
Volatility Smile Extrapolation with an Artificial Neural
Network

Mark Michael Richter
In partial fulfillment of the requirements for the

Technical Degree in Computer Science (Systems) of
THE OPEN UNIVERSITY OF CATALUNYA

Barcelona, Spain

December 27, 2012

Abstract

I use a multi-layer feedforward perceptron, with backpropagation learning implemented
via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over
low-strikes by training the network on parametric prices. The percetron must adapt itself to
the smile implied by the SABR model and Kainth’s parametric extension [6], and extrapolate
over unobservable prices in the low-strike region while maintaining certain technical conditions
specific to probability density functions. This is useful for computing, for example, price
sensitivity to volatilities at strikes close to zero or even negative. The efficient implementation
and use of the model requires a relatively large library of classes and functions to read market
data, calibrate and price the derivatives. This was done in Matlab via an object-orientated
paradigm. We also use a radial basis network to calibrate to the SABR implied volatility
smile and directly extrapolate over low-strikes. In both cases the results were not as good as
we would have expected. We propose in the conclusions that perhaps more complex networks
might adjust to prices more correctly.

1

1 Introduction

The term neural network was traditionally used to refer to a network of biological neurons. Biolog-
ical neural networks are made up of biological neurons that are connected or functionally related
in a nervous system. In the field of neuroscience, they are often identified as groups of neurons
that perform a specific physiological function in laboratory analysis. Academics, drawing inspi-
ration on the functionality of this natural phenomenon, led the initiative to replicate this web of
neurons. Such efforts have led to the development of artificial neural networks which are composed
of interconnecting artificial neurons.
The artificial neuron receives one or more inputs1 and sums them to produce an output2. Usually
the sums of each node are weighted, and the sum is passed through a non-linear function known
as an activation function. These activation functions usually have a sigmoid shape, but they may
also take the form of other non-linear functions, piecewise linear functions or step functions3.
Artificial neural networks may either be used to gain an understanding of biological neural net-
works, or for solving artificial intelligence problems without necessarily creating a model of a real
biological system. The biological nervous system is highly complex, artificial neural network al-
gorithms attempt to abstract this complexity and focus on what may hypothetically matter most
from an information processing point of view. Good performance as measured by good predictive
ability and low generalization error or performance mimicking animal or human error patterns
can then be used as one source of evidence towards supporting the hypothesis that the abstrac-
tion really captured something important from the point of view of information processing in the
brain. Another incentive for these abstractions is to reduce the amount of computation required
to simulate artificial neural networks, so as to allow one to experiment with larger networks and
train them on larger data sets.
In this project we will use a neural network as an interpolation and extrapolation mechanism of
a highly complex function. The multilayer perceptron is also known as the universal interpolator
and for that reason we believe it will be of particularly good use to solve a financial problem we
will detail in greater depth further on in this project.
We will avoid giving a general definition of a neural network at this point. So many models
have been proposed in the literature which dither in so many respects that any definition trying
to encompass this variety would be unnecessarily clumsy. We will not begin by building neural
networks with high powered computing units but rather start our investigations with the general
notion that a neural network is a network of functions in which synchronization can be considered
explicitly, or not, along with a series of other general properties.

1Representing the one or more biological dendrites.
2Representing a biological neuron’s axon.
3Generally they are monotonically increasing, continuous, differentiable and bounded.

2

2 Taxonomy of Artificial Neural Networks

A neural network is a mapping from inputs to outputs. The mapping may be broken down into
three distinct elements: the interconnected pattern between different layers of neurons, the learning
process and the style of activation function. The mapping from inputs to outputs may be viewed
as a functional or a probabilistic model both of which are largely equivalent. The most common
types of network are feedforward, which graphically are directed acyclic graphs and networks with
cycles which are known as recurrent. More complex typologies are radial basis function networks,
learning vector quantization networks, modular networks and fuzzy networks. We will only focus
on the most common and simple typology, the feedforward architecture. One of the most important
aspects of neural network design consists of determining a cost function and a learning paradigm,
which is usually determined by the nature of the objective of the network and may be classified in:
supervised, unsupervised and reinforcement paradigms. The specific choice of algorithm within
the chosen paradigm must be determined by the data available, the type of network and our final
objectives. In this project we will focus on the backpropagation algorithm within a supervised
learning paradigm.
A reasonable approach to classifying neural networks is by studying the individual computational
units, the neurons, which compose the network. The simplest kind of computing units used to
build artificial neural networks are a generalization of the common logic gates used in conventional
computing. An important characteristic of the neuron is that they generally activate by comparing
their output value with a threshold value. From the introduction where we looked at the charac-
teristics and structure of biological neural networks which provided us with the initial motivation
for a deeper inquiry into the properties of networks of abstract neurons. From the viewpoint of
the engineer, it is important to define how a network should behave, without having to specify
completely all of its parameters, which are to be found in a learning process. Artificial neural
networks are used in many cases as a black box, a certain input should produce a desired output,
but how the network achieves this result is left to a self-organizing process.
A neural network behaves as a mapping machine, capable of modeling a function F : Rn → Rm. If
we look at the structure of the network being used, some aspects of its dynamics must be defined
more precisely. When the function is evaluated with a network of primitive functions, information
flows through the directed edges of the network. Some nodes compute values which are then
transmitted as arguments for new computations. If there are no cycles in the network, the result
of the whole computation is well-defined and we do not have to deal with the task of synchronizing
the computing units. We just assume that the computations take place without delay. If the
network contains cycles, however, the computation is not uniquely defined by the interconnection
pattern and the temporal dimension must be considered. When the output of a unit is fed back to
the same unit, we are dealing with a recursive computation without an explicit halting condition.
We must define what we expect from the network: is the fixed point of the recursive evaluation
the desired result or one of the intermediate computations? To solve this problem we assume that
every computation takes a certain amount of time at each node4. If the arguments for a unit have
been transmitted at time t, its output will be produced at time t + 1. A recursive computation
can be stopped after a certain number of steps and the last computed output taken as the result
of the recursive computation.

4For example a time unit.

3

We will deal in this project solely with acyclic networks for simplicity. The first model of neuron
we consider was proposed in 1943 by Warren McCulloch and Walter Pitts [9].
The nodes of the networks we consider will be called computing elements or simply units. We
assume that the edges of the network transmit information in a predetermined direction and the
number of incoming edges into a node is not restricted by some upper bound. This is called the
unlimited fan-in property of our computing units. The primitive function computed at each node
is in general a function of n arguments. Normally, however, we try to use very simple primitive
functions of one argument at the nodes. This means that the incoming n arguments have to be
reduced to a single numerical value. Therefore computing units are split into two functional parts:
an integration function g reduces the n arguments to a single value and the output or activation
function f produces the output of this node taking that single value as its argument. Usually the
integration function g is the addition function. McCulloch Pitts networks are even simpler than
this, because they use solely binary signals. The nodes produce only binary results and the edges
transmit exclusively ones or zeros. The networks are composed of directed unweighted edges of
excitatory or of inhibitory type5. The latter are marked in diagrams using a small circle attached
to the end of the edge. Each McCulloch Pitts unit is also provided with a certain threshold value6.
At first sight the McCulloch Pitts model seems very limited, since only binary information can be
produced and transmitted, but it already contains all necessary features to implement the more
complex models.
An algorithmic description of the McCulloch Pitts unit can be itemized as follows:

• Assume that a McCulloch Pitts unit gets an input x1, x2, . . . , xn through n excitatory edges
and an input y1, y2, . . . , ym through m inhibitory edges.

• If m = 1 and at least one of the signals y1, y2, . . . , ym is 1, the unit is inhibited and the result
of the computation is 0.

• Otherwise the total excitation x = x1 + x2 + · · · + xn is computed and compared with the
threshold of the unit (if n = 0 then x = 0). If x equal the threshold value the unit fires a 1,
if x is below the threshold the result of the computation is 0.

This rule implies that a McCulloch Pitts unit can be inactivated by a single inhibitory signal, as
is the case with some real neurons. When no inhibitory signals are present, the units act as a
threshold gate capable of implementing many other logical functions of n arguments. The power
of threshold gates of the McCulloch Pitts type can be illustrated by showing how to synthesize
any given logical function of n arguments, that is f : [0, 1]n → [0, 1]. We may ask, to what point
is inhibition necessary in McCulloch Pitts units? This brings us to the follow proposition7.

Proposition 1 Uninhibited threshold logic elements of the McCulloch Pitts type can only imple-
ment monotonic8 logical functions.

5An inhibitory edge implies that should it be activated the neuron will not activate, irrespective of the value
from the other inputs.

6The function must obtain a value higher then the threshold for the neuron to activate.
7We choose to simply announce the propositions and not offer proof so as to focus more on the practical aspect

of the material.
8A monotonic logical function f of n arguments is one whose value at two given n-dimensional points x =

(x1, . . . , xn) and y = (y1, . . . , yn) is such that f(x) = f(y) whenever the number of ones in the input y is a subset
of the ones in the input x.

4

An interesting addition to this proposition is the following.

Proposition 2 Any logical function F : [0, 1]n → [0, 1] can be computed with a McCulloch Pitts
network of two layers.

We can build simpler circuits by using units with more general properties, for example weighted
edges and relative inhibition. However, circuits of McCulloch Pitts units can emulate circuits
built out of high-powered units by exploiting the trade-off between the complexity of the network
versus the complexity of the computing units. For example, weighted and unweighted networks are
equivalent. Another, more interesting example, is that two classes of inhibition can be identified:
absolute inhibition corresponds to the one used in McCulloch Pitts units. Relative inhibition
corresponds to the case of edges weighted with a negative factor and whose effect is to lower the
firing threshold when a 1 is transmitted through this edge.

Proposition 3 Networks of McCulloch Pitts units are equivalent to networks with relative inhibi-
tion.

A final proposition which leads from the previous ones indicates the power of these networks:

Proposition 4 McCulloch Pitts units can be used to build networks capable of computing any
logical function and of simulating any finite automaton.

Before concluding we should consider the differences between binary signals and pulse coding. An
additional question which can be raised is whether binary signals are not a very limited coding
strategy. Are networks in which the communication channels adopt any of ten or fifteen different
states more efficient than channels which adopt only two states, as in McCulloch Pitts networks?
To give an answer we must consider that unit states have a price, in biological networks as well as
in artificial ones. The transmitted information must be optimized using the number of available
switching states. The binary nature of information transmission in the nervous system seems to
be an efficient way to transport signals. However, we may also assume that the communication
channels can transport arbitrary real numbers. This makes the analysis simpler than when we have
to deal explicitly with frequency modulated signals, but does not lead to a minimization of the
resources needed for a technical implementation. Some researchers prefer to work with so-called
weightless networks which operate exclusively with binary data.
To conclude this chapter, I detail the final taxonomy of different neural networks which can be
understood, albeit superficially, based on the ideas and concepts put forth in this chapter. The first
clear separation line runs between weighted and unweighted networks. It has already been shown
that both classes of models are equivalent. The main difference is the kind of learning algorithm
that can be used. In unweighted networks only the thresholds and the connectivity can be adapted.
In weighted networks the topology is not usually modified during learning, although there exist
some algorithms capable of doing this, and only an optimal combination of weights is sought. The
second clear separation is between synchronous and asynchronous models. In synchronous models
the output of all elements is computed instantaneously. This is always possible if the topology
of the network does not contain cycles. In some cases the models contain layers of computing
units and the activity of the units in each layer is computed one after the other, but in each layer
simultaneously. Asynchronous models compute the activity of each unit independently of all others
and at different stochastically selected times, as in Hopfield networks. In these kinds of models,

5

cycles in the underlying connection graph pose no particular problem. Finally, we can distinguish
between models with or without stored unit states. If the number of states and possible inputs is
finite, we are dealing with a finite automaton. Since any finite automaton can be simulated by a
network of computing elements without memory, these units with a stored state can be substituted
by a network of McCulloch Pitts units. Networks with storedstate units are thus equivalent to
networks without stored-state units. Data is stored in the network itself and in its pattern of
recursion. It can be also shown that time varying weights and thresholds can be implemented in
a network of McCulloch Pitts units using cycles, so that networks with time varying weights and
thresholds are equivalent to networks with constant parameters, whenever recursion is allowed.

6

3 Perceptrons

The types of network that can be built out of McCulloch Pitts neurons are not very relevant. The
computing units are too similar to conventional logic gates and the network must be completely
specified before it can be used. There are no free parameters which could be adjusted to suit
different problems. Learning can only be implemented by modifying the connection pattern of the
network and the thresholds of the units, but this is necessarily more complex than just adjusting
numerical parameters. For that reason, we turn our attention to weighted networks and consider
their most relevant properties. In the last section of this chapter we show that simple weighted
networks can provide a computational model for regular neuronal structures in the nervous system.
The essential innovation was the introduction of numerical weights and a special interconnection
pattern. In the original Rosenblatt model [11] the computing units are threshold elements and
the connectivity is determined stochastically. Learning takes place by adapting the weights of the
network with a numerical algorithm. Rosenblatts stochastic model was refined and perfected in
the 1960s and its computational properties were carefully analyzed by Minsky and Papert [10].
Minsky and Papert distilled the essential features from Rosenblatts model in order to study the
computational capabilities of the perceptron under different assumptions.

Definition 1 A simple perceptron is a computing unit with threshold θ which, when receiving the
n real inputs x1, x2, . . . , xn through edges with the associated weights w1, w2, . . . , wn, outputs 1 if
the inequality

∑n
i=1wixi ≥ θ holds and otherwise 0.

A perceptron network is capable of computing any logical function, since perceptrons are even more
powerful than unweighted McCulloch Pitts elements. If we reduce the network to a single element,
which functions are still computable? For example, with two binary inputs the XOR cannot be
computed. More generally, certain n parameter logical functions may also not be computed.
This fact has to do with the geometry of the n- dimensional hypercube whose vertices represent
the combination of logic values of the arguments. Each logical function separates the vertices into
two classes. If the points whose function value is 1 cannot be separated with a linear cut from the
points whose function value is 0, the function is not perceptron-computable. Basically a perceptron
can only calculate linearly separable functions:

Definition 2 Two sets of points A and B in an n-dimensional space are called linearly separa-
ble if n + 1 real numbers w1, . . . , wn+1 exist, such that every point (x1, x2, . . . , xn) ∈ A satisfies∑n

i=1wixi ≥ wn+1 and every point (x1, x2, . . . , xn) ∈ B satisfies
∑n

i=1wixi < wn+1.

The computation performed by a perceptron can be visualized as a linear separation of input space.
However, when trying to find the appropriate weights for a perceptron, the search process can be
better visualized in weight space. When m real weights must be determined, the search space is
the whole of Rm. For a perceptron with n input lines, finding the appropriate linear separation
amounts to finding n+1 free parameters, n weights and the bias. These n+1 parameters represent
a point in (n + 1)-dimensional weight space. Each time we pick one point in weight space we are
choosing one combination of weights and a specific linear separation of input space. This means
that every point in (n+1)-dimensional weight space can be associated with a hyperplane in (n+1)-
dimensional extended input space. Each combination of three weights, w1, w2, w3, which represent
a point in weight space, defines a separation of input space with the plane w1x1 +w2x2 +w3x3 = 0.

7

There is the same kind of relation in the inverse direction, from input to weight space. If we want
the point x1, x2, x3 to be located in the positive half-space defined by a plane, we need to determine
the appropriate weights w1, w2andw3. The inequality w1x1 +w2x2 +w3x3 ≥ 0 must hold. However
this inequality defines a linear separation of weight space, that is, the point (x1, x2, x3) defines a
cutting plane in weight space. Points in one space are mapped to planes in the other and vice
versa. This complementary relation is called duality. Input and weight space are dual spaces and
we can visualize the computations done by perceptrons and learning algorithms in any one of them.
Given two sets of patterns which must be separated by a perceptron, a learning algorithm should
automatically find the weights and threshold necessary for the solution of the problem. The
perceptron learning algorithm can accomplish this for threshold units. This idea was proposed by
Ronsenblatt [11].

3.1 Perceptron Learning

In the preceding sections we discussed two closely related models, McCulloch Pitts units and
perceptrons, but the question of how to find the parameters adequate for a given task was left
open.
The perceptron learning algorithm deals with this problem. A learning algorithm is an adaptive
method by which a network of computing units self-organizes to implement the desired behavior.
This is done in some learning algorithms by presenting some examples of the desired input-output
mapping to the network. A correction step is executed iteratively until the network learns to
produce the desired response. The learning algorithm is a closed loop of presentation of examples
and of corrections to the network parameters.
In some simple cases the weights for the computing units can be found through a sequential test
of stochastically generated numerical combinations. However, such algorithms which look blindly
for a solution do not qualify as learning. A learning algorithm must adapt the network parameters
according to previous experience until a solution is found, if it exists.
Learning algorithms can be divided into supervised and unsupervised methods. Supervised learn-
ing denotes a method in which some input vectors are collected and presented to the network.
The output computed by the network is observed and the deviation from the expected answer is
measured. The weights are corrected according to the magnitude of the error in the way defined by
the learning algorithm. This kind of learning is also called learning with a teacher, since a control
process knows the correct answer for the set of selected input vectors. Unsupervised learning is
used when, for a given input, the exact numerical output a network should produce is unknown.
Supervised learning is further divided into methods which use reinforcement or error correction.
Reinforcement learning is used when after each presentation of an input-output example we only
know whether the network produces the desired result or not. The weights are updated based on
this information9 so that only the input vector can be used for weight correction.
In learning with error correction, the magnitude of the error, together with the input vector,
determines the magnitude of the corrections to the weights, and in many cases we try to eliminate
the error in a single correction step. The perceptron learning algorithm is an example of supervised
learning with reinforcement. Some of its variants use supervised learning with error correction. In
the following section we deal with learning methods for perceptrons. To simplify the notation we

9The Boolean values true or false.

8

adopt the following conventions. The input (x1, x2, . . . , xn) to the perceptron is called the input
vector. If the weights of the perceptron are the real numbers w1, w2, . . . , wn and the threshold is
θ then the threshold computation of a perceptron will be expressed using scalar products:

wx ≥ θ.

A usual approach for starting the learning algorithms to initialize the network weights randomly
and to improve these initial parameters, looking at each step to see whether a better separation
of the training set can be achieved.The error of a perceptron with weight vector w is the number
of incorrectly classified points. The learning algorithm must minimize this error function E(w).
One possible strategy is to use a local greedy algorithm which works by computing the error of
the perceptron for a given weight vector, looking then for a direction in weight space in which to
move, and updating the weight vector by selecting new weights in the selected search direction.
The optimization problem we are trying to solve can be understood as descent on the error surface
but also as a search for an inner point of the solution region.
Assume that the set A of input vectors in n-dimensional space must be separated from the set B
of input vectors in such a way that a perceptron computes the binary function fw with fw(x) = 1
for x ∈ A and fw(x) = 0 for x ∈ B. The binary function fw depends on the set w of weights and
threshold. The error function is the number of false classifications obtained using the weight vector
w. It can be defined as: E(w) =

∑
x∈A(1− fw(x)) +

∑
x∈B fw(x). This is a function defined over

all of weight space and the aim of perceptron learning is to minimize it. Since E(w) is positive or
zero, we want to reach the global minimum where E(w) = 0. This will be done by starting with
a random weight vector w, and then searching in weight space a better alternative, in an attempt
to reduce the error function E(w) at each step.
A perceptron makes a decision based on a linear separation of the input space. This reduces the
kinds of problem solvable with a single perceptron. More general separations of input space can
help to deal with other kinds of problem unsolvable with a single threshold unit. Functions used to
discriminate between regions of input space are called decision curves. Some of the decision curves
which have been studied are polynomials and splines. In statistical pattern recognition problems
we assume that the patterns to be recognized are grouped in clusters in input space. Using a
combination of decision curves we try to isolate one cluster from the others. One alternative is
combining several perceptrons to isolate a convex region of space. In the general case we want to
distinguish between regions of space. A neural network must learn to identify these regions and
to associate them with the correct response. The main problem is determining whether the free
parameters of these decision regions can be found using a learning algorithm.
We are now in a position to introduce the perceptron learning algorithm. The training set consists
of two sets, P and N , in n-dimensional extended input space. We look for a vector w capable of
absolutely separating both sets, so that all vectors in P belong to the open positive half-space and
all vectors in N to the open negative half-space of the linear separation. The perceptron learning
algorithm may be defined as follows:

Definition 3 start: The weight vector w0 is generated randomly, set t := 0
test: A vector x ∈ P ∪ N is selected randomly, if x ∈ P and wtx > 0 go to test, if x ∈ P and
wtx ≤ 0 go to add, if x ∈ N and wtx < 0 go to test, if x ∈ N and wtx ≥ 0 go to subtract.
add: set wt+1 = wt + x and t := t+ 1, goto test
subtract: set wt+1 = wt − x and t := t+ 1, goto test

9

This algorithm makes a correction to the weight vector whenever one of the selected vectors in P
or N has not been classified correctly. The perceptron convergence theorem guarantees that if the
two sets P and N are linearly separable the vector w is updated only a finite number of times.
The routine can be stopped when all vectors are classified correctly. The corresponding test must
be introduced in the above pseudocode to make it stop and to transform it into a fully-fledged
algorithm.
There are two alternative ways to visualize perceptron learning, one more effective than the other.
Given the two sets of points P ∈ R2 and N ∈ R2 to be separated, we can visualize the linear
separation in extended input space. We extend the input vectors and look for a linear separation
through the origin, that is, a plane with equation w1x1 + w2x2 + w3x3 = 0. The vector normal to
this plane is the weight vector w = (w1, w2, w3). The perceptron learning algorithm starts with
a randomly chosen vector w0. If a vector x ∈ P is found such that wx < 0, this means that the
angle between the two vectors is greater than 90 degrees. The weight vector must be rotated in
the direction of x to bring this vector into the positive halfspace defined by w. This can be done
by adding w and x, as the perceptron learning algorithm does. If x ∈ N and wx > 0, then the
angle between x and w is less than 90 degrees. The weight vector must be rotated away from x.
This is done by subtracting x from w. The vectors in P rotate the weight vector in one direction,
the vectors in N rotate the negative weight vector in another. If a solution exists it can be found
after a finite number of steps.
Intuitively we can think that the learned vectors are increasing the inertia of the weight vector.
Vectors lying just outside of the positive region are brought into it by rotating the weight vector
just enough to correct the error. This is a typical feature of many learning algorithms for neural
networks. They make use of a so-called learning constant, which is brought to zero during the
learning process to consolidate what has been learned. The perceptron learning algorithm provides
a kind of automatic learning constant which determines the degree of adaptivity of the weights.

Proposition 5 If the sets P and N are finite and linearly separable, the perceptron learning
algorithm updates the weight vector wt a finite number of times. In other words, if the vectors in
P and N are tested cyclically one after the other, a weight vector wt is found after a finite number
of steps t which can separate the two sets.

Clearly, the perceptron learning algorithm selects a search direction in weight space according to the
incorrect classification of the last tested vector and does not make use of global information about
the shape of the error function. It is a greedy, local algorithm. This can lead to an exponential
number of updates of the weight vector.
If the learning set is not linearly separable the perceptron learning algorithm does not terminate.
However, in many cases in which there is no perfect linear separation, we would like to compute
the linear separation which correctly classifies the largest number of vectors in the positive set
P and the negative set N . Gallant [4] proposed a very simple variant of the perceptron learning
algorithm capable of computing a good approximation to this ideal linear separation. The main
idea of the algorithm is to store the best weight vector found so far by perceptron learning while
continuing to update the weight vector itself. If a better weight vector is found, it supersedes the
one currently stored and the algorithm continues to run.

10

4 Layered Networks

In the previous sections the computational properties of isolated threshold units have been analyzed
extensively. The next step is to combine these elements and look at the increased computational
power of the network. In this chapter we consider feed-forward networks structured in successive
layers of computing units.
The networks we want to consider must be defined in a more precise way in terms of their architec-
ture. The atomic elements of any architecture are the computing units and their interconnections.
Each computing unit collects the information from n input lines with an integration function
Ψ : Rn → R. The total excitation computed in this way is then evaluated using an activation
function Φ : R → R. In perceptrons the integration function is the sum of the inputs. The acti-
vation (also called output function) compares the sum with a threshold. Later we will generalize
Φ to produce all values between 0 and 1. In the case of Ψ some functions other than addition
can also be considered. In this case the networks can compute some difficult functions with fewer
computing units.
It has been proven that this architecture can approximate any continuous function to any degree of
accuracy of a compact set. The multi-layer perceptron has been termed the universal approximator.
However, it is never known exactly how many hidden layers of neurons will ensure optimum network
convergence and if the weight matrix that corresponds to that error goal can be found. These
solutions are unique to each neural network and the input and output data applied.
A multi-layer perceptron builds on the architecture of the single layer perceptron. The single layer
perceptron is not very useful because of its limited mapping ability; it is only really applicable to
linearly separable inputs. It will fail if the inputs are not linearly separable. The single layer per-
ceptron however, can be used as a building block for larger, much more practical structures. Using
multi-layer architectures, non-binary activation functions and more complex training algorithms
mean the limitations of a simple perceptron may be overcome. A typical multi-layer perceptron
network consists of a set of source nodes forming the input layer, one or more hidden layers of
computation nodes, and an output layer of node.

Definition 4 A network architecture is a tuple (I,N,O,E) consisting of a set I of input sites, a
set N of computing units, a set O of output sites and a set E of weighted directed edges. A directed
edge is a tuple (u, v, w) whereby u ∈ I ∪N , v ∈ N ∪O and w ∈ R.

The input sites are just entry points for information into the network and do not perform any
computation. Results are transmitted to the output sites. The set N consists of all computing
elements in the network. Note that the edges between all computing units are weighted, as are
the edges between input and output sites and computing units.
Layered architectures are those in which the set of computing units N is subdivided into ι subsets
N1, N2, ..., Nι in such a way that only connections from units in N1 go to units in N2, from units in
N2 to units in N3, etc. The input sites are only connected to the units in the subset N1, and the
units in the subset Nι are the only ones connected to the output sites. In the usual terminology,
the units in N are the output units of the network. The subsets Ni are called the layers of the
network. The set of input sites is called the input layer, the set of output units is called the output
layer. All other layers with no direct connections from or to the outside are called hidden layers.

11

Usually the units in a layer are not connected to each other10 and the output sites are omitted
from graphical representations.
A neural network with a layered architecture does not contain cycles. The input is processed
and relayed from one layer to the other, until the final result has been computed. In layered
architectures normally all units from one layer are connected to all other units in the following
layer. If there are m units in the first layer and n units in the second one, the total number of
weights is m×n. The total number of connections can become rather large and one of the problems
with which we will deal is how to reduce the number of connections, that is, how to prune the
network.
The properties of one and two-layered networks can be discussed using the case of the XOR
function as an example. A single perceptron cannot compute this function, but a two-layered
network can. Increasing the number of units in the hidden layer increases the number of possible
combinations available, we say that the capacity of the network increases. This is a general
feature of layered architectures: the first layer of computing units maps the input vector to a
second space, called classification or feature space. The units in the last layer of the network must
decode the classification produced by the hidden units and compute the final output. We can now
understand in a more general setting how layered networks work by visualizing in input space the
computations they perform. Each unit in the first hidden layer computes a linear separation of
input space. Assume that input space is the whole of R2. In general, any union of convex polytopes
in input space can be classified in this way: units in the first hidden layer define the sides of the
polytopes, the units in the second layer the conjunction of sides desired, and the final output unit
computes whether the input is located inside one of the convex polytopes.

4.1 Radial Basis Networks

A Radial Basis Function (RBF) neural network has an input layer, a hidden layer and an output
layer. The neurons in the hidden layer contain Gaussian transfer functions whose outputs are
inversely proportional to the distance from the center of the neuron. RBF networks are similar to
K-Means clustering and PNN/GRNN networks. The main difference is that PNN/GRNN networks
have one neuron for each point in the training file, whereas RBF networks have a variable number
of neurons that is usually much less than the number of training points. For problems with small to
medium size training sets, PNN/GRNN networks are usually more accurate than RBF networks,
but PNN/GRNN networks are impractical for large training sets.
Although the implementation is very different, RBF neural networks are conceptually similar to
K-Nearest Neighbor (k-NN) models. The basic idea is that a predicted target value of an item is
likely to be about the same as other items that have close values of the predictor variables. RBF
networks have three layers:

• Input layer There is one neuron in the input layer for each predictor variable. In the case
of categorical variables, N-1 neurons are used where N is the number of categories. The
input neurons (or processing before the input layer) standardizes the range of the values by
subtracting the median and dividing by the interquartile range. The input neurons then feed
the values to each of the neurons in the hidden layer.

10Although some neural models make use of this kind of architecture.

12

• Hidden layer This layer has a variable number of neurons (the optimal number is determined
by the training process). Each neuron consists of a radial basis function centered on a point
with as many dimensions as there are predictor variables. The spread (radius) of the RBF
function may be different for each dimension. The centers and spreads are determined by
the training process. When presented with the x vector of input values from the input layer,
a hidden neuron computes the Euclidean distance of the test case from the neurons center
point and then applies the RBF kernel function to this distance using the spread values. The
resulting value is passed to the the summation layer.

• Summation layer The value coming out of a neuron in the hidden layer is multiplied by a
weight associated with the neuron W1,W2, . . . ,Wn and passed to the summation which adds
up the weighted values and presents this sum as the output of the network. Not shown in
this figure is a bias value of 1.0 that is multiplied by a weight W0 and fed into the summation
layer. For classification problems, there is one output (and a separate set of weights and
summation unit) for each target category. The value output for a category is the probability
that the case being evaluated has that category.

The following parameters are determined by the training process of such a neural network:

• The number of neurons in the hidden layer.

• The coordinates of the center of each hidden-layer RBF function.

• The radius (spread) of each RBF function in each dimension.

• The weights applied to the RBF function outputs as they are passed to the summation layer.

Various methods have been used to train RBF networks. One approach first uses K-means clus-
tering to find cluster centers which are then used as the centers for the RBF functions. However,
K-means clustering is a computationally intensive procedure, and it often does not generate the
optimal number of centers. Another approach is to use a random subset of the training points
as the centers. Alternative approaches include a training algorithm which uses an evolutionary
approach to determine the optimal center points and spreads for each neuron, then it computes
when to stop adding neurons to the network by monitoring the estimated leave-one-out error and
terminating when the LOO error beings to increase due to overfitting. The computation of the
optimal weights between the neurons in the hidden layer and the summation layer is done using
ridge regression. An iterative procedure is used to compute the optimal regularization λ parameter
that minimizes generalized cross-validation error.

13

5 Backpropagation

We saw in the last chapter that multilayered networks are capable of computing a wider range of
Boolean functions than networks with a single layer of computing units.
However the computational effort needed for finding the correct combination of weights increases
substantially when more parameters and more complicated topologies are considered. In this
chapter we discuss a popular learning method capable of handling such large learning problems.
This numerical method was used by different research communities in different contexts, was
discovered and rediscovered, until in 1985 it found its way into connectionist artificial intelligence.
It has been one of the most studied and used algorithms for neural networks learning ever since.
In this chapter we present a proof of the backpropagation algorithm based on a graphical approach
in which the algorithm reduces to a graph labeling problem. This method is not only more general
than the usual analytical derivations, which handle only the case of special network topologies,
but also much easier to follow. It also shows how the algorithm can be efficiently implemented in
computing systems in which only local information can be transported through the network.
The backpropagation algorithm looks for the minimum of the error function in weight space using
the method of gradient descent. The combination of weights which minimizes the error function
is considered to be a solution of the learning problem. Since this method requires computation
of the gradient of the error function at each iteration step, we must guarantee the continuity
and differentiability of the error function. Obviously we have to use a kind of activation function
other than the step function used in perceptrons because the composite function produced by
interconnected perceptrons is discontinuous, and therefore the error function too. One of the
more popular activation functions for backpropagation networks is the sigmoid, a real function
sc : R→ (0, 1) defined by the expression:

sc(x) =
1

1 + e−cx
.

The constant c can be selected arbitrarily and its reciprocal 1/c is called the temperature parameter
in stochastic neural networks. The shape of the sigmoid changes according to the value of c.
We have already shown that, in the case of perceptrons, a symmetrical activation function has
some advantages for learning. An alternative to the sigmoid is the symmetrical sigmoid S(x)
defined as:

S(x) = 2s(x)− 1.

Many other kinds of activation functions have been proposed and the backpropagation algorithm
is applicable to all of them. A differentiable activation function makes the function computed by a
neural network differentiable (assuming that the integration function at each node is just the sum
of the inputs), since the network itself computes only function compositions. The error function
also becomes differentiable. Since we want to follow the gradient direction to find the minimum
of this function, it is important that no regions exist in which the error function is completely
flat. As the sigmoid always has a positive derivative, the slope of the error function provides a
greater or lesser descent direction which can be followed. We can think of our search algorithm
as a physical process in which a small sphere is allowed to roll on the surface of the error function
until it reaches the bottom.
A price has to be paid for all the positive features of the sigmoid as activation function. The most
important problem is that, under some circumstances, local minima appear in the error function

14

which would not be there if the step function had been used. In many cases local minima appear
because the targets for the outputs of the computing units are values other than 0 or 1. If a
network for the computation of XOR is trained to produce 0.9 at the inputs (0, 1) and (1, 0) then
the surface of the error function develops some protuberances, where local minima can arise.
In this section we show that backpropagation can easily be derived by linking the calculation of
the gradient to a graph labeling problem. General network topologies are handled right from the
beginning, so that the proof of the algorithm is not reduced to the multilayered case. Recall that
in our general definition a feed-forward neural network is a computational graph whose nodes are
computing units and whose directed edges transmit numerical information from node to node.
Each computing unit is capable of evaluating a single primitive function of its input. In fact
the network represents a chain of function compositions which transform an input to an output
vector. The network is a particular implementation of a composite function from input to output
space, which we call the network function. The learning problem consists of finding the optimal
combination of weights so that the network function approximates a given function f as closely
as possible. However, we are not given the function f explicitly but only implicitly through some
examples. Consider a feed-forward network with n input and m output units. It can consist of
any number of hidden units and can exhibit any desired feed-forward connection pattern. We are
also given a training set (x1, t1), . . . , (xp, tp) consisting of p ordered pairs of n- and m-dimensional
vectors, which are called the input and output patterns. Let the primitive functions at each node of
the network be continuous and differentiable. The weights of the edges are real numbers selected at
random. When the input pattern xi from the training set is presented to this network, it produces
an output oi different in general from the target ti. What we want is to make oi and ti identical
for i = 1, . . . , p, by using a learning algorithm. More precisely, we want to minimize the error
function of the network, defined as

E =
1

2

p∑
i=1

‖ oi − ti ‖2 .

After minimizing this function for the training set, new unknown input patterns are presented to
the network and we expect it to interpolate. The network must recognize whether a new input
vector is similar to learned patterns and produce a similar output. The backpropagation algorithm
is used to find a local minimum of the error function. The network is initialized with randomly
chosen weights. The gradient of the error function is computed and used to correct the initial
weights. Our task is to compute this gradient recursively.
Every one of the j output units of the network is connected to a node which evaluates the function
1
2
(oij − tij)2, where oij and tij denote the j-th component of the output vector oi and of the target
ti. The outputs of the additional m nodes are collected at a node which adds them up and gives
the sum Ei as its output. The same network extension has to be built for each pattern ti. A
computing unit collects all quadratic errors and outputs their sum E1 + · · · + Ep. The output of
this extended network is the error function E. We now have a network capable of calculating the
total error for a given training set. The weights in the network are the only parameters that can
be modified to make the quadratic error E as low as possible. Because E is calculated by the
extended network exclusively through composition of the node functions, it is a continuous and
differentiable function of the l weights w1, w2, . . . , wl in the network. We can thus minimize E by

15

using an iterative process of gradient descent, for which we need to calculate the gradient:

∇E = (
δE

δw1

,
δE

δw2

, . . . ,
δE

δwl
).

Each weight is updated using the increment:

4wi = −γ δE
δwi

, i = 1, . . . , l,

where γ represents a learning constant; a proportionality parameter which defines the step length
of each iteration in the negative gradient direction.
Our objective is to find a method for efficiently calculating the gradient of a one-dimensional
network function according to the weights of the network. Because the network is equivalent to a
complex chain of function compositions, we expect the chain rule of differential calculus to play a
major role in finding the gradient of the function. We take account of this fact by giving the nodes
of the network a composite structure, each node calculates its value - up to this point nothing
changes but now it will also calculate the derivative of the primitive function for the same input.
Note that the integration function can be separated from the activation function by splitting each
node into two parts. The first node computes the sum of the incoming inputs, the second one the
activation function s. The derivative of s is s′ and the partial derivative of the sum of n arguments
with respect to any one of them is just 1. This separation simplifies our discussion, as we only have
to think of a single function which is being computed at each node and not of two. The network
is evaluated in two stages: in the first one, the feed-forward step, information comes from the left
and each unit evaluates its primitive function f in its right side as well as the derivative f ′ in its
left side. Both results are stored in the unit, but only the result from the right side is transmitted
to the units connected to the right. The second step, the backpropagation step, consists in running
the whole network backwards, whereby the stored results are now used. There are three main cases
which we have to consider.

• Function composition: In the feed-forward step, incoming information into a unit is used as
the argument for the evaluation of the nodes primitive function and its derivative. In this
step the network computes the composition of the functions f and g. The correct result of
the function composition has been produced at the output unit and each unit has stored
some information on its left side. In the backpropagation step the input from the right of
the network is the constant 1. Incoming information to a node is multiplied by the value
stored in its left side. The result of the multiplication is transmitted to the next unit to the
left. We call the result at each node the traversing value at this node. The final result of the
backpropagation step, which is f ′(g(x))g′(x), i.e., the derivative of the function composition
f(g(x)) implemented by this network.

• Function addition: The next case to consider is the addition of two primitive functions. The
partial derivative of the addition function with respect to any one of the two inputs is 1. In
the feed-forward step the network computes the result f1(x) +f2(x). In the backpropagation
step the constant 1 is fed from the left side into the network. All incoming edges to a unit
fan out the traversing value at this node and distribute it to the connected units to the left.
Where two right-to-left paths meet, the computed traversing values are added. The result

16

f ′1(x) + f ′2(x) of the backpropagation step, which is the derivative of the function addition
f1 + f2 evaluated at x. A simple proof by induction shows that the derivative of the addition
of any number of functions can be handled in the same way.

• Weighted edges could be handled in the same manner as function compositions, but there
is an easier way to deal with them. In the feed-forward step the incoming information x
is multiplied by the edges weight w. The result is wx. In the backpropagation step the
traversing value 1 is multiplied by the weight of the edge. The result is w, which is the
derivative of wx with respect to x. From this we conclude that weighted edges are used
in exactly the same way in both steps: they modulate the information transmitted in each
direction by multiplying it by the edges weight.

We can now formulate the complete backpropagation algorithm and prove by induction that it
works in arbitrary feed-forward networks with differentiable activation functions at the nodes. We
assume that we are dealing with a network with a single input and a single output unit.

Definition 5 Consider a network with a single real input x and network function F . The deriva-
tive F ′(x) is computed in two phases: Feed-forward: the input x is fed into the network. The
primitive functions at the nodes and their derivatives are evaluated at each node. The derivatives
are stored. Backpropagation: the constant 1 is fed into the output unit and the network is run
backwards. Incoming information to a node is added and the result is multiplied by the value stored
in the left part of the unit. The result is transmitted to the left of the unit. The result collected at
the input unit is the derivative of the network function with respect to x.

The previous definition follows from the points noted earlier. We omit a rigorous proof of this
result as it escapes the scope of the project.
We consider again the learning problem for neural networks. Since we want to minimize the error
function E, which depends on the network weights, we have to deal with all weights in the network
one at a time. The feed-forward step is computed in the usual way, but now we also store the
output of each unit in its right side. We perform the backpropagation step in the extended network
that computes the error function and we then fix our attention on one of the weights, say wij whose
associated edge points from the i-th to the j-th node in the network. This weight can be treated
as an input channel into the subnetwork made of all paths starting at wij and ending in the single
output unit of the network. The information fed into the subnetwork in the feed-forward step was
oiwij , where oi is the stored output of unit i. The backpropagation step computes the gradient of
E with respect to this input, δE

δoiwij
. Since in the backpropagation step oi is treated as a constant,

we finally have:
δE

δwij
= oi

δE

δoiwij

Summarizing, the backpropagation step is performed in the usual way. All subnetworks defined
by each weight of the network can be handled simultaneously, but we now store additionally at
each node i:

• The output oi of the node in the feed-forward step.

• The cumulative result of the backward computation in the backpropagation step up to this
node. We call this quantity the backpropagated error.

17

If we denote the backpropagated error at the j-th node by θj , we can then express the partial
derivative of E with respect to wij as:

δE

δwij
= oiθj.

Once all partial derivatives have been computed, we can perform gradient descent by adding to
each weight wij the increment

4wij = γoiθj.

This correction step is needed to transform the backpropagation algorithm into a learning method
for neural networks. This illustration of the backpropagation algorithm applies to arbitrary feed-
forward topologies.

5.1 Stochastic Gradient Descent

Stochastic gradient descent is a gradient descent optimization method for minimizing an objective
function that is written as a sum of differentiable functions.
Both statistical estimation and machine learning consider the problem of minimizing an objective
function that has the form of a sum:

Q(w) =
n∑
i=1

Qi(w),

where the parameter w is to be estimated and where typically each summand function Qi(.) is
associated with the i-th observation in the data set (used for training).
In classical statistics, sum-minimization problems arise in least squares and in maximum-likelihood
estimation (for independent observations). The general class of estimators that arise as minimizers
of sums are called M-estimators. However, in statistics, it has been long recognized that requiring
even local minimization is too restrictive for some problems of maximum-likelihood estimation.
Therefore, contemporary statistical theorists often consider stationary points of the likelihood
function (or zeros of its derivative, the score function, and other estimating equations). The sum-
minimization problem also arises for empirical risk minimization: in this case, Qi(w) is the value
of loss function at i-th example, and Q(w) is the empirical risk.
When used to minimize the above function, a standard gradient descent method would perform
the following iterations:

w := w − α
n∑
i=1

5Qi(w),

where α is a step size.
In many cases, the summand functions have a simple form that enables inexpensive evaluations
of the sum-function and the sum gradient. For example, in statistics, one-parameter exponential
families allow economical function-evaluations and gradient-evaluations.
However, in other cases, evaluating the sum-gradient may require expensive evaluations of the
gradients from all summand functions. When the training set is enormous and no simple formulas
exist, evaluating the sums of gradients becomes very expensive, because evaluating the gradient
requires evaluating all the summand functions’ gradients. To economize on the computational cost
at every iteration, stochastic gradient descent samples a subset of summand functions at every

18

step. This is very effective in the case of large-scale machine learning problems. In stochastic
gradient descent, the true gradient of Q(w) is approximated by a gradient at a single example:

w := w − α5Qi(w).

As the algorithm sweeps through the training set, it performs the above update for each training
example. Several passes over the training set are made until the algorithm converges. Typical
implementations may also randomly shuffle training examples at each pass and use an adaptive
learning rate. There is a compromise between the two forms where the true gradient is approxi-
mated by a sum over a small number of training examples.
The convergence of stochastic gradient descent has been analyzed using the theories of convex
minimization and of stochastic approximation. Briefly, when the learning rates α decrease with an
appropriate rate, and subject to relatively mild assumptions, stochastic gradient descent converges
almost surely to a global minimum when the objective function is convex or pseudoconvex, and
otherwise converges almost surely to a local minimum.

19

6 Interest-rate derivatives and the extrapolation problem

6.1 Introduction

Companies, both financial and non-financial, are subject to interest rate risk11. This risk may be
derived from loans subject to floating interest rates or long-term assets which must be discounted
to present value. Interest rate risk is that which exists in an interest-bearing asset, such as a loan
or a bond, due to the possibility of a change in the asset’s value resulting from the variability of
interest rates. Interest rate risk management has become very important, and assorted instruments
have been developed to deal with interest rate risk.
An interest rate derivative is a derivative12 where the underlying asset is the right to pay or receive
a notional amount of money at a given interest rate. These structures are popular for investors
with customized cashflow needs or specific views on the interest rate movements (such as volatility
movements or simple directional movements) and are therefore usually traded over-the-counter13.
The interest rate derivatives market is the largest derivatives market in the world. The Bank for
International Settlements estimates that the notional amount outstanding in June 2009 were 437
trillion US dollars for OTC interest rate contracts, and 342 trillion US dollars for OTC interest
rate swaps. According to the International Swaps and Derivatives Association, 80% of the world’s
top 500 companies as of April 2003 used interest rate derivatives to control their cashflows. This
compares with 75% for foreign exchange options, 25% for commodity options and 10% for stock
options.

6.2 The Cap and Floor Derivatives

We will focus on a very concrete case of interest rate derivative: a cap/floor option on a Euribor
interest rate. Lets consider the underlying, the Euribor interest rate. The Euro Interbank Offered
Rate (Euribor) is a daily reference rate based on the averaged interest rates at which Eurozone
banks offer to lend unsecured funds to other banks in the Euro interbank market. This underlying
is known as a simply compounded spot interest rate and can be mathematically defined as:

Definition 6 The simply compounded spot interest rate prevailing at time t for the maturity T
is denoted by L(t, T) and is the constant rate at which an investment has to be made to produce
an amount of one unit of currency at maturity, starting from P (t, T) units of currency at time

t, when accruing occurs proportionally to the investment time. L(t, T) = 1−P (t,T)
(t,T)P (t,T)

The market
LIBOR rates are simply-compounded rates, which motivates why we denote by L such rates. LIBOR
rates are typically linked to zero coupon-bond prices by the Actual/36014 day-count convention for
computing (t, T).

P (t, T) is known as a zero-coupon bond and is defined as:

Definition 7 A T -maturity zero-coupon bond (pure discount bond) is a contract that guarantees
its holder the payment of one unit of currency at time T , with no intermediate payments. The
contract value at time t < T is denoted by P (t, T). Clearly, P (T, T) = 1 for all T .

11Not only companies are subject to these risks, consider an individual paying mortgage installments.
12The term derivative indicates that the product derives its value from an underlying security
13In other words, contracts with very specific characteristics which cannot be exchange-traded due to their lack

of standardization.
14This is a standard financial convention for calculating year fractions between two dates.

20

An interest rate cap puts an upper limit on a borrowers variable interest rate. The organization
with the debt to be hedged pays an upfront fee to purchase a cap from a financial counterparty.
Pricing depends on current rate movements, on how high the cap is set, and for how long. The
financial counterparty is then responsible for any interest costs beyond the cap rate, should rates
rise that high.
The organization retains the full benefit of lower variable rates while protecting itself from a spike
in interest rates above the cap level. A cap cannot become a liability to the organization (unlike
a swap), as it contains only one-way obligations to the financial counterparty after the upfront
fee has been paid. Therefore, an organizations credit risk is not considered in the pricing of the
cap. Lastly, if the organization wants to terminate a cap before it matures, the organization will
receive a payment for the caps residual value; the higher current rates are, the higher the value.
Ultimately, a cap is best suited for an organization looking to minimize its exposure to rising
short-term interest rates.
In order to represent mathematically how much money a cap/floor15 option will pay requires the
introduction of two further mathematical elements:

Definition 8 A bank account is valued at B(t) at time t ≥ 0. We assume that B(0) = 1 and its
evolution is governed by dB(t) = r(t)B(t)dt.

r(t) is known as the instantaneous rate at which the bank account accrues16.

Definition 9 The stochastic discount factor between t and T , D(t, T) , is the monetary amount

at time t that is equivalent to one unit of currency payable at time T : D(t, T) = B(t)
B(T)

.

The question of how much money a cap option will pay can be mathematically represented as:

β∑
i=α+1

D(t, Ti)Ni(L(Ti−1, Ti)−K)+.

A floor option is mathematically equivalent with the only difference of (K −L(Ti− 1, Ti))
+ where

K is a deterministic constant known as the strike and N is the notional of the contract and can
be considered to be N = 1. The α, β and in the the above equation are time indexes with the
following interpretation: the cap option pays for each year fraction = α+1, . . . ,β, where i is the year
fraction between Ti−1 and Ti, the difference between the Euribor rate L(Ti−1, Ti), fixed at Ti−1 and
payed at Ti, and the strike K.

6.3 Introducing Randomness

Until now we have not talked about where the stochastic nature of future values comes from. The
origin is in the instantaneous rate of the bank account, r(t). This element is in fact a stochastic
process. As all the previous mathematical relationships we have given are derived from r(t) it is
clear they will all be random variables.

15Also known as call/put option.
16It is reasonable to ask what is the relationship between r(t) and L(t, T) which is the underlying we want to

study: r(t) = limT→t+ L(t, T).

21

For simplicity let us consider that the cap option only has one caplet, α+ 1 = β, the present value
of its future payoff will then be:

D(t, Ti)Ni(L(Ti−1, Ti)−K)+.

As indicated previously r(t) = limT→t+ L(t, T) where r(t) is an unknown real world random variable
and therefore the above payoff is also random. A famous, and market-standard, formula for the
valuation of the above random payoff is known as the Black-Scholes formula and assumes that
L(t, T) is a log-normally distributed random variable. This formula states that the discounted
expectation of the future payoff is equal to:

P (t, Ti)NiΨ(K,F (t, Ti−1, Ti), vi, 1),Ψ(K,F, v, w) = FwΦ(wd1(K,F, v))−KwΦ(wd2(K,F, v))

d1(K,F, v) =
ln(F

K
) + v2

2

v

d1(K,F, v) =
ln(F

K
)− v2

2

v

w indicates whether the derivative is a cap, 1 or a floor, −1. Φ is the distribution function of a
standard normal distribution. The derivation of this model is beyond the scope of this project but
it is important to see that in the framework of the Black-Scholes model the parameter v is the
volatility of the random variable F (t, Ti−1, Ti) which is the forward rate of our simply compounded
Euribor which was defined earlier.

Definition 10 The simply-compounded forward interest rate prevailing at time t for the expiry

T > t and maturity S > T is denoted by F (t, T, S) and is defined by F (t, T, S) := 1
(T,S)

(
P (t,T)
P (t,S)

− 1
)

.17

6.4 The Smile

As stated in the introduction there exists a large liquid18 market in these options. Therefore we
can obtain prices for a large interval of strikes, K. Further, with respect to the Black-Scholes
formula, the only variable which is not directly observable is the parameter v. If we were to take
market prices for different K, while keeping all other variables equal, and place them into the
Black-Scholes formula we would expect to obtain a unique v for each F (t, Ti−1, Ti). Unfortunately
this is not the case, we instead observe a small curvature in the market, a sort of smile. The
reasons for this have been documented in many academic publications.
If we have liquid quotes for the entire interval of K, the smile would not be a substantial problem.
The fact is that the cap/floor market is only liquid for a local interval of K around F (t, Ti−1, Ti).
Therefore outside of this interval we do not have readily available prices to then extract a volatility
and vice-versa. One may ask, is it necessary to have volatilities for K ∈ (−∞,∞)? The answer
is yes. Theoretically, one should be able to price a cap at any K and furthermore there exist
more exotic derivatives that are sensitive to a large part, or the entire, smile. The question now

17Of particular interest is the fact that conditional on the t-filtration the F (t, T, S) = EB(t)(L(T, S)), EB(t)(.) is
the expectation of a random variable under the unique probability measure which makes B(t) a martingale.

18Market terminology meaning a market place with a large amount of activity and therefore reliable and ready-
tradeable prices.

22

becomes, if the Black-Scholes framework does not allow smile yet there is smile in the market,
how do market participants model the smile? The answer is using the Stochastic Alpha-Beta-Rho
(SABR) model.

Figure 1: Market implied Black-Scholes volatilities for EUR-IBOR 6M fixing in one year.

6.5 SABR

Under the following hypothesis19:

dF (t, Ti−1, Ti) = αF (t, Ti−1, Ti)dW1(t),

dα = ναdW2(t),

where dW1(t) and dW2(t) are infinitesimal increments of a Weiner processes, with correlation
dW1dW2 = ρdt. In [5] the authors use singular perturbation techniques to isolate the v we saw
in the last subsection as a function of the parameters of the above model. Using the previously
established notation, they obtain:

v(K) =
α

(fK
1−β
2)
(

1 + ((1−β)
2

24
log2(f

K
)) + (1− β)41920log4(f

K
)
) × . . .

· · · × z

x(z)

(
1 +

(1− β)2

24

α2

(fK)1−β
+

ρβνα

4(fK)
1−β
2

+ (2− 3ρ224ν2)i

)
,

f = F (t, Ti−1, Ti),

z =
ν

α
log(

f

K
)(fK)

1−β
2 ,

x(z) = log(

√
1− 2ρz + z2 + z − ρ

1− ρ
).

19α and β are SABR model parameters not the time indices we referenced earlier.

23

Figure 2: SABR implied volatilities for EUR-IBOR 6M fixing in one year.

6.6 What are the Implied Probabilities?

If we exclude the notional, discount factor and year fraction from the payoff of a Euribor floor
derivative we end up with (K−L(Ti−1, Ti))

+. Taking the first derivative of the expectation of this
random function we obtain:

δE(K − L(Ti−1, Ti))
+

δK
(x) = FL(Ti−1,Ti))(x),

where F (.) is the probability distribution function of the random variable L(Ti−1, Ti))
20.

20To not over complicate things, I have excluded the measure over which the expectation is taken. This measure
is the one which makes the stochastic process followed by L(Ti−1, Ti)) a martingale

24

Figure 3: SABR implied probability density for EUR-IBOR 6M fixing in one year.

Figure 4: SABR implied probability distribution for EUR-IBOR 6M fixing in one year.

6.7 Market-standard ways of fixing SABR

Observing the implied probability density of the EUR-IBOR 6M rate we can clearly see that it does
not conform to a standard probability density function; for example, in the left tail probabilities
are negative. This is equivalent to saying that the second derivative in strike of floor prices must
always be positive. For various technical reasons detailed in [5] this is often not the case for low
strikes21.
Market participants have several ways of fixing this problem. One way is to modify the SABR
model, for example by keeping the general SABR structure but allowing for negative values of the

21One begins to see why the SABR model breaks down for low strikes by simply noticing that the SABR model
imposes strictly positive values on the underlying rate. Evidently if the underlying is positive but very close to
zero, we begin to stretch the limits of the theoretical model.

25

underlying:
dF (t, Ti−1, Ti) = αdW1(t),

dα = ναdW2(t).

Under such a configuration, which is known as a Normal-SABR and is also detailed in [5] we obtain
a much more theoretically correct implied density:

Figure 5: Normal-SABR implied probability density for EUR-IBOR 6M fixing in one year.

There exist various alternatives to modifying the entire SABR model. As the hypothesis of log-
normality is a market standard22, it would be optimal to maintain log-normality and use a para-
metric extrapolation to fix the negative density problem. One way of doing this is assigning floor
prices the following values below a certain strike (K−):

Floor(K) = Kµexp(a+ bK + cK2),

This idea comes from [6]. Let us fix K− just before the log-normal implied density becomes
negative. The parameters a, b and c are determined by equaling the SABR-implied prices, first
and second derivatives to those of the above parametric equation at the strike K−. This gives us
the following result:

22It implies values and sensitivities which market participants fully understand and are accustomed to working
with. The Normal-SABR model implies values which are vastly different from that of the standard SABR.

26

Figure 6: SABR with parametric extrapolation implied probability density for EUR-IBOR 6M
fixing in one year.

Figure 7: SABR implied probability distribution for EUR-IBOR 6M fixing in different instants.

27

7 Implementation

7.1 General Architecture

Market data, including the Libor volatilities and the discount curve needed to implement the
model are found in Sample Mkt Data.in and is structured in an array of arrays. The class CIL is
responsible for reading this data as a string and placing it in a dictionary format with the final
data stored as an array.
This object may then be read via the readMarketIL function which extracts the data to form the
market knowledge on which we will construct our model. This market object, CFiMarket, contains
three important attributes, the discount curve, the volatility surface and the underlying, in this
case the Libor interest rate.
The method GetFiVolatilities of the CFiMarket class extracts the volatility class which must be
calibrated in order to obtain the SABR parameters. For the generic SABR case this is done
by calling the function GetStandardSABRVola of the CFiStandardSABR class, note that the
procedure is identical for CFiNormalSABR and CFiVolPreshiftedSABR models. This calibrated
the three SABR parameters23 with a best-fit approach between the volatilities implied by the
SABR formula for the calibrated parameters and the actual market volatilities. The three volatility
classes have a common Weights attribute which indicates the relative importance we assign to the
different strikes of a specific maturity. The CFiStandardSABR class implements the standard
SABR formula.

7.2 Neural Network Arquitecture

The McCulloch Pitts and Minsky neurons are trivially implemented. The feedforward architecture
is implemented as a collection of functions. The final product of this implementation is a Matlab
struc object which results from executing the nnet() function. nnetTest() runs forward propagation
to allow for prediction of new data points. Adding structure to a network of neurons is somewhat
more difficult. The network classes have an attribute which is a vector of its neurons and another
atribute indicating structure. Structure is a matrix of 0s and 1s. The amount of rows corresponds
to to the number of neurons in a specific layer, while the columns indicate the number of layers. A
0 corresponds to no neuron occupying that position wheras a 1 indicates the position is occupied.
Relationships is a cube which indicates what connections are present between the different neurons
of the consecutive layers. The first segment of the cube corresponds to the first neuron, this slice
is a matrix with columns indicating layers and rows, the consecutive neurons. A 1 indicates a
connection and a 0 indicates that the two neurons are not connected. The implementation of the
radial basis architecture was taken directly from the Matlab neural network toolbox for comparative
purposes.

23β is not calibrated due to specific technical issues detailed in [5] and is therefore fixed at 0.50.

28

Figure 8: General and Neural/Feedforward infrastructure.

29

8 Results

8.1 A First Attempt

The main problem we have encountered with modelling interest-rate volatility is that the market
standard model implies negative densities for low strikes. We have also seen in the previous section
two ways of fixing this problem, the first being to modify the entire model and allow for negative
rates of the underlying. The second modification is to allow for a log-normal SABR above a
certain strike and allow for a regime change below a certain strike, over which a parametric price
extrapolation is used.
An immediate question that can be asked is; can a neural network adequately fix the smile ex-
trapolation problem? The idea would be to train the network on the part of the smile which
is theoretically sound and observe its behaviour for other strikes. With respect to which neural
network would be most adequate for such a task, we believe it to be the radial basis style neural
network as such networks have excellent interpolation properties. A radial basis function network
is an artificial neural network that uses radial basis functions as activation functions. It is a lin-
ear combination of radial basis functions. They are used in function approximation, time series
prediction, and control.
The first question we should ask is to what type of data do we need to train the neural network?
For example, do we want to train the network to the implied probability density or rather to floor
prices? The answer seems to be obvious, train the network to the most stable function. Given
that floor prices are monotone and stable, the network fit will be better. Training the network to
the density, which is simply the second derivative of floor prices, implies fitting the network to a
function which is not monotone and of a peculiar shape. Further, the range of strikes on which
we train the network must be on those where the implied probability density fulfills the necessary
theoretical conditions.
For consistency with previous chapters, we focus on the market traded EUR-IBOR 6M fixing in
one year. For this case the range of strikes where the density behaves correctly is (0.04%, 3.50%).
We can graphically observe this case in the following graphs:

30

Figure 9: SABR with parametric extrapolation implied probability density for EUR-IBOR 6M
fixing in one year.

Figure 10: SABR with parametric extrapolation implied probability density for EUR-IBOR 6M
fixing in one year.

The next step is to feed these prices (we will also attempt to calibrate to the density for comparison)
into a radial basis network and observe the results. Calibrating to floor prices in the interval
(0.04%, 3.50%) in increments of 0.01% we obtain:

31

Figure 11: Radial basis neural network calibrated to prices: implied probability density for EUR-
IBOR 6M fixing in one year.

Figure 12: Radial basis neural network calibrated to density: implied probability density for EUR-
IBOR 6M fixing in one year.

We can observe that generally the extrapolation capabilities of the radial basis network is subopti-
mal. From an interpolation point of view, the network is fitting correctly but as far as extrapolation
is concerned the results are far from desirable. Contrary to what we initially expected calibrating
the network to the SABR density provides notably better results than the network which is cali-
brated to prices. The implied density of this network shows large negative values in negative strikes
close to zero. The network which is calibrated directly to the density provides better results, but
evidently the recuperation of floor prices is not feasible.

32

8.2 Main Application

Before describing the main application of this project, let us review what major problem banks
and other market participants may be facing in the current environment. We saw in the section
which described the SABR model that the implicit density in this model is negative for small
strikes. Historically this has not been a problem, when interest rates are high few caps and floors
are created with low strikes, as they lie far away from the current forward rate. However in recent
years, in the Euro market, interest rates have fallen to levels which are very close to zero and
therefore many products are traded with strikes in the neighbourhood of zero.

Figure 13: The forward interest rate curve for a six month tenor. Observe that for short maturities
the curve is very close to zero.

While the interpolation results of a neural network are acceptable, we have seen that the ex-
trapolation capabilities are not of the quality we were expecting. So we now proceed to consider
another possible application. Market participants are accustomed to the lognormal assumption
when pricing interest rate derivatives. Further, risk management systems generally have lognor-
mal assumptions hardcoded into their implementations. It is therefore desirable to maintain this
hypothesis.
We have seen that the only way to maintain lognormality and adequately model floor prices over
negative strikes is to use the following extrapolation:

Floor(K) = Kµexp(a+ bK + cK2).

The problem with this approach is that the Black-Scholes framework does not allow us to move
between prices and volatilities when either the forward F (t, Ti−1, Ti) or the strike K is negative.
One might ask if this is problematic? A necessary practice with respect to risk management
and control of these derivatives is to know the variation of price due to small variations in the
volatility24. Market standard practice for obtaining prices from volatilities is to use the Black-
Scholes model. Therefore in low interest rate climates, there is a serious problem in assigning

24This is basically the first derivative of price to volatility.

33

valuation sensitivities to different strikes. A trivial solution to this problem is simply to assign
all interest rate sensitivity to K− which is where we began the extrapolation. The idea would
be to calculate the numerical derivative at K− of the value of a derivative with strike K < K−.
The problem is that all sensitivity to volatility would be located at K− whereas the theoretical
sensitivity lies at K.
The question then becomes, how might this be solved? One possibility is to use a feedforward
neural network to obtain volatilities from floor prices and strikes. The training set will be the area
of strikes where the implied probability density is well behaved, specifically; (K−,)25. With such
a configuration we will then be able to obtain price sensitivities to volatilities of strikes which we
could not initially determine due to the theoretical structure imposed by Black-Scholes.

Figure 14: A two layer, ten neurons in each layer feedforward neural network with stochastic
backpropagation over forty iterations.

In the following table we can see that the mean squared error26 is stable and therefore we conclude
that with forty epochs we have a sufficient calibration for the structure of the network.

25In practice we do not generate floor prices until but rather until such a strike where floor prices are almost
linear in K.

26Understood to be the squared difference of the resulting volatility of the network and the actual volatility of
the testing set.

34

Iter 31 mse: 0.00145462 Time: 0.811205
Iter 32 mse: 0.00144669 Time: 0.826805
Iter 33 mse: 0.00143991 Time: 0.842405
Iter 34 mse: 0.00143409 Time: 0.873606
Iter 35 mse: 0.00142909 Time: 0.920406
Iter 36 mse: 0.0014248 Time: 0.967206
Iter 37 mse: 0.0014211 Time: 1.01401
Iter 38 mse: 0.00141792 Time: 1.01401
Iter 39 mse: 0.00141516 Time: 1.04521
Iter 40 mse: 0.00141279 Time: 1.07641

Table 1: Mean squared error and computation time of the last forty-one iterations of the calibration.

Weights first layer Weights second layer

0.600510186023136 -0.0709985988941079
-0.294864600721183 0.203317635474503
-0.166409786634788 0.0738165053838822
0.0100117464877854 0.591066809446162
0.220338548506403 -0.0862844562383130
0.424920390399659 0.400184799101871
0.178658987774449 0.375881447609364
-0.137954326759397 -0.166467787379095
0.323558826489155 0.209453481326522
0.184333809702096 0.283712897241195

Table 2: One weight per each neuron, ten neurons per layer and two layers making up the network.

Observing the following graph we see the implicit smile is not as smooth as expected:

Figure 15: Volatility generation from two layer feedforward network.

35

Recalibrating the network to these volatilities and strikes to generate prices we obtain:

Figure 16: Floor prices implied by a two layer neural network.

We see that the results are not as optimal as we might have hoped. Let us observe the results
based on sensibilities to the volatility smile for specific strikes:

Floor price with strike Neural network Extrapolation

0.0389 -0.23924674 0.000118371
0.0390 -0.239190984 0.000117775
0.0391 -0.239135461 0.000117182
0.0392 -0.239080169 0.000116594
0.0393 -0.239025109 0.00011601
0.0394 -0.238970279 0.00011543
0.0395 -0.238915677 0.000114855
0.0396 -0.238861303 0.000114283
0.0397 -0.238807155 0.000113716
0.0398 -0.238753233 0.000113153
0.0399 -0.238699535 0.000112594
0.0400 -0.23864606 0.000112038

Table 3: Comparison of the two models to calculate sensitivity to volatility of floor prices for a
selection of strikes.

We see the two models imply vastly different values for the sensitivity of price to the volatilities
of different strikes. Given that the neural network allows us to maintain a lognormal hypothesis
and also assigns sensitivity below K− it has a clear advantage. The problems with calibration of
the neural network render it an unacceptable model for pricing purposes. Simply by viewing the
implied floor prices in comparison to the SABR implied prices, we see that the neural network
implies notable arbitrages and fails in maintaining smoothness and necessary theoretical properties.

36

9 Conclusions

We have studied the general theoretical properties of neural networks and have reviewed in depth
specific types; the feedforward and radial basis network. The feedforward network uses backprop-
agation with stochastic gradient descent to calibrate the weights of the different nodes whereas the
radial basis network calibrates with backpropagation using deterministic gradient descent but has
a radial basis activation function and are the sort of network well suited to interpolation functions.
The concrete applications that we have applied these structures to were an attempt to extrapolate
the Black-Scholes implied volatility smile to strikes lower than the area of which the SABR model
breaks down. Generally the results were not optimal, in other words the cumulative distribution
function was not smooth and the density function displayed behaviour that was not fully consistent
with the rest of the density.
As a second application we observe that it is advantageous to maintain the hypothesis of lognor-
mality in the modelling of the underlying interest rate forward. In order to correct the problem
of the implied density being negative for low strikes, we use a parametric extrapolation of floor
prices which then modifies the SABR implied density and allows for a positive density over all
strikes. The problem with such a mechanism is that the Black-Scholes mapping between prices
and volatilities is only valid over positive strikes due to the hypothesis of lognormality. The ap-
plication consists of calibrating a multilayer feedforward neural network onto a set of strikes and
prices and have it learn the relationship with volatilities, we may then calibrate a new neural net-
work to these previously generated volatilities and strikes to learn the relationship with floor prices.
Using this structure, we can then bump the implied volatilities with a small increment to compute
price variations in floor prices. This allows us to compute price sensitivities of floor derivatives to
movements in volatility for strikes below the strikes of extrapolation. This is something that could
not be done with the standard Black-Scholes framework. The result is made even more general by
way of direct application to cap prices with Merton’s [3] put-call parity formula:

Cap(K)− Floor(K) = F (t, ti−1, ti)−Ke−rt.

Reviewing the previous chapter we see the results are less than adequate. Floor prices present a
somewhat arbitrary structure when reproduced with the neural network, even for large amounts
of epochs in the calibration and complex network structures27.
As further developments for the networks which I have developed, I would like to extend the
range of their applications. One possibility being a direct comparison between SABR and a neural
network price, taking as inputs variables such as current forward interest rate, previous day’s
option price, time to expiry, etc. Further, due to the complex modelling relationship that exists
between the inputs and outputs, it may be instructive to use recurrent networks and other more
complex topologies to improve the final results.

27I attempted to calibrate a ten layer ten neuron architecture with results which did not improve notably with
respect to the design in the previous chapter.

37

References

[1] Amilon, H., “A Neural Network Versus Black-Scholes”, J. of Forcast. 22, 317-335 (2003).

[2] Bottou, L., “Stochastic Gradient Learning in Neural Networks”, ATT Bell Laboratories
(2001).

[3] Brigo, D. and Mercurio, F., “Interest Rate Models: Theory and Practice”, Springer Finance
(2001).

[4] Gallant, S. I., “Perceptron-based Learning Algorithms”, IEEE 1, 179-191 (1990).

[5] Hagan, P. S., et. al., “Managing Smile Risk”, Wilmott Magazine. (2002).

[6] Kainth, D. S., et. al., “Smile Extrapolation and Pricing of CMS Spread Options”, Presentation
Global Derivatives (2011).

[7] Kon, M., Plaskota, L., “Neural Networks, Radial Basis Functions and Complexity”, Unpub-
lished.

[8] Malliaris, M., Salchenberger, L., “A Neural Network Model for Estimating Option Prices”, J.
of App. Intell. 3, 193-206 (1993).

[9] McCulloch, W. S. and Pitts, W. H., “A Logical Calculus of the Ideas Immanent in Nervous
Activity”, B. of Math. Biophysics 5, 115-133 (1943).

[10] Minsky, M. and Papert, S., “Perceptrons”, MIT Press (1969).

[11] Rosenblat, F., “The perceptron: A probabilistic model for information storage and organiza-
tion in the brain”, Psychological Review 65, 386-400 (1958).

[12] Sebastian, H., Werfel, J. and Xie, X., “Learning curves for stochastic gradient descent in linear
feedforward networks”, Unpublished.

[13] Yu, H., et. al., “Comparison between traditional neural networks and radial basis function
networks”, Unpublished.

38

