typeJob← type(job)
4: machine←machine(event)
5: t← time(event)
6: if job ∈ machineType[typeJob] then
7: setupTime← 0
8: previousType← previousTypeMachine[machine]
9: if previousType 6= typeJob then

10: setupTime← sT[machine][job]
11: end if
12: t′ ← t + pT[machine][job] + setupTime
13: previousTypeMachine[machine]← typeJob
14: availableTime[machine]← t′

15: nEvent← createEndingEvent(t′,job,machine)
16: eventList← insertEventSorted(eventList,nEvent)
17: else
18: nEvent← createStartingEvent(t,job,machine)
19: eventList← insertEventSorted(eventList,nEvent)
20: end if

• In case of an ending-event (Algorithm 5), like a job job of type typeJob leaving machine
machine at time t, the algorithm works as follows: initially, job, type, and time are
obtained from event in lines 2–3; in line 4, this machine release time is computed
with the maximum between the current time t and the current machine release time
availableTime[machine]; then, the algorithm verifies whether the job belongs to this
machine path; if it does not, then a new starting-event is created with the same job
and time but in the next machine (lines 18–19); otherwise, it continues to the next step;
in the next step, our algorithm assumes that the size of all batches is set to 1 except for
Ba1 and Ba2; hence, the current job is added to the list of jobs in the current machine
waitingJobs (lines 8–9); in lines 10–16, the algorithm checks if the number of jobs in
this machine reaches the batch size, in which case a new starting event nvEvent is
scheduled at time t for each job job′ in the waitingJobs (these new events are inserted
into the eventList).

Finally, when eventList is empty (line 18 in Algorithm 3, the algorithm finishes return-
ing the time mkSpn of the last event processed, which is an ending-event of the last job in
the last machine. This time is the makespan of the processed jobsList.
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Algorithm 5 Processing Ending Events
1: processingEndingEvent(event, pT, sT, availableT, previousTypeMachine,

machineTypes, waitingJobs,eventList)
2: job← job(event)
3: typeJob← type(job)
4: machine←machine(event)
5: t← time(event)
6: availableTime[machine]← max(t, availableTime[machine])
7: if machine ∈ machineTypes[typeJob] then
8: nbJobsMachine[machine]← nbJobsMachine[machine] + 1
9: waitingJobs[machine]← add(waitingJobs[machine],job)

10: if nbJobsMachine[machine] = sizeBatch(machine) then
11: nbJobsMachine[machine]← 0
12: for job′ ∈ waitingJobs[machine] do
13: nEvent← createStartingEvent(t,job′,nextMachine(machine))
14: eventList← insertEventSorted(eventList,nEvent)
15: end for
16: end if
17: else
18: nEvent← createStartingEvent(t,job,nextMachine(machine))
19: eventList← insertEventSorted(eventList,nEvent)
20: end if

5. Computational Experiments

The proposed algorithm was implemented using Python 3.7. All experiments were run
in a computer with an Intel Xeon E5-2650 v4 with 32GB of RAM. As far as we know, there
are no public instances for the studied problem. Hence, we generated a set of instances,
which are available at https://www.researchgate.net/publication/356874077_instances_
flowShop (access on 1 February 2022). This set consists of 20 instances, and it is based on the
production scenario defined in Section 2, which includes ten processing machines and two
additional batch machines, distributed in four different paths. A total of four different types
of jobs were considered, each type being processed on a specific path. The instances were
identified following the nomenclature j_m_y, where j is the sum of jobs to be processed;
m defines the sum of machines (including both regular and batching machines); and y
is a sequential number, used to identify the instances with the same number of jobs and
machines in an easy and comprehensive way. Notice that, depending on the instance, the
number of jobs varies between 30 and 1600. We defined unrelated and machine-dependent
setup times for every job. Thus, every job has different set-up times on every machine. We
also defined unrelated and machine-dependent processing times. Hence, for each job j, a
processing time at each machine i was defined. Our algorithms were run considering 60 s
of computing time for instances with 30 jobs and 300 s for instances with 200 and 400 jobs,
while it employed a maximum of 900 s for instances with 800 jobs or more.

Table 1 shows the results of the algorithm described in Section 4 for the defined
instances. The first column identifies the instance. Subsequently, the following two columns
present the solutions obtained using the AnyLogic simulation tool, which simulates the
production scenario. In that sense, we provided the total makespan of each solution
when the jobs are processed in the system using a first-in-first-out (FIFO) strategy and
the computation time—in seconds—required to reach them. Using this strategy, the jobs
enter in the system without any logical ordering, i.e., following the alphanumerical order
as provided in the instances. We provide this information with the aim of validating the
quality of our algorithm. Similarly, the next two columns report the makespan, with its
corresponding computational time, provided by our approach using the above-mentioned
FIFO strategy. The following two columns present the results of our approach using the
same strategy combined with biased-randomization techniques. This allows us to enter
jobs in the system in a different order at each algorithm iteration. In our case, a geometric

https://www.researchgate.net/publication/356874077_instances_flowShop
https://www.researchgate.net/publication/356874077_instances_flowShop
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probability distribution, driven by a single parameter β was employed to induce this
behavior. The value for this parameter was set after a quick tuning process over a random
sample of instances, establishing a good performance whenever β falls between 0.3 and 0.4
(i.e., any random value inside this interval will generate similar results). Specifically, these
columns provides the best-found solution (makespan) and the computational time—in
seconds—to reach it. Similarly, the next four columns display the makespans and the
computational times when the BR-NEH and BR-STNEH sorting strategies were applied.
Finally, the last three columns of the table report the gaps for the different strategies with
respect to the initial FIFO one.

Our results show that our approach is highly competitive regarding computational
times with respect to the Anylogic simulator. Notice that for large instances (e.g., 1600 jobs),
our approach provides solutions in times less than 0.2 s using the FIFO deterministic
strategy, while Anylogic requires times greater than five seconds of computation to provide
the same solutions. Regarding the different sorting methods, Figure 2 summarizes the
results provided in Table 1, where the vertical axis of the boxplot represents the gap obtained
with respect to the FIFO strategy. Notice also that, after applying biased-randomized
techniques on the original FIFO strategy, the average gap outperformed the former by
about 5.52% on the average. The original FIFO strategy does not contain any optimization
strategy, it just dispatches jobs in the original order. Hence, improvements are achieved
as more-intelligent sorting methods are used to dispatch the jobs. In that sense, the
BR-NEH sorting method, which is based on sorting the jobs by total processing time in
decreasing order, is able to enhance the original heuristic by 13.81% on average. Notice
that the setup times of each job–machine pair may induct to lose the logic behavior of
the NEH heuristic, since jobs with short processing times and large setup times are not
prioritized in the sorted list of jobs. Thus, to address this limitation, the BR-STNEH sorting
method also considers the setup times of each job-machine pair during the sorting process,
outperforming the BR-NEH by about 2.05% (obtaining an average gap of 15.86% with
respect to the initial FIFO strategy). Regarding the computational times, on average, there
were no significant differences between the BR-NEH and BR-STNEH sorting methods to
reach the best-found solution.
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Table 1. Computational results.

AnyLogic Det-FIFO BR-FIFO BR-NEH BR-STNEH GAP (%)

Instance Makespan (1) Time (s) Makespan (2) Time (s) Makespan (3) Time (s) Makespan (4) Time (s) Makespan (5) Time (s) (1)–(3) (1)–(4) (1)–(5)

30_12_1 619.50 0.01 619.50 0.01 514.50 7.81 511.50 0.50 477.00 21.79 −16.95% −17.44% −23.00%
30_12_2 645.00 0.01 645.00 0.01 539.00 7.03 528.00 1.04 493.00 9.82 −16.44% −18.14% −23.57%
30_12_3 589.50 0.01 589.50 0.01 489.50 6.74 483.50 7.90 454.50 4.70 −16.97% −17.98% −22.90%
30_12_4 911.50 0.01 911.50 0.01 803.00 3.40 806.00 21.09 735.50 4.55 −11.90% −11.57% −19.31%

200_12_1 3229.02 1.05 3229.02 0.02 3064.00 79.28 2735.50 0.12 2682.00 129.89 −5.11% −15.28% −16.94%
200_12_2 3174.92 1.09 3174.92 0.02 2735.50 145.87 2233.65 74.80 2313.35 11.26 −13.84% −29.65% −27.14%
200_12_3 3298.02 1.07 3298.02 0.02 2956.30 64.34 2604.70 1.95 2570.20 0.41 −10.36% −21.02% −22.07%
200_12_4 3146.20 1.02 3146.20 0.02 3041.20 86.90 2649.60 0.02 2561.30 102.97 −3.34% −15.78% −18.59%
400_12_1 6515.52 1.86 6515.52 0.06 6313.00 77.98 5473.00 6.59 5391.00 0.04 −3.11% −16.00% −17.26%
400_12_2 7785.17 1.66 7785.17 0.04 7572.40 284.42 6602.10 6.16 6460.50 0.04 −2.73% −15.20% −17.02%
400_12_3 8321.12 1.60 8321.12 0.05 8124.40 43.18 7371.05 32.72 7237.40 2.52 −2.36% −11.42% −13.02%
400_12_4 6503.08 1.93 6503.08 0.05 6455.43 163.31 6424.40 0.04 6343.40 231.98 −0.73% −1.21% −2.46%
800_12_1 12,263.02 4.28 12,263.02 0.08 12,111.50 218.10 10,597.00 0.95 10,515.00 0.14 −1.24% −13.59% −14.25%
800_12_2 15,198.22 3.55 15,198.22 0.09 14,974.25 369.42 12,784.40 3.36 12,614.15 0.08 −1.47% −15.88% −17.00%
800_12_3 13,633.32 3.70 13,633.32 0.08 13,444.20 274.19 11,759.50 167.08 11,562.10 0.08 −1.39% −13.74% −15.19%
800_12_4 12,253.45 3.44 12,253.45 0.08 12,216.85 272.01 12,233.20 0.08 12,078.70 25.35 −0.30% −0.17% −1.43%
1600_12_1 28,735.40 7.00 28,735.40 0.17 28,512.65 312.46 24,465.25 485.94 24,109.60 517.42 −0.78% −14.86% −16.10%
1600_12_2 25,785.30 6.96 25,785.30 0.17 25,589.60 313.86 22,248.70 465.15 22,014.70 55.66 −0.76% −13.72% −14.62%
1600_12_3 25,800.20 7.76 25,800.20 0.17 25,660.10 314.38 22,248.00 780.75 22,000.90 57.45 −0.54% −13.77% −14.73%
1600_12_4 23,188.40 5.72 23,188.40 0.19 23,154.70 278.74 23,233.80 0.25 23,034.30 858.51 −0.15% 0.20% −0.66%

AVERAGE 10,079.80 2.69 10,079.80 0.07 9913.60 166.17 8899.64 102.82 8782.43 101.73 −5.52% −13.81% −15.86%
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Figure 2. Gaps of the different approaches with respect to the Anylogic results.

6. Conclusions

This study considered a hybrid flow shop problem with time dependencies, batching
requirements, and priority rules. The model analyzed is based on a real-life system in the
semiconductor industry. Due to the existence of time dependencies, it is not possible to
compute the makespan associated with a proposed solution by simply using a analytical
expression, and a simulation needs to be carried out each time a new solution is provided.
Apart from being time-consuming, using a pure simulation does not allow us to generate
high-quality solutions, in general. In order to solve this problem, a fast discrete-event-based
heuristic was proposed. This heuristic is capable of proposing a promising solution—one
based on a certain constructive logic—while, at the same time, it computes its associated
makespan. Moreover, the heuristic is extended into a full probabilistic algorithm by
incorporating biased-randomization techniques. Hence, making use of a skewed probability
distribution (a geometric one in our case), our biased-randomized discrete-event algorithm
is capable of generating high-quality solutions in fast computational times, thus easily
outperforming the ones provided by a state-of-the-art simulation software.

Several research lines can be considered for future work, among them: (i) the “longest
processing time first” or other priority rules can be used as a basic procedure for the biased-
randomized discrete-event algorithm and (ii) our approach could be extended into a full
simheuristic [28] to account for scenarios where processing times have a stochastic nature.
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