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A B S T R A C T   

Sustained airport congestion periods translate into delays, especially in hub-and-spoke networks in which delay 
propagation is more evident. 

We examine the impact of connecting passenger arrival delays on network delay propagation by using pas
senger level data combined with flight delay data that allow us to analyse the correlation between delayed 
incoming flights and departure delays at the 21 U.S. airports with most delays, in July 2018. 

Results show that correlation between daily arrival delays and daily carrier induced departure delays are 
statistically significant only for flights carrying high proportions of connecting passengers. Correlation values are 
also higher for short-to-moderate arrival delays. In addition, a Neural Network model was trained for six major 
airports to build a delay prediction model and map the potential delay propagation. The results of the propa
gation scenarios suggest that the presence of a unique dominant carrier at an airport translates into a stronger 
correlation between arrival and carrier delays than that at airports where different carriers compete for con
necting passengers. Furthermore, airline hubs located near the areas of the network with more traffic density, 
independently of the hub’s volume of traffic, are more likely to propagate the delay than hubs located in the 
periphery. The results of this study can be relevant for airline, airport, and traffic control policies aimed at 
mitigating airport and network congestion.   

1. Introduction 

Transport and economic geography have demonstrated quite a long 
time ago that airliner space-time convergence is uneven and more 
intense in hubs (e.g., Knowles, 2006; Bowen, 2010). It is also known that 
unevenness and high concentration of services can lead to congestion 
problems (e.g., Oliveira et al., 2016). Although the COVID-19 outbreak 
has temporarily decongested the national and international air trans
portation systems, demand for air traffic will eventually rebound and air 
traffic congestion will rise. Some consider that the post-COVID-19 
aviation environment will bring more point-to-point traffic than 
growth at hub airports (Bauer et al., 2020). However, other assessments 
based on industry interviews point towards a concentration of activity in 
major airports, especially in the first phases of the recovery (Suau-San
chez et al., 2020), which could potentially bring back congestion earlier 
than expected. 

Sustained congestion periods usually translate into delays. In hub- 

and-spoke (HS) networks, delays easily build-up from earlier flights 
and generate what is known as delay propagation. This occurs because 
of connected resources forcing subsequent flights to wait for the aircraft, 
connecting passengers or crew (Lan et al., 2006; Yao et al., 2014). 
Indeed, recent research shows the need to study the airport delay dy
namic from the perspective of propagation (Li et al., 2020). 

While it is generally accepted that the concentration in space and 
time of flights by FSNCs (Suau-Sanchez et al., 2016) during peak times 
aggravates congestion and delays’ propagation (Beatty et al., 1999; 
Mayer and Sinai, 2003; Flores-Fillol, 2010; Oliveira et al., 2016), the 
exact relationship and impact of delayed incoming connecting passen
gers on departure delays has been somehow neglected and the existing 
contributions are limited. 

The U.S. Bureau of Transport and Statistics (BTS, 2019) reports on 
one single category of arrival delays, while it distinguishes among five 
different types of departure delays: Late Aircraft Delay, Carrier Delay 
(CD), National Aviation System Delay, Extreme Weather Delay, and 
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Security Delay. Late Aircraft Delay is the departure delay of a flight 
using an aircraft that arrived later than scheduled. The Carrier Delay 
category includes departure delays that are within the control of the air 
carrier, such as re-fuelling or cargo loading, and all events related to 
waiting for connecting passengers and crew members. According to BTS, 
the first cause of total departure delays was late aircraft delay, which 
accounted for 40% of delays in the U.S. in July 2018. Carrier delay 
accounted for 31% of total departure delays and was the second major 
cause of departure delays during the same period. Late aircraft delay and 
carrier delay are the only ones that can be generated as a result of a 
delayed aircraft. The other three groups of departure delays are not a 
result of a preceding aircraft delay. 

The existing literature on delay propagation and its measurement is 
centred on the first type of departure delay, i.e., the late aircraft delay. 
Carrier delay, the second most important departure delay, is acknowl
edged and mentioned but without an attempt to quantify it. Hence, as 
the second biggest contributor to total departure delays and potentially 
a top contributor to delay propagation to other airports, carrier delay 
deserves special attention, as even small enhancements in managing 
departure delays can lead to considerable improvements in delay 
propagation (Jacquillat and Odoni, 2015). This paper aims at filling this 
gap by examining the relationship between connecting passenger late 
arrivals and carrier delays. 

The delay propagation due to late aircraft delay is easier to deter
mine and measure because one late arriving carrier is the direct cause of 
the following departure delay. The carrier delay propagation, on the 
other hand, poses a research challenge due to the complexity of the 
propagation mechanism. In the case of delayed arrival times beyond the 
minimum connecting time, depending on the amount of delay and the 
network carrier’s policy, connecting passengers with an imminent 
connecting flight will either miss their connection or be accommodated 
on their planned flight, in the latter case causing a carrier delay 
(Deshpande and Arikan, 2012). 

One single arrival delay may propagate the delay to many other 
connecting flights. Similarly, one single departing flight can be delayed 
by late connecting passengers or crews from various delayed incoming 
flights, as is the case with carriers operating several flights arriving in 
banks (Baumgarten et al., 2014). Examining the relationship between 
connecting passenger arrival delays and carrier induced departure de
lays at a particular airport can contribute to the understanding of how 
connecting passengers affect carrier delay and further delay 
propagation. 

In this study, firstly, we analyse the impact of arrival delay on carrier 
delay by measuring the level of correlation between the two for different 
levels of connecting passengers on the arriving flights, and for different 
arrival delay groups. We perform a correlation analysis for the 21 air
ports that reported most delays in the U.S. network during the examined 
period to test to what extent these two variables, i.e., “share of con
necting passengers” and “arrival delay group” of incoming delayed 
flights, expressed in minutes of arrival delay, directly impact carrier 
delays. In order to shortlist these 21 airports we applied a threshold 
requirement of ‘minimum 20% delayed flights’ based on BTS statistics 
for July 2018. 

Secondly, we propose a forecasting model of the arrival delays’ 
impact on delay propagation across the US network. The complex nature 
of delay propagation, − not linear and not normal due to the mentioned 
multiple impact of one single delayed arrival on many flights and the 
corresponding multiple impact on a departure delay of multiple late 
arriving flights- has motivated the use of a machine learning regression, 
in particular Neural Networks (NN), to produce a prediction model for 
the delay propagation through the U.S. domestic network and quantify 
the impact of arrival delays depending on the airport location and the 
carrier dominance at the airport level. 

Both objectives require the access to not only delay databases, but 
also passenger demand databases (i.e., Marketing Information Data 
Tapes-MIDT) to crosscheck the volumes of connecting passengers for 

each airline at each airport. 
The contributions of this paper are threefold. First, the study fills the 

research gap of measuring and modelling the impact of connecting 
passenger arrival delays on departing flight delays and delay propaga
tion. Second, methodologically, we advance by combining delay data 
from BTS with connecting passenger data from MIDT. We then use the 
combined data as input for a NN regression analysis and delay prediction 
model. Third, we provide empirical evidence that allows a better un
derstanding of delay performance of the U.S. airports and the spatial 
dimensions of delay in relation to HS networks. 

The remainder of the paper is structured as follows: in Section 2 we 
highlight the existing literature on the broader subject matter and 
explain the gap filled in by our study; Section 3 details the data and 
methods used for the analysis and presents the exploratory analysis to 
confirm the inclusion of different variables in the analysis; Section 4 
presents the results and validates the model and methodology by 
applying them to six major U.S. hubs; finally, Section 5 summarises and 
discusses the findings of this paper. 

2. Research background and literature review 

Research on air traffic congestion and delay propagation stretches 
back to the 1990s and three broad fields of study can be identified. 

First, several researchers approach air traffic congestion from a 
financial and economic perspective. Considering that generally con
gested airports are dominated mostly by an oligopoly of major airlines, 
economic studies advocated the introduction of pricing mechanisms to 
balance capacity and demand to reach an optimal welfare position 
(Basso, 2008; Brueckner and Van Dender, 2008; Flores-Fillol, 2010; Lin, 
2013; Pels and Verhoef, 2004; Yang and Zhang, 2011). The discussion 
on controlling the demand side of the equation further involved research 
on slot allocation mechanisms (; Gillen et al., 2016). In addition, 
considering congestion externalities and an optimal congestion-based 
pricing scheme, economists dealt with the internalisation of flight 
congestion costs by network carriers. Several studies argue that if 
dominant carriers internalise such costs, congestion pricing for Full 
Service Network Carriers (FSNC) should be adapted to account for 
internalised costs (Bendinelli et al., 2016; Brueckner and Van Dender, 
2008; Miranda and Oliveira, 2018; Pels and Verhoef, 2004; Rupp, 2009). 

A second area of research focuses on airport and carrier operational 
improvements to relieve congestion. Among different studies with an 
operational improvement focus we highlight here the research of Cas
taing et al. (2016) who formulated an optimisation model to minimise 
the impact of gate blockage by earlier delayed flights on further delays, 
Simaiakis et al. (2014) who suggested how to meter push backs from the 
gate to prevent congestion, and Maharjan and Matis (2011) who 
developed a binary integer tool to optimise the reassignment of planes to 
gates in response to flight delays. 

A third string of research studies the causes of congestion and in
cludes models to measure and predict delays. Several scholars have 
exposed the dynamics of delay propagation within a hub-and-spoke 
network (Baspinar et al., 2017; Du et al., 2018; Wu and Law, 2019). 
Recent studies on delay propagation highlight the complexity of the 
delay origin and the importance of analysing its nature and impact on 
downstream delays in the system. This is particularly true for the 
contribution of arrival delay on intra-airport carrier delay due to 
awaiting connecting passengers. Indicatively, Laskey et al. (2012) found 
that most arrival delay in a system is caused by departure delays at 
previous airports, indicating the importance of arrival delay on delay 
propagation. However, Wu and Law (2019) expressed the need to 
include intra-airport transits as a significant variable impacting the 
whole network. More recently, Li et al. (2020) develop an epidemic 
model to simulate delay propagation in airport networks and apply it to 
China. Mazzarisi et al. (2020) propose new metrics of the propagations 
of events along the network using centrality and causality measures. 
Similarly to our study, Mazzarisi et al. also focus on the U.S. market and 
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use BTS data, but they do not include information on real passenger 
itineraries (i.e., MIDT dataset), as we do. 

Regarding delay propagation, scholars (e.g. Pyrgiotis et al., 2013; 
Kafle and Zou, 2016; Li et al., 2020) base their research on total aircraft 
arrival and departure delay data. But so far, the analysis is not focused 
on the impact of carrier induced departure delay and subsequently, the 
impact of connecting passengers as such. While flight delay data pro
vides a good proxy for the impact of connecting passengers, true con
necting passenger numbers can improve existing prediction models 
(Bratu and Barnhart, 2005), an approach encouraged by Barnhart et al. 
(2014). We fill this gap in our study, by combining true origin- 
destination (TOD) connecting passenger data with historical U.S. FAA 
statistics on flight delays to provide a new proxy for measuring the 
connecting passengers’ impact on intra-airport carrier delays. 

3. Data and methods 

This section presents the three methodological steps that lead to the 
model construction. First, we collect data on flight delays and passenger 
connection information for the 21 U.S. airports in the study from two 
databases and merge them into a combined set, blending daily flight 
arrival and departure data with the proportion of connecting passengers 
for each airline at each airport. Second, we perform a correlation anal
ysis for each airline and airport to determine the proportions of con
necting passengers in each arrival delay group that establish the strength 
of statistically significant correlations between intraday accumulated 
minutes of arrival delay and recorded carrier delay. Third, we train 
machine learning regression models with real data for the main airports 
and use the results to simulate the impact of delay propagation on some 
selected airlines and sections of the U.S. network. 

3.1. Data collection and merger of datasets 

The first dataset used consists of MIDT sourced, detailed true origin- 
destination passenger information on connecting flights for each itin
erary. Each record contains information on the ticketing airline and 
indicates the points of origin and destination, the connecting airports, 
and the number of passengers. The original sources of information for 
the MIDT dataset are Global Distributions Systems (GDSs) such as 

Galileo, Sabre, and Amadeus, among others. The MIDT raw data is 
initially processed by our data provider, OAG (OAG Analyser, 2018), to 
combine all carriers’ data into complete, marketable datasets. Several 
studies have used these datasets for the analysis of airport connectivity 
(e.g. Voltes-Dorta et al., 2017). MIDT allow us to determine the volume 
and proportion of connecting passengers per airline for flights to or from 
each of the 21 airports analysed in our study. The monthly data show 
passenger details for the itinerary and connections at each airport 
monthly, but do not indicate whether the flights were delayed, con
nections were missed, or passengers were affected by delays and 
re-allocated on other flights. To provide this information, we utilise the 
BTS Transtats databases. The Transtats set includes an airline on-time 
performance database with granular data for on-time performance of 
all domestic flights in the U.S. market. This second dataset employed in 
our analysis totals more than 700,000 arrivals and departures, including 
flight delay type and magnitude in minutes. In both cases, we collect 
data for July 2018 and concentrate our study on the 21 airports in the U. 
S. airport network with most delays during the analysed period. Table 1 
lists the airports included in our study. 

Next, we combine the BTS dataset with the connecting passenger 
data from MIDT, expressed as a proportion of connected passengers for a 
specific itinerary by a specific air carrier for July 2018. 

BTS measures both arrival and departure delays in minutes of delay. 
Arrival delay is measured in minutes of delay for each individual flight 
and expresses the difference in minutes between scheduled and actual 
flight arrival time. Carrier delay for each flight is measured in minutes of 
delay and expresses the difference in minutes between the flight’s 
scheduled and actual departure time. For each arriving flight, we re- 
allocate arrival delays into the five arrival delay groups. This re- 
allocation permits differentiating between short and long arrival de
lays when measuring the potential impact on intra-airport carrier delay. 
Flights beyond the 2.5 h delay threshold are discarded since it is unlikely 
a connection on the same day could still be made at this time. Table 2 
illustrates the parameters included in the combined dataset.1 

3.2. Correlation analysis 

An initial exploratory analysis suggests that the link between arrival 
delay and carrier delay is only significant for airlines that provide many 
connections at a specific airport. The exploratory analysis also highlights 
that there seems to exist significantly different impacts on the link be
tween arrival delay and carrier delay depending on the arrival delay time. 
Before selecting these two factors to include them in the regression model, 
further statistical evidence of their behaviour has been assembled. 

Correlations are computed by arrival delay group. Each airport is 
tested to determine if there is a statistically significant correlation be
tween arrival delay and carrier delay for a particular airline within a day 
and, if so, to what extent the correlation is related to the number of 
connecting passengers or the numbers in each arrival delay group. The 
combination of airports, delay groups and airlines operating at each 
airport produces 678 correlation tests. The results of the correlation, 
which we show in the Results section, lead to the second stage of the 
research of this paper, where a regression model is built to predict and 
quantify the delay propagation. 

The total minutes of arrival delay for each delay group, per airline 
and airport is computed. Then, the correlation with the total carrier 
delay per main airline and airport for July 2018 is measured. For the 
correlation results to be considered statistically significant, we set the 
minimum correlation factor r > 0.6 with a p < 0.01 (Cohen, 1988; Meyer 

Table 1 
List of airports included in the study and their flight delays in July 2018. Source: 
BTS Statistics.  

Airport 
Code 

City State Flights On- 
time 
% 

Delayed 
% (+15 
m) 

Avg. Delay 
(minutes) 

MDW Chicago IL 8663 65% 35% 50.5 
MIA Miami FL 13,969 66% 34% 72.6 
MCO Orlando FL 14,000 68% 32% 80.6 
EWR Newark NJ 19,108 69% 31% 81.2 
BWI Baltimore MD 10,834 69% 31% 62.0 
FLL Fort 

Lauderdale 
FL 11,873 72% 28% 68.5 

DFW Dallas TX 28,874 73% 27% 66.2 
LAS Las Vegas NV 15,526 73% 27% 62.3 
CLT Charlotte NC 22,511 74% 26% 65.7 
JFK New York NY 20,240 74% 26% 72.4 
PHL Philadelphia PA 15,782 74% 26% 71.3 
DEN Denver CO 26,304 76% 24% 67.9 
BOS Boston MA 18,057 76% 24% 69.5 
LGA New York NY 16,048 76% 24% 80.5 
ORD Chicago IL 39,820 77% 23% 66.2 
DCA Washington DC 12,572 77% 23% 73.5 
ATL Atlanta GA 38,700 78% 22% 62.4 
PHX Phoenix AZ 15,889 78% 22% 62.5 
IAD Dulles VA 10,538 78% 22% 80.9 
SFO San 

Francisco 
CA 19,657 79% 21% 57.6 

LAX Los Angeles CA 29,161 80% 20% 58.0  

1 A common practice among carriers is that in order to decide to delay a 
departure due to late arriving passengers, the waiting time must be limited to a 
maximum of 2 or 2.5 h. Very late connecting passengers are normally allocated 
to another flight, if possible on the same day and alternatively on the following 
day. 
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et al., 2001; Hemphill, 2003). 

3.3. Regression methods 

Regression models for air traffic congestion can present limitations. 
One of them, the lack of data normality, represents a challenge when 
building regression models for delays. For example, the impact of the 
variables such as extreme weather, technical issues, a sudden cascade of 
propagation delays during peak hours or on particularly congested days, 
produce distribution of delays that follow patterns far apart from a normal 
distribution. Additionally, existence of collinearity among the model var
iables brings about an additional issue. Some examples of non-normal and 
highly collinear variable behaviour include the percentage of connecting 
passengers and the arrival delay groups. Therefore, Ordinary Least Square 
Regression (OLS) is not advisable in this case (Yeniay and Göktas, 2002). 

Recent studies, aimed at understanding air traffic congestion using 
statistical modelling, take advantage of machine learning and deep 
learning approaches to analyse and predict air traffic delays (Gui et al., 
2020; Lambelho et al., 2020; Yu et al., 2019). These techniques allow 
complex computations of parameters beyond simple regression models 
and advance on the usage of statistical models in explaining and pre
dicting air traffic delay and its propagation. 

In our study we considered using one of three robust alternative 

regression models: Partial Least Square Regression (PLSR); Random 
Forests (RF); and Neural Networks (NN). Each were tested with the same 
set of data. 

Although the three candidate models provide good prediction power 
with low levels of RSME, NN produces the lowest RMSE after cross 
validation and therefore is the technique chosen for the regression. The 
appendix provides a more technical explanation of Neural Networks and 
its application to regression models. 

4. Results 

4.1. Correlation analysis results 

Out of the 678 correlation tests performed, only arrival delays of 
airlines carrying substantial percentages of connecting passengers 
appear to have a significant impact on daily carrier delays for the same 
carrier, at the same airport. Setting thresholds for correlations values 
higher than 0.6 and p < 0.01, results in 31 cases of statistically signifi
cant correlations for flights with more than 40% of connecting passen
gers at the corresponding airports. Seven cases are for flights within the 
range of 20–40% of connecting passengers, and only two cases for other 
connecting passenger share values. Less demanding significance con
straints continue to produce larger numbers of correlated cases with 
similar relevant and meaningful results. As expected, airlines with low 
percentages of connecting passengers exhibit no significant correlation 
between daily accumulated arrival delay and total carrier delay. Hence 
it is the airlines with the stronger hub focus (i.e., requiring more con
nections) that are prone to the delay issue. Fig. 1 illustrates four ex
amples of correlation charts between daily total arrival delay and daily 
total carrier delay for Delta Airlines (DL) and American Airlines (AA), 
with different percentages of connecting passengers at Atlanta Airport 
(ATL) and Charlotte Douglas Airport (CLT). Clear correlations appear 
only when the percentage of connecting passengers is significant. In the 
two charts marked with a trend line, correlations are both higher than 
0.6 and the correlation value is statistically significant with a p < 0.01. 
The other two cases have either a correlation value below the 0.6 
threshold or the correlation is not statistically significant. While cau
sality cannot be confirmed by said analysis, the results seem to confirm 
that connecting passengers are a factor in linking the gap between 
arrival and departure delay. 

Fig. 2 summarises the correlation values before factoring in the 
statistical significance of each test. The correlation values between 
arrival delay and carrier delay are, on average, in the range of 0.5 and 
0.7 for airlines carrying more than 70% of connecting passengers and 
well below 0.6 for the remaining airlines. Airlines with low-end per
centages of connecting passengers show virtually no significant corre
lation values. The results from the correlation analysis are debated 
below in the discussion section. 

The above aggregate results are further analysed by considering 
three additional parameters. The first is the geographic location within 
the U.S. traffic network grid. Airports are labelled as “Central Airports” 
(when they have access to other major hubs in all the geographic di
rections and are located near the gravity centre of the traffic density in 
the U.S. network), as “Semi-Central” (if they are located near the East or 
West Coasts but still in a central position to connect with other major 
national hubs North or South), and “Periphery” (if the airport is near one 
of the corners of the traffic density grid). The second parameter con
siders two groups: one group containing airports with only one domi
nant carrier and a second group, containing airports where two or more 
carriers operate large volumes of flights. Finally, as a third parameter, 
we distinguish the three airports in the U.S. that are Level 3 slot 
regulated.2 

Table 2 
List of variables in the merged BTS-MIDT database (including newly created 
variables).  

Variable Description Comments 

Flight Date The flight delays were analysed daily 
Operating Carrier Used to link arrival and departure flights at the airport 
Flight Origin Used to group flights by airport 
Flight Destination Used to group flights by airport 
Scheduled Departure 

Time 
Base for computing departure delays 

Actual Departure Time From gate. Base for computing departure delays 
Departure Delay Difference from the two parameters above, in minutes 
Positive Departure Delay Same as above, but only positive delays, 0 otherwise 
Departure Delay Group 0 to 5 for the six delay blocks of 30′ (5 = equal or above 

2.5 h) 
Scheduled Arrival Time Base for computing arrival delays 
Actual Arrival Time At gate. Base for computing departure delays 
Arrival Delay Difference between Scheduled and Actual Arrival Time 
Total AD for an airline/ 

day 
In minutes. For a day, total arrival delays for an airline 

Positive Arrival Delay Same as above but only positive delays, 0 otherwise 
Arrival Delay Group 0 to 5 for the six delay blocks of 30′. Used to split the 

minute delays by group 
Accumulated Delays in 

group 0 
In minutes. For a day, total arrival delays for group 0 for 
an airline 

Accumulated Delays in 
group 1 

In minutes. For a day, total arrival delays for group 1 for 
an airline 

Accumulated Delays in 
group 2 

In minutes. For a day, total arrival delays for group 2 for 
an airline 

Accumulated Delays in 
group 3 

In minutes. For a day, total arrival delays for group 3 for 
an airline 

Accumulated Delays in 
group 4 

In minutes. For a day, total arrival delays for group 4 for 
an airline 

Cancelled Flight Used to study only non-cancelled flights 
Scheduled Elapsed Time In minutes. Not part of the study 
Actual Elapsed Time In minutes. Not part of the study 
Group for flight Distance Not part of the study 
Carrier Delay per flight In minutes. Base for computing the daily Total Carrier 

Delay 
Total CD for an airline/ 

day 
In minutes. For a day, total carrier delays for an airline 

Weather Delay In minutes. Not part of the study 
NAS Delay In minutes. Not part of the study 
Security Delay In minutes. Not part of the study 
Late Aircraft Delay In minutes. Not part of the study 
% of Connecting 

Passengers 
For each airline and airport, monthly average % of 
connecting passengers (July 2018) 

Number of Connecting 
Passengers 

Average daily connecting passengers of the airline at 
each airport (July 2018)  

2 IATA categorises airports as either Level 1 (Non-Coordinated), Level 2 
(Schedule Monitored), or Level 3 (Coordinated). 
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Fig. 3 shows some salient results. First, airports that are geographi
cally located in central positions have significantly more cases with a 
statistically significant delay correlation. Airports located in the corners 
of the network, like Miami, regardless of the airport traffic volume, tend 
to have only few cases of clear correlation or no cases at all. Semi-central 
airports have altogether more correlation cases than the periphery 

airports, apart from Charlotte Douglas Airport (CLT), with results 
similar to those of central airports. It is interesting to note that the 

Fig. 1. Examples of daily AD impact on CD for two airlines and two airports. Each data point corresponds to one single day and shows the total minutes of the 
airline’s Carrier Delay (y-axis) plotted against the total minutes of Arrival Delay (x-axis). Delta Airlines flights arriving at ATL carried on average 75% of connecting 
passengers, whereas only 2% of DL passengers connected at CLT. American Airlines is an opposite case, with 79% connecting passengers at CLT but only 2% at ATL. 
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Fig. 2. Average correlation values between AD and CD for the carriers arriving at or departing from the 21 analysed airports. Correlation values appear to be more 
significant for airlines with high proportions of connecting passengers and for arrival delay groups 1, 2 and 3. 
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correlation in New York-JFK Airport, New York-LGA Airport and Ronald 
Reagan Washington Airport (DCA) is minimal. These last three airports 
are the only three facilities in the US network that are Level 3 slot 
regulated3.4 Second, we observe more cases of statistically significant 
correlations in delays in airports with one dominant carrier than in 
airports where hub facilities are shared by two or more carriers. 

We discuss further the results shown in Fig. 3 in the Discussion and 
Conclusion section. 

4.2. Regression model results 

To illustrate and validate the potential of the proposed models, six 
trained NN networks are applied to the top six airports in terms of 
passenger numbers. The models are trained with real data of arrival 
delay in minutes of delay as described in the previous sections. Two 
scenarios are simulated: (1) a day with a low total arrival delay of 200 
min, and (2) a day with a moderate total arrival delay of 500 min. In 
groups ‘1’ and ‘2’ corresponding to an individual arrival delay between 
30 min and 1.5 h, 67% of delay minutes are placed in the simulation. The 
reason is because according to the regression model results, these two 
time intervals have most influence on carrier delay in downstream 
connection flights. The remaining 33% of daily delay minutes are 
distributed evenly among the remaining delay groups. The simulation 
forecast is run for four virtual airlines, each carrying different pro
portions of connecting passengers on arrival flights. 

The results from Table 3 confirm the influence of hub operations and 
location effects discussed earlier. Consistent with the correlation anal
ysis, the delay simulations point to an impact of arrival delay on carrier 

delay for all airports tending to increase with higher proportions of 
connecting passengers on arriving flights. This impact is exacerbated for 
flights carrying more than 50% of connecting passengers. Adding to the 
findings from the correlation analysis, the models suggest that the in
cremental propagation delay produced by a late arriving flight can be 
three to four times higher for a carrier with high proportions of con
necting passengers than for carriers with moderate proportions of con
necting passengers. 

4.3. Validation and application example 

As an example of the potential use of the model, we now show 
propagation examples centred on the connections of United Airlines 
(UA) at three main hub airports: Denver Airport (DEN), Los Angeles 
Airport (LAX), and Chicago O’Hare Airport (ORD). We also show the 
impact on delay propagation from each airport to the other two. Table 4 
displays how an arrival delay increases of 500 min per day propagates 
across the other two selected airports in the United Airlines network. For 
example, according to the NN prediction model, a 500-min increase in 
total arrival delay at Denver Airport (DEN) would generate a carrier 
delay increase of 495 min at the same airport. This outcome may imply 
that airline operations could absorb some arrival delays, hence reducing 
departure delays. Taking into account that during the study period, 
6.16% of all United Airlines flights departing from Denver Airport (DEN) 
had Chicago O’Hare Airport (ORD) as their direct destination, the 
generated delay results in a 30-min additional arrival delay at Chicago 
O’Hare Airport (ORD), due entirely to the impact of the carrier delay at 
the origin airport. This additional arrival delay at Chicago O’Hare 
Airport (ORD) would result, according to the model, in a 118-min carrier 
delay increase at the airport, which would further propagate to other 
airports in the network. These results are mapped in Fig. 4. 

Another factor identified in the previous sections as relevant in the 
link between arrival delay and carrier delay, is the relative dominance of 
the competing carriers at an airport. As can be observed in the second 
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PHX

CLT
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EWR

JFK*

LAS

LGA

MCO

PHL

BOS

BWI

FLL

MIA

LAX

SFO

DEN

Hubs with one dominant carrier

Hubs with more than one dominant carrier

Size is propor�onal to the number of sta�s�cally 
significant correla�ons between AD/CD

Airport Grouping Significant 
Correla�on Cases

ATL 7
DEN 6
DFW 4
IAD 5

Central Airports MDW 1
ORD 4
PHX 3
Total 30
CLT 6

DCA* 1
EWR 2
JFK* 1

Semi-Central Airports LAS 2
LGA* 1
MCO 1
PHL 5

Total 19
BOS 3
BWI 1
FLL 2

Periphery Airports LAX 4
MIA 0
SFO 2
Total 12

Fig. 3. Geographical representation of the results of the correlation analysis. Circles are proportional to the number of cases were significant correlation between AD 
and CD has been found. The red circles indicate that at least one carrier connected 50% or more of its passengers within the airport in the study period, indicating a 
hub dominance at the airport level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

3 Previous research has highlighted how airfreight companies sometimes use 
hubs in the interior of the country as gateways to avoid some of the congestion 
associated with peripheral gateways (Lasserre, 2004).  

4 Our results are influenced by the limitation of using the BTS data limiting 
the analysis to the domestic network. However, the majority of traffic opera
tions are domestic. As examples of top international airports, data for JFK, 
EWR, and ORD show that the total domestic traffic operations in 2018 were 
75%, 88% and 89% respectively (ATR, 2018). 
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column of Table 4, a 500-min arrival delay of United Airlines flights had 
a higher impact on carrier delay at the airports where United Airlines 
has higher relative dominance, e.g., Denver Airport (DEN) and Chicago 
O’Hare Airport (ORD).5 

With these examples we are showing how one single airport spreads 
the delay over other airports. On top of the 118 min of carrier delay at 
Chicago O’Hare Airport (ORD) resulting from the delays at Denver 
Airport (DEN), flights departing from Chicago O’Hare Airport (ORD) 
will also be impacted by the delays originated at other airports also 
connecting at Chicago O’Hare Airport (ORD). 

5. Discussion and conclusion 

In this study we have quantified the relationship between arrival 
delay and carrier delay for the domestic network of the 21 U.S. airports 
with the highest percentage of delayed flights. The results of the cor
relation analysis and the NN regression performed in our study, 
contribute to several areas. 

At the carrier level, the results strongly suggest that late arriving 
flights for airlines with a high proportion of connecting passengers are 
correlated with increased carrier delays on departure delays. This con
trasts with the outcome for incoming flights of carriers with a low pro
portion of connecting passengers. Furthermore, our analysis suggests 
that different arrival delay times have different effects on departure 
delays. 

Arrival delay for incoming flights delayed between 30 and 60 min 
have a higher downstream impact on overall daily carrier delay. This 
result suggests that longer connecting times in hubs could potentially 
reduce the delay propagation and improve the overall operational effi
ciency and resilience. This can be actively promoted by airlines with 
flight scheduling and revenue management techniques, or with policies, 
not always easy to implement, by the airport and regulators that could 
include gate rental pricing to reflect the connecting time allowed in 
time-tabling or airport investments. 

The importance of the time interval between arrival and departure 
delay highlighted in our study is compatible with previous findings by 
Fageda and Flores-Fillol (2015) who found that, in congested airports, 
point-to-point carriers reduce frequencies in response to delays, while 
carriers operating hub-and-spoke networks increase frequencies. 
Indeed, the market dominance usually associated to a hub represents a 
deterrent to de-peak the hub operation or release slots. The planning 
solution of scheduling flights with longer connecting times can 
contribute to reducing associated delays, while maintaining high fre
quencies and slot control. However, it can lead to a weak position in the 
connecting markets (Suau-Sanchez et al., 2015) and lower perceived 
quality of service (Sismanidou et al., 2013). Hence, there is no easy 
solution to delay control. 

At the airport level, the results illustrate that while all airports 

studied exhibit a statistically significant positive correlation between 
arrival delay and carrier delay, for airports with high proportions of 
connecting passengers, both the correlation analysis and the subsequent 
NN prediction model show some significant differences. 

First, the study results suggest that airports located near the spatial 
centre of the domestic network exhibit more cases of airlines experi
encing statistically significant correlation between arrival delay and 
carrier delay. Furthermore, the arrival delay for these airports seem to 
have a stronger impact on subsequent carrier delay. These findings 
suggest that when carriers use hubs located in the centre of a network’s 
traffic corridors, they are inclined to wait for connecting passengers, 
favouring carrier delay over punctuality. Indeed, previous research has 
shown the benefits of waiting-for-passenger rules in terms of reducing 
operating costs (Delgado et al., 2016). Waiting-for-passengers measures 
then become a way of counteracting the negative impacts of congestion 
associated with operating a hub-and-spoke operation at a large airport. 
This is consistent with the idea that dominance at the airport level is 
more relevant than dominance at the route level to achieve market 
power (Evans and Kessides, 1993), influence airport’s decision making 
(Berry, 1990) and capacity to increase fares (Bilokach and Lakew, 
2014). 

Similar regional differences have also been identified by Fuellhart 
et al. (2016) who map the aggregate trends in the US airport network 
using common measures of airline and airport activity by monitoring the 
growth or decline in departures, seats and passengers during the critical 
decade between 2003 and 2013. Their findings indicate that the top 
performing regions seem to be located in the northern plains, Florida’s 
vacation oriented areas in the southeast coast and the urbanized area 
between Washington, DC and Boston, MA. On the other hand, the areas 
neighbouring the Rust Belt, Appalachia, the Mississippi Valley, and parts 
of the northern Intermountain West perform poorly. The superior per
formance of the plains and the big cities could be attributed to their 
position in the urban hierarchy combined with their important national 
and international connections, as opposed to the Rust Belt and Appa
lachia areas that, suffer from industrial decline and stagnation and a 
weak local market. 

Similarly to Fuellhart et al. (2016), our findings also suggest that 

Table 3 
Total estimated departure carrier delay in a single day (minutes) at six selected airports using the NNs trained with the real data. Percentage of connecting passengers 
on arriving flights: Airline 1 (<10%), Airline 2 (10–25%), Airline 3 (25–50%), Airline 4 (>50%).   

Total Arrival Delay/Airline = 200 min Total Arrival Delay/Airline = 500 min  

Airline 1 Airline 2 Airline 3 Airline 4 Airline1 Airline 2 Airline 3 Airline 4 

ATL 167 283 329 373 581 624 706 891 
LAX 40 55 78 159 65 94 141 182 
ORD 83 80 110 636 462 489 893 1012 
DFW 83 109 159 521 237 292 388 754 
DEN 97 153 252 378 380 419 530 495 
JFK 90 92 97 168 199 219 240 381  

Table 4 
Example of the potential impact of a 500 min total daily AD at a main hub on 
other network hubs due to the generated carrier delays at the origin hub. In this 
example the simulated carrier is UA. The percentages of flights to destinations 
correspond to the real figures for UA in July 2018.   

Origin 
Hub   

Destination 
Hub  

Airport 
Code 

Increase 
in CD 
(min) 

% of flights 
to 
destination 

Airport 
Code 

Increase in 
AD (min) 

Increase 
in CD 
(min) 

DEN 495 6.16% ORD 30 118 
DEN 495 4.04% LAX 20 7 
LAX 94 12.98% ORD 12 48 
LAX 94 8.36% DEN 8 19 
ORD 1012 5.00% DEN 51 118 
ORD 1012 4.97% LAX 50 16  

5 In July 2018, UA flights operating at LAX connected 23% of the carrier’s 
passengers, while at DEN and ORD, the airline connected 54% and 57% of its 
passengers respectively. 
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AD: 500'
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CD: 118'

LAX

DEN

ORD

AD: 500'

CD: 19'
CD: 48'

LAX

DEN

ORD

AD: 500'

CD: 16'

CD: 118'

Fig. 4. Selection of three main airports 
originating UA flights. At each airport, 
arrival delays (AD) of flights with con
necting passengers (blue incoming ar
rows) will cause carrier delays (CD) in 
outcoming flights (red arrows) which in 
turn, will propagate the delay at the 
destination airports. The arrival delays at 
the destination airports will generate an 
impact on their carrier delays (blue out
coming arrows) for the UA connecting 
flights to other destinations. The figures 
show the modelled propagation in mi
nutes. (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the web version of 
this article.)   
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airport size does not seem to be an important factor of explaining the 
differences between the airports. Other explanations should be sought. 
In our study, New York (JFK), San Francisco (SFO) or Miami (MIA) 
exhibit low correlation cases, whereas the central airports of Chicago 
(ORD) and Atlanta (ATL) are on the top of the list. Further individual 
airport case study analyses are required in order to understand the 
reasons behind regional patterns. This may include exploring the oper
ations of dominant LCC carriers in specific US airports, examining how 
airlines manage their hubbing operation at each airport, and under
standing hub airlines’ relative route strategies, their choice of fre
quencies and size of aircrafts (O’Connor and Fuellhart, 2012). 
Additional findings from future case studies will allow to illuminate 
better the regional differences identified in this paper. 

Second, and in line with the previous point, our prediction model 
shows that airports with one dominant airline have stronger correlations 
between arrival delay and carrier delay, suggesting that dominant air
lines could be more inclined to internalise the cost of allowing carrier 
delay due to late arrival connecting passengers than airlines with lower 
dominance. This is also consistent with the intuition that airports with 
higher concentrations of a single airline will tend to have correlations in 
their delays because these hubs have more connecting passengers be
tween the same airline’s flights. 

Third, the marginally lower correlation scores, when compared to 
other major airports, for the three U.S. airports with Level 3 slot control 
exercised by FAA (i.e. JFK, LGA and DCA), suggest that slot regulation 
could, directly or indirectly, have a material impact on the delay prop
agation due to carrier delays. This result is also consistent with previous 
research that has shown that slot controls can potentially reduce delays 
in US airports (Swaroop et al., 2012) and there are shorter delays for 
European slot constrained airports (Santos and Robin, 2010). Apart from 
the unique slot allocation policy aspect, the different correlation scores 
in our study could be explained by other parameters, including the 
airports’ design, its operational efficiencies, or the impact of interna
tional connections. These differences offer an opportunity for further 
research to determine optimisation factors at the airport level that could 
be replicated throughout the U.S. airport system. 

Further to these conclusions, our study provides empirical evidence 
and a methodological framework to support policies and interventions 
aimed at enhancing connecting passenger turnaround or at mitigating 
delays through operational improvements of airline, airport, and Air 
Traffic Flow Management (ATFM) procedures. The outcome of these 
policies can be predicted, measured, and monitored using the techniques 
employed here. 

Delay predictability is particularly crucial for airlines when building 
their schedules and incorporating time-buffers (also known as firewalls). 
Enhanced predictability can improve resource allocation and increase 

punctuality and customer satisfaction. Furthermore, the framework of 
this study, in terms of data gathering and merging as well as the machine 
learning models proposed, can help generate efficiency metrics for 
current and future improvement initiatives at the network, airport, or 
carrier level. The connecting passenger variable could be included in 
airline scheduling decisions and in ATFM, airport landing procedures 
and policies prioritizing queued flights with high volumes of connecting 
passengers. This is particularly true for congested airports and, as a 
matter of fact, two industry initiatives right before the Covid-19 
pandemic are examples of the nascent efforts to isolate and control the 
connecting passenger delay parameter. For example, Zürich Airport 
would test the feasibility of introducing ad-hoc, priority landing pro
tocols on arrival flights with a significant proportion of connecting 
passengers, and United Airlines had announced a dynamic decision- 
making tool based on the number of connecting passengers arriving at 
the hub to alleviate the problem of ATFM’s lack of information about 
possible passenger misconnections. 

This study is not free of limitations. One limitation is that the avia
tion environment is highly dynamic, making it difficult to forecast air 
traffic congestion behaviour from historical data. Another limitation is 
the lack of complete, granular data of flight operations in combination 
with passenger data. Delay prediction and mitigation could benefit from 
a wider choice of data collection in the form of big data, combining 
detailed air traffic control, flight and passenger information, and the 
application of machine learning algorithms to create more complete, 
personalised, and reliable delay prediction models. Furthermore, this 
study focuses on the carrier delay impact in isolation to other departure 
delay causes, such as late aircraft delay, or those originated by air traffic 
control problems or weather conditions. Another potential limitation of 
this study is that the airport sample contains most of the largest airports 
in terms of passenger traffic and air operations. In terms of customer 
welfare, it may turn out that the impact of arrival delay on carrier delay 
is more important at smaller airports, where there are fewer or no later 
flights to accommodate the passengers. Future studies could enlarge the 
scope of the analysis to include all different delay parameters in one 
single model as well as determining the proportion of delays caused by 
connecting passengers versus the other causes of carrier delay. Finally, 
replicating this study for the European or Asian air networks can provide 
additional explanations of the results. 
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Appendix A. Regression models based on neural networks 

NNs constitute a group of deep learning techniques from the domain of Artificial Intelligence (AI). They imitate the structure of brain neurons and 
take advantage of the computing power of current processors to predict results based on a learning process of real patterns present in the sample data. 
NNs create robust prediction models in situations where collinearity among the variables and lack of normality of the data advise against the use of 
linear models such as OLS. The training of a NN produces connections between neurons, also called nodes, where each connection has different 
weights. 

The simplest Neural Network, called perceptron (Fig. 5), consists of a single layer with input nodes (x1, x2, x3….xn) corresponding to the input 
variables and a single output node corresponding to the result. The input nodes are directly connected to the output node. With the training process, 
similar to the Least Square process to determine the variable parameters that optimise the prediction power of the model, each input node will have a 
weight corresponding to the importance of that variable in the final prediction. In NN, a bias term b is added to the sum of the weights that multiply 
each variable. The bias b allows to build linear models for one node that is not fixed at the origin. 
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Fig. 5. Schematic representation of a perceptron, the simplest form of NNs, with one single node, the inputs Xn, the weights w -represented by the line width- and the 
bias b. 

The corresponding estimation eq. (1) or (2) for a perceptron is similar to a classical linear regression, where the weights Wn that optimise the model 
can easily be interpreted as the importance of each input factor on the estimated output: 

Node Value = f (x) = b+w1⋅x1+w2⋅x2+w3⋅x3+…+wn⋅xn (1) 

Or in general. 

Node Value = f (x) = b+
∑n

i=1
wi⋅xi (2) 

The robustness and prediction power of a NN structure, however, arise when one or more additional hidden layers of nodes are added between the 
input and output layers. As shown in Fig. 6, each node in the hidden layers receives inputs from all the nodes in the previous layer with different 
weights (depicted in the chart by the thickness of the connections between nodes). The node is activated according to an activation function g() –for 
example a sigmoid or logistic function, a ReLU function, etc.- and sends its output to each and every one of the nodes in the next hidden layer. Both the 
bias values and the weight values are trained during an optimization process that, starting with random numbers, readjusts step-by-step each value in 
the network until reaching a minimum RMSE (Root Mean Squared Error).

Input Layer Hidden Layers Output Layer

Bias Values
for the Nodes
of each layer

Fig. 6. Trained NN after learning from the data corresponding to ORD. The variables ADs by group and % of connecting passengers were fed into the model for each 
day and airline. I = input nodes; H = hidden layers; O = output; and B = bias applied to each node after the learning process. Solid black lines indicate positive 
values, and grey lines indicate negative values. For most airports, the percentage of connecting passengers and delay groups in the 30–120 min range impact 
the prediction. 

While the training of the NN with the data is automatic, the available statistical packages, like R, require that the shape of the NN is build prior to 
the training, in other words, the number of hidden layers and the number of nodes in each one of the hidden layers have to be defined before training. 
An optimal shape of the NN ultimately translates into achieving the maximal reduction in RMSE through cross validation. Adding more hidden layers 
tends to improve the prediction accuracy of the NN at a cost of increased computational requirements. In this study we tried various potential shapes 
and the cross validation showed that NN structures with three hidden layers containing four, two, and two nodes, respectively (Fig. 3) provided the 
best results. Other configurations with additional hidden layers or additional nodes did not improve the RSME values for any of the airports modelled. 

The inputs are scaled by their corresponding weight, wi, and added together along with the bias term, b. While the weights indicate the importance 
of the value of each precedent node on the next layers node, the bias determines whether or not, or by how much, a node will meaningfully fire the 
value to the next node. Adding the bias to the equation increases the flexibility of the computing process to train the network. 

When one or more hidden layers are added, however, deriving a single estimation equation is not feasible. The essential difference with linear 
equations is that NN are not linear due the presence of an activation function. For just one single node located in the hidden layers, the output can be 
expressed with the following eq. (3): 

Node Value = f (x) = g

(

b+
∑n

i=1
wi⋅xi

)

(3) 
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Due to the complex interaction between all the nodes from one layer and the nodes of the next layers, the parameters no longer act independently 
from each other in influencing the shape of the optimised NN. Despite NNs’ flexibility in modelling arbitrary functions and their excellent predicting 
power, the convenience of having a visual linear estimation equation with separate weights for each parameter is lost, and there are challenges to even 
generating values that explain the power of the model variables. Different methods to visualise the NN learning outcome have been proposed (Garson, 
1991; Goh, 1995). However, the nature of the NN learning process, with iterations that include combinations of all variables to converge an optimal 
output, is a source of confusion when interpreting each variable’s prediction potency. Other authors proposed improvements to original visualization 
methods (Olden et al., 2004; Beck, 2018) but they are still not ideal, as they remain based on the use of the connection weights between layers of a 
neural network for determining variable importance. 
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