El just-in-time i la fallida dels sistemes productius al Japó al març de 2011

Pràcticum 2-2011/12

Sabrina Vaquerizo González
Volia expressar el meu agraïment, en primer lloc, a Joan Vidal, Key Account Manager d’Idiada Applus Group per la seva ajuda, sense la qual no hauria pogut portar a terme aquesta recerca.

També a Glòria Prats d’Acció, dinamitzadora del clúster d’automoció de Catalunya per la seva entrevista i a Ramón Arqué enginyer civil i Operations Manager de Barcelona de TNT Express pels seus consells i el seu temps.

A més a més, volia agrair a Mizuko Uchida, analista de mercats dels sectors industrials de l'ICEX a Tòquio la seva col·laboració, i a Iván Agenjo per la seva ajuda.

Així mateix, a Juan José Rodríguez, consultor de l’assignatura del Treball de Recerca, Antonio José Domenech, consultor de l’assignatura de Pràcticum, i sobre tot a la consultora de continguts durant tota la investigació Àngels Pelegrín.

Ha estat un plaer comptar amb cadascun d’ells en aquesta investigació.
TAULA DE CONTINGUT

ÍNDEX D’IL·LUSTRACIONS I TAULES .. 5

ABREVIATURES EMPRADES ... 6

1. INTRODUCCIÓ ... 8

2. MARC TEÒRIC .. 10

 2.1. MARC REFERENCIAL DE LA INVESTITJACIÓ ... 10

 2.1.1. EL TOYATA PRODUCTION SYSTEM ... 10

 2.1.2. EL NISSAN PRODUCTION WAY .. 12

 2.1.3. LES RELACIONS ENTRE ELS PROVEïDORS I ELS DOS FABRICANTS JAPONESOS .. 13

 2.1.4. EL JUST-IN-TIME .. 16

 2.1.5. SITUACIÓ ACTUAL DE LA INDÚSTRIA AL JAPÒ .. 18

2.2. MARC TEÒRIC PREVI ... 19

2.3. MARC CONCEPTUAL .. 21

3. METODOLOGIA DE LA INVESTIGACIÓ .. 30

 3.1. PRESENTACIÓ I JUSTIFICACIÓ DE LA INVESTIGACIÓ ... 30

3.2. PROPÒSITS I HIPÒTESIS DE LA INVESTIGACIÓ ... 31

3.3. REFERÈNCIES A ESTUDIS SIMILARS ... 35

3.4. PRINCIPIS DE DISSENY DE LA INVESTIGACIÓ .. 38

 3.4.1. IDENTIFICACIÓ DEL MOTIU DE LA INVESTIGACIÓ ... 38

 3.4.2. SELECCIÓ DE L’ESTRATÈGIA D’INVESTIGACIÓ .. 39

 3.4.3. SELECCIÓ DEL TIPUS D’INVESTIGACIÓ .. 40

 3.4.4. TÈCNICA DE RECOL•LECCIÓ DE DADES .. 42

 3.4.5. ANÀLISIS DE DADES I AVALUACIÓ .. 43

4. MODEL D’ANÀLISI .. 45

5. ESTUDI DE CAS ... 54

 5.1. PRESENTACIÓ DEL CAS .. 54

 5.1.2. DANYS A LES INFRAESTRUCTURES PÚBLIQUES I PRIVADES .. 55

 5.1.3. L’ECCASSETAT D’ENERGIA .. 58

 5.1.3. RUPTURES EN LES CADENES DE SUBMINISTRAMENT .. 59

5.2. ENTREVISTES ... 63

5.3. REPETES DEL JUST-IN-TIME .. 71
6. RESULTATS ... 74
6.1. DESCRIPCIÓ DELS RESULTATS DE L’ESTUDI DE CAS .. 74
6.2. UN exemple d’APLICACIÓ DEL JUST-IN-TIME ... 78
7. CONCLUSIONS .. 80
8. BIBLIOGRAFIA ... 82
ANNEX: SEMINARI GREEN CAR .. 88
ÍNDICE D’IL·LUSTRACIONS I TAULES

Il·lustració 1. Sistema Pull (Liker, 2006) ... 11
Il·lustració 2. Toyota Production System (Toyota, 2012) ... 12
Il·lustració 3. Two Never Endings (Nissan Global, 2012) .. 13
Il·lustració 4. Sistema reticular de Toyota .. 15
Il·lustració 5. Diagrama conceptual del sistema kanban (Toyota Motor Corporation, 2012) ... 21
Il·lustració 7. Les tres M (Liker, 2006) .. 26
Il·lustració 9. Mètode "quatre capses" (Nissan Global, 2012) 28
Il·lustració 10. Taula comparativa dels danys material a Tôhoku i Kobe (Van der Putten, 2012) ... 36
Il·lustració 11. Mapa de les plantes de Toyota al Japó (Toyota Motor Corporation, 2012) .. 56
Il·lustració 12. Mapa de les plantes de Nissan (Nissan Motor Company, 2012) 58

Taula 1. Indicadors del *just-in-time* ... 32
Taula 2. Indicadors del TPS ... 32
Taula 3. Indicadors del NPW ... 33
Taula 4. Indicadors del sistemes de producció ... 34
Taula 5. Motius per a la investigació (Robson, 2002) ... 39
Taula 6. Tipus d’investigació (Saunders, 1997) ... 40
Taula 7. Matriu de Yin (Yin, 1994) .. 40
Tabla 8. Accions per a assegurar la triangulació ... 44
Tabla 9. Tipus d’estudis de cas (Yin, 1994) ... 45
Tabla 10. Esquema per l’estudi de casos (Hernández Sampieri, 2010) 46
Taula 11. Model d’anàlisi ... 50
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P</td>
<td>Production Preparation Process</td>
</tr>
<tr>
<td>AMFE</td>
<td>Anàlisis Modal de Fallides i Efectes potencials</td>
</tr>
<tr>
<td>APLT</td>
<td>Actual Production Lead Time</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>COPCA</td>
<td>Consorci de Promoció Comercial de Catalunya</td>
</tr>
<tr>
<td>CQT</td>
<td>Control de Qualitat Total</td>
</tr>
<tr>
<td>FEDER</td>
<td>Fons Europeu de Desenvolupament Regional</td>
</tr>
<tr>
<td>GK</td>
<td>Genba Kanri 現場管理</td>
</tr>
<tr>
<td>HSBC</td>
<td>The Hongkong and Shanghai Banking Corporation</td>
</tr>
<tr>
<td>ICEX</td>
<td>Instituto Español de Comercio Exterior</td>
</tr>
<tr>
<td>JAMA</td>
<td>Japan Automobile Manufacturers Association</td>
</tr>
<tr>
<td>JIT</td>
<td>Just-in-time</td>
</tr>
<tr>
<td>JPY</td>
<td>Japanese Yen</td>
</tr>
<tr>
<td>JSAE</td>
<td>Society of automotive Engineers of Japan</td>
</tr>
<tr>
<td>JST</td>
<td>Japanese Standard Time</td>
</tr>
<tr>
<td>KEPCO</td>
<td>Kansai Electric Power Company</td>
</tr>
<tr>
<td>NCAP</td>
<td>New Car Assessment Programme</td>
</tr>
<tr>
<td>NPS</td>
<td>Nissan Production System</td>
</tr>
<tr>
<td>NPW</td>
<td>Nissan Production Way</td>
</tr>
<tr>
<td>PDCA</td>
<td>Plan – Do – Check – Act</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PIB</td>
<td>Producte Interior Brut</td>
</tr>
<tr>
<td>QCDD</td>
<td>Quality – Cost – Delivery - Date</td>
</tr>
<tr>
<td>S&D</td>
<td>Standard & Poor’s</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>SMED</td>
<td>Single-Minute Exchange of Die</td>
</tr>
<tr>
<td>SQC</td>
<td>Statistics Quality Control</td>
</tr>
<tr>
<td>SRT</td>
<td>Sistema Reticular de Toyota</td>
</tr>
<tr>
<td>SSAR</td>
<td>Scheduled Sequence Achievement Ratio</td>
</tr>
<tr>
<td>STAT</td>
<td>Scheduled Time Achievement Ratio</td>
</tr>
<tr>
<td>TEPCO</td>
<td>Tokyo Electric Power Company</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Maintenance</td>
</tr>
<tr>
<td>TT</td>
<td>Takt Time</td>
</tr>
<tr>
<td>VSM</td>
<td>Value Stream Mapping</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓ

Toyota Motor Corporation va passar a ser en 2007 el primer fabricant mundial d’automòbils i en el camí d’aquest lideratge ha tingut molt a veure el seu sistema productiu: el *Toyota Production System* (TPS). La introducció d’aquest sistema de producció va significar el pas del fordisme a la producció ajustada o *lean production* basada en dos conceptes claus: *just-in-time* i *jidōka*. Durant els últims anys, nombroses empreses d’automoció han adoptat i desenvolupat els principis bàsics del *lean management* com Nissan Motor Company però, també ho han fet indústries manufactureres d’altres sectors com el tèxtil, la logística o empreses de serveis preocupats per la qualitat i la rendibilitat.

Avui dia, els sistemes de producció ajustada es troben molt arrelats a les indústries manufactureres japoneses i per extensions comercials, a les indústries manufactureres mundials. La tragèdia quàdruple produïda durant el Gran Terratrèmol de l’Est de Japó de març de 2011 (el terratrèmol, el posterior tsunami, l’aléra nuclear i l’escassetat d’energia) ha posat en perill la cadena de subministrament mundial i ha posat de manifest les connexions encobertes entre proveïdors i el grau de contagi que aquestes connexions han suposat.

Al llarg de la present investigació, s’intentarà enraonar quin paper ha jugat el *just-in-time* en aquestes interrupcions productives. Amb aquest objectiu final, s’ha estructurat tota la investigació per tal d’arribar a unes inferències lògiques estretes de la teoria general dels sistemes de producció ajustada (o *lean production systems*) i aplicades a un cas únic: el Gran Terratrèmol de l’Est de Japó de 2011.

La metodologia d’investigació s’ha basat en un estudi de cas únic amb dues unitats d’estudi: Nissan Motor Company i Toyota Motor Corporation i les conclusions finals deriven de la triangulació assolida mitjançant les diverses entrevistes, la informació corroborada amb diversos experts en la matèria i les fonts documentals.

La investigació es troba estructurada en set seccions principals:

La secció número 1 és la introducció del present estudi.
La secció número 2 és el marc teòric que ajuda a emmarcar conceptual i teòricament la present dissertació, a l'hora que revisa la literatura del context teòric que emmarca la investigació.

La secció número 3 és la metodologia de la investigació que aporta la presentació i la justificació de la recerca, els propòsits i hipòtesis establerts i els principis de disseny de la investigació. A més a més, es fa referència a estudis similars.

A la secció número 4 s’explica el model d’investigació.

La secció número 5 es fa la presentació de l’estudi de cas i de les entrevistes. Per tal de descriure una imatge completa del cas d’estudi, s’analitzaran les tres causes que van contagiar les conseqüències del terratrèmol a tot el país. Així mateix, s’exposaran els nous reptes que caldrà que el just-in-time resolgui.

A la secció número 6 es presenten els resultats de la recerca, així com es descriu un exemple d’aplicació del just-in-time en una indústria diferent a l’automoció.

La secció número 7 són les conclusions.
2. MARC TEÒRIC

2.1. MARC REFERENCIAL DE LA INVESTIGACIÓ

Pel que fa a la recerca, hem de tenir presents diverses referències. Per un costat, com van aparèixer el *Toyota Production System* i el *Nissan Production Way* i en quin context i com es desenvolupen en aquest context les relacions amb els proveïdors, i per l’altre, quina és la situació actual de l’automoció japonesa on s’emmarcaran els dos casos que s’exposaran a continuació.

2.1.1. EL TOYOTA PRODUCTION SYSTEM

Fins la Segona Guerra Mundial, el món de l’automoció seguia el sistema massiu de producció nord-americà que permetia retallar costos produint moltes unitats d’uns poc models. La indústria en aquest moment es reïnava de la corba de Maximí-Silberston que demostrava que el cost d’un automòbil decreixia proporcionalment a l’increment de les quantitats produïdes.

Després de la guerra, la situació de l’automoció al Japó era molt complicada: 1) el mercat nacional era petit i la demanda es decantava per models molt variats de cotxes, 2) la força de treball demanava millors condicions, 3) l’economia japonesa estava molt afeblida i no tenia possibilitats d’adquirir les tecnologies punteres occidentals i, 4) hi havia moltes empreses estraneres esperant per a introduir-se en el mercat japonès, la qual cosa va provocar la prohibició del govern japonès de les inversions estraneres.

En aquest context, Toyota comença a cercar maneres de retallar costos produint poques unitats de molts models (Ohno, 1988), tot i que donat el miracle econòmic encara utilitzaven un sistema de producció massiu per tal de satísfer la demanda.

En els anys 50 Eiji Toyoda i Taiichi Ohno desenvolupen el sistema de producció de Toyota (TPS), prenent en préstec moltes idees nord-americanes com el sistema *pull*—inspirat en els seus supermercats—, l’eliminació de deixalles de Henry Ford, i la importància de la qualitat de Deming\(^1\) i el seu cicle per a la resolució de

\(^1\)La Qualitat Total és una estratègia dirigida a crear consciència de qualitat en tots els processos de l’organització. Un dels seus difusors més importants va ser Kaoru Ishikawa pare del diagrama de Ishikawa, eina per a la resolució de problemes en processos industrials.
problemes2 (Liker, 2006). Als anys 70, Toyota comença a difondre el TPS entre els seus proveïdors per tal que tota la cadena de subministrament compartís els mateixos principis. Amb la crisi del petroli de 1973, tota la indústria experimenta un recés important, si més no, Toyota va ser capaç de recuperar-se més ràpidament que els seus competidors gràcies al TPS.

\textbf{Il·lustració 1. Sistema Pull (Liker, 2006)}

El sistema de producció de Toyota va començar a aplicar-se a moltes empreses d’automoció, però va ser amb el llibre de J.P. Womack i D.T. Jones \textit{The Machine that changed the world} que el TPS es va difondre arreu del món sota el nom de \textit{lean manufacturing}. El secret del \textit{lean manufacturing} rau en que \textit{“El productor lean combina els avantatges de la producció artesanal i la producció massiva, a l’hora que redueix els costos ingents de la primera i la rigidesa de la segona”} (Womack & Jones, 1990).

2El cicle Deming consta de quatre etapes: PDCA – Plan (planificar), Do (fer), Check (verificar) i Act (Actuar).
2.1.2. El NISSAN PRODUCTION WAY

Nissan comença a desenvolupar una filosofia pròpia a començaments de 1960 basada en el *douki seisan* 動機生産 (producció sincronitzada), un mètode especialment desenvolupat per a un sistema de producció *pull* de demanda de baix amortiment (Sako, Supplier development at Honda, Nissan and Toyota: comparative case studies of organizational capability enhancement, 1998). Però no serà fins el 1994 arran de la creació del Departament per a la Promoció del *Nissan Production Way* (NPW) que Nissan l’establirà com a política corporativa.

En la vessant filosòfica, el *douki seisan* 動機生産 és la situació productiva ideal que intenta fer del desequilibri entre la companyia i el mercat una oportunitat per a la millora. Per tal d’arribar al *douki seisan* 動機生産 és necessari sincronitzar el sistema productiu amb les necessitats del client a través del concepte “Two Never Ending”: 1) sincronització (*douki* 動機) amb el client sense fi i 2) projectes *kaizen* 改善 sense fi per tal d’identificar els problemes i solucionar-los. A l’hora el *douki* 動機關 amb el client consta de:

- Sincronitzat la qualitat: mitjançant processos de qualitat que demanen els clients.
• Sincronitzar el cost: mitjançant l’eliminació de l’innecessari que els clients no paguen.
• Sincronitzar el temps: mitjançant l’entrega del producte al client a temps.

![Diagram](image)

Il·lustració 3. Two Never Endings (Nissan Global, 2012)

2.1.3. LES RELACIONS ENTRE ELS PROVEÏDORS I ELS DOS FABRICANTS JAPONESOS

Dintre del TPS es produeix el que s’anomena “desenvolupament de proveïdors”, un procés mitjançant el qual l’empresa intenta transferir o replicar alguns dels aspectes de les seves competències organitzatives més enllà de les seves fronteres (Sako, Supplier development at Honda, Nissan and Toyota: comparative case studies of organizational capability enhancement, 1998). El contingut dels programes de desenvolupament de proveïdors es poden classificar en dues dimensions:

• Tipus de competència, que es classifica en tres nivells (del més bàsic al més desenvolupat): competència de manteniment, competència de millora i competències dinàmiques.

Una de les competències més importants en el desenvolupament de proveïdors és el kaizen 改善 (Sako, M., 1998).

Sabrina Vaquerizo González 1
• Abast de l’activitat: que va des de l’activitat de desenvolupament de proveïdors centrada en un component de model especificat, fins a l’activitat de la fàbrica o la companyia.

En el cas de Toyota, l’organització interna del desenvolupament de proveïdors es troba dissociada: la divisió consultora de gestió d’operacions s’encarrega d’ensenyar als proveïdors el TPS, mentre que la divisió de planificació de compres s’encarrega del Control de la Qualitat Total (CQT). El TPS es va introduir per primer cop en totes les fàbriques Toyota en 1960, que requereixen entregues de components just-in-time (JIT), mitjançant els kojo jishukan⁴ que havien de presentar idees kaizen 改善. A començaments dels anys 70, van aparèixer els grups jishukan 自主権 de suport als proveïdors interns bàsics o kyoryouku kojo per tal d’assegurar l’aplicació del TPS, la transferència de competències i l’aprenentatge mutu (Sako, Supplier development at Honda, Nissan and Toyota: comparative case studies of organizational capability enhancement, 1998).

La majoria delsproveïdors de Toyota són membres de l’associació de proveïdors Kyohokai⁵(Tokai Kyohokai, Kanto Kyohokai i Kansai Kyohokai). Si parlem delsproveïdors de components membres de l’associació Kyohokai trobem que: un primer grup amb deu proveïdors són part del grup Toyota i els 25 següents tenen com a major accionista a Toyota, per tant podríem dir que gairebé el 5 % dels membres són part de l’estructura vertical del keiretsu 系列⁶ Toyota. Un segon grup d’uns 40 proveïdors locals són independents pel que fa a la participació econòmica però tenen uns lligams molts estrets amb Toyota i els seus treballadors pertanyen als sindicats de Toyota. I el tercer grup que significa la meitat dels membres de Kyohokai i que són empreses completament independents.

La importància de la relació entre Toyota i els seus proveïdors es reflexa en el sistema d’informació kanban 看板. La previsió de producció de Toyota té dues fases: en la primera fase es confecciona el pla mestre de producció i la taula de

⁴ Grups autònomes d’estudi composats de supervisors i gestors de diferents equips dintre de la mateixa empresa.
⁵ Per a més informació, cal veure la pàgina http://www.kyohokai.gr.jp/english/. En aquesta pàgina, l’associació manifesta que el principal objectiu és “conjuntament amb Toyota Motor Corporation i les seves companyies, contribuir a l’economia i la societat mundial mitjançant activitats basades en una associació global i oberta”.
⁶ Grup d’empreses estructurades com un cartel per tal de protegir el benefici del seu monopoli excluent als que no pertanyen al cartel (Sako, M., 1996).
previsió de necessitat de peces trimestral que s’envia als proveïdors; i en la segona fase s’ajusta diàriament la previsió i la producció mitjançant el sistema d’informació *kanban* 看板. Per tal de facilitar la comunicació Toyota va crear una xarxa de comunicació amb els principals proveïdors del seu *keiretsu* 系列, la xarxa SRT-P (Monden, 1996). El gràfic següent ajuda a entendre el sistema d’informació de Toyota anomenat “sistema reticular de Toyota” que té sis subsistemes.

![Il·lustració 4. Sistema reticular de Toyota](image)

En el cas de Nissan, en 1953 un informe de diagnòstic empresarial els recomanava assessorar als seus proveïdors per tal de millorar l’estructura organitzativa i millorar la gestió de la producció. Per això, en 1963 es fa un intent per tal de fer extensiu el *douki seisan* 動機生産 als proveïdors principals a través de l’Associació Takarakai, però l’experiment falla i no és fins 1994 que finalment s’estableix un Departament per a la Promoció del *Nissan Production Way* (NPW) només a nivell intern. Pel que fa al CQT, Nissan va introduir-lo als seus proveïdors gràcies al Takarakai que servia com a òrgan educatiu i formatiu per als membres, però no va continuar desenvolupant-lo, fins que en la dècada dels 90 va erigir un Departament de Promoció intern de CQT.
A diferència de Toyota, els programes de desenvolupament de proveïdors de Nissan són de un-a-un i no són comunes les pràctiques conjuntes entre proveïdors de resolucions de problemes com els jishuken 自主権, per tant el coneixement no és compartit entre els seus proveïdors. A més a més, les funcions de difusió de competències a les plantes de Nissan i les funcions de difusió de les mateixes competències als seus proveïdors depenen de departaments diferents, perquè creuen que el fet que els proveïdors tinguin un únic punt de contacte fa que la replicació de competències sigui més consistente.

En 1991 Nissan va fusionar les seves dues associacions Takaraki i Hoshokai en una sola Nisshokai, ja que considerava que els kyohokai funcionaven com a cartells que monopolitzaven el mercat de components i va començar a admetre gradualment més proveïdors estrangers.

La comunicació amb el proveïdor també és constant en el cas de Nissan, però l’ideal douki seisan 動機生産 resulta en un sistema productiu molt més flexible que el de Toyota.

Al Japó, les associacions de proveïdors anomenades kyoryokukai són institucions amb molta incidència en la indústria de l’automoció i existeixen en tots els fabricants japonesos de vehicles excepte en Honda. Aquestes associacions milloren la cooperació entre els proveïdors d’un mateix fabricant i ajuden a difondre la rèplica de competències (Sako, Supplier's associations in the Japanese automobile industry: collection action for technology diffusion, 1996).

2.1.4. EL JUST-IN-TIME

Una de les constants que existeixen entre el Toyota Production System i el Nissan Production Way és el just-in-time entès com a “mètode per a adaptar-se als canvis derivats de les dificultats internes i a les variacions de la demanda fent que tots els processos produeixin les coses necessàries en el temps necessari i en les quantitats necessàries” (Monden, 1996).

La filosofia just-in-time sosté que cal reduir el costos eliminant el malbaratament i, creant així, un flux continu de producció. Es consideren set tipus de malbaratament: sobreproducció, temps mort, transport innecessari, processament excessiu, excés d’inventari, moviments innecessaris, defectes i creativitat desaprofitada del personal. D’aquests set el que es considera més nociu és l’excés
d’inventari ja que aquest serveix per a ocultar altres malbarataments i problemes; per exemple, l’excés d’inventari s’utilitza quan no es pot garantir el flux de subministrament com a element d’amortiment.

El flux continu obliga a treballar sense estoc intermedi i per tant, cal eliminar prèviament els problemes o malbaratament que aquest amagava (Companys & Corominas, 1998). Per tal d’eliminar aquest estoc innecessari s’ha d’assolir el nivell mínim teòric d’estoc i obra en curs que correspon al lead time de fabricació. El lead time de fabricació té diversos temps:

- Temps de procés, inclouent les preparacions.
- Temps de trànsit.
- Temps d’espera.

A més a més, hi ha altres raons que porten a superar aquest mínim teòric d’estoc:

- La lotificació (per reagrupació de necessitats) en el llançament o aprovisionament, per tal d’aconseguir quantitats “econòmiques”:
- La incertesa sobre la demanda, el girs d’estoc, el lead time de fabricació i aprovisionament.
- El ajustos entre la carga i la capacitat.

La següent taula explica els procediments per tal de reduir l’estoc.

<table>
<thead>
<tr>
<th>Tipus d’estoc</th>
<th>Acció</th>
<th>Eina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estoc mínim</td>
<td>Reduir temps de trànsit i temps d’espera</td>
<td>One piece flow</td>
</tr>
<tr>
<td>Estoc complementari</td>
<td>Reduir la lotificació</td>
<td>SMED</td>
</tr>
<tr>
<td>Estoc de seguretat</td>
<td>Reduir la incertesa sobre els girs d’estoc</td>
<td>Poya-yoke</td>
</tr>
<tr>
<td></td>
<td>Reduir la incertesa sobre la demanda i calibrar l’ajustament entre la carga i la capacitats</td>
<td>Sincronització del sistema productiu a la demanda</td>
</tr>
<tr>
<td></td>
<td>Reduir el lead time de fabricació i lead time logistics</td>
<td>Aconseguir que els tallers i els proveïdors respectin els terminis</td>
</tr>
</tbody>
</table>

Taula 1. Procediments per reduir l’estoc
En automoció, tota aquesta teoria es tradueix a que els fabricants d’automòbils eliminin tots els estocs menys els de matèria prima i el de producte acabat i per tant han de treballar amb proveïdors altament confiables que a compleixen amb els temps d’entrega mentre la planta treballa a percentatges d’utilització molt alts, així és com es resumeix una producció flexible i adaptada a la demanda.

2.1.5. SITUACIÓ ACTUAL DE LA INDÚSTRIA AL JAPÓ

Segons l’informe de la Japan Automobile Manufacturers Association (JAMA, 2011) de 2010, la indústria automobilística dona directa o indirectament treball a 5,32 milions de persones al Japó que suposa el 8,5 % de la força de treball, ja que és una indústria integrada que depèn d’altres indústries de suport. La producció japonesa, ja sigui d’empreses del sector al Japó o d’empreses japoneses a altres països, va suposar en 2009 el 29 % de la producció mundial (Elkouss, 2010). Aquestes dues dades la converteixen en un dels eixos principals de la indústria japonesa i mundial. Cal tenir en compte, però, que la producció japonesa fora del Japó es va incrementar gràcies a la deslocalització de plantes, per exemple a la Xina.

Les tendències actuals del sector mundial denoten la demanda de cotxes sostenibles i de cotxes low cost. En aquest sentit, moltes empreses japoneses aposten per la producció de cotxes sostenibles i han establert lligams amb els productors de vehicles. Aquest és el cas de GS Yuasa, el cinquè productor de bateries de liti del Japó que ha creat joint ventures amb Mitsubishi i Honda; o el de NEC amb Nissan o Panasonic amb Toyota, per exemple. També cal esmentar el cas de Toyota Tshuo Corp. (filial de Toyota) que ha signat un acord amb l’empresa australiana Orocobre per extraure liti a Argentina a finals de 2011 que s’utilitzarà al model híbrid Toyota Prius de 2012. Totes les productores japoneses tenen previsions a curt termini per a produir en massa cotxes sostenibles entre 2011 i 2013, sense oblidar que un consorci de 158 empreses (liderades per Nissan, Toyota, Tepco, Mitsubishi i Fuji) ha presentat un estàndard mundial de carregadors elèctrics: el CHAdemo (—O cha demo (ikaga desuka)— que vol dir —preem un té mentre es carrega el cotxe—). Òbviament, Japó té ja diversos fabricants de punts de recàrrega ràpida i ja està posant en pràctica les comunitats.
Intel·ligents (smart grid, evolucions de les xarxes elèctriques amb una gestió integral de l'energia per tal de satisfer la demanda ingent d'energia) a quatre ciutats japoneses.

No obstant, el Gran Terratrèmol de l’Est de Japó de març de 2011 va provocar conseqüències imprevisibles com les restriccions del consum elèctric, conseqüències que han portat a moltes empreses locals a pensar en deslocalitzar part de la seva producció; aquest és el cas de Panasonic o Muji. En el cas de l’automoció, les empreses han d’afrontar sis perills potencials: la fortalesa del ien, els elevats impostos sobre els beneficis que suposen un 40 %, la rígidesa del mercat laboral, la ferma regulació mediambiental, les restriccions energètiques i el desarmament aranzelari (Fraile Pérez, 2011).

2.2. MARC TEÒRIC PREVI

En la literatura específica sobre el lean management, trobem tres línies de pensament (Lee & Jo, 2007):

Una primera línia de pensament seria l’anomenada perspectiva de convergència que afirma que el model Toyota o lean management es pot transferir universalment. Aquests estudis defensen la superioritat productiva del lean management, ja que els fabricants japonesos amb aquest sistema continuen al capdamunt en qualitat, en eficiència de la seva força de treball, en el marge de beneficis i en la racionalització de la gamma de productes (Oliver, Delbridge, & Barton, 2002). Interpreten la relació proveïdors-fabricants i proveïdors-proveïdors com un avantatge competitiu (Sako, Supplier’s associations in the Japanese automobile industry: collection action for technology diffusion, 1996) que produeix beneficis tant per proveïdors com per fabricants mitjançant la implicació del proveïdor en el desenvolupament del producte i mitjançant l’ús de les kyoryokukai (associacions de proveïdors) per a difondre les innovacions i l’aprenentatge. En aquest sentit, el desenvolupament continu del proveïdor és clau (Sako, From individual skills to organizational capability in Japan, 1999) perquè ha de mantenir la seva productivitat a llarg termini, perquè aquest desenvolupament ha d’influir en les seves inversions i decisions estratègiques i perquè ha de superar els impediments de la difusió del coneixement en els clústers. Així mateix,
pressuposen que el futur de les empreses depèndrà de com afrontin els límits de **lean management** (Cusumano, 1994): la congestió urbana, l'escassetat de la mà d'obra obrera, les distàncies geogràfiques, la necessitat de proveïdors confiables i cooperatius, etc. I conclouen que el **lean management** (Black, 2007) simplifica el sistema productiu, evita riscos i facilita l'automatització i la millora contínua.

La segona línia de pensament és completament contraria a aquestes afirmacions, és la perspectiva estructuralista que nega que el **lean management** tingui una transferència universal i emfatitza el context socioeconòmic de Toyota. Els seus seguidors, afirmen que la inversió japonesa a Europa no va significar la implantació del *just-in-time*; en comptes d'utilitzar-ne la producció *just-in-time*, és va fer ús d'una logística *just-in-time* (Sadler, 1994). A més a més, mantenen que l'adopció del **lean management** suposa més riscos físics i emocionals per al treballador (Leslie & Butz, 1998).

La tercera línia de pensament estaria a mig camí entre la primera i la segona; la perspectiva de contingència afirma la superioritat del **lean management** però presta atenció a la necessitat d'unes precondicions i unes restriccions per tal que sigui possible la transferibilitat. El **lean management** es considera com un procés de transformació indeterminat i evolutiu. En aquest sentit, trobem diferents estudis de cas que demostrin l'exitosa implantació del **lean management** en alguns països com en Espanya (Pallarés, 1998) fent que l'adopció d'aquest nou sistema de producció provoqués un auge a la indústria; o en algunes empreses no japoneses com Hyundai (Lee & Jo, 2007) que van adoptar un TPS mutat ja que els factors externs e interns influencien el model productiu i generen un patró específic. També trobem treballs empírics (Thun, Brüke, & Grüber, 2010) que conclouen que l'èxit del TPS depèn de les habilitats i la formació dels treballadors en utilitzar el *kanban* i per tant el treballador és l'element que pot fer que el **lean management** funcioni o fracassi. Aquesta línia de pensament també planteja nous reptes, com el que tenen els sindicats en un entorn de treball **lean** (Herod, 2000).
La present investigació s’emmarca dins de la perspectiva de contingència tot i partir d’un estudi de cas d’una catàstrofe natural que deixa patent els límits del sistema. Això vol dir que el propòsit d’aquest estudi és descriure però la excel·lència dels sistemes de producció ajustada i reflexionar a partir d’aquest estudi de cas els punts de millora. Per tal de fer aquest estudi de cas factible donat l’escàs temps de marge, el delimitarem només a un dels indicadors dels sistemes de producció ajustada: el just-in-time.

De la problemàtica descrita, derivaria la següent pregunta inicial:

Ha tingut alguna repercussió negativa el just-in-time en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011?

A la present investigació, es formula una única hipòtesi amb diferents dues variables proxy i una constant:

Hi: El just-in-time va repercutir negativament en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011.

2.3. MARC CONCEPTUAL

A la hipòtesi d’investigació descrita anteriorment hi ha una constant —el just-in-time— i dues variables: els sistemes de producció que representarien la variable dependent i el Gran Terratrèmol de l’Est de Japó de març de 2011 que seria la
variable explicativa (Quivy & Van Campenhoudt, 1997). Com s’ha mencionat anteriorment, el *just-in-time* és un indicador tant del TPS com del NPW, per la qual cosa s’ha de contextualitzar dins dels sistemes de producció de les dues unitats d’estudi abans de avançar en la recerca. Per tal de fer-ho, primer s’abordaran els indicadors del TPS i després els indicadors del NPW i, un cop fet això, es parlarà dels indicadors dels sistemes de producció.

El model Toyota o TPS no és només un sistema productiu, sinó un sistema de gestió adaptat a la era actual de mercats globals i sistemes informàtics d’alt nivell d’informació (Ohno, 1988). Aquesta variable es troba amb dues dimensions: la dimensió productiva i la dimensió organitzativa.

Els indicadors de la dimensió productiva serien:

- **Sistema Pull**: mecanisme on només s’autoritza a produir quan hi ha una necessitat del producte o una demanda per part d’un client intern o extern (Giralt & Juanes, 2010).

- **Just-in-time**: sistema de producció ajustada que permet produir i lliurar els productes correctes, en el moment correcte i les quantitats correctes (Giralt & Juanes, 2010).

- **Heijunka**: anivellació del programa de treball (Liker, 2006).

- **Value Stream Mapping (VSM — mapa del flux del valor)**: tècnica desenvolupada sota el model de *just-in-time* per tal de ajudar a les empreses manufactureres en el procés de redissenyar els seus entorns productius (Serrano, 2007).

- **Programa 5s**: programa orientat a aconseguir un grau elevat d’ordre i neteja dins d’una organització, que permeti la flexibilitat dels fluxos i animi els treballadors a detectar i corregir les anomalies (Giralt & Juanes, 2010). Es basa en les cinc paraules japoneses: *seiri* (revisió les peces, guardi només les que necessiti i llanci la resta), *seiton* (un lloc per a cada cosa i cada cosa al seu lloc), *seiso* (la neteja és una forma de inspecció que exposa les anomalies i les condicions prèvies en una averia), *seiketsu* (desenvolupar sistemes i procediments per tal de mantenir i controlar les S anteriors), *shitsuke* (mantenir un lloc de treball adequat és un procés de millora contínua) (Liker, 2006).
• **Quality function deployment (desplegament de la funció de qualitat):** metodología per al desenvolupament de nous productes i/o serveis que ajuda a l’eliminació dels malbarataments o *muda* 無駄 des de la fase de concepció i disseny. Consisteix a: definir, convertir i transferir en especificacions del producte i dels processos les expectatives dels client, reduir la necessitat de correccions i modificacions posteriors, reduir costos i temps de desenvolupament (Giralt & Juanes, 2010).

• **Kanban 看板:** és un mètode operatiu mitjançant el qual s’utilitzen unes targetes en les que consta informació entre el fabricant i el proveïdor: informació de recollida, informació de transferència i informació de producció (Ohno, 1988).

• **Single-Minute Exchange of Die (SMED —canvi ràpid d'utillatges):** conjunt de tècniques ideades per a reduir el temps de preparació de màquines i de canvi d'utillatges (CIDEM, 2004).

• **Total Productive Maintenance (TPM):** metodologia de manteniment que inclou totes les funcions que es desenvolupen a l’empressa amb l’objectiu que els operaris de producció, un cop rebuda la formació adequada, s’ocupin de la neteja, de tasques bàsiques de manteniment d’equips i de la detecció de problemes potencials. Els set pilars són: la millora individual, el manteniment autònom, el manteniment planificat, el manteniment per a la qualitat, la gestió de nous equips, la seguretat i la formació (Barba, 2003).

• **Takt time (cadència):** la ràtio a la qual un producte acabat o servei ha de ser produït o enviat, de tal manera que se satisfaci la demanda del client en un període donat de temps. S’estreu dividint el temps de treball disponible de producció entre la demanda del client (Giralt & Juanes, 2010).

• **Jidôka 自動化:** és la paraula japonesa per automatització, un equip amb intel·ligència humana que s’atura quan hi ha algun error (Liker, 2006).
Il·lustració 6. Concepte Jidôka (Toyota Motor Corporation, 2012)

- **One Piece Flow (producció peça a peça):** sistema productiu basat en lots de transferència entre estacions d'una peça. Cada producte passa d'una estació a la següent en el mateix moment en què s'acaba de fabricar (Giralt & Juanes, 2010).

Il·lustració 7. Aplicació del one piece flow (Black, 2007)
Els indicadors de la dimensió organitzativa serien:

- **Estandardització**: conjunt d’instruccions que defineixen i il·lustren clarament com s’han de dur a terme les diferents etapes d’una tasca o activitat (Giralt & Juanes, 2010).

- **Integració de l’operari en l’equip**: cal integrar la figura del treballador en grups de treball perquè aporti els seus coneixements i la seva experiència per a contribuir a la millora contínua (Giralt & Juanes, 2010).

- **Production Preparation Process (3P — procés de la planificació de la producció)**: tècnica per tal d’optimitzar el procés de producció mitjançant una visió unitària del procés de planificació del disseny d’un producte i les tecnologies que intervenen en la fabricació: la relativa al procés d’obtenció i la maquinària que hi intervé (Giralt & Juanes, 2010).

- **Direcció per polítiques**: és un dels principals processos de la qualitat total e implica una gestió de l’organització basada en mecanisme de participació de tot el personal i la focalització en objectius estratègics (Giralt & Juanes, 2010).

- **Muda**: malbaratament, activitat que consumeix recursos però no crea valor. Es consideren set tipus de malbaratament: sobreproducció, temps mort, transport innecessari, processament excessiu, excés d’inventari, moviments innecessaris, defectes i creativitat desaprofitada del personal (Liker, 2006).

- **Muri**: sobrecàrrega del personal o de la maquinària que té com a resultat avaries o defectes (Liker, 2006).

- **Mura**: desnivellament resultant d’un programa de producció irregular o de volums de treball fluctuants per problemes interns: avaries, manca de materials o defectes (Liker, 2006).
Il·lustració 7. Les tres M (Liker, 2006)

- **Kaizen** 改善: millorar de manera dinàmica. És la millora obtinguda de la implicació del personal en la realitat existent.
- **Hansei** 反省: reflexió profunda en la que s’ha de ser honest amb les pròpies debilitats (Liker, 2006).

El **Nissan Production Way** (NPW) és un mètode desenvolupat originalment per Nissan per tal d’assolir la “qualitat”, el “cost” i la “velocitat d’entrega” que demanen els nostres clients (Nissan Global, 2012). Al igual que amb el TPS, els seus indicadors es poden dividir en la dimensió productiva i la dimensió organitzativa.

Els indicadors de la dimensió productiva serien:

- **Sistema Pull**
- **Just-in-time**
- **Karakuri からくり**: automatització intel·ligent però senzilla\(^7\).
- **Houshin kanri 方針管理 (Total Quality Maintenance - TQM)**: Gestió total de la qualitat per tal d’augmentar les capacitats de tota la companyia en la obtenció dels objectius mitjançant l’aplicació del cicle PDCA (Martos, 2012).

\(^7\) Karakuri からくり és un tipus d’artesania tradicional japonesa que va ser inventada al 1770. L’exemple per antonomàsia és una nina portant té que no funciona ni amb bateries ni amb electricitat.
• **Total Productive Maintenance (TPM)**

• **Genba Kanri** 眼場管理: Sistema de gestió dels tallers per tal de millorar les habilitats de les persones i constituir uns tallers forts en base a la estandardització i la millora contínua.

• **Statistics Quality Control (SQC):** Millora de la capacitat del anàlisis quantitatiu.

I els indicadors de la dimensió organitzativa serien:

• **Douki seisan** 動機生産: estil de fabricació en el que les peticions dels clients es traslladen simultàniament a tots els processos productius, des de l’últim fins al primer, aconseguint així un flux continu de producció. Suposa la situació ideal a assolir: la producció sincronitzada amb una qualitat perfecta i sense canvis de seqüència. (Martos, 2012). A l’hora el *douki seisan* 動機生産 té els seus propis indicadors.

 o **Actual Production Lead Time (APLT):** Període de producció des del procés inicial fins el procés final per a vehicles i components, correspon al número de dies de producció assequibles amb la quantitat total d’estoc.
• **Scheduled Sequence Achievement Ratio (SSAR):** Ratio de consecució de la seqüència programada. Mostra el percentatge de vehicles que mantenen la seqüència planificada.

• **Scheduled Time Achievement Ratio (STAR):** Ratio de consecució del temps (horari) programat. Mostra el percentatge de vehicles que mantenen l’horari programat.

• **Mida del lot:** Mira del lot de producció per a components. Ha de ser reduït el màxim possible i es valora en punts (un màxim de cinc punts en la producció un-a-un).

• **Direcció per polítiques**

• **Kaizen 改善:** millorar de manera dinàmica. És la millora obtinguda de la implicació del personal en la realitat existent.

• **The Two Never Ending:** Sincronització de la qualitat, el cost (eliminant l’innecessari) i el temps (reducció del *lead time logistics* i del *lead time* de fabricació). Aquest mètode suposa la sincronització sense fi amb el client i projectes sense fi per tal d’identificar els problemes i solucionar-los (Ishikawa, 2007).

• **Mètode de les "quatre capses":** marc de pensament que representa el procés per a identificar els punts a millorar per tal d’assolir els objectius futurs.

<table>
<thead>
<tr>
<th>Current Situation (Base)</th>
<th>Future (Goals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Results</td>
<td>Future (Goals)</td>
</tr>
<tr>
<td>• Profitability (Profit Rate x Turnover)</td>
<td>Never ending syncronization with the customers</td>
</tr>
<tr>
<td>• Competitiveness (Quality, Cost, Delivery Speed)</td>
<td></td>
</tr>
<tr>
<td>Business System</td>
<td>Production System</td>
</tr>
<tr>
<td>• Mechanism of material flow</td>
<td>Want-to-be condition</td>
</tr>
<tr>
<td>• Mechanism of processing</td>
<td></td>
</tr>
<tr>
<td>• Mechanism of operation procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Never ending quests to identify problems and put in place solutions</td>
</tr>
</tbody>
</table>

Il·lustració 9. Mètode "quatre capses" (Nissan Global, 2012)

Un sistema de producció és una xarxa de processos orientada a un objectiu final mitjançant el qual conflueixen entitats (Serrano, 2007).
Els seus indicadors serien (Ferràs, 2003):

- **Lead time logistic**: temps de lliurament, és a dir, el temps en que es compren les matèries primeres, es fabrica el producte i es distribueix.
- **Lead time de fabricació**: temps de producció des que entra la matèria prima fins que lliurem el producte.
- **Compliment de terminis de lliurament**: percentatge de compliment en els lliuraments de les comandes.
- **Compliments de les quantitats**: percentatge de compliment del volum total de la comanda o per línia.
- **Costos total d’operacions**: costos de comprar, produir i distribuir.
- **Rebuig de qualitat**: percentatge de productes rebutjats respecte dels venuts.
- **Girs d’estoc**: s’extreu de la divisió entre les vendes d’un període de temps i l’estoc mitjà d’aquest mateix període. S’utilitza per a mesurar el temps que triguem entre que comprem i venem.
- **Productivitat**: s’extreu de la divisió entre el valor afegit i els recursos que hem fet servir.
- **Utilització**: s’extreu de la divisió entre el temps programat i el temps disponible.
- **Eficiència**: s’extreu de la divisió entre els productes fabricats en un període de temps i les cadències teòriques, i multiplicar el producte pel període de temps total programat.
3. METODOLOGIA DE LA INVESTIGACIÓ

3.1. PRESENTACIÓ I JUSTIFICACIÓ DE LA INVESTIGACIÓ

Després de la Segona Guerra Mundial, Japó va experimentar la major recuperació econòmica de la història i va marcar un model econòmic que va fer possible la industrialització d'altres països de l’Àsia Oriental com Hong Kong, Singapur o la Xina. Dins d’aquest model econòmic es troba inherent una tendència a l'hora d'organitzar les empreses que enfortia el propi sistema i que va fer que la indústria occidental es replantegés el seus sistemes de producció i els seus controls de qualitat. Després de la revisió japonesa, camps com l’automoció o la logística occidental van patir tota una metamorfosi que encara continua avui dia.

Gràcies a aquest model econòmic, el país nipó va aconseguir mantenir-se com a la segona economia mundial tot i que havia patit tres crisis successives després d’esclatar la bombolla econòmica en 1990. Tot just començava a tenir un creixement estable quan el Gran Terratrèmol de l’Est de Japó de març de 2011 va trencar de cop les expectatives de recuperació econòmica. El terratrèmol de magnitud nou en l’escala Richter, el conseqüent tsunami, l’alerta nuclear i l’escassetat d’energia van ocasionar pèrdues d’entre 16 i 25 bilions d’eus: el desastre natural més costós de la història.

El Japó, pare del just-in-time i del lean management, va veure com les seves filosofies productives es sotmetien a examen, posant de manifest els seus límits. Com a conseqüència d’aquests, s’aturaven les seves línies productives i queia per extensió la cadena de subministrament mundial.

L’alta dependència de l’economia japonesa en el sector de l’automoció que va suposar un 6,2 % del seu PIB en 2008 i un 29 % de la producció mundial en 2009 (Elkouss, 2010), lligat al fet que va ser precisament a l’automoció on es va originar el just-in-time, fa que aquesta indústria sigui l’exemple idoni per tal d’explicar la fallida productiva de març de 2011.

Per tal d’explicar les repercussions del just-in-time en els sistemes productius de les empreses d’automoció japoneses a la crisi de març de 2011, en el marc teòric i referencial s’han desenvolupat les dues principals corrents productives que van
arrelar-se a les empreses d’automoció dels anys 80 al Japó: el *Toyota Production System* i el *Nissan Production Way*. Cadascuna d’elles aplicava la producció ajustada al seu sistema productiu a l’hora que creava tota una filosofia corporativa. A més, també s’han presentat les relacions entre els dos majors fabricants de cotxes japonesos i el seus proveïdors, s’ha introduït el concep de *just-in-time* i, posteriorment s’ha descrit la situació actual de l’automoció al Japó.

3.2. PROPÒSITS I HIPÒTESIS DE LA INVESTIGACIÓ

De la situació abans descrita deriva la següent pregunta d’investigació:

Ha tingut alguna repercussió negativa el *just-in-time* en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011?

Per tal de respondre a aquesta pregunta, s’ha de fixar la hipòtesi d’investigació de partida que servirà com a base per tal d’avaluar els resultats:

Hi: El *just-in-time* va repercutir negativament en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011.

No seria factible parlar de tots els sistemes productius de les empreses japoneses al 2011, per això hem agafat dues unitats d’estudi que representen dos casos típics. El sistemes productius de les dues unitats d’estudi són les dues variables
secundàries de la hipòtesi, mentre que el just-in time és la constant amb tres indicadors:

![Diagrama del just-in-time](image)

Taula 2. Indicadors del just-in-time

El Toyota Production System té dues dimensions d'anàlisi amb els respectius indicadors:

![Diagrama del TPS](image)

Taula 3. Indicadors del TPS
El *Nissan Production Way* té també dues dimensions d’anàlisis, però cal remarcar també els indicadors del *douki seisan* 動機生產:

Dimensió productiva
- Sistema *pull*
- *just-in-time*
- *Karakuri*
- *Houshin Kanri*
- *Total Quality Maintenance (TQM)*
- *Total Productive Maintenance (TPM)*
- *Genba Kanri*
- *Statistics Quality Control (SQC)*

Dimensió organitzativa
- *Douki Seisan*
- *Actual Production Lead Time (APLT)*
- *Scheduled Secuence Ratio (SSAR)*
- *Scheduled Time Achievement Ratio (STAR)*
- Mida del lot
- Direcció per polítiques
- *Kaizen* 改善
- Mètode ”*Two Never Ending*”
- Mètode de les "quatre capses"

Taula 4. Indicadors del NPW

Un cop emmarcat el *just-in-time* dins de cada sistema de producció i, per tal de validar la teoria exposada, s’ha de comprovar quina pressió exerceix aquest...
indicador en els indicadors del sistema de producció de Nissan Motor Company i Toyota Motor Corporation. Els indicadors propis del sistemes de producció són:

Taula 5. Indicadors del sistemes de producció

Finalment cal operacionalitzar la variable explicativa: el Gran Terratrèmol de l’Est de Japó de març de 2011 que actua com a concepte operant aïllat (Quivy & Van Campenhoudt, 1997).
Els propòsits de la recerca serien els següents:

- Comprovar que la hipòtesis d’investigació és correcta.
- Relacionar els indicadors del model Toyota amb els indicadors dels sistemes de producció.
- Relacionar els indicadors del Nissan Way amb els indicadors dels sistemes de producció.
- Explicar com va repercutir el *just-in-time* en els sistemes productius de les empreses japoneses d’automoció al Gran Terratrèmol de l’Est de Japó de març de 2011.
- Relacionar el *just-in-time* amb els indicadors dels sistemes productius de les dues unitats d’estudi.
- Comparar els indicadors econòmics de les dues unitats d’estudi relacionats amb la producció abans i després del Gran Terratrèmol de l’Est de Japó de març de 2011.

3.3. REFERÈNCIES A ESTUDIS SIMILARS

Existeixen forces estudis sobre la ruptura de les cadenes de subministrament a causa del Gran Terratrèmol de l’Est de Japó de març de 2011, fet que posa de manifest la rellevància del tema.
Van der Putten amb el seu article *Japan: One year after the Tōhoku earthquake* (Van der Putten, 2012) serviria com a introducció a la problemàtica. A l'article presenta en xifres la comparació entre els danys materials al terratrèmol de Kobe de 1995 i el terratrèmol de Tōhoku. En el cas de Tōhoku, el PIB es va contraure en un 1,8% en el primer quarter del 2011 i en un 0.3 % en el segon quarter, molt més del que s'esperava donada la magnitud de les activitats econòmiques de les prefectures afectades: Fukushima, Iwate i Miyagi que suposaven només un 2,5 % del PIB global. Van der Putten argumenta tres diferències significatives que van provocar aquest fet. 2) Kobe era una zona molt més urbana a diferència de Tōhoku. 3) La major part dels danys van estar causat pel tsunami, tsunami que no va ocórrer en el cas de Kobe. 3) Des de 1995 a l’any 2011 el processos productius han evolucionat de manera que han allargat i complicat les cadenes de subministrament.

Il·lustració 10. Taula comparativa dels danys material a Tōhoku i Kobe (Van der Putten, 2012)

Aquesta evolució va fer que en abril de 2011 encara el 26 % de les empreses manufactureres encara no haguessin assolit la completa restauració de les seves línies productives i a la segona meitat de juny de 2011 només el 93 % de les empreses s’havien recuperat completament. En aquests mesos, la recuperació va
ser molt més lenta que en el cas de Kobe i ho exemplifica amb el cas de Toyota. Durant el terratrèmol de Kobe, Toyota va suspendre la producció a 29 plantes però una setmana després aquestes tornaven a la normalitat. En el cas de Tôhoku, Toyota treballava al 50 % un més després del desastre.

És en aquest punt, quan Van der Putten parla de la vulnerabilitat de les cadenes de subministrament i nomena tres factors: la dependència en únic proveïdor, substitució i portabilitat limitada i la manca de visibilitat de les cadenes de subministrament.

Whitney et al. (Whitney, Luo, & Heller, 2012) comparen diferents casos d’interrupció de cadenes productives en Japó amb dos casos a Europa i conclouen que l’especificitat dels actius necessaris en els mètodes de fabricació i els processos d’un element o procés interromput restringeixen les respostes a la cadena de subministrament envers als desastres naturals. A pesar d’aquestes limitacions, Toyota i altres manufactureres aposten per estratègies d’abastament perquè creuen que a llarg termini els beneficis estratègics de fortificació superen els riscos d’interrupció.

Kurihara en el seu article de novembre de 2011 (Kurihara, 2011) descriu la situació econòmica després del terratrèmol per després centrar-se en la necessitat de que les companyies japoneses facin més fortes. Finalment, presenta els anomenats “cinc reptes” que han d’enfrontar les manufactureres japoneses: 1) l’escassetat d’electricitat; 2) una demanda feble tant domèstica com exterior; 3) un ien fort; 3) les inundacions a Tailàndia; i 5) la constel·lació econòmica mundial encara no resolta, inclòs l’Acord Estratègic Transpacífic.

Seguint la lògica d’aquesta necessitat de canvi en les cadenes de subministrament, el professor Fujimoto (Fujimoto, 2011) examina les condicions en que va col·lapsar les cadenes de subministrament i les seves vulnerabilitats —dependència, visibilitat, substitució i portabilitat—, per després analitzar diferents mesures per tal de fortificar les cadenes de subministrament. Finalment, Fujimoto proposa un nou enfocament: “una dialització virtual de la cadena de subministrament”, que garanteix una recuperació ràpida després d’un desastre natural a un cost relativament baix.
L’originalitat del present estudi rau en que pretén presentar a mode de monografia una aproximació completa que abasti des dels inicis del \textit{just-in-time}, la seva incidència en els sistemes productius de les empreses d’automoció i, un cop enteses les seves excel·lències, descrigui les seves limitacions a partir d’un únic estudi de cas —el Gran Terratrèmol de l’Est del Japó de març de 2011— amb dues unitats d’estudi —Nissan Motor Company i Toyota Motor Corporation— fins als canvis que reclamen els experts en els sistemes productius arrel del desastre de 2011.

3.4. PRINCIPIS DE DISSENY DE LA INVESTIGACIÓ

Per tal de respondre la pregunta inicial de la recerca, s’ha de seguir una metodologia d’investigació acurada i vàlida per als propòsits definits. La metodologia d’investigació es refereix al anàlisis teòric del cos de mètodes i principis particulars d’una branca de coneixement (Checkland, 1981). Robson (2002) estipula que per tal de dissenyar una investigació correctament, s’han de tenir en compte els següents aspectes:

- Identificació del motiu de la investigació.
- Selecció de l’estratègia d’investigació.
- Selecció del tipus d’investigació.
- Tècnica de recol·lecció de dades
- Anàlisis de dades i avaluació.

3.4.1. IDENTIFICACIÓ DEL MOTIU DE LA INVESTIGACIÓ

Seguint el model de Robson, hi ha tres motius d’investigació:

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratori</td>
<td>Quan l’investigador vol esbrinar què està passant, cercar nous punts de vista, fer preguntes.</td>
</tr>
<tr>
<td>Descriptiu</td>
<td>Quan l’investigador vol retratar un perfil detallat de persones, esdeveniments o situacions que requereixen un ampli coneixement previ.</td>
</tr>
</tbody>
</table>
En aquest estudi, existeix un motiu descriptiu, ja que es retractorà un perfil detallat d’una situació molt concreta que per tal d’analitzar-la s’ha de tenir un coneixement previ.

3.4.2. SELECCIÓ DE L’ESTRATÈGIA D’INVESTIGACIÓ

En aquesta mateixa lògica, l’estratègia d’investigació està condicionada pel motiu de la investigació i es categoritza en tres grups principals:

- Experimentació, que tractaria de mesurar els efectes de manipular una variable en un altre variable.
- Enquesta, que constaria d’un recol·lecció d’informació en un format estandarditzat des de diferents fonts personals.
- Estudi de cas, que desenvolupa el coneixement detallat i en profunditat sobre un sol cas, o d’un petit nombre de casos relacionats.

En la nostra investigació, l’estratègia a seguir és l’estudi de cas, ja que estudiarem un petit nombre d’unitats d’estudi en un context concret, però ens suportarem en la Grounded Theory i la investigació documental per tal garantir la triangulació de metodologia. Un estudi de cas es podria definir com —l’estudi d’un fenomen mitjançant el qual s’intenten explicar fenòmens de les mateixes característiques— (Gerring, 2004) o com —una investigació empírica que estudia un fenomen contemporani dins del seu context de la vida real, especialment quan els límits entre el fenomen i el seu context no són clarament evidents— (Yin, 1994).

Seguint la classificació de Gerring (2004), en el present estudi de cas, es farà una anàlisi de variació sincrònica dins de diverses unitats d’estudi, ja que només s’estudiarà l’efecte que va produir la constant *just-in-time* en els sistemes de producció de les manufactureres japoneses en un determinat moment, però no es farà cap comparació històrica.
3.4.3. **SELECCIÓ DEL TIPUS D’INVESTIGACIÓ**

Pel que fa al tipus d’investigació, Saunders et al. (1997) posen de manifest les diferències entre els dos tipus d’investigació: la quantitativa i la qualitativa.

<table>
<thead>
<tr>
<th>Investigació quantitativa</th>
<th>Investigació qualitativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basada en significats derivats de números</td>
<td>Basada en significats derivats de paraules</td>
</tr>
<tr>
<td>Resultats recollits en dades numèriques i estandarditzades</td>
<td>Recol·lecció de resultats que requereixen una classificació</td>
</tr>
<tr>
<td>Anàlisis conduit mitjançant diagrames i estadístiques</td>
<td>Anàlisi conduit mitjançant la conceptualització</td>
</tr>
</tbody>
</table>

Taula 8. Tipus d’investigació (Saunders, 1997)

En el nostre cas, es farà ús del tipus d’investigació qualitativa que escau més a la investigació que es vol fer perquè descriu la realitat social mitjançant un procés d’interpretació intimista i humanístic. Aquest procés d’interpretació es fonamenta en l’interaccionisme simbòlic —l’analista ha d’esdevenir un actor social que interpreti els significats socials de la vida quotidiana mitjançant la interacció amb la persona que estudia— i en la etnometodologia —l’analista ha de suprimir els seus significats socials per tal d’estudiar la realitat de la vida quotidiana— (Taylor & Bodgan, 1986). Quan s’aborda la decisió de quin mètode d’investigació escollir, s’ha de tenir en compte la matriu de Yin (1994):

<table>
<thead>
<tr>
<th>Mètode</th>
<th>Forma de la pregunta d’investigació</th>
<th>Es necessita control sobre els esdeveniments?</th>
<th>És un esdeveniment contemporani?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Com? Per què?</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Anàlisis d’arxius</td>
<td>Qui? Què? Quan? Quants?</td>
<td>No</td>
<td>Sí/No</td>
</tr>
<tr>
<td>Història</td>
<td>Com? Per què?</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Estudi de cas</td>
<td>Com? Per què?</td>
<td>No</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Taula 9. Matriu de Yin (Yin, 1994)
En la següent investigació, la forma de la pregunta inicial és de tipus —com?— ja que és de motiu descriptiu i conté implícit un —per què?—, perquè l’objectiu últim seria establir una teoria de mecanisme causal.

El mètode del cas és perfecte per a estudis de disciplines de les ciències socials com l’economia ja que és un mètode estretament lligat a la teoria i permet indagar més profundament en els mecanismes causals de les teories que els estudis estadístics (Yacuzzi, 2005).

Aquest autor també insisteix en que el mètode del cas proposa la generalització cap a la teoria però no cap a altres casos. En aquest sentit, cal dir que no es pretén assegurar que totes les empreses d’automoció van sofrir les mateixes adversitats durant el Gran Terratrèmol de l’Est del Japó de 2011, només es descriuràn els casos de les dues unitats d’estudi; tot i que l’objectiu final seria desenvolupar una teoria mitjançant inferències lògiques. Com diu Mitchell (1983) —la rellevància del cas i de la seva generalitzabilitat no provenen, doncs, del costat estadístic, sinó del costat lògic: les característiques del estudi de cas s'estenen a altres casos per la fortalesa del raonament explicatiu—.

Stake (2007) parla de tres tipus d’estudi de cas quan s’utilitza:

- L’estudi intrínsec de cas, on s’utilitza un únic cas que cas ve donat per la situació i no el podem escollir.
- L’estudi instrumental, on s’utilitza un únic cas que és una eina per comprendre una situació general.
- L’estudi col·lectiu de cas, quan s’utilitzen més d’un cas.

En aquest sentit, el nostre estudi de cas serà un estudi col·lectiu de cas, ja que s’analitzaran dues unitats d’estudi: Toyota Motor Corporation i Nissan Motor Company.

La *Grounded Theory* (Glaser & Strauss, 1965) contempla la possibilitat de construir casos mitjançant mètodes documentals amb els quals es poden aconseguir descripcions acurades sobre diferents situacions. És per això que, en aquesta investigació la investigació documental serà força important. La investigació documental té com a objectiu principal “recuperar ràpidament i amb precisió, entre la massa de documents emmagatzemats, els que siguin d’interès com a fonts
d’informació de la tesi o investigació" (Sierra Bravo, 1988). La Grounded Theory també invita a replantejar-se el procés d’investigació com a un procés obert i dinàmic; en aquest sentit, tot i que a la investigació es presenten uns passos definits, cal entendre-la com un procés creatiu. Per això, s’utilitzarà tant l’estratègia del mètode comparatiu constant com la del mostreig teòric per a explicar les dades i analitzar-les.

3.4.4. TÈCNICA DE RECOL·LECCIÓ DE DADES

Durant el següent estudi, s’utilitzarà l’entrevista qualitativa en profunditat com a tècnica de recollida de dades, ja que l’entrevista és l’eina principal per tal d’arribar a conferir múltiples realitats (Stake, 2007).

Stake també parla de tres tipus de pregunes per tal de descriure els casos de manera acurada:

- Temàtiques, per tal de constituir una estructura conceptual.
- Informatives generals, per tal de recollir la informació necessària per a descriure el cas.
- Preguntes per a recollir dades classificades.

Per entrevista qualitativa en profunditat s’entén —reiterades troballes cara a cara entre l’investigador i els informants, troballes dirigides cap a la comprensió de les perspectives que tenen els informants respecte de les seves vides, experiències o situacions, tal i com les expressen amb les seves pròpies paraules— (Taylor & Bodgan, 1986). Tot i la impossibilitat de fer algunes entrevistes cara a cara, refermem l’entrevista qualitativa en profunditat com a tècnica idònia per l’estudi de cas donada la seva flexibilitat i dinamisme.

Taylor (1986) parla de tres tipus d’entrevistes en profunditat:

- Històries de vida, l’investigador intenta aprendre les experiències de la vida d’una persona i la definició que la persona aplica a aquestes experiències.
- Entrevistes per tal d’aprendre sobre esdeveniments i activitats que no es poden observar directament.
- Entrevistes que tenen com a finalitat proporcionar un quadre ampli d’una gama d’escenaris, és a dir, entrevistar a moltes persones en poc temps.
En aquest sentit, s'utilitzarà l'entrevista qualitativa per tal d'aprendre una situació que no podem observar directament, per tant, els nostres entrevistats actuen com els nostres observants.

Es farà la recollida de la informació per escrit tot i tenint en compte les competències necessàries segons Yin (1994):

- Fer bones preguntres i interpretar les respostes.
- Escoltar i no deixar-se atrapar pels prejudicis.
- Adaptar-se, ser flexibles, veure les situacions com a oportunitats, i no com a problemes.
- Comprendre els temes que han de ser estudiats.
- No deixar-se condicionar pels prejudicis, ser receptiu i sensible a les evidències contràries.

3.4.5. ANÀLISIS DE DADES I AVALUACIÓ

Per tal de garantir la triangulació de fonts d'informació també es farà servir l'opinió d'experts i la revisió documental.

La validesa segons Yacuzzi (2005) implica la rellevància de l'estudi respecte als seus objectius, així com la coherència lògica entre els seus components. Per tal d'assegurar la validesa d'aquest estudi, s'hauran de tenir en compte els quatre tipus de validació (que és el que assegura la validesa):

- La validesa de les construccions conceptuals, és a dir, cal operacionalitzar els conceptes per tal de mesurar-los. És per això, que s’han extret de les dues variables indicadors mesurables a fi de poder mesurar els resultats. Yin (1994) afirma que es pot augmentar la validesa de les construccions conceptuals utilitzant múltiples fonts d’evidència i establint una cadena d’evidència.
- La validesa interna, és a dir, s’utilitzarà la lògica de la causalitat en l’explicació de l’estudi.
- La validesa externa, és a dir, establir el domini en el qual poden generalitzar-se els resultats dels estudis. En els estudis de cas, la validesa externa es generalitza cap a una teoria més amplia que permetrà identificar altres casos en que els resultats del nostre sigui vàlid. La validesa externa
del present estudi de cas està supeditada al mateix context situacional, és a dir, es podria generalitzar a altres casos d'aturades dels sistemes productius en casos de desastres naturals.

- La fiabilitat demostra que les operacions d'un estudi poden repetir-se amb els mateixos resultats, és a dir, que si un altre investigador fes el mateix estudi, obtindria els mateixos resultats. En aquest sentit, es registraran detalladament el passos de l'estudi de cas i es recopilarà tota la informació de la investigació.

A més a més, s'utilitzarà la triangulació com a estratègia de validació. La validació és —un procés en el que des de múltiples perspectives es clarifiquen els significats i es verifica la repetibilitat d'una observació i una interpretació. Però reconeixent que ninguna observació o interpretació és perfectament repetible, la triangulació serveix també per a clarificar el significat identificant diferents maneres mitjançant les quals es percebut el fenomen— (Stake, 2007).

En el següent quadre s’exposen les diferents accions que es prendran:

<table>
<thead>
<tr>
<th>Acció</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangulació d’investigador</td>
<td>Comparació de l’anàlisi de les dades amb l’assessor de continguts, el professor de l’assignatura i amb els subjectes entrevistats.</td>
</tr>
<tr>
<td>Triangulació de metodologia</td>
<td>Adopció de tres tècniques de recollida de dades (l'entrevista qualitativa en profunditats, la revisió documental i l’opinió d’experts) i tres metodologies (l’estudi de cas, la investigació documental i la Grounded Theory).</td>
</tr>
<tr>
<td>Triangulació de fonts d’informació</td>
<td>Ús de diferents fonts d’informació.</td>
</tr>
<tr>
<td>Triangulació de la teoria</td>
<td>No utilitzarem aquesta tècnica.</td>
</tr>
</tbody>
</table>

Taula 10. Accions per a assegurar la triangulació
4. MODEL D’ANÀLISI

El disseny dels estudis de cas pot ser diferent segons si es fa servir un únic cas o múltiples casos i, per altra banda, holístics o encapsulats si hi ha una o diverses unitats d’anàlisis. Yin (1994) representa això amb la següent matriu:

<table>
<thead>
<tr>
<th>Holístics (úника unitat d’anàlisi)</th>
<th>Tipus 1</th>
<th>Tipus 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulats (múltiples unitats d’anàlisi)</td>
<td>Tipus 2</td>
<td>Tipus 4</td>
</tr>
</tbody>
</table>

Taula 11. Tipus d’estudis de cas (Yin, 1994)

S’utilitzarà un disseny de tipus 2 pel següent estudi de cas: en la seva dimensió horitzontal, s’utilitzarà un disseny de cas únic ja que el Gran Terratrèmol de l’Est de Japó de març de 2011 és una situació única, i en la dimensió vertical s’optarà per un estudi encapsulat ja que s’analitzaran dues unitats d’estudi que són perfectes per a les intencions de la investigació: provar la teoria exposada i establir les circumstàncies en que les proposicions tindran validesa (George et al., 2005). Aquest serà el procés que es seguirà:
El model d’anàlisi d’aquesta recerca es podria resumir en el quadre següent:

Pregunta d’investigació: Ha tingut alguna repercussió negativa el just-in-time en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011?

Hipòtesi: *El just-in-time* va repercutir negativament en els sistemes productius de les empreses d’automoció japoneses durant el Gran Terratrèmol de l’Est de Japó de març de 2011.

<table>
<thead>
<tr>
<th>Variables principals</th>
<th>Indicadors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemes de producció</td>
<td>Lead time logistics</td>
</tr>
<tr>
<td></td>
<td>Lead time de fabricació</td>
</tr>
<tr>
<td></td>
<td>Compliment de terminis de lliurament</td>
</tr>
<tr>
<td></td>
<td>Compliment de les quantitats</td>
</tr>
<tr>
<td></td>
<td>Costos totals d’operacions</td>
</tr>
<tr>
<td></td>
<td>Rebuig de qualitat</td>
</tr>
<tr>
<td></td>
<td>Girs d’estoc</td>
</tr>
<tr>
<td></td>
<td>Productivitat</td>
</tr>
<tr>
<td></td>
<td>Utilització</td>
</tr>
</tbody>
</table>

Taula 12. Esquema per l’estudi de casos (Hernández Sampieri, 2010)
Eficiència

<table>
<thead>
<tr>
<th>Indicadors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala de control</td>
</tr>
<tr>
<td>Sistemes de seguretat</td>
</tr>
<tr>
<td>Sistemes de comunicació</td>
</tr>
<tr>
<td>Sistemes de monitorització</td>
</tr>
</tbody>
</table>

ELS JUST-IN-TIME I LA FALLIDA DELS SISTEMES PRODUCTIUS AL JAPÓ AL MARÇ DE 2011

<table>
<thead>
<tr>
<th>Dimensió d'anàlisi</th>
<th>Dimensió productiva</th>
<th>Dimensió organitzativa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>just-in-time</td>
<td>Estandarització</td>
</tr>
<tr>
<td></td>
<td>Heijunka</td>
<td>Integració de l'operari en l'equip</td>
</tr>
<tr>
<td></td>
<td>VSM</td>
<td>Production Preparation Process (3P)</td>
</tr>
<tr>
<td></td>
<td>Programa 5s</td>
<td>Direcció per polítiques</td>
</tr>
<tr>
<td></td>
<td>Quality function deployment</td>
<td>Muda</td>
</tr>
<tr>
<td></td>
<td>Kanban</td>
<td>Muri</td>
</tr>
<tr>
<td></td>
<td>SMED</td>
<td>Mura</td>
</tr>
<tr>
<td></td>
<td>TPM</td>
<td>Kaizen</td>
</tr>
<tr>
<td></td>
<td>Takt time</td>
<td>改善</td>
</tr>
<tr>
<td></td>
<td>Jidoka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One Piece Flow</td>
<td></td>
</tr>
</tbody>
</table>

Variables secundàries

Toyota Production System

<table>
<thead>
<tr>
<th>Dimensió d'anàlisi</th>
<th>Dimensió productiva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sistema pull</td>
</tr>
<tr>
<td></td>
<td>just-in-time</td>
</tr>
<tr>
<td></td>
<td>Heijunka</td>
</tr>
<tr>
<td></td>
<td>VSM</td>
</tr>
<tr>
<td></td>
<td>Programa 5s</td>
</tr>
<tr>
<td></td>
<td>Quality function deployment</td>
</tr>
<tr>
<td></td>
<td>Kanban</td>
</tr>
<tr>
<td></td>
<td>SMED</td>
</tr>
<tr>
<td></td>
<td>TPM</td>
</tr>
<tr>
<td></td>
<td>Takt time</td>
</tr>
<tr>
<td></td>
<td>Jidoka</td>
</tr>
<tr>
<td></td>
<td>One Piece Flow</td>
</tr>
</tbody>
</table>

Nissan Production System

<table>
<thead>
<tr>
<th>Dimensió d'anàlisi</th>
<th>Indicadors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sistema pull</td>
</tr>
<tr>
<td></td>
<td>just-in-time</td>
</tr>
<tr>
<td></td>
<td>Karakuri からくり</td>
</tr>
<tr>
<td></td>
<td>Houshin Kanri 方針管理</td>
</tr>
<tr>
<td></td>
<td>Total Quality Maintenance (TQM)</td>
</tr>
<tr>
<td></td>
<td>TPM</td>
</tr>
</tbody>
</table>

Sabrina Vaquerizo González
Relacions que es poden establir a priori entre els indicadors del **Ticket Production Way amb els indicadors del sistemes de producció:**

- L’adopció del sistema *pull*, el *just-in-time* i el *One Piece Flow* disminuiran els costos totals d’operacions.
- El sistema *kanban* intervé en el *lead time logistic*.
- Els sistemes SMED i TPM reduiran el *lead time* de fabricació.
- Els sistemes VSM, 5s o *just-in-time* ajudaran a millorar el compliment de terminis de llençament i el compliment de les quantitats.
- El Quality function deployment, els dispositius karakuri からくり i poka-yoke ポカヨケ incidirà positiuament en el *lead time* de fabricació, en els costos totals d’operacions i en el rebufig de qualitat.
- La direcció per polítiques, el *muda* 無駄, el *muri* 無理, el *mura* ムラ, el *hansei* 反省, l’estandardització i la integració de l’operari en l’equip reduiran el rebufig de qualitat.
- El *jidōka* 自動化 i el *kaizen* 改善 ajuden a reduir el rebufig de qualitat.
- El sistema *pull* i el *just-in-time* incidiran en els girs d’estoc, ja que influirán en la manera de gestionar l’estoc al magatzem.
- El TPM, l’SMED, el *just-in-time* i el 3P i el heijunka 平準化 milloraran la productivitat.
El Quality function deployment i l’SMED milloraran l’utilització.

En una sistema de producció que prengui el model Toyota com a base, el *takt time* hauria de ser igual al *lead time* de fabricació.

Relacions que es poden establir a priori entre els indicadors del *Nissan Way* amb els indicadors del sistemes de producció:

- L’adopció del sistema *pull*, el *just-in-time*, el *douki seisan* 動機凄惨.
- i el *two never ending* disminiuran els costos totals d’operacions.
- Els sistemes TPM, el kaizen 改善 i el *genba kanri* 現場管理.
- reduiran el *lead time* de fabricació i augmentaran l’eficiència.
- Els sistemes *just-in-time*, *genba kanri* 現場管理 i SQC ajudaran a millorar el compliment de terminis de lliurament i el compliment de les quantitats.
- La direcció per polítiques, el *two never ending*, el *houshin kanri* 方針管理 i el kaizen 改善 ajuden a reduir el rebiug de qualitat.
- El sistema *pull*, el *just-in-time* i el *genba kanri* 現場管理 incidiran en els girs d’estoc, ja que influiran en la manera de gestionar l’estoc al magatzem.
- El TPM, el *just-in-time* el mètode de les “quatre capses”, i el kaizen 改善 milloraran la productivitat.
- El kaizen 改善, el genba kanri 現場管理, el mètode de les “quatre capses” i el *two never ending* milloraran l’utilització i l’eficiència.
- En una sistema de producció que prengui el Nissan Way com a base, el *lead time logistic* ha d’estar sincronitzat amb la demanda mantenint en el mínim els costos totals d’operacions, el rebiug de qualitat i els girs d’estoc.

Relacions que es poden establir a priori entre els indicadors dels sistemes productius i els indicadors del Gran Terratrèmol de l’Est de Japó de març de 2011 amb la constant *just-in-time*:

- El terratrèmol de magnitud 9 i el posterior tsunami van provocar moltes morts i grans danys materials en infraestructures, fent que l’estoc mínim de seguretat fos insuficient, i allargant així el *lead time logistic*, *lead time* de fabricació, el compliment de terminis de lliurament, i el compliment de les quantitats, apujant els costos totals d’operacions i incidint negativament en l’eficiència.
- L’alerta nuclear va provocar l’evacuació de la població de Fukushima, fent que
l’estoc mínim fos insuficient, i incidint negativament en lead time logistic, lead time de fabricació, l’eficiència, el compliment de terminis de lliurament, els costos totals d’operacions i el compliment de les quantitats. A més a més, per tal de prevenir el rebufig de qualitat, es van a haver d’intensificar els controls d’emissions radioactives en els productes, apujant així els costos totals d’operacions.

- Els danys en infraestructures bàsiques i l’alerta nuclear van provocar una escassetat d’energia que va fer que els tallers i proveïdors no poguessin assolir el compliment de terminis de lliurament i, per tant, l’estoc de seguretat fos insuficient, perjudicant així, la utilització, la productivitat, el lead time logistic, el lead time de fabricació, l’eficiència i els compliments de les quantitats.

Taula 13. Model d’anàlisi

Segons Yin (1994) per tal que el disseny de la investigació sigui acurat ha de tenir cinc components:
- Les preguntes de l’estudi
- Les proposicions de les preguntes
- Les unitats d’anàlisis
- La vinculació entre les dades i les proposicions
- Els criteris per a la interpretació

Les preguntes de l’estudi es troben a l’apartat 5.2. del desenvolupament de l’estudi de cas.

Com ja s’havia esmentat anteriorment la hipòtesi d’investigació d’aquesta recerca es basa en que el just-in-time va tenir repercussions negatives en els sistemes de producció de les manufactureres d’automoció japoneses durant el Gran Terratrèmol de l’Est del Japó al març de 2011.

En aquesta recerca s’agafen dues unitats d’estudi per tal de fer-la factible: Nissan Motor Company i Toyota Motor Corporation. Els seus sistemes productius són les variables secundàries de la hipòtesi i el just-in-time una constant en els seus sistemes.

A les preguntes es pressuposa que les indicadors propis del TPS i del NPW estan relacionats amb els sistemes de producció i s’intenta esbrinar aquesta relació. A més a més, s’intenta indagar com incideix el just-in-time en els sistemes productius de Nissan i Toyota i quin és el rol que va tenir durant el terratrèmol de Tôhoku.
Finalment, s’intentarà quantificar aquesta repercussió negativa i per tal cosa, es pretén comparar els indicadors econòmics de les dues unitats d’estudi relacionats amb la producció abans i després del terratrèmol.

Les relacions que es poden extreure entre les dades i les proposicions a priori són les següents:

Relacions que es poden establir a priori entre els indicadors del Toyota Production Way amb els indicadors del sistemes de producció:

- L’adopció del sistema *pull*, el *just-in-time* i el *One Piece Flow* disminuiran els costos totals d’operacions.
- El sistema *kanban* intervé en el *lead time logistic*.
- Els sistemes SMED i TPM reduiran el *lead time* de fabricació.
- El sistemes VSM, 5s o *just-in-time* ajudaran a millorar el compliment de terminis de lliurament i el compliment de les quantitats.
- El *Quality function deployment*, els dispositius *karakuri* からくり i *poka-yoke* ポカヨケ incidirà positiivament en el *lead time* de fabricació, en els costos totals d’operacions i en el rebug de qualitat.
- La direcció per polítiques, el *muda* 無駄, el *muri* 無理, el *mura* ムラ, el *hansei* 反省, l’estandardització i la integració de l’operari en l’equip reduiran el rebug de qualitat.
- El *jidōka* 自動化 i el *kaizen* 改善 ajuden a reduir el rebug de qualitat.
- El sistema *pull* i el *just-in-time* incidiran en els girs d’estoc, ja que influiran en la manera de gestionar l’estoc al magatzem.
- El TPM, el *just-in-time*, l’SMED i el 3P i el *heijunka* 平準化 milloraran la productivitat.
- El *Quality function deployment* i l’SMED milloraran l’utilització.
- En una sistema de producció que prengui el model Toyota com a base, el *takt time* hauria de ser igual al *lead time* de fabricació.

Relacions que es poden establir a priori entre els indicadors del Nissan Way amb els indicadors del sistemes de producció:
• L’adopció del sistema *pull*, el *just-in-time*, el *douki seisan* 動機凄惨 i el *two never ending* disminuiran els costos totals d’operacions.

• Els sistemes TPM, el kaizen 改善 i el *genba kanri* 現場管理 reduiran el *lead time* de fabricació i augmentaran l’eficiència.

• Els sistemes *just-in-time*, *genba kanri* 現場管理 i SQC ajudaran a millorar el compliment de terminis de lliurament i el compliment de les quantitats.

• La direcció per polítiques, el *two never ending*, el *houshin kanri* 方針管理 i el *kaizen* 改善 ajuden a reduir el rebug de qualitat.

• El sistema *pull*, el *just-in-time* i el *genba kanri* 現場管理 incidiran en els girs d’estoc, ja que influiran en la manera de gestionar l’estoc al magatzem.

• El TPM, el *just-in-time*, el mètode de les “quatre capses”, i el *kaizen* 改善 milloraran la productivitat.

• El *kaizen* 改善, el *genba kanri* 現場管理, el mètode de les “quatre capses” i el “*two never ending*” milloraran l’utilització i l’eficiència.

• En una sistema de producció que prengui el *Nissan Way* com a base, el *lead time logistic* ha d’estar sincronitzat amb la demanda mantenint en el mínim els costos totals d’operacions, el rebug de qualitat i els girs d’estoc.

Relacions que es poden establir a priori entre els indicadors dels sistemes productius i els indicadors del Gran Terratrèmol de l’Est de Japó de març de 2011 amb la constant *just-in-time*:

• El terratrèmol de magnitud 9 i el posterior tsunami van provocar moltes morts i grans danys materials en infraestructures, fent que l’estoc mínim de seguretat fos insuficient, i allargant així el *lead time logistic*, *lead time* de fabricació, el compliment de terminis de lliurament, i el compliment de les quantitats, apujant els costos totals d’operacions i incidint negativament en l’eficiència.

• L’alerta nuclear va provocar l’evacuació de la població de Fukushima, fent que l’estoc mínim fos insuficient, i incidint negativament en *lead time logistic*, *lead time* de fabricació, l’eficiència, el compliment de terminis de lliurament, els costos totals d’operacions i el compliment de les quantitats.

A més a més, per tal de prevenir el rebug de qualitat, es van a haver
d’intensificar els controls d’emissions radioactives en els productes, apujant així els costos totals d’operacions.

- Els danys en infraestructures bàsiques i l’alerta nuclear van provocar una escassetat d’energia que van fer que els tallers i proveïdors no poguessin assolir el compliment de terminis de lliurament i, per tant, l’estoc de seguretat fos insuficient, perjudicant així, la utilització, l’eficiència, la productivitat, el *lead time logistic*, el *lead time* de fabricació i els compliments de les quantitats.

Per tal d’interpretar les dades es seguiran les dues estratègies de les que parla Stake (2007): la interpretació directa dels exemples individuals i la suma dels exemples fins que es pugui deduir alguna cosa d’ells com a conjunt o classe.
5. ESTUDI DE CAS

5.1. PRESENTACIÓ DEL CAS

El divendres 11 de març de 2011 a les 14.46 hores JST (hora japonesa) va tenir lloc un terratrèmol de magnitud 9.0 a uns 70 quilòmetres de la costa nord-est de l’illa de Honshu. Aquest terratrèmol va provocar més de 600 rèpliques i un enorme tsunami que va devastar la costa de Sanriku i que va provocar l’accident nuclear a la planta de Fukushima. Segons les xifres oficials del Ministeri d’Economia, Comerç i Indústria japonès el desastre es va cobrar la vida de més de 15.800 persones, més de 3.200 desapareguts, més de 6.000 ferits i més 342.000 evacuats (Government of Japan, 2012).

A part de l’alt cost humà, cal remarcar que les conseqüències econòmiques van ser igualment devastadores, assolint aproximadament el 16,9 trilions de iens entre danys a infraestructures privades, infraestructures socials (carreteres, ports, aeroports, etc.), empreses de serveis públics vitals (gas, aigua, electricitat i instal·lacions de comunicacions) i altres (camps de conreu, pesca i agricultura).

Els danys materials a més van provocar una forta contracció econòmica del 0.9 % al 2011, la pujada del ien i van danyar la cadena de subministrament. Tot i que el terratrèmol i el posterior tsunami només van afectar la regió de Tôhoku (principalment les prefectures de Fukushima i Miyagi, i en menor mesura les de Iwate i Aomori), la Dra. Àngels Pelegrín ens assenyala tres factors que van contagiar les conseqüències de la tragèdia a tot el país (Pelegrín, 2011): 1) els danys a les infraestructures públiques i privades; 2) l’escassetat d’energia; i 3) els danys en les fàbriques d’automòbils i de productes electrònics van suposar ruptures en les cadenes de subministrament tant nacionals com internacionals. Tots tres factors són conseqüències directes dels indicadors de la variable independent: el Gran Terratrèmol de l’Est de Japó de 2011.

Si més no, Standard & Poors (S&D en endavant) preveu una recuperació del 2% en 2012 i del 1.4 % en el 2013, previsions totes dues per sobre de les expectatives europees (Standard & Poors, 2012) mentre que el Banc Mundial preveu un creixement del 2.4% en 2012 i del 1.5 % en 2013 (The Japan Times, 1012). En
termes de PIB, el govern japonès fins i tot ha revisat a l’alça el creixement anual durant el primer trimestre de 2012 al 4.7%. Aquest augment ha estat possible, segons assenyala el govern, gràcies a la demanda interna que s’ha vist recolzada per les inversions del govern en la recuperació de les prefectures del terratrèmol (Expansión, 2012).
A continuació, es relacionaran les tres conseqüències immediates amb les dues unitats d’estudi: Toyota Motor Corporation i Nissan Motor Company.

5.1.2. DANYS A LES INFRAESTRUCTURES PÚBLIQUES I PRIVADES
Tal i com s’ha esmentat anteriorment, els danys materials entre infraestructures públiques i privades ronden els 16,9 trilions de iens. Entre les infraestructures bàsiques danyades s’inclouen la planta nuclear de Fukushima, el Tôhoku Express Way, l’aeroport de Sendai, així com altres instal·lacions de subministrament elèctric, de gas i d’aigua. A més a més, es calcula que els danys en fàbriques d’automòbils i productes electrònics (les principals indústries afectades pel terratrèmol) ascendeixen al 35% de les exportacions totals del país.
Tot i que Toyota Motor Corporation té diverses plantes i subsidiàries a la regió de Tôhoku cap d’elles va sofrir cap d’any tot i que les plantes del nord del Japó van haver d’aturar la producció i els empleats van haver de ser evacuats a zones més segures.
14 de març de 2011. Toyota anuncia la suspensió de la producció a totes les seves plantes al Japó i subsidiàries per tal de prioritzar la seguretat dels treballadors.

25 de març de 2011. L'aturada de la producció domèstica continua. S'anuncia reprendre la producció de components per al 17 de març i per tal de mantenir les línies de producció fòra de la illa, s'anuncia reprendre la producció de components el 21 de març.

22 de març de 2011. Aturada de la producció domèstica fins el 26 de març.

24 de març. S'anuncia que el 28 de març comença la producció dels vehicles híbrids [Prius HS 250 h i CT 200h]. Només producció a la planta Tsutsumi i a la Planta de Kyushu.

28 de març de 2011. Comença a funcionar la planta de Tsutsumi a la ciutat de Toyota, prefectura Aichi i la planta de Kyushu a la prefectura de Fukuoka. S’anuncia reprendre la producció de la planta de Sagamihara a la prefectura de Kanahawa per l’11 d’abril. Les plantes fòra del país continuen una producció ajustada, sense hores extres ni producció en dies de descans.

25 d'abril de 2011. Del 10 de maig al 3 d'abril producció al Japó al 50 %.

22 d'abril de 2011. S'espera que la normalització es completi al novembre-desembre 2011 al Japó, i a ultramar la normalització s'iniciarà a principis d’agost i es completarà al novembre-desembre.

Taula 14. Resum de les operacions domèstiques de Toyota durant la gestió del terratrèmol.

Locations of Toyota Facilities

Il·lustració 11. Mapa de les plantes de Toyota al Japó (Toyota Motor Corporation, 2012)

Pel que fa a Nissan Motor Company, les plantes de Iwaki i Tochigi van sofrir petits incendis. A més a més, la planta de Iwaki, situada a la prefectura de Fukushima, va sofrir diverses rèpliques del terratrèmol, la qual cosa va endarrerir encara més les
tasques de reconstrucció i va fer que la planta no pogués restablir la seva activitat (encara que parcialment) fins el 18 d’abril.

Nissan

<table>
<thead>
<tr>
<th>Data</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 de març de 2011</td>
<td>Es suspèn la producció de Tochigi Plant i Iwaki Plant fins el 18 de març. La producció de les plantes d’Oppama, Kyushu, Nissan Shatai i Yokohama queden suspeses fins el 16 de març.</td>
</tr>
<tr>
<td>16 de març de 2011</td>
<td>Contínua la suspensió de les plantes d’Oppama, Tochigi, Yokohama i Nissan Shatai fins el 20 de març. A les plantes de Kyushu i Nissan Shatai Kyushu seran productius el 17 de març i el 18 fins que durin els inventaris dels proveïdors.</td>
</tr>
<tr>
<td>20 de març de 2011</td>
<td>L’entrega de components trigarà un temps en restablir-se, per tant totes les plantes excepte la de Iwaki, estaran parcialment operatives des del 21 de març. La planta de Iwaki trigarà més en restablir-se donades les activitats de restauració de la planta. Es produiran components per a la fabricació a ultramar i la reparació de components (depenent de la disponibilitat dels proveïdors).</td>
</tr>
<tr>
<td>30 de març de 2011</td>
<td>Operativa normal excepte a la planta d’Iwaki. Es preveu que es recuperi l’Iwaki a mitjans d’abril. Fins ara s’ha aconseguit continuar amb la producció gràcies als estocs d’inventaris dels proveïdors.</td>
</tr>
<tr>
<td>18 d’abril de 2011</td>
<td>Comença l’operativa a la planta d’Iwaki.</td>
</tr>
<tr>
<td>26 d’abril de 2011</td>
<td>Els volums de producció en abril es preveuen per sobre del 40 % de la producció d’abril de 2010.</td>
</tr>
</tbody>
</table>

Taula 15. Resum de les operacions domèstiques de Nissan durant la gestió del terratrèmol.
5.1.3. L’ESCASSETAT D’ENERGIA

A part de les lògiques limitacions energètiques de la regió de Tôhoku per part de la Tôhoku Electric Power Company (Tôhoku EPCO), l’àrea de Kanto, on està situada Tokyo i on es concentren 42 milions de persones que representen el 40 % de PIB nacional, també va patir l’escassetat d’energia. Aquesta regió s’abasteix elèctricament de Tokyo Electric Power Company (TEPCO) però l’accident nuclear a la planta de Fukushima va suposar una reducció en les seves capacitats de subministrament al voltant del 30 %, sota els 35 milions de KW quan a l’estiu la demanda es troba al voltant dels 60 milions de KW (Pelegrín, 2011).

Per tal de reduir l’impacte energètic, es van haver de reactivar algunes centrals tèrmiques i empreses d’acer com Sumitomo i Nippon Steel van cedir part de l’energia produïda per les seves pròpies plantes. Al seu torn, el govern va haver de demanar als ciutadans i a les petites i mitjanes empreses que reduïssin el consum elèctric entorn al 15 % fins el 30 de setembre. Per als grans consumidors elèctrics (contractes de més de 500 KW) l’activitat va haver de reduir-se també, per exemple la East Japan Railway Company va haver de minvar la freqüència de ferrocarrils a l’àrea metropolitana de Tokyo. L’escassetat d’energia es va sentir però a tot el país, tot i que les restriccions no eren forçosament necessàries, altres productores elèctriques del país van ajudar a l’estalvi d’energia, per exemple la
Kansai Electric Power Company (KEPCO) que va reduir un 10 % el seu consum fins el 22 de setembre.

Com a conseqüència de les restriccions i per tal d’ajudar a l’estalvi d’energia, Nissan i Toyota també van haver de prendre decisions com canviar els dies no productius dels dissabtes i diumenges als dijous i divendres durant el període de vacances d’estiu (des de l’1 de juliol al 30 de setembre) o canviar les vacances d’estiu a finals d’abril i principis de maig.

Gràcies a totes aquests esforços es va aconseguir una reducció total del 15.8 % a l’àrea de Tôhoku, un 18 % a l’àrea de Tokyo i un 10 % a la resta del país, i les restriccions van poder ser abolides el 5 de setembre a l’àrea del terratrèmol i el 9 de setembre a l’àrea d’actuació de TEPCO (Government of Japan, 2012).

5.1.3. RUPTURES EN LES CADENES DE SUBMINISTRAMENT

Però el Gran Terratrèmol de l’Est del Japó també ha deixat de manifest les connexions encobertes entre proveïdors i el grau de contagi que aquestes connexions han suposat. Els talls d’energia que va patir Hitachi Automotive Systems es va sentir en les plantes europees de PSA Peugeot Citroën i Opel, per exemple (Bunkley & Jolly, 2011).

Això succeeix perquè en l’intent de capitalitzar els efectes de la globalització, moltes indústries com la de l’automoció han patit una fragmentació en la cadena de subministrament, i això suposa que el seu espai productiu no és només el seu *hinterland* sinó tot el planeta. Per tal d’apropar la producció als mercats de consum s’utilitza el *just-in-time* i així s’estalvia entre el 20 i el 30 %. Les empreses subcontracten les operacions a empreses logístiques i mouen part de la seva producció i serveis cap a països amb costos inferiors. Això ens ha portat al primer nivell de la logística, entès com a control d’estocs en la cadena de subministraments i a la gestió d’aquesta cadena, que suposa que les empreses d’automoció no guarden estoc de components a les seves plantes i depenen de les entregues diàries dels proveïdors per tal d’evitar les aturades de les cadenes productives.

L’origen de la logística moderna comença amb el fordisme però es replanteja conceptualment al 1980 amb el concepte *lean* de la filosofia de producció Toyota d’eliminació d’inventaris i organització de moviment de materials sobre demanda i...
en 1990 amb el corrent relacionat amb la producció i el màrqueting. Aquesta filosofia *lean* sosté que cal eliminar l’estoc innecessari per tal de reduir els costos totals de les operacions, i per fer això cal limitar els tres tipus d’estoc: l’estoc mínim, l’estoc complementari i l’estoc de seguretat.

Més tard, amb la logística moderna neix el SCM (Supply Chain Management) que suposa la integració de les cadenes de subministrament paral·lelament a la integració de la demanda del transport de mercaderies i entén la logística com el control del temps de transport i la complexitat dels serveis logístics.

La conseqüència física del SCM és la concentració de l’emmagatzematge dels productes (siguin elaborats o semielaborats) en una sola instal·lació, dissenyada com un centre de distribució d'entrada i sortida ràpida d’inventari, en oposició a un magatzem que contingui inventaris amplis i costosos (OME, 2008). Aquest nou concepte implica transports més freqüents i de menys volum i, en general, sobre distàncies més grans i, sobretot, apareix la figura del *hub* com a eix central de la SCM, que concentra la distribució d’un llarg i ampli volum de béns sobre un *hinterland* d’influència. Aquests pols de distribució estan localitzats al voltant de ports i/o aeroports principals i a prop de vies de comunicació, amb accés a amplis mercats de consum o producció. La següent il·lustració mostra les diferents fases en el procés d’integració de la logística en la cadena de subministrament.

Il·lustració 13. Fases d’integració logística (CIDEM, 2003)
Aquest plantejament mundial del SCM combinat amb el tancament dels ports comercials van provocar tota una fallida productiva al món de l’automoció donada l’alta dependència que tenen les plantes a l’estranger de les plantes japoneses. Toyota va haver d’aturar la producció a les seves plantes dels EEUU el 15,18,21,22 i 25 d’abril mentre que la producció a la Xina era a finals d’abril del 30-50%; així mateix, va haver de tancar 5 plantes europees des de finals d’abril fins a principis de maig: Toyota Motor Manufacturing UK, Toyota Motor Manufacturing Turkey i Toyota Motor Manufacturing France, Toyota Motor Industries Poland i TMUK Engine Plant. L’aturada productiva va retardar el llançament mundial del model híbrid Prius wagon i va afectar especialment al Prius que es fabrica exclusivament a les plantes japoneses i que depèn especialment de semiconductors i fàbriques de bateries locals, fent decreixir les vendes en un 47.4% en maig de 2011 respecte al mateix mes de l’any anterior.

<table>
<thead>
<tr>
<th>Toyota</th>
<th>Abril 2010</th>
<th>Abril 2011</th>
<th>Abril 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producció en Japó</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles de passatgers</td>
<td>225.715</td>
<td>48.967</td>
<td>250.930</td>
</tr>
<tr>
<td>Vehicles comercials</td>
<td>23.408</td>
<td>4.856</td>
<td>24.831</td>
</tr>
<tr>
<td>Total</td>
<td>249.123</td>
<td>53.823</td>
<td>275.761</td>
</tr>
<tr>
<td>Ventes en Japó</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles de passatgers</td>
<td>107.705</td>
<td>33.356</td>
<td>97.811</td>
</tr>
<tr>
<td>Vehicles comercials</td>
<td>9.044</td>
<td>3.976</td>
<td>10.015</td>
</tr>
<tr>
<td>Total</td>
<td>116.749</td>
<td>37.332</td>
<td>107.826</td>
</tr>
<tr>
<td>Exportacions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles de passatgers</td>
<td>134.192</td>
<td>28.422</td>
<td>164.031</td>
</tr>
<tr>
<td>Vehicles comercials</td>
<td>15.926</td>
<td>2.603</td>
<td>16.019</td>
</tr>
<tr>
<td>Total</td>
<td>150.118</td>
<td>31.025</td>
<td>180.050</td>
</tr>
<tr>
<td>Producció a l’estranger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producció mundial</td>
<td>591.109</td>
<td>308.555</td>
<td>695.487</td>
</tr>
</tbody>
</table>

Taula 16. Comparativa d’unitats de producció de Toyota.

Nissan, per la seva banda va haver d’entrellaçar la producció de les plantes domèstiques amb les plantes a Europa, però també va veure retardada l’arribada del model elèctric Leaf als EEUU i com l’aturada productiva sacsejava les vendes de la marca Infiniti de Nissan de producció completament domèstica. En total el 13 %
de la producció mundial d’automòbils va aturar-se durant el Q3 i Q4 de 2011 a causa del terratrèmol.

<table>
<thead>
<tr>
<th>Nissan</th>
<th>Abril 2010</th>
<th>Abril 2011</th>
<th>Abril 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producció en Japó</td>
<td>Vehícules de passatgers</td>
<td>76.206</td>
<td>38.267</td>
</tr>
<tr>
<td></td>
<td>Vehícules comercials</td>
<td>9.947</td>
<td>5.926</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>86.180</td>
<td>44.193</td>
</tr>
<tr>
<td>Ventes en Japó</td>
<td>Vehícules de passatgers</td>
<td>33.936</td>
<td>21.544</td>
</tr>
<tr>
<td></td>
<td>Vehícules comercials</td>
<td>4.548</td>
<td>2.524</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>38.484</td>
<td>24.068</td>
</tr>
<tr>
<td>Exportacions</td>
<td>Total</td>
<td>52.265</td>
<td>14.642</td>
</tr>
<tr>
<td>Producció a l’estranger</td>
<td></td>
<td>233.493</td>
<td>203.831</td>
</tr>
<tr>
<td>Producció mundial</td>
<td></td>
<td>319.673</td>
<td>248.024</td>
</tr>
</tbody>
</table>

Taula 17. Comparativa d’unitats de producció de Nissan

Però no només els grans productors van patir les conseqüències, sinó també els fabricants de components i materials que van intentar assegurar el subministrament apujant els preus mentre es recomponien paulatinament de les rèpliques del terratrèmol i dels talls d’energia. Probablement l’exemple per antonomàsia és Renesas Technology\(^8\) que produeix semiconductors per a gairebé totes les productores d’automoció i que va patir danys materials molt greus a la planta de Naka durant el terratrèmol.

Però no només les grans productores japoneses es van veure afectades, la indústria d’automoció mundial també depèn en gran part dels components fabricats en Japó tal i com mostra la següent taula.

Taula 18. Importacions de components del Japó. (Wiranto, 2011)

\(^8\) Renesas Technology és una joint venture entre Hitachi Ltd i Mitsubishi Electric Corporation.
5.2. ENTREVISTES

Entrevista 1: Entrevista a Joan Vidal, Key Account Manager d’Applus Idiada.

Quins són els principals serveis que ofereix Idiada Automotive Japan?
L’homologació principalment. Assessorem i certifiquem cotxes pel mercat europeu que és molt diferent del japonès. Som testadors oficials de l’Euro NCAP\(^9\), fet que valoren molt els nostres clients.

Quins són els principals clients d’Idiada Automotive Japan?
Nissan, Toyota, Subaru, Suzuki, Honda i un fabricant de pneumàtics que es diu Yokohama.

Per què van prendre la decisió de posar una filial al Japó?
Els fabricants japonesos busquen relacions amb proveïdors a llarg termini i tenir una filial allà el fa més factible. A més a més, exigeixen la presència del proveïdor al país en els processos de pressa de decisions. Tenen la màxima de *genzon genbutsu* 現存現物, —anar, veure i treure per ells mateixos conclusions abans de fer un projecte—.

Quantes persones treballen a Idiada Automotive Japan?
Quatre persones i el country manager, Tatsuhiko Kandori. Vam considerar que era absolutament necessari que el director fos japonès i tingués una experiència dilatada. Els altres integrants són persones amb un perfil no necessàriament tècnic, que fan d’enllaç amb les empreses japoneses; els nostres clients aprecien tenir un únic contacte per a qualsevol consulta.

Quines són les dificultats més grans a l’hora d’introduir-se en el mercat japonès?
La llengua, les diferències culturals, l’alt nivell d’exigència i excel·lència i la necessitat de tenir un producte competitiu.

I en el mercat d’automoció?
Tens l’agreujant de la qualitat concertada i la necessitat constant de la innovació.

Com va començar la vostra aventura al Japó?
Nosaltres vam començar a les oficines del COPCA de Tòquio que ens oferia una espai a les seves instal·lacions i quan ja ho vam tenir clar, vam traslladar-nos. Les

\(^9\) L’Euro NCAP està composta per set governs europeus i nombroses organitzacions del motor i de consumidors europees.
institucions com el COPCA i ACCió assessoren a les empreses amb estudis de mercats i faciliten l'entrada al país. També participem al programa Vulcanus del EU-Japan Centre for Industrial Cooperation, que es basa en un intercanvi d'estudiants d'enginyeria entre les principals universitats d'Europa i el Japó. De fet, vam ser la primera empresa espanyola a participar-hi i la primera en incorporar a la nostra plantilla de forma permanent dos d'aquests tècnics.

Us influeix d'alguna manera el Toyota Production System?
Nosaltres som una empresa de serveis, per la qual cosa, no ens afecta en res en la dimensió productiva. Pel que fa a la dimensió organitzativa, tenim una filosofia de grups de treball.

Pertanyeu a alguna associació de proveïdors d'automoció?
Pertanyem al Society of Automotive Engineers of Japan (JSAE)\(^\text{10}\) i també assumim a nombroses ponències tècniques.

Entrevista 2: Entrevista a Glòria Prats, dinamitzadora del clúster\(^\text{11}\) d'automoció de Catalunya. Glòria és la cap de Planificació Sectorial d'Acció, l'agència de suport a la competitivitat de l'empresa catalana especialitzada en el foment de la innovació i la internacionalització que pertany a la Generalitat de Catalunya.

Com descriuries el TPS?
És un sistema integrat de producció i gestió, l'objectiu inicial era donar resposta a la necessitat de produir a baix cost, petites quantitats de productes variats. Per aconseguir-ho de manera eficaç combina la producció en el moment precís (*just-in-time*) i l'autocontrol de la producció, utilitzant tot un sistema d'eines que possibiliten aquesta tasca (*six sigma*\(^\text{12}\), *kanban* 看板, *poka-yoke* ポカヨケ, etc.)

\(^\text{10}\) La JSAE és una associació de més de 40.000 enginyers, directius, professors i estudiants que comparteixen informació i intercanvien idees per a la innovació de les tecnologies d’automoció.

\(^\text{11}\) Un clúster és una concentració geogràfica d'empreses o institucions que estan relacionades entre sí per un mercat o producte, de manera que comparteixen coneixement especialitzat per tal de tenir un avantatge competitiu.

\(^\text{12}\) Aquest mètode és una millora de processos que es centra en la reducció de la seva variabilitat per tal de reduir o eliminar els defectes en un producte o servei. L'objectiu d'aquest mètode és arribar a un màxim de 3,4 defectes per milió d'esdeveniments o oportunitats. Aquesta metodologia és una evolució de la teoria de Qualitat Total de Deming (Benito, 2003)
Quins avantatges té el sistema pull?
És el que utilitza el *just-in-time*. En un sistema *pull* el consum del material necessari per un procés desencadena la reposició pel procés precedent, de forma que únicament cal reemplaçar el material consumit en el procés posterior.
Aquest sistema requereix tenir programes de lliurament de matèries primeres molt ajustats i, en molts casos, amb diversos lliuraments en un mateix dia. A canvi, evita l’estocatge de matèries primeres i redueix millor el cost d’estocs.

Creus que el sistema pull pot ajudar d’alguna manera a reduir els costos totals d’operacions d’una empresa?
Si el procés està ben ajustat i es compta amb proveïdors capaços de complir els programes d’entrega, sí pot incidir en la reducció del cost d’operacions.

Quines altres eines del TPS poden aplicar-se per tal de reduir els costos total d’operacions d’una empresa?
La reducció dels temps de preparació (sistema SMED), la polivalència dels treballadors, el manteniment integrat de la producció (TPM), i l’aproveitament de les idees dels treballadors.

I per reduir el rebug de qualitat?
Un Sistema Integral de Gestió de la qualitat, el programa 5s, els dispositius *poka-yoke* ポカヨケ, l’AMFE13 (Anàlisis Modal de Fallides i Efectes potencials).

Com es pot millorar l’eficiència?
Hi han diverses eines que poden ajudar en la millora de l’eficiència, entre elles destacaria la de 5s, basada en els conceptes d’ordre, neteja, control visual, disciplina i compromís.

Què és lead time de fabricació?
És el temps que passa entre el primer i l’últim pas d’un procés de producció.

Quin paper juga la implicació del treballador en els rebugs de qualitat?
La implicació del treballador en les fases de producció pot ser determinant ja que l’autocontrol de la producció és una eina important per evitar o detectar no conformitats en el procés. Cal però tenir treballadors formats i implicats. La formació és fonamental per saber que és correcte i que no, per saber perquè i com

13 Ès un procediment d’anàlisis de les fallides potencials en un producte per tal de prevenir-les i detectar-les i evitar així el rebug de qualitat.
evitar-ho. La implicació ajuda a una major motivació i una actitud positiva envers la feina.

Com descriuries el sistema 5S?

És un sistema de treball basat en 5 principis molt bàsics, i a primera vista senzills que són: Sentit d’utilització, ordre, neteja, salut i auto disciplina. Te com objectiu simplificar l’ ambient de treball, reduir els malbarataments i les activitats que no aporten valor, a l’hora que s’incrementa la seguretat i l’eficiència de qualitat.

Qué és el TPM?

És una tècnica que treballa l’eliminació de perdures associades a aturades, qualitat i costos en els processos de producció industrial.

Per a què serveixen els kaizen 改善?

És una tècnica utilitzada en qualitat per treballar la millora continua en les organitzacions. Els seus elements bàsics són el treball en equip, la disciplina personal, la voluntat de millorar, els cercles de qualitat i l’aportació de suggeriments per a aconseguir millores.

Per què és important reduir el malbaratament en el sistema productiu? Com es pot fer?

El malbaratament suposa un cost innecessari que no es tradueix en valor per tant s’ha d’eliminar. Hi ha diverses tècniques i sistemes que ajuden a minimitzar o eliminar els malbarataments i cada empresa haurà d’escollir aquell que millor s’adapti a la seva forma de treballar.

Per què és tan important l’estandardització en els processos productius?

Per poder millorar la seva eficiència.

Com influeixen els dispositius poka-yoke ポカヨケ en els rebuigs de qualitat?

El sistema *poka-yoke* ポカヨケ es fonamenta en impedir que es produeixin els errors. Aquests sistemes es poden utilitzar tant en el muntatge en producció, com en l’aplicació en productes que van directament a l’usuari final, per exemple: els diferents endolls dels cables d’ordinador. Cada cable només es pot col·locar a un lloc concret de l’ordinador de forma que un usuari no pot confondre’s a l’hora d’endollar-los. Al evitar els errors, s’evita el rebuig.
Per a què que serveix la direcció per polítiques?
S'utilitza per asseuregar el creixement de les companyies a llarg termini i per a prevenir la recurrència de situacions no desitjades en la planificació i de problemes d’execució.
Es tracta d'un sistema de direcció que permet definir unes fites i garantir que totes les persones de l’organització poden assolir-les a través d’un procés d’autoavaluació sistemàtic i continu.

Entrevista 3: Entrevista a Ramon Arqué, enginyer civil i Operations Manager de TNT Express. TNT Express, al igual que Idiada Applus, és una empresa de serveis que està implantat el lean management en diverses àrees.
Quins avantatges té el sistema pull?
És un sistema que “estira” de la demanda. Fabriques en funció de la demanda recent que vas tenint. Necessites menys estocs i pots produir amb més varietat.
Creus que el sistema pull pot ajudar d’alguna manera a reduir els costos totals d’operacions d’una empresa?
Sí, perquè fabriques pràcticament sota demanda i utilitzes els elements d’estocs justos. També t’obliga a treballar de manera més eficient amb la qual cosa produeixes menys malbarataments.
Quines altres eines del TPS poden aplicar-se per tal de reduir els costos totals d’operacions d’una empresa?
El just-in-time, Value Stream Mapping, 5S, l’anàlisi de qualitat amb six sigma, kaizen 改善, gestió de estocs amb mètode kanban 看板, etc.
I per reduir el rebug de qualitat?
L’anàlisi de la no-qualitat mitjançant el six sigma i les seves eines.
Com es pot millorar l’eficiència?
Aconseguint produir més peces bones en menys temps. La definició tècnica en termes productius de l’eficiència es: —divisió entre els productes fabricats en un període de temps i les cadències teòriques, i multiplicar el producte pel període de temps total programat—. És a dir que, per a millorar l’eficiència hem d’aconseguir disminuir les cadències, o sigui treballar més de pressa però sense defectes.
Com influeix l’adopció del *just-in-time* en els sistemes de producció?
Ajuda a optimitzar els estocs. També provocarà organitzar el procés de treball de forma més òptima i probablement menys peces defectuoses. Per tant, provoca una disminució dels costos operatius.
I el sistema **kanban?**
Principalment serveix per a evitar els trencaments d’estocs. Per assegurar que sempre tenim l’estoc correcte en el moment necessari. Influeix en el cost òptim i en el *lead time logístic* o sigui en el temps de fabricació.
Quines eines del TPS poden ajudar a millorar el *lead time logistic*?
La majoria d’eines del TPS: el *kanban* (看板), la gestió de estocs, la gestió de la relació amb els proveïdors, el *takt time*, la tecnologia utilitzada en el procés, el transport, etc.
I el *lead time* de fabricació?
Totes les eines esmentades anteriorment excepte el transport i la gestió d’estocs.
Quin paper juga la implicació del treballador en els rebusigs de qualitat?
És fonamental. El treballador és el que executa el procés de treball i per tant ha de poder ajudar en el seu disseny i millora.
Quins beneficis aporta el SMED al sistemes de producció?
El SMED és el conjunt de tècniques ideades per reduir el temps de preparació de màquines i de canvi d’utillatges. És molt important entendre que aquest temps forma part del temps de procés i per tant influeix en el temps final de fabricació.
I el VSM?
El VSM és una tècnica molt important i és imprescindible utilitzar-la quan s’analitza un procés. Ens diu quin percentatge del temps de procés aporta realment valor. I l’objectiu és eliminar o reduir al mínim els subprocessos que no aporten valor. És un indicador de l’eficiència del procés.
Quines eines es poden emprar per arribar al compliment de terminis de lliurament?
Sistemes VSM, 5s, *just-in-time* i l’anàlisi del *takt time*.
I per arribar al compliment de les quantitats?
També els sistemes VSM, 5s, *just-in-time* i els mètodes de fabricació per lots de transferència (*one piece flow*).
Per a què serveixen els *kaizen*改善?
Per a aconseguir un sistema de millora continua a base d’implicar els treballadors.

Per què és important reduir el malbaratament en el sistema productiu?
Perquè com més avançat està el procés productiu, més costós serà aturar-lo o haver de fer-hi correccions.

Per què és tan important la estandardització en els processos productius?
Perquè és el sistema que assegura el màxim d’eficiència del procés i el mínim de malbaratament.

Com influeixen els dispositius *poka-yoke*ポカヨケ en els rebusigs de qualitat?
Són sistemes o dispositius que estan destinats a evitar errors. Si un element es dissenya de manera que només es pot muntar d’una manera, evitarem que es munti malament i per tant evitarem els rebusigs de qualitat.

Com diries que el 3P pot millorar la productivitat?
Com que el 3P té en compte tot el procés, des del disseny, el procés i la maquinària i ho contempla com una única visió, tots els elements del sistema estan ben connectats i millorem l’eficiència i per tant la velocitat del procés i la productivitat.

Quines eines del TPS ajuden a millorar l’ utilització?
L’ utilització és la divisió entre el temps programat i el temps disponible. Es pot millorar amb sistemes com el *Quality function deployment* i l’SMED.

Per a què serveix la direcció per polítiques?
Implica una gestió de l’organització basada en un mecanisme de participació de tot el personal i la focalització en objectius estratègics.

En un sistema productiu que prengui com a base el TPS, el takt time és igual al lead time de fabricació?
Sí, hauria de ser així si el procés és eficient.

Com beneficia el sistema *one piece flow* al sistema productiu?
Disminueix els costos totals d’operacions.

Per què és necessari augmentar els girs d’estoc en el sistemes productiu?
Perquè els costos d’estocs són costos molt elevats i l’estoc té el risc de no consumir-se. Per això és important dissenyar sistemes productius que es basin en
la demanda, perquè requerirem menys estocs i per tant reduirem els costos d'operacions.

Entrevista 4: Entrevista a Mizuko Uchida, analista de mercats del sector industrial de l’ICEX a l’oficina de Tòquio.

Quins són els majors reptes a l’hora d’introduir-se en el mercat d’automoció japonès?

El QCDD (Quality, Cost, Delivery, Date), és a dir, subministrar productes de qualitat a un preu competitiu en la data prevista i el *just-in-time*, subministrar els productes a temps en una quantitat ajustada on sigui necessari per tal de no tenir estoc. Si més no, el repte del *just-in-time* es troba en entredit després del terratrèmol de Tôhoku de l’onze de març de 2011, ja que a causa de no tenir estoc, els fabricants de cotxes s’han vist obligats a parar les línies de producció.

Dires que el TPS està molt difós en el mercat d’automoció japonès?

Sí, cada fabricant l’ha adaptat a la seva línia de producció per tal d’aconseguir una major productivitat. Per exemple, han adaptat el sistema *kanban* 看板, els dispositius *poka-yoke* ポカヨケ i la barreja de producció de diversos models.

Com descriuries el TPS?

El TPS és una metodologia utilitzada per tal d’augmentar la qualitat i disminuir el cost, i així produir un cotxe el més ajustat i el més segur possible.

Quines avantatges té aquest sistema de producció respecte a un sistema de producció massiu?

La producció en massa busca produir un número petit de models en gran quantitat, mentre que el TPS cerca la producció d’una varietat de models en poca quantitat. És a dir, tenim més diversificació.

És habitual trobar-se amb empreses d’altres sectors que hagin implantat la filosofia Toyota?

La filosofia Toyota és fonamental en el sector manufacturer i per tant és habitual trobar filosofies semblants en empreses d’altres sectors.

Adopten els productors de components també el mateix sistema de producció que els seus clients?

Sí, adopten el mateix sistema de producció.
I dintre del keiretsu 系列 Toyota14? La implantació de la seva filosofia va arribar a tots els nivells del keiretsu 系列 o només a la producció de cotxes?

Sí, la filosofia Toyota va arrelar-se a tot el keiretsu 系列 de Toyota com també a tota la seva xarxa de proveïdors Kyohokai. És molt habitual que tota la filosofia es desenvolupi dins del keiretsu 系列 i que troben conceptes del TPS com \textit{mura} 無理, \textit{muri} 無理, \textit{hansei} 反省, \textit{muda} 無駄 desenvolupats a la cultura d'empresa fins i tot si no és una empresa d'automoció.

Diries que és necessari que l'empresa estrangera que pretengui introduir-se en el mercat japonès adopti la ideologia del TPS?

No si pot oferir el mateix resultat.

És habitual que els proveïdors japonesos pertanyin a grups \textit{jishuken} 自主権 de diverses empreses d'automoció?

Sí, és habitual.

\textit{Y a diferents associacions de proveïdors? És possible que un mateix proveïdor pertanyi a Kyohokai i a Takarakai}15 o Shohokai16 a l'hora?

Abans no, però ara sí. Un cop acaba l'etapa de creixement econòmic, el proveïdors han de buscar més clients.

És recomanable o necessari que l'empresa estrangera d'automoció que s'estableixi al Japó formi part d'aquestes associacions?

Recomanable, però no imprescindible sempre i quan compleixi el fonamental: QCDD i just-in-time.

\textbf{5.3. REPTES DEL JUST-IN-TIME}

La tragèdia quàdruple del Japó (el terratrèmol, el tsunami, l'alerta nuclear i l'escassetat d'energia) han posat en situació de perill el \textit{supply chain}. Igual que a la crisi del sistema financer del 2008, han posat de manifest les connexions encobertes entre proveïdors i el grau de contagi que això ha suposat. Tot i que Xina va desplaçar al Japó al número 3 del rànking mundial, la realitat és que les

14 El \textit{keiretsu} 系列Toyota Industries Corporation, establert l'any 1926 compta amb 40.825 treballadors. A diferència dels clàssics \textit{keiretsu} 系列 japonesos, l'estructura general no està formada al voltant d'un banc, sinó al voltat de Toyota Motor Corporation. Si més no, compta amb empreses en sectors com: logística, maquinària industrial i tèxtil (Toyota Motor Corporation, 2012).

15 Associació de proveïdors de Nissan.

16 Idem.
cadenes de subministrament mundial depenen fortament del Japó. Per exemple, Mitsubishi Gas Chemical i Hitachi Chemical controlen a través de Renesas Technology el 90 % del mercat d’una resina especial utilitzada en els microxips dels smartphones i els cotxes. Però també les bateries dels iPods depenen d’un polímer fabricat per Kureha Corporation que controla el 70 % del mercat.

Els economistes del HSBC (The Hongkong and Shanghai Banking Corporation Limited) assenyalen tres colls d’ampolla17 dins del present cas d’estudi: en primer lloc, l’estoc insuficient; el segon, l’escassetat d’energia; i el tercer, el transport. El primer coll d’ampolla té molt a veure amb la tendència just-in-time nascuda i perfeccionada al país nipó. És per això que el HSBC creu probable que en els pròxims anys el concepte de just-in-time muti a un just-in-case18 per tal de limitar les conseqüències de les interrupcions i que els països de l’ASEAN com Vietnam, Tailàndia i Indonèsia es vegin afavorits per la inversió estrangera. Per exemple, els proveïdors que tenen quasi monopolis en parts i materials crucials podrien veure’s obligats a expandir les seves plantes geogràficament, perquè els seus clients podrien demanar parts al seus rivals més petits com a precaució. Aquest és el cas de Hiwin, una empresa taiwanesa que controla el 10 % del mercat de guies de moviment lineal, que podria guanyar quota de mercat a la japonesa THK que controla el 55 % però que durant el terratrèmol es va haver d’enfrontar a talls d’energia.

Les firmes industrials, que durant anys s’han tornat més lean en les seves tècniques i processos i que com a resultat s’han tornat més vulnerables als desastres de subministrament, han de donar ara un pas enrere per tornar-se més fortes. Això no ha de significar forçosament tornar al just-in-case. De les opcions adients per enfortir l’actual sistema (augmentar l’estoc, l’ús de components estandarditzats, la dualització de les cadenes de subministrament i la reubicació de les plantes productives), només una aplica directament al just-in-time: l’augment d’estoc.

Fujimoto (Fujimoto, 2011) defensa que s’han d’enfortir les cadenes de subministrament pel pròxim terratrèmol però que no cal augmentar l’estoc de

17 Processos o màquines amb la capacitat més petita i que estrangulen el flux de materials (CIDEM, 2003).
18 Es com es coneixen les tendències anteriors al just-in-time que tendien a utilitzar l’excés d’estoc per tal de fer front als colls d’ampolla.
seguretat sinó que cal simplement replantejar-se la ubicació dels magatzems logístics de seguretat. Augmentar l’estoc com a resposta només al terratrèmol significaria reduir la competitivitat de la planta i del producte abans fins i tot de que arribi el pròxim desastre.

Segons l’autor s’han de prendre aquestes mesures per tal d’enfortir les cadenes de subministrament en casos de desastre, però sempre sense perdre de vista dues màximes: 1) la competitivitat no ha veure’s reduïda en pro de la competitivitat mundial; 2) treballar per la recuperació de la cadena de subministrament en un període de dues o tres setmanes. És per això que Fujimoto presenta una nova aproximació “la dualització virtual de la cadena de subministrament” que garantiria una recuperació ràpida després d’un desastre a un cost relativament baix. Aquesta dualització virtual de la cadena de subministrament consisteix en la transferència d’informació crítica de disseny a una altra línia productiva mentre la línia productiva principal es recupera del desastre.
6. RESULTATS

6.1. DESCRIPCIÓ DELS RESULTATS DE L’ESTUDI DE CAS

Cal recordar que la present investigació és un estudi de cas únic amb dues unitats d’anàlisis que s’han anat analitzant al llarg del mateix: Toyota Motor Corporation i Nissan Motor Company, on la pràctica del *just-in-time* representa una constant en els seus sistemes productius.

En paraules de Joan Vidal diríem que els majors reptes a l’hora d’introduir-se en el mercat d’automoció japonès són el QCDD (Quality, Cost, Delivery, Date), és a dir, subministrar productes de qualitat a un preu competitiu en la data prevista i el *just-in-time*, subministrar els productes a temps en una quantitat ajustada on sigui necessari per tal de no tenir estoc. La filosofia Toyota és fonamental en el sector manufacturer i, per tant, és habitual trobar filosofies semblants amb conceptes com *mura* ムラ, *muri* 無理, *hansei* 反省, *muda* 無駄 en empreses d’altres sectors.

La metodologia *lean manufacturing* s’utilitza per tal d’augmentar la qualitat i disminuir el cost, i així produir un cotxe el més ajustat i el més segur possible. Es detallen en la taula següent les relacions extretes durant l’estudi entre els indicadors dels sistemes de producció i els indicadors dels models productius de les dues unitats d’estudi:

<table>
<thead>
<tr>
<th>Acció</th>
<th>Eines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducció dels costos totals d’operacions</td>
<td>Sistema pull, just-in-time, One Piece Flow, douki seisan 動機生産, two never ending.</td>
</tr>
<tr>
<td>Reducció del lead time logistic</td>
<td>Sistema kanban 看板</td>
</tr>
<tr>
<td>Reducció del lead time de fabricació</td>
<td>SMED, TPM, Quality function Deployment, kaizen 改善 i el genba kanri 現場管理.</td>
</tr>
<tr>
<td>Millora del compliment de terminis de lliurament</td>
<td>VSM, 5s, just-in-time, genba kanri 現場管理 i SQC</td>
</tr>
<tr>
<td>Millora del compliment de quantitats</td>
<td>VSM, 5s, just-in-time, genba kanri 現場</td>
</tr>
<tr>
<td>Reducció del rebuig de qualitat</td>
<td>Quality function Deployment, direcció per polítiques, muda 無駄, muri 無理, mura ムラ, hansei 反省, l’estandardització, integració de l’operari en l’equip, jidōka 自動化, kaizen 改善, two never ending, el hoshin kanri 方針管理, els dispositius karakuri からくり i poka-yoke ポカヨケ.</td>
</tr>
<tr>
<td>Reducció dels girs d’estoc</td>
<td>Sistema pull, just-in-time i el genba kanri 現場管理.</td>
</tr>
<tr>
<td>Millora de la productivitat</td>
<td>TPM, just-in-time, SMED, 3P, heijunka 平準化, el mètode de les “quatre capses” i el kaizen 改善.</td>
</tr>
<tr>
<td>Millora de la utilització</td>
<td>Quality function Deployment, SMED, kaizen 改善, genba kanri 現場管理, el mètode de les “quatre capses” i el “two never ending”.</td>
</tr>
<tr>
<td>Millora de l’eficiència</td>
<td>Muda 無駄, muri 無理, mura ムラ, hansei 反省, integració de l’operari en l’equip, estandardització, TPM, kaizen 改善, genba kanri 現場管理, mètode de les “quatre capses” i el “two never ending”.</td>
</tr>
</tbody>
</table>

Taula 19. Relacions entre els indicadors de la variable dependent i les unitats d’estudi.

És innegable que els indicadors de la variable independent van incidir negativament en els indicadors dels sistemes de producció. De fet un dels colls d’ampolla descrits pel HSBC és precisament una causa directe de la constant d’estudi: el just-in-time.
Els danys materials en els infraestructures i l’evacuació de les zones afectades van manifestar que l’estoc mínim de seguretat era insuficient però també van provocar l’escassetat d’energia, de tal manera que van empiçar d’emprovar el \textit{lead time logistic, lead time} de fabricació, la utilització, la productivitat, el compliment de terminis de lliurament, i el compliment de les quantitats, apujant els costos totals d’operacions i incidint negativament en l’eficiència. A més a més, per tal de prevenir el rebiug de qualitat, es van a haver d’intensificar els controls d’emissions radioactives en els productes, apujant així els costos totals d’operacions.

No obstant, i tot i que els indicadors econòmics evidencien la recessió que van sofrir Nissan Motor Company i Toyota Motor Corporation a causa del Gran Terratrèmol de l’Est de Japó, ambedues companyies s’han recuperat admirablement del desastre natural. En un primer moment, les empreses de risc financer com Standard & Poors revisaven negativament sis fabricants japoneses; entre elles Nissan i Toyota. A més a més, el mercat domèstic tendeix a la baixa a causa de la urbanització, el declivi de la població i la pèrdua d’interès dels joves en la possessió d’un cotxe nou.

A pesar d’aquestes tendències el mercat domèstic aquest any s’ha recuperat gràcies als subsidis econòmics del govern per als vehicles d’ús eficient de combustible, que han sortit efecte sobre tot en el cas de Nissan que ha millorat les xifres d’abril de 2010. La següent taula mostra la total recuperació d’ambdues empreses respecte a la tragèdia de març de 2011 a pesar de la crisi mundial en el sector i a l’alt valor del ien.

\begin{table}[H]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{Variació percentual any per any (abril)} & \textbf{Toyota} & \textbf{Nissan} \\
\hline
\hline
\textbf{Ventes en Japó} & -78,40 & 412,35 & 10,69 & -48,72 & 94,00 & -0,52 \\
\hline
\textbf{Exportacions} & -68,02 & 188,83 & -7,64 & -37,46 & 63,76 & 2,41 \\
\hline
\textbf{Producció a l’estranger} & -79,33 & 480,34 & 19,94 & -71,99 & 259,00 & 0,57 \\
\hline
\textbf{Producció mundial} & -25,51 & 64,77 & 22,73 & -12,70 & 39,23 & 21,54 \\
\hline
\textbf{Producció mundial} & -47,80 & 125,40 & 17,66 & -22,41 & 48,99 & 15,59 \\
\hline
\end{tabular}
\caption{Taula 20. Variació percentual del mes d’abril any per any.}
\end{table}
De fet, les darreres qualificacions d’Standard & Poor’s puntuen a Nissan amb un BBB+ a llarg termini i a Toyota amb un AA- a llarg termini.

Aquesta perspectiva negativa per a Toyota i moderada per Nissan reflexa que la sobreproducció a les plantes del Japó retardaran la recuperació en la rendibilitat de totes dues companyies, tot i que cal apuntar que Nissan es va recuperar més ràpidament durant el desastre.

Si més no, el risc financer de Toyota és mínim i s’espera que la rendibilitat millori, ja que les seves operacions s’han tornat a la normalitat. Les vendes van repuntar amb força en els trimestres segon i tercer de l’any fiscal 2011 (al 31 de març de 2012) i la producció i l’inventari es van recuperar després de les aturades de producció del Gran Terratrèmol de 2011. Una vegada que els nivells d’inventari han tornat a la normalitat, la recuperació de les vendes hauria d’accelerar encara més l’any fiscal de 2012 i ajudar a assolir el 55 % de quota de mercat domèstic que la pròpia marca s’ha fixat com a objectiu per 2015 (The Japan Times, 2012). S’espera a més que recuperi part de la quota de mercat perduda als EEUU.
6.2. UN exemple d’aplicació del just-in-time
La filosofia *just-in-time* és aplicable a altres indústries. En els últims anys, nombroses empreses de diferents sectors han adoptat el *lean management* per tal de millorar la seva rendibilitat.

Un exemple molt clar d’aplicabilitat del TPS en una indústria diferent de la d’automoció seria la indústria tèxtil. En aquest sentit, el mercat japonès és un dels més avantguardistes del món, amb més de 127 milions de clients potencials d’un alt coneixement de la moda i de les noves tendències i amb una nivell adquisitiu alt. Hi ha diferents grups de consum (sector femení, sector masculí, cultures urbanes, sector infantil), per la qual cosa l’oferta és molt àmplia, tot i que el grup de consum més atractiu econòmicament és el sector femení. És un mercat molt madur amb una gran diversitat de productes oferts, fet que dificulta l’entrada de nous competidors.

Donada aquesta gran diversitat i des d’un punt de vista productiu, els grans productors han desenvolupat un sistema de resposta ràpida (*Quick Response*) que els permet adaptar ràpidament el seus productes als canvis en les necessitats dels consumidors disminuint els costos d’inventaris i millorant la rendibilitat (Magallares, 2010). En aquests sistemes de resposta ràpida, els fabricants i els distribuïdors intercanvien freqüentment informació de màrqueting per tal de满意 la necessitat del consumidors d’una manera ràpida i d’escurçar els terminis de lliurament.

En aquest mateix sentit, moltes empreses tèxtils han aplicat el TPS que suposa, en primer lloc, passar de la producció en massa a la producció flexible per tal de diversificar els productes i respondre a les noves demandes dels clients i, en segon lloc, la introducció de mètodes de gestió com el *just-in-time* per tal de millorar la competitivitat.

Aquest és el cas de l’espanyola Zara que té un sistema d’intercanvi d’informació basat en Internet que facilita el flux d’informació entre els 2244 punts de venda repartits en 62 països, les més de 300 cooperatives i societats que s’encarreguen de la producció de peces *just-in-time* i la seu central. El seu sistema de producció es basa en una col·lecció fixa que suposa el 60 % de la seva producció, les peces denominades “bàsiques” perquè no passen de moda, i entre el 40 i el 50 % de
peces just-in-time. Amb aquest sistema, Zara ha aconseguir reduir a dues setmanes el seu cicle de producció (Martínez, 2008).
7. CONCLUSIONS

Joan Vidal afirmava que l'empresa que és capaç de prosperar en el mercat japonès, és capaç de prosperar en qualsevol mercat, donades les particularitats d'exigència de qualitat i excel·lència. I és que tot i les expectatives econòmiques negatives de les agències de risc financer que advocaven per una reubicació de les plantes domèstiques, les empreses d'automoció locals han tret pit: “Si ens aixeiquem i ens anem, qui protegirà aquests llocs de treball? Qui pagarà els impostos? Qui ajudarà a la recuperació del Japó?”—defensava Toshiyuki Shiga, Cap de l'oficina d'Operacions de Nissan.

És innegable que la hipòtesi d'investigació és correcte donat que el just-in-time, o mes ben dit, l’ús in extremis de les teories del just-in-time per part de les empreses productores d'automòbils i components van provocar un dels tres colls d'ampolla ocorreguts durant el Gran Terratrèmol de l'Est del Japó. Si més no, com diria l'economista de l'HSBC Wellian Wiranto “Hype, not fact”. La realitat és que malgrat tota la propaganda anti just-in-time desplegada en els mitjans de comunicació que pronosticaven l'apocalipsi de les cadenes de subministrament mundial, les pors per la salut de les supply chain japoneses estan completament fora de lloc ja que es pot afirmar que gran part de les fallides productives van ser causades per l'escassetat d'energia i no pas per la manca d'estocs.

Si més no, les teories que defensen un enforniment de les cadenes de subministrament per tal de fer front a un nou possible desastre natural sense haver d'incrementar els estocs com les de Fujimoto guanyen quota. Cal remarcar que és el primer desastre natural que afecta a una gran regió d'un país avançat amb competitivitat mundial i que la recuperació de la zona afectada en tots els sentits va ser molt més ràpida del que auguraven els pronòstics.

En contra de les veus que remarcaven la necessitat de reubicar les plantes domèstiques, Nissan ha announced que gastarà 37 milions de dòlars per tal de reforçar la planta de Tôhoku en cas de terratrèmol i Toyota ha afirmat que construirà una planta també a Tôhoku per tal d’aprofitar la tirada del model Aqua que a més tindrà una planta energètica pròpia que ajudarà a la comunitat local en cas de talls d'energia.
Un any després del Gran Terratrèmol de l’Est del Japó de 2011, es pot afirmar que la recuperació econòmica és molt més ràpida del que s’esperava gràcies als treballs de reconstrucció de les zones afectades i l’empeny de les grans corporacions locals. En vista de les dades es pot augurar que el Japó, un país acostumat a grans reptes, renaixerà un cop més de les seves cendres.
8. BIBLIOGRAFIA

Expansión. (8 de juny de 2012). Japón revisa al alza seis décimas, al 4,7%, el PIB del primer trimestre. Expansión.

http://www.oficinascomerciales.es/icex/cma/contentTypes/common/records/mostrarDocumento/?doc=4545497

Government of Japan. (2012). Great East Japan Earthquake. Recuperat el 20 de març de 2012, de Road to recovery:

http://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=1245330565755

Wiranto, W. (24 de març de 2011). *Hype, not fact*. Recuperado el 20 de abril de 2012, de HSBC Global Research:
http://www.research.hsbc.com/midas/Res/RDV?p=pdf&key=GJGfXNK0m0&n=294230.PDF

ANNEX: SEMINARI GREEN CAR

Seminari ofert el 19 de maig de 2011 per Acció amb motiu del XXXVI Saló de l’automòbil de Barcelona (Acció, 2011).

Datos básicos de Japón

<table>
<thead>
<tr>
<th>Superficie</th>
<th>378 mil km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población</td>
<td>127,55 millones de habitantes</td>
</tr>
<tr>
<td>PIB</td>
<td>5.068,89 millones de dólares</td>
</tr>
<tr>
<td>PIB per cápita</td>
<td>39.740,27 dólares</td>
</tr>
<tr>
<td>Deuda pública *</td>
<td>10,76 billones de dólares</td>
</tr>
</tbody>
</table>

* Dato actualizado del año 2010, otros datos son del año 2009
billones: 1.000.000.000.000,-

Situación actual de economía

<table>
<thead>
<tr>
<th>2011 Japon</th>
<th>Índice de producción industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marzo 2011</td>
<td>-15.3%</td>
</tr>
<tr>
<td>Abril (previsión)</td>
<td>3.9%</td>
</tr>
<tr>
<td>Mayo (previsión)</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Daño a cadena de suministro
- La escasez de energía
- Mente de consumidores

Previsión PIB

<table>
<thead>
<tr>
<th>2011 antes de terremoto</th>
<th>1.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 después</td>
<td>0.6%</td>
</tr>
<tr>
<td>2012</td>
<td>2.9%</td>
</tr>
</tbody>
</table>
Peso de la industria automoción en Japón

La industria de automoción (componentes inclusive) representa 20% del sector manufacturero japonés (facturación). Más del 60% de su producción se destina a los mercados extranjeros. Es una de las industrias más importantes de Japón.

1. Facturación (Sector Industrial)

20% del total sector industrial
- Facturación
 Sector Manufacturero: 337 billones de yenes
 Sector Automoción: 57 billones de yenes
 - Automóviles: 22.9 billones de yenes
 - Otros: 0.6 billones de yenes
 - Componentes: 33.7 billones de yenes

2. Empleo

10% del total empleo
- Número de empleados
 Toda la Industria: 64,120,000 personas
 Sector Manufacturero: 10,970,000 personas
 Sector Automoción: 5,150,000 personas

Exportación de España a Japón / Componentes de vehículo

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>% en toda exportación</th>
<th>Crecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOB</td>
<td>34.078 mil euros</td>
<td>43.589 mil euros</td>
<td>3.6%</td>
<td>27.9%</td>
</tr>
</tbody>
</table>

Origen: JETRO
Estrategia de la industria japonesa automoción

RETOS PARA LA INDUSTRIA JAPONESA

Cambio de panorama en el sector
Nuevas alianzas para desarrollar coches ecológicos.

Las fuentes convencionales de energía son limitadas
Incremento en la demanda y precio de petróleo.

Medidas para afrontar el calentamiento global de la tierra

Estrategia del futuro para la industria
Posicionar el EV (Vehículo Eléctrico) y B (Batería) como grandes impulsores de la economía japonesa.

Los fabricantes japoneses compiten en la introducción de coches ecológicos

< E V >
Fuji Heavy Industry Stellar
Mitsubishi Motor i MIEV
Nissan Leaf

< PHEV >
Toyota PHEV

< HEV >
Toyota Prius
Honda Insight

< Fuel Cell >
Mazda RX-8
Honda Clarity

< Clean Diesel >
Nissan X-Trail

< CNG >
Isuzu ELF

Origen: Invest in Catalonia
Tesla Motor

10 de mayo de 2011 ha empezado a recibir el pedido de modelo sedán para la entrega en 2013 en Japón.

45 minutos se carga batería.

Previsión de venta de vehículos en Japón

<table>
<thead>
<tr>
<th></th>
<th>VC</th>
<th>HEV</th>
<th>PHEV</th>
<th>EV</th>
<th>Total</th>
<th>Green car</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4710</td>
<td>200</td>
<td>0</td>
<td>10</td>
<td>4920</td>
<td>4%</td>
</tr>
<tr>
<td>2011</td>
<td>4320</td>
<td>560</td>
<td>10</td>
<td>30</td>
<td>4920</td>
<td>12%</td>
</tr>
<tr>
<td>2012</td>
<td>4320</td>
<td>650</td>
<td>40</td>
<td>40</td>
<td>5050</td>
<td>14%</td>
</tr>
<tr>
<td>2013</td>
<td>4040</td>
<td>840</td>
<td>50</td>
<td>60</td>
<td>4990</td>
<td>19%</td>
</tr>
<tr>
<td>2014</td>
<td>3850</td>
<td>920</td>
<td>80</td>
<td>80</td>
<td>5030</td>
<td>21%</td>
</tr>
<tr>
<td>2015</td>
<td>3850</td>
<td>990</td>
<td>90</td>
<td>120</td>
<td>5050</td>
<td>24%</td>
</tr>
<tr>
<td>2020</td>
<td>3360</td>
<td>1120</td>
<td>360</td>
<td>250</td>
<td>5080</td>
<td>34%</td>
</tr>
</tbody>
</table>

Unidad: mil
Previsión de venta de vehículos en Japón

<table>
<thead>
<tr>
<th>Año</th>
<th>VC</th>
<th>HEV</th>
<th>PHEV</th>
<th>EV</th>
<th>Total</th>
<th>Green car</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4710</td>
<td>200</td>
<td>0</td>
<td>10</td>
<td>4920</td>
<td>4%</td>
</tr>
<tr>
<td>2011</td>
<td>4320</td>
<td>560</td>
<td>10</td>
<td>30</td>
<td>4920</td>
<td>12%</td>
</tr>
<tr>
<td>2012</td>
<td>4320</td>
<td>650</td>
<td>40</td>
<td>40</td>
<td>5050</td>
<td>14%</td>
</tr>
<tr>
<td>2013</td>
<td>4040</td>
<td>840</td>
<td>50</td>
<td>60</td>
<td>4990</td>
<td>16%</td>
</tr>
<tr>
<td>2014</td>
<td>3850</td>
<td>920</td>
<td>80</td>
<td>80</td>
<td>5030</td>
<td>21%</td>
</tr>
<tr>
<td>2015</td>
<td>3850</td>
<td>990</td>
<td>90</td>
<td>120</td>
<td>5050</td>
<td>24%</td>
</tr>
<tr>
<td>2020</td>
<td>3880</td>
<td>1120</td>
<td>350</td>
<td>250</td>
<td>5080</td>
<td>34%</td>
</tr>
</tbody>
</table>

Unidad: mil

HEV, PHEV, EV por fabricante en el mundo

<table>
<thead>
<tr>
<th>País</th>
<th>Empresa</th>
<th>HEV</th>
<th>PHEV</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japón</td>
<td>Toyota</td>
<td>En venta</td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>Honda</td>
<td>En venta</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nissan</td>
<td>2010</td>
<td>En venta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suzuki</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M'tsuda</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitsubishi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuji Heavy Ind.</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corea del sur</td>
<td>Hyndia</td>
<td>2010</td>
<td>2013</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>CT&T</td>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEUU</td>
<td>GM</td>
<td>En venta</td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Ford</td>
<td>En venta</td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Tesla</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemania</td>
<td>Volkswagen</td>
<td>En venta</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daimler</td>
<td>En venta</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMW</td>
<td>En venta</td>
<td>2013</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>Audi</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francia</td>
<td>Renault</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>2011</td>
<td>2012</td>
<td>2010</td>
</tr>
<tr>
<td>China</td>
<td>BYD</td>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chery</td>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Tata</td>
<td>2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEV: Hybrid Energy Vehicle
PHEV: Plug-in Hybrid Energy Vehicle
EV: Electrical Vehicle

Origen: Nikkei BP

www.acc10.cat
Amplaza y Oportunidad

Amenaza
- Disminución de componentes por cambio de la estructura de nuevo vehículo

Oportunidad
- Nuevos componentes
- Necesidad de ligear
- Aplicación a nuevos negocios

Los componentes que no son necesario
- Motores de vehículos tradicionales
- Pistón y sus componentes
- Cigüeñal / Árbol de levas
- Sistema de encendido
- Componentes de Conducción y control
- Caja de cambios
- Embarque

Los componentes nuevamente necesario
- Unidad electrónico poderoso
- Unidad de control electrónico poderoso
- Unidad de control de batería
- Batería de ion de litio
- Cargador
- Plug de Cargador rápido
- Plug de cargador para la casa
- Motor eléctrico
Batería de ion de litio

Material de batería de ion de litio
EL JUST-IN-TIME I LA FALLIDA DELS SISTEMES PRODUCTIUS AL JAPÓ AL MARÇ DE 2011

Participación de las empresas de materia de batería Li-ion

- **Material electrodo positivo**
 - Otros 33%
 - Nichia 16%
 - Unit Corp (Bibli) 25%
 - Tomaka Chemical 16%
- **Material electrodo negativo**
 - Otros 20%
 - Mitsubishi Chemical 49%
- **Separador**
 - Otros 33%
 - Celgard (FEUU) 21%
 - Toho Chemical 23%
- **Electrolite**
 - Otros 26%
 - Ube Kosan 30%
 - Mitsubishi Chemical 23%

Patentes solicitadas relacionadas con VE de 2001 a 2006 por países

- Japón 69%
- UE 13%
- EE.UU. 10%
- Corea 4%
- China 3%
- Otros 1%
Relaciones entre los Fabricantes de Vehículos Ecológicos y de Baterías

Toyota
Nissan-Renault
Fuji Heavy Industries
Honda
Mitsubishi Motor
GM
Ford
Daimler
BMW
Grupo VW
BYD Auto
Hyundai - Kia
Tata
Think
Tesla Motor
Fisker

Primearth EV Energy
Automotive Energy
Blue Energy
Lithium Energy Japan
Panasonic
NEC Energy Device
GS YUASA
Mitsubishi Corp.
Hitachi Vehicle
Kumano
LG Chem
Evinon Industries
Johnson Controls - Carlyle
Samsung SDI
Sanyo Electric
Toshiba
BYD
Electrovaya
EnerDel
A123 Systems

Fabricante de batería
Grupos JU
Fabricante de batería U-J
Otras empresas

micro contradores

9 Sabrina Vaquerizo González
Road map desarrollo baterías

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2010</th>
<th>2015</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EV para uso por empresas</td>
<td>EV con baterías modificadas y High performance HV</td>
<td>Baterías de alto rendimiento EV modelos comerciales Fuel cell cars Plug-in Hybrid</td>
<td>Introducción de batería revolucionaria</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>1</td>
<td>1</td>
<td>$x \times 1.5$</td>
<td>$x \times 7$</td>
</tr>
<tr>
<td>Coste</td>
<td>1</td>
<td>$x \times 1/2$</td>
<td>$x \times 1/7$</td>
<td>$x \times 1/40$</td>
</tr>
<tr>
<td>Desarrollo</td>
<td>Fabricantes</td>
<td>Fabricante</td>
<td>Fabricante Gobiernoo Universidad</td>
<td>Universidad</td>
</tr>
</tbody>
</table>

Orgaet: Invest in Catalonia

Smart Grid y NetFront Smart Objects

- Tecnología de control
- Tecnología de dispositivos inteligentes
- Tecnología de informática y comunicación
Factores relacionados con negocios en Smart Grid

Nenergy management system
- Community energy management system
- Home energy management system
- Building energy management system

Smart energy
- Mega solares de generacion electrica, Energia eolica, Biomasa, Generacion de energia geotermica, Pilas de combustible, Energia hidrogeno, etc.

Energy control y energy saving system
- Storage battery devices, Next-generation transmission network, High efficiency air conditioning / lighting, Bidirectional comunicable electronic products, Clean building, Power electronics

Smart traffic system
- EV, PHEV, Light rail transit, Intelligent transport system, Car-sharing

Smart City en prueba

- Yokohama City
- Toyota City
- Kitakyushu city
- Kyoto City
Road map estandarización

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bancos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especificación, seguridad y criterio evaluación</td>
<td>Negociación</td>
<td>Est. de estándar ISO/IEC</td>
<td>Revisión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargadores y conectores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargadores normales</td>
<td>Negociación</td>
<td>Est. de estándar IEC (EEUU/Japón vs Alemania/Italia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargadores rápidos</td>
<td></td>
<td>Prueba piloto</td>
<td>Est. de estándar IEC</td>
<td></td>
<td>Negociación estandar nueva generación (V2G)</td>
</tr>
<tr>
<td>Smart Grid (V2G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origen: Invest in Catalonia

Previsión de introducción de PHEV, EV y Cargador por comunidades autónomas

<table>
<thead>
<tr>
<th>Comunidad autónoma</th>
<th>Objetivo para PHEV y EV</th>
<th>Objetivo de Infraestructura de cargador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aomori</td>
<td>1000 (~2013)</td>
<td>Cargador 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cargador rápido 10</td>
</tr>
<tr>
<td>Tokyo</td>
<td>15000 (~2013)</td>
<td></td>
</tr>
<tr>
<td>Kanagawa</td>
<td>3000 (~2013)</td>
<td></td>
</tr>
<tr>
<td>Niigata</td>
<td>2000 (~2013)</td>
<td></td>
</tr>
<tr>
<td>Aichi</td>
<td>5000 (~2013)</td>
<td></td>
</tr>
<tr>
<td>Fuku</td>
<td>600 (~2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cargador rápido 50</td>
</tr>
<tr>
<td>Nagasaki</td>
<td>500 (~2013)</td>
<td></td>
</tr>
<tr>
<td>Kohchi</td>
<td>1000 (~2013)</td>
<td></td>
</tr>
</tbody>
</table>
Las empresas que introducen (o tiene plan) infraestructura de cargador

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Sector</th>
<th>Situación de introducción o plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawson</td>
<td>Cadena de convenience store</td>
<td>Cargador rápido 45 unidades</td>
</tr>
<tr>
<td>Family Mart</td>
<td></td>
<td>Cargador rápido 300 (2010)</td>
</tr>
<tr>
<td>Mitsubishi Corp.</td>
<td>Casa comercial</td>
<td>Cargador 1000 unidades (-2013)</td>
</tr>
<tr>
<td>Mitsubishi Real Estate</td>
<td>Construccion</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Energía</td>
<td>Cargador 22 en Tokyo y Kanagawa</td>
</tr>
<tr>
<td>Park 24</td>
<td>Cadena de garaje</td>
<td>Cargador 5 en Tokyo</td>
</tr>
<tr>
<td>Higashi Nihon</td>
<td>Careterra</td>
<td></td>
</tr>
<tr>
<td>Highway</td>
<td></td>
<td>Cargador 4</td>
</tr>
</tbody>
</table>

Vehículo de batería de combustible de hidrógeno

- Hydrogen gas highway project
 - Aeropuerto Narita - Centro de Tokyo - Aeropuerto de Haneda en ensayo
 - 2015: 100 estaciones de combustible de hidrógeno
 - 2025: 1000 estaciones de combustible de hidrógeno
 - 2025: FCV 2 millones de vehículo

- JHFC proyecto por METI
 - Objetivo: Estudio y ensayo de FCV
 - Estudio y ensayo de establecimiento de combustible de hidrógeno a FCV

1 Sabrina Vaquerizo González