
Copyright (c) 2003-2011 Lassalle Technologies. All Rights Reserved

AddFlow for WinForms V2.3.2 Tutorial

April 2011

Lassalle Technologies

http://www.lassalle.com

- page 1 -

http://www.lassalle.com/

Copyright (c) 2003-2011 Lassalle Technologies. All Rights Reserved

CONTENTS

1 Introduction ...6
2 Version enhancements..7

2.1 Version 2.3.2 enhancements...7
2.2 Version 2.3.1 enhancements...7
2.3 Version 2.3 enhancements..7
2.4 Version 2 enhancements...7

• 2.4.1 Serialization...8
• 2.4.2 New events...8
• 2.4.3 Property bag...8
• 2.4.4 Parent-Child relationship...8
• 2.4.5 Undo/Redo enhancements...9
• 2.4.6 Minor enhancements..9
• 2.4.7 Compatibility ..9

3 Getting Started..10
3.1 Installation...10
3.2 AddFlow extensions..11
3.3 Samples..11
3.4 Licensing..13

• 3.4.1 3.4.1 Type of licenses..13
• 3.4.2 How it works?..13
• 3.4.3 Licensing problems..16

3.5 Customize Visual Studio for WinForms...18
4 Interactive creation of a diagram...19

4.1 Overview..19
4.2 Create a diagram interactively..19

• 4.2.1 Draw a node...19
• 4.2.2 Draw a link...19
• 4.2.3 Stretch a link..21
• 4.2.4 Draw a reflexive link...22
• 4.2.5 Multiselection..22
• 4.2.6 Change properties of a node or a link..24
• 4.2.7 Add a text to a node...25
• 4.2.8 Adjust the link origin and destination points...25
• 4.2.9 Change the destination or the origin node of a link...26

5 Programmatic creation of a diagram...28
5.1 Overview..28
5.2 Diagram creation..29

• 5.2.1 Our first program...29

- page 2 -

Copyright (c) 2003-2011 Lassalle Technologies. All Rights Reserved

• 5.2.2 Another way to create the diagram..33
• 5.2.3 Node Properties..35
• 5.2.4 Link Properties...36
• 5.2.5 Changing property values..37
• 5.2.6 Default property values..39
• 5.2.7 The DefNodeProp and DefLinkProp properties..42
• 5.2.8 Stretching the links..44

5.3 Displaying an image in a node...46
5.4 Selection of items...48

• 5.4.1 Interactive selection...48
• 5.4.2 Programmatic selection..48
• 5.4.3 Selection events...49
• 5.4.4 Hit Testing...49

5.5 Diagram navigation..49
5.6 Parent-Child relationship...51

• 5.6.1 Attach a label to a node..52
• 5.6.2 Attach a label to a link...53
• 5.6.3 Place nodes inside a node..54

5.7 Some other information about drawing ...56
5.8 Serialization...56

• 5.8.1 The IXmlSerializable method..56
• 5.8.2 The XMLFlow method..61
• 5.8.3 Your own method..61

5.9 Printing a diagram..61
5.10 Exporting the diagram...62

• 5.10.1 The Render method..62
• 5.10.2 Metafile support...62
• 5.10.3 SVG support...62

6 Avanced topics...63
6.1 Undo/Redo...63
6.2 Performance tuning..64
6.3 Automatic Graph Layout...65

• 6.3.1 HFlow (Hierarchic layout)...66
6.3.1.1 Purpose..66
6.3.1.2 Code example..66
6.3.1.3 Limitation..66
6.3.1.4 Side Effect...67

• 6.3.2 OFlow (Orthogonal layout)..67
6.3.2.1 Purpose..67
6.3.2.2 Code example..67
6.3.2.3 Limitation..67
6.3.2.4 Side Effect...68

• 6.3.3 SFlow (Symmetric layout)...68
6.3.3.1 Purpose..68

- page 3 -

Copyright (c) 2003-2011 Lassalle Technologies. All Rights Reserved

6.3.3.2 Code example..68
6.3.3.3 Limitation..69
6.3.3.4 Side Effect...69

• 6.3.4 SPFlow (Series-parallel layout)...69
6.3.4.1 Purpose..69
6.3.4.2 Code example..71
6.3.4.3 Limitation..71
6.3.4.4 Side Effect...71

• 6.3.5 TFlow (Tree layout)...72
6.3.5.1 Purpose..72
6.3.5.2 Code example..73
6.3.5.3 Limitation..73
6.3.5.4 Side Effect...73

6.4 Link auto-routing..73
• 6.4.1 Introduction..73
• 6.4.2 Method...74
• 6.4.3 Code sample...75
• 6.4.4 Limitations...75

6.5 Customization..76
• 6.5.1 Overview..76
• 6.5.2 Behavior customization...76

6.5.2.1 AddFlow capabilities..76
6.5.2.2 Deriving the AddFlow class...77

• 6.5.3 Drawing customization..79
6.5.3.1 Custom Shapes..79
6.5.3.2 OwnerDraw property..83

• 6.5.4 Data customization...84
6.5.4.1 Tag property..84
6.5.4.2 Property bag..84
6.5.4.3 Derivation of Node and Link classes..85

6.5.4.3.1 The derived class..85
6.5.4.3.2 Interactive creation of of a derived node..86
6.5.4.3.3 Add Custom data..87
6.5.4.3.4 Serialization of derived nodes..88
6.5.4.3.5 De-serialization of derived nodes...90

6.6 Conversion guide from the ActiveX Control..92
• 6.6.1 AddFlow properties...92
• 6.6.2 AddFlow methods..94
• 6.6.3 AddFlow events...95
• 6.6.4 Node properties..95
• 6.6.5 Node methods..97
• 6.6.6 Link properties...97
• 6.6.7 Link methods...99

7 Frequently Asked Questions..100
7.1 General Questions...100
7.2 Technical Questions..102

- page 4 -

Copyright (c) 2003-2011 Lassalle Technologies. All Rights Reserved

- page 5 -

1 Introduction
AddFlow for WinForms is a general purpose Flowcharting/Diagramming .NET Windows
form control, which lets you quickly build flowchart-enabled .NET applications.

AddFlow for WinForms allows the creation and the manipulation of two-dimensional
diagrams (a.k.a graphs). An AddFlow diagram is a set of objects called nodes (also called
vertices or entities) that can be linked each other with links (also called edges, arcs or
relations). These diagrams can be created programmatically or interactively.

Each time you need to graphically display interactive diagrams, you should consider using
AddFlow, a royalty-free control that offers unique support to create diagrams interactively or
programmatically: workflow diagrams, database diagrams, communication networks,
organizational charts, process flows, state transitions diagrams, CTI applications, CRM
(Customer Relationship Management), expert systems, graph theory, quality control
diagrams, ...

Purpose of this tutorial

This tutorial provides informationon:

• creating diagrams programmatically, using the AddFlow control and classes
• creating diagrams interactively
• installing AddFlow for WinForms
• licensing

Who should use this tutorial?

This guide is intended for application programmers using the .NET platform to build
Windows Forms applications.

Samples

AddFlow for WinForms is installed with many samples (see the Samples paragraph for a
description of each sample).

• Each sample is provided in a C# version and in a VB version.
• The more important sample is afEdit since it allows manipulating the properties of

AddFlow and of each node or link object.
• The DemoLayout sample is also interesting since it allows working with the Graph

Layout components HFlow, OFlow, SFlow, SPFlow and TFlow.
• And finally the new Tables2 sample demonstrates many of the version 2

enhancements.

2 Version enhancements
2.1 Version 2.3.2 enhancements

AddFlow for .NET is renamed AddFlow for WinForms.

2.2 Version 2.3.1 enhancements

All the dlls and samples have been created using Visual Studio 2010 and the .NET
Framework 4.0 Client profile.

However, we provide also a version compiled with Visual Studio 2008 and .NET
Framework 3.5.

2.3 Version 2.3 enhancements

• The full product has been regenerated with Visual Studio 2010 on a 64 bits machine.

• Implementation of the Bentley-Ottmann algorithm to quickly find the link
intersections.

• Pan feature (See the MouseAction property. Demonstrated in the afEdit sample)

• DisplayDragFrame property (allowing hiding the drag frame of a node)

• ScrollPositionChange event.

• The DefNode and DefLink types disappear!The DefNodeProp and DefLinkProp
properties are now of type Node and Link instead of DefNode and DefLink.

Important information: The license file(s) must be recreated using your license key(s) and the
LicenseManager.exe tool provided with AddFlow.

2.4 Version 2 enhancements

AddFlow for WinForms version 2 has been created with Microsoft Visual Studio 2005. This
is in fact the major enhancement!

AddFlow for WinForms version 2 is compatible with the previous versions of AddFlow for
WinForms on a source-code level (with a few exceptions explained in paragraph 2.7)

Most of the changes consist of new features that we will describe briefly in this paragraph.

2.4.1 Serialization

AddFlow for WinForms version 2 is now supporting the IXmlSerializable interface. To save
a diagram (in a file or in a stream), just call the WriteXml method. To load it, call the
ReadXml method.

This XML serialization provides the same kind of files as those produced by for the old
XMLFlow.dll component. And it is compatible with XMLFlow. However, it is quicker and
more flexible (serialization events).

2.4.2 New events

AddFlow for WinForms version 2 offers new events for serialization or selection:

• SelectionChange Event
• BeforeReadXMLNode Event (Version 2.1)
• BeforeReadXMLLink Event (Version 2.1)
• BeforeWriteXMLNode Event (Version 2.1)
• BeforeWriteXMLLink Event (Version 2.1)
• ReadXMLLinkExtraData Event
• ReadXMLNodeExtraData Event
• WriteXMLLinkExtraData Event
• WriteXMLNodeExtraData Event

Moreover, some old events can be used programmatically if the property
InteractiveEventsOnly is false. It is the case for the following events:

• AfterAddNode
• AfterAddLink
• AfterRemoveNode
• AfterRemoveLink
• BeforeAddNode
• BeforeAddLink
• BeforeRemoveNode
• BeforeRemoveLink

2.4.3 Property bag

The property bag allows extending the functionality of nodes and link by adding new
properties. This feature is very easy to use. For more information, see the paragraph Property
Bag.

2.4.4 Parent-Child relationship

It is now possible to set a node as the child of another node or a link. This allows placing
nodes inside another node and the placement can be very easy with the Dock property. This
allows also defining labels for a node or for a link. If you move the node or stretch the link, its
labels follow it.

Using this feature, you don’t need to use a rigid and hidden link as with the previous versions.
For more information, see the paragraph Parent-Child relationship.

2.4.5 Undo/Redo enhancements

The undo/redo can be customized. For that, you have to create a custom Task class by
deriving the Task class and then you can insert it in the undo list with the SubmitTask
method.

Another interesting method is the AddToLastAction method. For instance, it allows
grouping some actions with the last recorded action.

2.4.6 Minor enhancements

There are also other minor enhancements like:

• the ConnectionStyleDst and ConnectionStyleOrg properties
• the way a Bezier link is highlighted when selected.
• the PageGrid property which returns/sets a Grid object allowing to set the properties

of the grid used to display printing pages.
• the possibility for a link to have a Shadow too.
• links drawn with double lines (DoubleLine property of the Line class)
• a new link style: Database. Such a link has 3 segments and the first and the third

segments are horizontal.

2.4.7 Compatibility

AddFlow for WinForms version 2 is compatible with the previous versions of AddFlow for
WinForms on a source-code level except for the following minor points:

• The Scroll event provided in the previous version is now replaced by the new Scroll
event of the ScrollableControl class of the .NET 2.0 framework.

• The default PageUnit property value is now GraphicsUnit.Pixel (instead of
GraphicsUnit.Point).

3 Getting Started
3.1 Installation

The AddFlow for WinForms installation package is a Windows Installer file. It is the same
file for the evaluation version and the full version. However, when you install it, you install
the evaluation version. As explained in the Licensing section if you purchase the product, you
will receive a license key allowing turning the evaluation version into the full version.

In the AddFlow for WinForms installation folder, it creates 3 subdirectories: Bin, Doc and
Src:

• The Bin subdirectory contains the assemblies: DLLs, sample executables,
LicenseManager program. The list of the DLLs is given in the following AddFlow
extensions parapagraph.

• The Doc subdirectory contains the help file, the tutorial, the readme file and the
license agreement.

• The Src subdirectory contains the source code (C# and VB) of the samples that
demonstrate AddFlow for WinForms (You can find the list of the samples and a short
description of each in the Samples paragraph). It contains also the C# source code of
some AddFlow extensions (PrnFlow, XMLFlow, GraphAlgo and DlgFlow).

Remarks

• Note that the installation package does not contain the .NET Framework which must
be already installed on the target machine.

• The installation procedure does not install the AddFlow for WinForms assemblies into
the Global Assembly Cache (GAC).

• AddFlow is installed with several extensions, as described in the following section.

3.2 AddFlow extensions

Following is the list of the AddFlow for WinForms extensions, including AddFlow itself. All
these assemblies are installed with AddFlow for WinForms. All these assemblies are written
in C#.

Class Assembly Type Description To be
purchased?

Source code
provided?

Support
provided?

AddFlow Lassalle.Flow.dll Control AddFlow for
WinForms Yes No Yes

PrnFlow Lassalle.PrnFlow.dll Component print and preview of
AddFlow diagrams No (1) Yes (3) No

XMLFlow Lassalle.XMLFlow.dll Class library
load/save a diagram
or a portion of it in a
XML stream

No (1) Yes (3) No

DlgFlow Lassalle.DlgFlow.dll Component
provides dialog boxes
to change the
properties of items

No (1) Yes (3) No

HFlow Lassalle.Flow.Layout.Hierarchic.dll Component hierarchic graph
layout algorithm Yes (2) No Yes

OFlow Lassalle.Flow.Layout.Orthogonal.dll Component orthogonal graph
layout algorithm Yes (2) No Yes

SFlow Lassalle.Flow.Layout.Symmetric.dll Component
force directed
(symmetric) graph
layout algorithm

Yes (2) No Yes

SPFlow Lassalle.Flow.Layout.SP.dll Component Series Parallel graph
layout algorithm Yes (2) No Yes

TFlow Lassalle.Flow.Layout.Tree.dll Component tree graph layout
algorithm Yes (2) No Yes

SVGFlow Lassalle.Flow.SVG.dll Class library export a diagram in
SVG format No No Yes

RouteFlow Lassalle.Flow.Router.dll Component link auto routing No No Yes

(1) XMLFlow, PrnFlow and DlgFlow can be used freely.
(2) Included in the LayoutFlow license (HFlow, SFlow, SPFlow, TFlow and OFlow

cannot be purchased separately).
(3) The source code of XMLFlow, PrnFlow and DlgFlow is installed with AddFlow.

3.3 Samples

Following is the list of the samples provided with AddFlow. The source code (C# and VB
version) of each sample is also installed.

afEdit A small diagram editor. It allows manipulating each property of each
node and link.

CustomShape Shows how to create nodes with custom shapes.

Demo Shows different kind of diagrams created with AddFlow.

DemoLayout Demonstrates the possibilities of the Graph Layout controls.

DeriveNode
Shows how to add custom data to a node by deriving the Node class. It
shows also how to use the serialization events to save and load such a
diagram.

DragDrop Shows how to drag a TreeView item and drop it on an AddFlow control

GraphTest Shows how use the GraphAlgo dll.extension.

Lists Shows how to create nodes with a ListView control inside.

Navig
Shows how to use collections to navigate in a diagram. It shows for
instance how to change the color of all the links of a node or all the
connected nodes of a node.

OwnerDraw Shows how to use the OwnerDraw properties.

Pins Shows how to create complex nodes, using the Parent property.

Propertybag
Shows how to add custom data to a node by using the property bag. It
shows also how to use the serialization events to save and load such a
diagram.

RouteLink Shows how to use the RouteFlow extension for link autorouting.

Shapes Shows the predefined shapes that can be used for nodes.

Stress Allows creating many nodes and links randomly.

Tables2 Shows how to use AddFlow to create database diagrams. It
demonstrates many of the version 2 enhancements.

TreeEdit Shows how to use AddFlow and TFlow to create and draw trees.

3.4 Licensing

3.4.1 3.4.1 Type of licenses

Notice that you can purchase either:

• an AddFlow for WinForms Standard license. This license does not include LayoutFlow. If
you try to execute a graph layout algorithm, you will face sometimes a nag screen.

• an AddFlow for WinForms Professional license. This license includes LayoutFlow. You
can execute the graph layout algorithms provided by LayoutFlow without any restriction. This
licence includes two license keys: one for for AddFlow and one for LayoutFlow

3.4.2 How it works?

Remarks

• You can use the evaluation version only during a period of 30 days.
• The only difference between the evaluation and the full (purchased) version of

AddFlow for WinForms is that the registered version will stamp every application you
compile so a nag screen (banner or dialog box) will not appear when your users run
the applications.

• You do not have the right in any case to distribute the license files or divulge the
license keys (as indicated in the license agreement).

• Now the graph layout components (HFlow, OFlow, SFlow, SPFlow and TFlow) are
grouped in only one product: LayoutFlow. Therefore only one license key is needed
for the five components.

The evaluation version

When you install AddFlow for WinForms, you install in fact an evaluation version of
AddFlow. You install also an evaluation version of HFlow, OFlow, SFlow, SPFlow and
TFlow.

If you generate ("compile") an application that uses this evaluation version of AddFlow for
WinForms, then any attempt to use this application will display an evaluation label explaining
that it has been generated only with an evaluation version of AddFlow.

And if you execute one of the graph layout methods provided by the LayoutFlow extensions
(HFlow, OFlow, SFlow, SPFlow and TFlow), you will face sometimes a nag screen.

The full version

To get the full version of AddFlow, you have to purchase an AddFlow license. In such a case,
you will receive an AddFlow license key (also called serial number or license number).

To get the full versions of HFlow, OFlow, SFlow, SPFlow and TFlow, you have to purchase a
LayoutFlow license. In such a case, you will receive a LayoutFlow license key. In such a
case, the four components share the same license key.

The LicenseManager program

The LicenseManager.exe program, provided with AddFlow for WinForms, allows generating
a license file from a license key.

The license file is created in the same directory as the LicenseManager application, therefore
in the bin subdirectory of the AddFlow for WinForms installation folder.

When developing your application, this license file must be in the same directory as the
licensed assembly: for instance, the file Lassalle.Flow.AddFlow.LIC must be placed in the
same directory as the file Lassalle.Flow.dll.

The license files

The following table gives the names of the license files. Remember that you have to use the
LicenseManager program to create these license files. The AddFlow license key will allow
you creating the AddFlow license file whereas the LayoutFlow license key will allow you
creating the HFlow, OFlow, SFlow, SPFlow and TFlow license files.

Assembly License License file name
Lassalle.Flow.dll AddFlow for

WinForms
Lassalle.Flow.AddFlow.LIC

Lassalle.Flow.Layout.Hierarchic.dll LayoutFlow for
WinForms

Lassalle.Flow.Layout.Hierarchic.HFlow.LIC

Lassalle.Flow.Layout.Orthogonal.dll LayoutFlow for
WinForms

Lassalle.Flow.Layout.Orthogonal.OFlow.LIC

Lassalle.Flow.Layout.Symmetric.dll LayoutFlow for
WinForms

Lassalle.Flow.Layout.Symmetric.SFlow.LIC

Lassalle.Flow.Layout.SP.dll LayoutFlow for
WinForms

Lassalle.Flow.Layout.SP.SPFlow.LIC

Lassalle.Flow.Layout.Tree.dll LayoutFlow for
WinForms

Lassalle.Flow.Layout.Tree.TFlow.LIC

Example

After having installed AddFlow for WinForms, load for instance the VB project Navig
provided with AddFlow, then compile it and run it: the nag screen will appear.

Now place the AddFlow license file in the bin subdirectory of the AddFlow for WinForms
installation folder (This is possible only if you have already created a license file with the
LicenseManager program, therefore if you have already a license key, therefore if you have
purchased the product!). Then re-compile the application and run it again: there is not any nag
screen this time.

Notice the file licenses.licx in the Navig folder. This file is a text file that identifies which
licensed classes are used in a project. There should be one licenses.licx file (as an embedded
resource) for each project in a VS.NET solution. Without this file, the licensing would not
work. It must contain the assembly qualified name of AddFlow.

Following is the list of assembly qualified names for AddFlow and its licensed extensions:

The assembly qualified name of AddFlow

Lassalle.Flow.AddFlow, Lassalle.Flow, Version=2.3.2.0, Culture=neutral,
PublicKeyToken=bfc5c756e54a9d2a

The assembly qualified name of HFlow

Lassalle.Flow.Layout.Hierarchic.HFlow, Lassalle.Flow.Layout.Hierarchic,
Version=2.3.2.0, Culture=neutral, PublicKeyToken=a5098d67a8d68ddf

The assembly qualified name of OFlow

Lassalle.Flow.Layout.Orthogonal.OFlow, Lassalle.Flow.Layout.Orthogonal,
Version=2.3.2.0, Culture=neutral, PublicKeyToken=b1252ad24c259c82

The assembly qualified name of SFlow

Lassalle.Flow.Layout.Symmetric.SFlow, Lassalle.Flow.Layout.Symmetric,
Version=2.3.2.0, Culture=neutral, PublicKeyToken=f43759eeb25c46d5

The assembly qualified name of SPFlow

Lassalle.Flow.Layout.SP.SPFlow, Lassalle.Flow.Layout.SP, Version=2.3.2.0,
Culture=neutral, PublicKeyToken=c744fe88085eaad0

The assembly qualified name of TFlow

Lassalle.Flow.Layout.Tree.TFlow, Lassalle.Flow.Layout.Tree,
Version=2.3.2.0, Culture=neutral, PublicKeyToken=577d6084e440e212

For controls as AddFlow for WinForms and components as HFlow for WinForms, if you use
the toolbox to place them on your form, the file licenses.licx is automatically created.
Otherwise, you can create it manually.

3.4.3 Licensing problems

If, after having obtained a license for AddFlow and having followed the instructions, you
have still a nag screen, don't worry: you are not the first! Despite the fact that the licensing
technology used in AddFlow is 100% standard and that it follows 100% the .NET guidelines,
many customers are facing such a problem. It was also my case at the beginning. The
following remarks may help you solving this licensing issue.

1) First of all, be sure that your project contains a licenses.licx file (as an embedded resource)
and that this file contains the following line:

Lassalle.Flow.AddFlow, Lassalle.Flow, Version=2.3.2.0, Culture=neutral,
PublicKeyToken=bfc5c756e54a9d2a

2) License keys are only recognized when they are linked into an executable assembly
(.EXE), not a library (.DLL). Therefore, if you use AddFlow in another DLL (for instance a
control library), then you will have to:

• include a reference to AddFlow in the application that uses that DLL (even though this
executable did not directly use the AddFlow control)

• be sure that the licenses.licx file of the application itself contains a line referencing
AddFlow.

Licensing when using AddFlow in a web page

To specify the location of the license file, you have to use a special attribute on the “LINK”
HTML tag. The license file is a “.licenses” file. It contains the license keys for the licensed
.NET classes. An example for AddFlow is below:

<html>
<head>
<title>AddFlow</title>
</head>
<body>
<LINK REL="licenses" HREF="lassalle.flow.html.licenses">
<OBJECT id="addflow1" height="200" width="400"
 classid=http:Lassalle.Flow.dll#Lassalle.Flow.AddFlow>
</OBJECT>
</body>
</html>

1) To create the .licenses file, you have to use the lc.exe tool (on my computer, I can find it at:
C:\Program Files\Microsoft.NET\FrameworkSDK\Bin).

For example, you can create a .bat file (named for instance build.bat) containing the following
command:

lc /target:Lassalle.Flow.html /complist:licenses.licx /i:Lassalle.Flow.dll

To create the binary .licenses file, open a command window and run “build.bat”. The
licenses.licx file is the same as previously described.

2) An IIS virtual directory needs to be setup to run the HTML page from.

3.5 Customize Visual Studio for WinForms

You will probably want to customize the toolbox of Visual Studio for WinForms with
AddFlow for WinForms:

• Start up Visual Studio.NET
• View the toolbox if it is not already visible (View\Toolbox menu item)
• Then open the tab where you wish to contain the AddFlow for WinForms control (or

create a new tab if you wish).
• Right-click this tab to show the context menu and choose the Add/Remove Items…

menu item. The Customize Toolbox dialog will appear.
• Select the .NET Framework Components tab.
• If you do not see AddFlow for WinForms in the list, click the Browse… button to

open the Lassalle.Flow.dll assembly in the Bin subdirectory of the AddFlow for
WinForms installation folder. Select it.

• Click OK. The AddFlow for WinForms should appear in the toolbox, allowing you to
drag it onto a form. Then, you can customize the behavior of AddFlow with the
Properties window.

Then, if you wish, you may proceed the same way to add the AddFlow extension components:
HFlow, SFlow, SPFlow, TFlow, PrnFlow, XMLFlow, DlgFlow, SVGFlow and RouteFlow.

4 Interactive creation of a diagram
4.1 Overview

The interactive creation of diagrams is mouse-based. It includes:

• the creation of nodes and links (including reflexive links)
• the selection of nodes and links (including multi-selection)
• the resizing of nodes
• the moving of nodes
• the stretching of links (the possibility to add or remove segments in a link)
• the possibility to change the origin or the destination of a link

It supports also the scrolling of diagrams, the node in-place editing and the use of grids.

Moreover, many properties allow customizing the interactive behavior of an AddFlow
control. For instance, you can prevent the user to create reflexive links with the
CanReflexLink property or to move nodes with the CanMoveNode properties.

And a set of methods and properties allow implementing a powerful Undo/Redo feature.

4.2 Create a diagram interactively

4.2.1 Draw a node

Bring the mouse cursor into the control, press the left button, move the mouse and release the
left button. You have created an elliptic node. This node is selected: that's why 8 handles
(little squares) and a drag frame are displayed.

The 8 handles allow resizing the node. If you want to move the node, you bring the mouse
cursor into the drag frame, press the left button, move the mouse and release the left button.

4.2.2 Draw a link

Draw a second node.

Then bring the mouse cursor inside the selected node, press the left button, move the mouse
towards the other node. When the mouse cursor is into the other node, release the left button.
The link has been created. And it is selected: 3 handles are displayed in the link.

Note. In the ActiveX version, the selected node had 9 handles and no drag frame. The handle
at the center of the node is used to draw a link. Such a behavior is also possible in the .NET
version, if the LinkCreationMode property of AddFlow is set to
LinkCreationMode.MiddleHandle. In such a case, the selected node would be as in the
following diagram:

To draw a link, bring the mouse cursor into the handle at the center of the selected node, press
the left button, move the mouse towards the other node. When the mouse cursor is into the
other node, release the left button.

You can change the size of the handles, using the SelectionHandleSize and the
LinkHandleSize properties. For instance, you can have the following representations of the
selected node:

4.2.3 Stretch a link

Bring the mouse cursor into the link handle in the middle of the link, press the left button,
move the mouse and release the left button. You have created a new link segment. It has now
5 handles allowing you to add or remove segments. (The handle at the intersection of two
segments allows you to remove a segment: you move it with the mouse so that the two
segments are aligned and when these two segments are approximately aligned, release the left
button).

Create another segment

4.2.4 Draw a reflexive link

Select a node by clicking on it. Then bring the mouse cursor inside the selected node. Press
the left button, move the mouse outside the selected node, then move it inside the selected
node again, then release the left button. You have created a reflexive link, i.e. a link whose
origin and destination are the same.

4.2.5 Multiselection

You can select several nodes by clicking them with the mouse and simultaneously pressing
the shift or control key.

You can also select links or nodes and links.

There is another way to perform multiselection, using the MouseAction property and
assigning it the MouseAction.Selection value. Then you can select several nodes and links:
you bring the mouse cursor into the AddFlow control, press the left button, move the mouse
and release the left button. All nodes or links partly inside the selection rectangle are selected.
Then you can unselect some nodes by clicking them with the mouse and simultaneously
pressing the shift or control key. You can select them again by using the same method.
You can use the Shift Key in conjunction with a selection rectangle. For instance, if the
MouseAction property is set to MouseAction.Selection, you can draw a selection rectangle
with a mouse, which cause items inside this rectangle to be selected. Then, if you press the
Shift key, you can select additional items.

4.2.6 Change properties of a node or a link

Interactively, without adding any code, you can change the position and the size of a node
(and also its text as described later). You can add segments to a link or remove them. To
change the other properties (shape, styles, colors, behaviors, etc) of a node or a link, you have
to write some code. For instance, you can add code that displays a property page when the
user right clicks on a node or a link. This is what is done in the afEdit sample provided with
AddFlow .NET. The code that manages the property pages is encapsulated in a small dll:
DlgFlow.DLL.

If, using the afEdit sample, you right click on the second node, its property page will appear
and you can change some of its properties, for instance its shape and its filling color:

You can proceed the same way with, for instance, the reflexive link and change its style, its
color and its arrow head:

4.2.7 Add a text to a node

Click for instance on the blue node. This will select it. Click another time. An edit box is
displayed inside the node, allowing you to enter a text.

4.2.8 Adjust the link origin and destination points

In the previous example, you cannot adjust the extremities of the links. For instance, if you
select the blue link and bring the mouse cursor into the last (or the first) handle of the blue
link, press the left button, move the mouse in another place then relinquish the mouse button,
the link springs back again, retrieving its initial position.

However, you can change this behavior by setting the AdjustDst and AdjustOrg properties
to true. In such a case, if you bring the mouse cursor, for instance, into the last handle of the
link, press the left button, move the mouse and release it, you'll see that you have defined a
new destination position for the link. If you move the destination node, the new link
destination position keeps on following the node.

4.2.9 Change the destination or the origin node of a link

You can change interactively the destination or the origin of a link. For instance, consider the
following diagram.

You can adjust the last point of the red link. Move it from node 1 to node 2: bring the mouse
cursor into the third link handle (near the arrow head), press the left button, move the mouse

until the node 2 and release the left button.
Then, the new destination of the link will be the node 2 (If you move the node 2, the link will
follow it).

5 Programmatic creation of a diagram
5.1 Overview

In this chapter we will focus on how to create a diagram programmatically.

The AddFlow library is a .NET class library containing a set of classes for creating interactive
diagrams very easily.

The main class is the AddFlow class that derives from the .NET UserControl class. An
AddFlow diagram contains two kinds of objects, Node objects and Link objects, which derive
from the Item class. A Link object allows to link two nodes. It is a line that leaves the origin
node and comes to the destination node. A link cannot exist without its origin and destination
nodes. If one of these two nodes is removed, the link is also removed.

Other classes are:

• either collection classes:
o Items: the collection of all items of the diagram
o SelectedItems: collection of all selected items of the diagram
o Nodes: collection of nodes of the diagram
o OutLinks: collection of all links leaving a node
o InLinks: collection of all links coming to a node
o Links: collection of all links (in and out) of a node
o Images: collection of all images used in the diagram

• either classes dedicated to manage some complex properties:
1.

o Grid: manages the grid of the AddFlow control
o Zoom: manages the AddFlow zooming
o Shape: manages the shape of the node
o Shadow: manages the shadow of the node
o Arrow: manages the arrows of the link
o Line: manages the segments of the link
o FlowImage: manages the images associated to nodes.

For detailed information about the types, classes and interfaces used in AddFlow, see the
Lassalle.Flow namespace in the AddFlow help file.

5.2 Diagram creation

5.2.1 Our first program

Using Visual Studio .NET, select the menu item File | Add Project | New Project. In the
Add New Project dialog box, select a project type of Visual C# Projects, then choose Empty
Project. Then, right-click the project name in Solution Explorer and select Add New Item
from the context menu. In the Add New Item dialog box, in the Categories list, choose Local
Project Items. In the Template section, choose Code File (Using this template, Visual
Studio will not generate code for you).

Right-click in the References item underneath the project name and select Add Reference
from the context menu. Select these three items from the list in the dialog box that you’re
presented with: Sytem.dll, System.Drawing.dll, System.Windows.Forms.dll. Then, use the
Browse... button to search for the Lassalle.Flow.dll and select it.

Finally, copy and paste the following C# code:

// C#
using System;
using System.Drawing;
using System.Windows.Forms;
using Lassalle.Flow;

public class Minimal: Form
{
 [STAThread]
 public static void Main()
 {
 Application.Run(new Minimal());
 }

 public Minimal()
 {
 Text = “Minimal AddFlow”;
 Size = new Size(500, 300);

 // Create the AddFlow control
 AddFlow addflow = new AddFlow();
 addflow.Parent = this;
 addflow.Dock = DockStyle.Fill;
 addflow.AutoScroll = true;
 addflow.BackColor = SystemColors.Window;

 // Create a diagram
 CreateDiagram0(addflow);
 }

 void CreateDiagram0(AddFlow addflow)
 {
 // Create 3 nodes
 Node node1 = new Node(5, 5, 40, 40, “First node”);
 Node node2 = new Node(120, 70, 50, 40, “Second node”);

 Node node3 = new Node(5, 100, 40, 40, “Third node”);

 // Create 3 links
 Link link1 = new Link(“link 1”);
 Link link2 = new Link(“link 2”);
 Link link3 = new Link(“link 3”);

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);
 }
}

' VB
Public Class Minimal
 Private Sub Minimal_Load(ByVal sender As System.Object, ByVal e As –
 System.EventArgs) Handles MyBase.Load
 Text = "Minimal AddFlow"
 Size = New Size(500, 300)

 ' Create the AddFlow control
 Dim addflow As AddFlow = New AddFlow()
 addflow.Parent = Me
 addflow.Dock = DockStyle.Fill
 addflow.AutoScroll = True
 addflow.BackColor = SystemColors.Window

 ' Create a diagram
 CreateDiagram8(addflow)
 End Sub

 Private Sub CreateDiagram0(ByVal addflow As AddFlow)
 ' Create 3 nodes
 Dim node1 As Node = New Node(5, 5, 40, 40, "First node")
 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node")
 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node")

 ' Create 3 links
 Dim link1 As Link = New Link("link 1")
 Dim link2 As Link = New Link("link 2")
 Dim link3 As Link = New Link("link 3")

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)
 node2.OutLinks.Add(link3, node3)
 End Sub
End Class

If we compile and execute this program, it will create the following diagram:

In this diagram, the nodes and links receive default property values. For instance, the nodes
have an elliptical shape. The links are composed of one line terminated by an arrow. The link
2 is reflexive and by default, it is created with 3 segments. The drawing colour is black. The
text colour is black.

We are going to enhance this diagram. However, let us focus on the way nodes and links are
created. First we create objects (nodes and links), then we add them to the AddFlow control.
If we just write:

// C#
Node node1 = new Node(5, 5, 40, 40, “First node”);

' VB
Dim node1 As Node = New Node(5, 5, 40, 40, “First node”)

the node object is created. However it is not still part of the diagram. To make this node
belong to the diagram, we have to add the following line:

// C#
addflow.Nodes.Add(node1);

' VB
addflow.Nodes.Add(node1)

As indicated in the reference guide, the Node class has 8 constructors. We have chosen one
which creates a new instance of the Node class with an initial position and size and an initial
text.

We could have also written:

// C#
Node node1 = new Node(5, 5, 40, 40);
node1.Text = “First node”;

' VB
Dim node1 As Node = New Node(5, 5, 40, 40)
node1.Text = “First node”

Or:

// C#
RectangleF rect = new RectangleF(5, 5, 40, 40);

Node node1 = new Node(rect);
Node1.Text = “First node”;

' VB
Dim rect As RectangleF = New RectangleF(5, 5, 40, 40)
Dim node1 As Node = New Node(rect)
node1.Text = “First node”

Node Constructors
Node()
Node(Node model)
Node(RectangleF rect)
Node(RectangleF rect, Node model)
Node(float left, float top, float width, float height)
Node(float left, float top, float width, float height, Node model)
Node(float left, float top, float width, float height, string text)
Node(float left, float top, float width, float height, string text, Node
model)

Notice that you can also create a node by a cloning action:

// C#
Node node2 = (Node)node1.Clone();

' VB
Dim node2 As Node = node1.Clone

The cloned node has the same property values as its model. However, it is not still inserted in
any AddFlow control.

Same thing for links: if we just write:

// C#
Link link1 = new Link(“link 1”);

' VB
Dim link1 As Link = New Link(“link 1”)

the link object is created. However, to give a true existence to this link, we have to add the
following line:

// C#
node1.OutLinks.Add(link1, node2);

' VB
node1.OutLinks.Add(link1, node2)

This indicates that the destination node of the link is node 2 and the origin node is node 1.

The Link class has 4 constructors. We have chosen one that creates a new instance of the Link
class with an initial text.

We could have also written:

// C#
Link link1 = new Link();
link1.Text = “link 1”;

' VB
Dim link1 As Link = New Link()
link1.Text = “link 1”

Link Constructors
Link()
Link(Link model)
Link(string text)
Link(string text, Link model)

Notice that you can also create a link by a cloning action:

// C#
Link link2 = (Link)link1.Clone();

' VB
Dim link2 As Link = link1.Clone

The cloned link has the same property values as its model and it has the same collection of
points. However, it is not still inserted in any AddFlow control. Its origin and destination
nodes are null.

And finally you may also use the AddLink and CreateLink methods to create links:

// C#
Link link1 = new Link(“link 1”);
addflow.AddLink(link1, node1, node2);

' VB
Dim link1 As Link = New Link(“link 1”)
addflow.AddLink(link1, node1, node2)

or (anticipating the following section):

// C#
Link link1 = addflow.CreateLink(node1, node2);

' VB
Dim link1 As Link = addflow.CreateLink(node1, node2)

5.2.2 Another way to create the diagram

Now let us replace the CreateDiagram0 method by the following CreateDiagram1 method:

// C#
void CreateDiagram1(AddFlow addflow)
{
 // Create 3 nodes and add them to the diagram
 Node node1 = addflow.Nodes.Add(5, 5, 40, 40, “First node”);

 Node node2 = addflow.Nodes.Add(120, 70, 50, 40, “Second node”);
 Node node3 = addflow.Nodes.Add(5, 100, 40, 40, “Third node”);

 // Create 3 links and add them to the diagram
 Link link1 = node1.OutLinks.Add(node2, “link 1”);
 Link link2 = node2.OutLinks.Add(node2, “link 2”);
 Link link3 = node2.OutLinks.Add(node3, “link 3”);
}

' VB
Private Sub CreateDiagram1(ByVal addflow As AddFlow)
 ' Create 3 nodes and add them to the diagram
 Dim node1 As Node = addflow.Nodes.Add(5, 5, 40, 40, "First node")
 Dim node2 As Node = addflow.Nodes.Add(120, 70, 50, 40, "Second node")
 Dim node3 As Node = addflow.Nodes.Add(5, 100, 40, 40, "Third node")

 ' Create 3 links and add them to the diagram
 Dim link1 As Link = node1.OutLinks.Add(node2, "link 1")
 Dim link2 As Link = node2.OutLinks.Add(node2, "link 2")
 Dim link3 As Link = node2.OutLinks.Add(node3, "link 3")
End Sub

If we compile and execute this new program, it will create the same diagram as before.
However, the method is different. We do not use explicitly any constructor. The objects
(nodes and links) are created and placed in the diagram with only one line of code. We will
call this method the “old ActiveX” method since it is the method used in the ActiveX version
of AddFlow.

Although this method seems to give a more compact code, we will prefer the previous method
because it allows setting property values before inserting the node or the link in the diagram
and this is faster to execute. For instance, the following code

Node node1 = new Node(5, 5, 40, 40, “First node”);
node1.FillColor = Color.LightYellow;
addflow.Nodes.Add(node1);

is faster than:

Node node1 = addflow.Nodes.Add(5, 5, 40, 40, “First node”);
node1.FillColor = Color.LightYellow;

Of course, you’ll see a difference only with very big diagrams.

The second method produces a more compact code? This is not actually true. We could have
written the first method in the following manner:

// C#
void CreateDiagram2(AddFlow addflow)
{
 // Create and add the nodes to the diagram
 addflow.Nodes.Add(new Node(5, 5, 40, 40, “First node”));
 addflow.Nodes.Add(new Node(120, 70, 50, 40, “Second node”));
 addflow.Nodes.Add(new Node(5, 100, 40, 40, “Third node”));

 // Create and add the links to the diagram
 addflow.Nodes[0].OutLinks.Add(new Link(“link 1”), addflow.Nodes[1]);
 addflow.Nodes[1].OutLinks.Add(new Link(“link 2”), addflow.Nodes[1]);

 addflow.Nodes[1].OutLinks.Add(new Link(“link 3”), addflow.Nodes[2]);
}

' VB
Private Sub CreateDiagram2(ByVal addflow As AddFlow)
 ' Create and add the nodes to the diagram
 addflow.Nodes.Add(New Node(5, 5, 40, 40, "First node"))
 addflow.Nodes.Add(New Node(120, 70, 50, 40, "Second node"))
 addflow.Nodes.Add(New Node(5, 100, 40, 40, "Third node"))

 ' Create and add the links to the diagram
 addflow.Nodes(0).OutLinks.Add(New Link("link 1"), addflow.Nodes(1))
 addflow.Nodes(1).OutLinks.Add(New Link("link 2"), addflow.Nodes(1))
 addflow.Nodes(1).OutLinks.Add(New Link("link 3"), addflow.Nodes(2))
End Sub

In this case, we use the Nodes collection instead of using a reference for each Node object.

To terminate this section, notice another way to create links, using the CreateLink method of
AddFlow:

Link link1 = addflow.CreateLink(node1, node2);
Link link2 = addflow.CreateLink(node2, node2);
Link link3 = addflow.CreateLink(node2, node3);

Now we are going to enhance our diagram. However we need to have a better view of the
node and link properties.

5.2.3 Node Properties

The node properties are described in the Lassalle.Flow namespace in the AddFlow help file.
Some are inherited from the Item class. We can group them in 5 categories:

Position and size

Rect, Location, Size properties

Style properties

For each node, we can associate:

• A shape via its Shape object property (43 predefined shapes are available and you can
create custom shapes with the GraphicsPath property of the Shape object: See the
paragraph Custom Shapes).

• A shadow via its Shadow object property
• Some colors (FillColor, DrawColor, TextColor, GradientColor).
• Some properties that defines how to display the text in the node: Font, Trimming
• Some properties (Alignment, TextMargin and ImagePosition) that determines how

the text and the image are positioned in the node
• The AutoSize property which allows to adjust the node size to its picture size or its

text size or to adjust the picture size to the node size
• Some properties about how is displayed the node (Transparent, Hidden, DashStyle,

DrawWidth, OwnerDraw, Gradient properties)

Data properties

• A text (Text property) can be displayed inside a node.
• An image (ImageIndex property) can also be displayed inside a node.
• A tooltip (Tooltip property) can be associated to a node.
• A url (Url property) can be associated to a node. This url can be used to assign a

HTML hyperlink to the node in a web page when the diagram is displayed in a web
page using SVG.

• It is also possible to associate an object to a node via its Tag property.

Graph properties

These are the OutLinks, InLinks and Links collection properties that allow getting the links
(in, out, in and out) of the node and therefore allowing navigating in the graph.

There is also the ConnectedItems collection property that returns the collection of items
(nodes and links) that belong to the same connected part of the graph as the node.

The Index property returns the position of the node in the Nodes collection.

Behaviour properties

Selected, Selectable, XMoveable, YMoveable, XSizeable, YSizeable, ZOrder, LabelEdit,
IsInView, IsEditing, Logical, etc...

5.2.4 Link Properties

The link properties are described in the Lassalle.Flow namespace in the AddFlow help file.
Some are inherited from the Item class. We can group them in 5 categories:

Segments

A link is composed of general segments defined by a collection of points (Points properties).

Style properties

For each link, we can associate:

• A Line object that defines the style of link (polyline, Bezier, Spline, orthogonal)
• Three properties defining the arrow styles (ArrowOrg, ArrowDst, ArrowMid).

However you have another method to create arrows, using the StartCap, EndCap,
CustomStartCap and CustomEndCap properties)

• The Jump property (A jump is displayed at the intersection of 2 links)
• Some colors (DrawColor, TextColor).
• Some properties that defines how to display the text in the link: Font, OrientedText
• Some properties about how is displayed the link (Hidden, DashStyle, DrawWidth,

OwnerDraw properties)

Data properties

• A text (Text property) can be displayed near a link.
• A tooltip (Tooltip property) can be associated to a link.
• A url (Url property) can be associated to a node. This url can be used to assign a

HTML hyperlink to the link in a web page when the diagram is displayed in a web
page using SVG.

• It is also possible to associate an object to a link via its Tag property.

Graph properties

The Org property returns/sets the reference of the origin node of the link whereas the Dst
property returns/sets the reference of the destination node of the link.

Behaviour properties

Selected, Selectable, ZOrder, IsInView, Logical, Stretchable, Rigid, AdjustDst,
AdjustOrg, etc...

5.2.5 Changing property values

Let us use the following diagram creation method:

// C#
void CreateDiagram3(AddFlow addflow)
{
 // Create 3 yellow nodes with a shadow.
 // The second node is rectangular
 // and the third one has a Document shape style.
 Node node1 = new Node(5, 5, 40, 40, “First node”);
 node1.FillColor = Color.LightYellow;
 node1.Shadow.Style = ShadowStyle.RightBottom;

 Node node2 = new Node(120, 70, 50, 40, “Second node”);
 node2.FillColor = Color.LightYellow;
 node2.Shadow.Style = ShadowStyle.RightBottom;
 node2.Shape.Style = ShapeStyle.Rectangle;

 Node node3 = new Node(5, 100, 40, 40, “Third node”);
 node3.FillColor = Color.LightYellow;
 node3.Shadow.Style = ShadowStyle.RightBottom;
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links.
 // Each link is blue and its BackMode property set to Opaque.
 // The second link has a Bezier style, color of its text is red, and
 // its destination arrow head angle is 30°.
 // The third link has a “HVH” style.
 Link link1 = new Link(“link 1”);
 link1.DrawColor = Color.Blue;
 link1.BackMode = BackMode.Opaque;

 Link link2 = new Link(“link 2”);
 link2.DrawColor = Color.Blue;
 link2.BackMode = BackMode.Opaque;
 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;
 link2.ArrowDst.Angle = ArrowAngle.deg30;

 Link link3 = new Link(“link 3”);
 link3.DrawColor = Color.Blue;
 link3.BackMode = BackMode.Opaque;
 link3.Line.Style = LineStyle.HVH;

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);
}

' VB
Private Sub CreateDiagram3(ByVal addflow As AddFlow)
 ' Create 3 yellow nodes with a shadow.
 ' The second node is rectangular and the third one has the “Document”
 ' shape style.
 Dim node1 As Node = New Node(5, 5, 40, 40, "First node")
 node1.FillColor = Color.LightYellow
 node1.Shadow.Style = ShadowStyle.RightBottom

 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node")
 node2.FillColor = Color.LightYellow
 node2.Shadow.Style = ShadowStyle.RightBottom
 node2.Shape.Style = ShapeStyle.Rectangle

 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node")
 node3.FillColor = Color.LightYellow
 node3.Shadow.Style = ShadowStyle.RightBottom
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links.
 ' Each link is blue and its BackMode property set to Opaque.
 ' The second link has a Bezier style, color of its text is red, and its
 ' destination arrow head angle is 30°.
 ' The third link has a "HVH" style.
 Dim link1 As Link = New Link("link 1")
 link1.DrawColor = Color.Blue
 link1.BackMode = BackMode.Opaque

 Dim link2 As Link = New Link("link 2")
 link2.DrawColor = Color.Blue
 link2.BackMode = BackMode.Opaque
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red
 link2.ArrowDst.Angle = ArrowAngle.deg30

 Dim link3 As Link = New Link("link 3")
 link3.DrawColor = Color.Blue
 link3.BackMode = BackMode.Opaque
 link3.Line.Style = LineStyle.HVH

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)

 node2.OutLinks.Add(link3, node3)
End Sub

If we compile and execute this program, it will create the following diagram:

Now, our nodes have distinct shapes. They have a shadow. Their filling colour is
LightYellow. And our links are blue. The reflexive link is a curved line, its text is red and the
angle of its arrow head is larger.

Therefore we know how to give distinct property values for each object.

Notice however that to specify the colour of each node, we had to do it for each node, even if
the colour is the same. It is the same thing for the links. For a big diagram, this may be
annoying to repeat always the same code for each object.

Fortunately, AddFlow allows using default property values that apply to all the next created
nodes or links.

5.2.6 Default property values

Now let us replace the CreateDiagram3 method by the following CreateDiagram4 method:

// C#
void CreateDiagram4(AddFlow addflow)
{
 // Default property values for nodes
 addflow.DefNodeProp.FillColor = Color.LightYellow;
 addflow.DefNodeProp.Shadow.Style = ShadowStyle.RightBottom;

 // Default property values for links
 addflow.DefLinkProp.DrawColor = Color.Blue;
 addflow.DefLinkProp.BackMode = BackMode.Opaque;

 // Create 3 nodes and assign them some property values
 Node node1 = new Node(5, 5, 40, 40, “First node”, addflow.DefNodeProp);
 Node node2 = new Node(120,70,50,40,”Second node”, addflow.DefNodeProp);
 node2.Shape.Style = ShapeStyle.Rectangle;

 Node node3 = new Node(5,100,40,40, “Third node”, addflow.DefNodeProp);
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links

 Link link1 = new Link(“link 1”, addflow.DefLinkProp);

 Link link2 = new Link(“link 2”, addflow.DefLinkProp);
 link2.ArrowDst.Angle = ArrowAngle.deg30;
 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;

 Link link3 = new Link(“link 3”, addflow.DefLinkProp);
 link3.Line.Style = LineStyle.HVH;

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);
}

' VB
Private Sub CreateDiagram4(ByVal addflow As AddFlow)
 ' Default property values for nodes
 addflow.DefNodeProp.FillColor = Color.LightYellow
 addflow.DefNodeProp.Shadow.Style = ShadowStyle.RightBottom

 ' Default property values for links
 addflow.DefLinkProp.DrawColor = Color.Blue
 addflow.DefLinkProp.BackMode = BackMode.Opaque

 ' Create 3 nodes and assign them some property values
 Dim node1 As Node = New Node(5, 5, 40, 40, "First node", -
 addflow.DefNodeProp)

 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node", -
 addflow.DefNodeProp)
 node2.Shape.Style = ShapeStyle.Rectangle

 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node", -
 addflow.DefNodeProp)
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links
 Dim link1 As Link = New Link("link 1", addflow.DefLinkProp)

 Dim link2 As Link = New Link("link 2", addflow.DefLinkProp)
 link2.ArrowDst.Angle = ArrowAngle.deg30
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red

 Dim link3 As Link = New Link("link 3", addflow.DefLinkProp)
 link3.Line.Style = LineStyle.HVH

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)
 node2.OutLinks.Add(link3, node3)
End Sub

If we compile and execute this new program, it will create the same diagram. However, our
program is smaller because we have used the DefNodeProp and the DefLinkProp properties
of AddFlow which allow specifying default property values for nodes and links. For instance,
writing:
addflow.DefNodeProp.FillColor = Color.LightYellow;

indicates that all the nodes that will be created after will be filled with a LightYellow color.

Then you just need to specify the property values that differ from the defaults.

How to write the same program using the “old activex” style? This is demonstrated in the
following CreateDiagram5 method:

// C#
void CreateDiagram5(AddFlow addflow)
{
 // Default property values for nodes
 addflow.DefNodeProp.FillColor = Color.LightYellow;
 addflow.DefNodeProp.Shadow.Style = ShadowStyle.RightBottom;

 // Default property values for links
 addflow.DefLinkProp.DrawColor = Color.Blue;
 addflow.DefLinkProp.BackMode = BackMode.Opaque;

 // Create 3 nodes, add them to the diagram and
 // assign them some property values
 Node node1 = addflow.Nodes.Add(5, 5, 40, 40, “First node”);

 Node node2 = addflow.Nodes.Add(120, 70, 50, 40, “Second node”);
 node2.Shape.Style = ShapeStyle.Rectangle;

 Node node3 = addflow.Nodes.Add(5, 100, 40, 40, “Third node”);
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links, add them to the diagram and assign
 // them some property values
 Link link1 = node1.OutLinks.Add(node2, “link 1”);
 Link link2 = node2.OutLinks.Add(node2, “link 2”);

 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;
 link2.ArrowDst.Angle = ArrowAngle.deg30;

 Link link3 = node2.OutLinks.Add(node3, “link 3”);
 link3.Line.Style = LineStyle.HVH;
}

' VB
Private Sub CreateDiagram5(ByVal addflow As AddFlow)
 ' Default property values for nodes
 addflow.DefNodeProp.FillColor = Color.LightYellow
 addflow.DefNodeProp.Shadow.Style = ShadowStyle.RightBottom

 ' Default property values for links
 addflow.DefLinkProp.DrawColor = Color.Blue
 addflow.DefLinkProp.BackMode = BackMode.Opaque

 ' Create 3 nodes, add them to the diagram

 ' and assign them some property values
 Dim node1 As Node = addflow.Nodes.Add(5, 5, 40, 40, "First node")

 Dim node2 As Node = addflow.Nodes.Add(120, 70, 50, 40, "Second node")
 node2.Shape.Style = ShapeStyle.Rectangle

 Dim node3 As Node = addflow.Nodes.Add(5, 100, 40, 40, "Third node")
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links, add them to the diagram
 ' and assign them some property values
 Dim link1 As Link = node1.OutLinks.Add(node2, "link 1")

 Dim link2 As Link = node2.OutLinks.Add(node2, "link 2")
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red
 link2.ArrowDst.Angle = ArrowAngle.deg30

 Dim link3 As Link = node2.OutLinks.Add(node3, "link 3")
 link3.Line.Style = LineStyle.HVH
 End Sub

Notice that the DefNodeProp and the DefLinkProp properties have also an interactive effect.
Not only the nodes created programmatically will be filled with a LightYellow colour but also
the nodes created interactively with the mouse. This may be interesting or not, depending on
what you intend to do.

Anyway, it is also possible to specify default values when creating a diagram
programmatically and have other default values for the interactive creation.

5.2.7 The DefNodeProp and DefLinkProp properties

Now let us replace the CreateDiagram5 method by the following CreateDiagram6 method:

// C#
void CreateDiagram6(AddFlow addflow)
{
 Node dn = (Node)addflow.DefNodeProp.Clone();
 Link dl = (Link)addflow.DefLinkProp.Clone();

 // Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow;
 dn.Shadow.Style = ShadowStyle.RightBottom;

 // Default property values for links created programmatically
 dl.DrawColor = Color.Blue;
 dl.BackMode = BackMode.Opaque;

 // Create 3 nodes and assign them some property values
 Node node1 = new Node(5, 5, 40, 40, “First node”, dn);

 Node node2 = new Node(120, 70, 50, 40, “Second node”, dn);
 node2.Shape.Style = ShapeStyle.Rectangle;

 Node node3 = new Node(5, 100, 40, 40, “Third node”, dn);
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links
 Link link1 = new Link(“link 1”, dl);

 Link link2 = new Link(“link 2”, dl);
 link2.ArrowDst.Angle = ArrowAngle.deg30;
 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;

 Link link3 = new Link(“link 3”, dl);
 link3.Line.Style = LineStyle.HVH;

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);
}

' VB
Private Sub CreateDiagram6(ByVal addflow As AddFlow)
 Dim dn As Node = addflow.DefNodeProp.Clone()
 Dim dl As Link = addflow.DefLinkProp.Clone()

 ' Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow
 dn.Shadow.Style = ShadowStyle.RightBottom

 ' Default property values for links created programmatically
 dl.DrawColor = Color.Blue
 dl.BackMode = BackMode.Opaque

 ' Create 3 nodes and assign them some property values
 Dim node1 As Node = New Node(5, 5, 40, 40, "First node", dn)

 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node", dn)
 node2.Shape.Style = ShapeStyle.Rectangle

 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node", dn)
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links
 Dim link1 As Link = New Link("link 1", dl)

 Dim link2 As Link = New Link("link 2", dl)
 link2.ArrowDst.Angle = ArrowAngle.deg30
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red

 Dim link3 As Link = New Link("link 3", dl)
 link3.Line.Style = LineStyle.HVH

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)
 node2.OutLinks.Add(link3, node3)
End Sub

In this method, we clone the DefNodeProp and the DefLinkProp properties respectively in a
Node and a Link object. Then we change some property values of these objects and we use
them when creating nodes and links.

5.2.8 Stretching the links

We would like to add segments to our links. The following CreateDiagram7 method
demonstrates how to do that.

// C#
void CreateDiagram7(AddFlow addflow)
{
 Node dn = (Node)addflow.DefNodeProp.Clone();
 Link dl = (Link)addflow.DefLinkProp.Clone();

 // Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow;
 dn.Shadow.Style = ShadowStyle.RightBottom;

 // Default property values for links created programmatically
 dl.DrawColor = Color.Blue;
 dl.BackMode = BackMode.Opaque;

 // Create 3 nodes and assign them some property values
 Node node1 = new Node(5, 5, 40, 40, “First node”, dn);

 Node node2 = new Node(120, 70, 50, 40, “Second node”, dn);
 node2.Shape.Style = ShapeStyle.Rectangle;

 Node node3 = new Node(5, 100, 40, 40, “Third node”, dn);
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links
 Link link1 = new Link(“link 1”, dl);

 Link link2 = new Link(“link 2”, dl);
 link2.ArrowDst.Angle = ArrowAngle.deg30;
 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;

 Link link3 = new Link(“link 3”, dl);
 link3.Line.Style = LineStyle.HVH;

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);

 // Add 2 points (therefore 2 segments) to the first link
 link1.Points.Add(new PointF(40, 70));
 link1.Points.Add(new PointF(80, 20));

 // Stretch the reflexive link
 link2.Points[1] = new PointF(110, 10);
 link2.Points[2] = new PointF(200, 10);
}

' VB
Private Sub CreateDiagram7(ByVal addflow As AddFlow)
 Dim dn As Node = addflow.DefNodeProp.Clone()
 Dim dl As Link = addflow.DefLinkProp.Clone()

 ' Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow
 dn.Shadow.Style = ShadowStyle.RightBottom

 ' Default property values for links created programmatically
 dl.DrawColor = Color.Blue
 dl.BackMode = BackMode.Opaque

 ' Create 3 nodes and assign them some property values
 Dim node1 As Node = New Node(5, 5, 40, 40, "First node", dn)

 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node", dn)
 node2.Shape.Style = ShapeStyle.Rectangle

 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node", dn)
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links
 Dim link1 As Link = New Link("link 1", dl)

 Dim link2 As Link = New Link("link 2", dl)
 link2.ArrowDst.Angle = ArrowAngle.deg30
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red

 Dim link3 As Link = New Link("link 3", dl)
 link3.Line.Style = LineStyle.HVH

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)
 node2.OutLinks.Add(link3, node3)

 ' Add 2 points (therefore 2 segments) to the first link
 link1.Points.Add(New PointF(40, 70))
 link1.Points.Add(New PointF(80, 20))

 ' Stretch the reflexive link
 link2.Points(1) = New PointF(110, 10)
 link2.Points(2) = New PointF(200, 10)
End Sub

If we compile and execute this program, it will create the following diagram:

To add segments to a link or to alter its shape, you have to use the Points property collection
of the link. It is important to notice that this has to be done after the link insertion in the
diagram.

You can add points (and therefore segments) to the link 1 because its link line style is
Polyline. You could also do that it its link line style was Spline. However, for the other cases
(for instance Bezier as for the link 2), you cannot add points. You can however still modify
the position of the points.

The rules for managing the link collection of points are the following:

• You can manipulate the link Points collection only after its insertion in the diagram.
• After its insertion in the diagram, a link has at least 2 points.
• You cannot remove these 2 points, even if you execute the Clear Method of the Points

collection. The Count property of the Points collection is always superior or equal to
2. If you execute the Clear Method, then Count = 2.

• You can add or delete points only if the link line style is Polyline or Spline. However,
if the link line style is Bezier, then the Points collection has 4 points in any case.

• You cannot change the first point of the Points collection except if the AdjustOrg
property is true.

• You cannot change the last point of the Points collection except if the AdjustDst
property is true.

• You can change each other point of the Points collection in any case.

5.3 Displaying an image in a node

You can associate an image to a node with the ImageIndex property. This property
returns/sets the index of an image stored in the array of images defined by the Images
property of the AddFlow class.
The Images collection is a collection of FlowImage objects. The FlowImage class is used to
define the images used in nodes. It offers 2 ways to define such images:
• directly via a GDI+ Image object (property Image)
• via the url of an image object (property Url)

Example (using urls)

// C#
// Create the collection of images that will be used for nodes

AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\heart.bmp");
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\diamond.bmp");
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\spade.bmp");
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\club.bmp");

// Create 4 nodes
Node node1 = new Node(20, 20, 60, 60);
Node node2 = new Node(20, 100, 60, 60);
Node node3 = new Node(100, 20, 60, 60);
Node node4 = new Node(100, 100, 60, 60);

// Associate an image to each node
node1.ImageIndex = 0;
node2.ImageIndex = 1;
node3.ImageIndex = 2;
node4.ImageIndex = 3;

// Add the nodes to the diagram
AddFlow1.Nodes.Add(node1);
AddFlow1.Nodes.Add(node2);
AddFlow1.Nodes.Add(node3);
AddFlow1.Nodes.Add(node4);

' VB
' Create the collection of images that will be used for nodes
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\heart.bmp")
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\diamond.bmp")
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\spade.bmp")
AddFlow1.Images.Add("C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Graphics\bitmaps\assorted\club.bmp")

' Create 4 nodes
Dim node1 As Node = New Node(20, 20, 60, 60)
Dim node2 As Node = New Node(20, 100, 60, 60)
Dim node3 As Node = New Node(100, 20, 60, 60)
Dim node4 As Node = New Node(100, 100, 60, 60)

' Associate an image to each node
node1.ImageIndex = 0
node2.ImageIndex = 1
node3.ImageIndex = 2
node4.ImageIndex = 3

' Add the nodes to the diagram
AddFlow1.Nodes.Add(node1)
AddFlow1.Nodes.Add(node2)
AddFlow1.Nodes.Add(node3)
AddFlow1.Nodes.Add(node4)

5.4 Selection of items

5.4.1 Interactive selection

You can select a node or a link interactively by clicking it with the mouse.

You can also select several nodes or links interactively with the mouse if multi-selection is
allowed (in such a case, the MultiSel property must be true).

Note on selecting interactively a link with the mouse

If the link is made of one or several segments, then if you want to select it with the mouse,
you have just to click near one of its segments. If the link is a Bezier curve, then you have just
to click near the curve.

Note on interactive multi-selection

You can select several items by clicking them with the mouse and simultaneously pressing the
shift or control key. Or you can select items with a selection rectangle, if the MouseAction
property is set to MouseAction.Selection or MouseAction.Selection2. In this last case, you
bring the mouse cursor into the AddFlow control, press the left button, move the mouse and
release the left button. All nodes or links partly inside the selection rectangle are selected.
Then you can unselect some nodes by clicking them with the mouse and simultaneously
pressing the shift or control key. You can select them again by using the same method.

You can use the Shift Key in conjunction with a selection rectangle. For instance, you can
draw a selection rectangle with the mouse, which cause items inside this rectangle to be
selected. Then, if you press the Shift key, you can select additional items or unselect some
selected items.

5.4.2 Programmatic selection

You can select a node or a link programmatically with the AddFlow SelectedItem property or
with the Selected property of the Item object:

addflow.SelectedItem = node;

or

node.Selected = true;

You can also select several nodes or links programmatically with the Selected property:

// C#
node1.Selected = true;
node2.Selected = true;
link1.Selected = true;

' VB
node1.Selected = True

node2.Selected = True
link1.Selected = True

The SelectedItems collection property of AddFlow allows getting each selected item. For
instance:

// C#
// Make each selected item (node or link) red
foreach (Item item in addflow.SelectedItems)
 item.DrawColor = Color.Red;

' VB
' Make each selected item (node or link) red
For Each item As Item In AddFlow1.SelectedItems
 item.DrawColor = Color.Red
Next

5.4.3 Selection events

Two events are dealing with selection:

• The AfterSelect event is fired after a user has finished drawing a selection rectangle
with the mouse.

• The SelectionChange event is fired each time the selection status of an item is
changed.

5.4.4 Hit Testing

You can also know what object is under the mouse with the PointedItem property that returns
the reference of the item under the mouse. If several objects are under the mouse, the returned
object is the one that is at the top of the Z-order list. You may change this order with the
ZOrder property of the Item object.

Instead of using the PointedItem property, you may use the GetItemAt method.

5.5 Diagram navigation

AddFlow provides a set of properties and methods to navigate in a diagram (“Network
traversals”). Notice that the majority of the properties and methods described here are
demonstrated in the navig sample provided with AddFlow.

The Items property of the AddFlow control allows accessing every item (nodes and links) of
a diagram. For instance:

// C#
foreach (Item item in AddFlow1.Items)
 item.DrawColor = Color.Red;

' VB
For Each item As Item In AddFlow1.Items
 item.DrawColor = Color.Red
Next

The SelectedItems property of the AddFlow control allows accessing every selected item
(nodes and links) of a diagram. For instance:

// C#
foreach (Item item in AddFlow1.SelectedItems)
 item.DrawColor = Color.Red;

' VB
For Each item As Item In AddFlow1.SelectedItems
 item.DrawColor = Color.Red
Next

The Nodes property of the AddFlow control allows accessing every nodes of a diagram. For
instance:

// C#
foreach (Node node in AddFlow1.Nodes)
 node.DrawColor = Color.Red;

' VB
For Each node As Node In AddFlow1.Nodes
 node.DrawColor = Color.Red
Next

The OutLinks property of the Node object allows accessing every link that leave a node. For
instance:

// C#
foreach (Link link in node.OutLinks)
 link.DrawColor = Color.Red;

' VB
For Each link As Link In node.OutLinks
 link.DrawColor = Color.Red
Next

The InLinks property of the Node object allows accessing every link that come to a node. For
instance:

// C#
foreach (Link link in node.InLinks)
 link.DrawColor = Color.Red;

' VB
For Each link As Link In node.InLinks
 link.DrawColor = Color.Red
Next

The Links property of the Node object allows accessing every link that come to a node or
leave it. For instance:

// C#

foreach (Link link in node.Links)
 link.DrawColor = Color.Red;

' VB
For Each link As Link In node.Links
 link.DrawColor = Color.Red
Next

The GetLinkedNode method of the Node object returns the node connected via a given link.

node2 = node1.GetLinkedNode(link);

The Org property of the Link object returns/sets the reference of the origin node of the link.

The Dst property of the Link object returns/sets the reference of the destination node of the
link.

The Reverse method of the Link object reverses the link origin and destination nodes.

5.6 Parent-Child relationship

An item (node or link) can be the parent of a collection of nodes. This Parent-Child
relationship is established using the Parent property. The items must be added in the diagram
before using this property.

For a given item, you can get its collection of children using the Children property. For
instance:

// C#
foreach (Node label in node.Children)
 label.Transparent = false;

' VB
For Each label As Node In node.Children
 node.Transparent = False
Next

This hierarchy feature can be a way to associate many labels to a node or a link. If you move
the node or stretch the link, its labels follow it. The AttachmentStyle property defined how
the child node follows its parent item.

It is also a way to place several nodes inside a node. To facilitate that, you can use the Dock
property which works exactly as the Dock property of controls.

And finally, it is also an efficient way to group nodes to create another node. (See the Group
and Ungroup menu items in the afEdit sample).

What happens for the children nodes if you select the parent or if you remove it? This is
determined by the value of the HighlightChildren and RemoveChildren properties.

Finally, the following table gives us the list of properties needed to implement the Parent-
Child hierarchy.

AttachmentStyle Determines how a node is attached to its parent item.
Children Returns the collection of children nodes of an item (node or link).
Dock Determines how a node is placed inside its parent node.
HighlightChildren Determines if the children are highlighted when the item is selected.
Parent Returns/sets the parent item (node or link) of a node.
RemoveChildren Determines if the children are removed when the item is removed.

In this paragraph, we will see:

• how to attach a label to a node
• how to attach a label to a link
• how to place nodes inside a node.

5.6.1 Attach a label to a node

The following piece of code shows how to make a node be the child of another node.

 ' VB

 ' Create a node
 Dim node As Node = New Node(50, 50, 80, 80, "I am a node")

 ' Create another node that will be used as a label for the first
 ' node.
 ' This node is defined as unselectable, transparent. It will follow
 ' its parent node if any. Its Logical property is set to False to
 ' emphasize its labeling nature.
 Dim label As Node = New Node(50, 20, 60, 20, "I am a node label")
 label.Shape.Style = ShapeStyle.Rectangle
 label.DrawColor = Color.Transparent
 label.TextColor = Color.Red
 label.Transparent = True
 label.Logical = False
 label.Selectable = False
 label.AutoSize = Lassalle.Flow.AutoSize.NodeToText
 label.AttachmentStyle = AttachmentStyle.Item

 ' Add nodes in the diagram.
 AddFlow1.Nodes.Add(node)
 AddFlow1.Nodes.Add(label)

 ' Create the Parent-Child relationship.
 label.Parent = node

If we execute this code, it will create the following diagram:

If you move the circle node, its label node will follow it because its Attachment style is
AttachmentStyle.Item.

5.6.2 Attach a label to a link

The following piece of code shows how to several labels to a link.

 ' VB
 ' Create 2 nodes and a link
 Dim node1 As Node = New Node(50, 50, 60, 60, "Org")
 node1.Shape.Style = ShapeStyle.RoundRect

 Dim node2 As Node = New Node(550, 50, 60, 60, "Dst")
 node2.Shape.Style = ShapeStyle.RoundRect

 Dim link As Link = New Link()
 link.DrawColor = Color.Blue

 ' Create 4 labels
 Dim label1 As Node = New Node(120, 90, 80, 25, "Move with org")
 label1.Shape.Style = ShapeStyle.Rectangle
 label1.DrawColor = Color.Transparent
 label1.TextColor = Color.Blue
 label1.Transparent = True
 label1.AttachmentStyle = AttachmentStyle.OriginNode

 Dim label2 As Node = New Node(275, 90, 80, 25, "Move with link")
 label2.Shape.Style = ShapeStyle.Rectangle
 label2.DrawColor = Color.Transparent
 label2.TextColor = Color.Blue
 label2.Transparent = True
 label2.AttachmentStyle = AttachmentStyle.Item

 Dim label3 As Node = New Node(460, 90, 80, 25, "Move with dst")
 label3.Shape.Style = ShapeStyle.Rectangle
 label3.DrawColor = Color.Transparent
 label3.TextColor = Color.Blue
 label3.Transparent = True
 label3.AttachmentStyle = AttachmentStyle.DestinationNode

 Dim label4 As Node = New Node(275, 30, 80, 25, "Don't move")
 label4.Shape.Style = ShapeStyle.Rectangle
 label4.DrawColor = Color.Transparent
 label4.TextColor = Color.Blue
 label4.Transparent = True
 label4.AttachmentStyle = AttachmentStyle.None

 ' Add the items to the diagram.
 AddFlow1.Nodes.Add(node1)
 AddFlow1.Nodes.Add(node2)
 node1.OutLinks.Add(link, node2)
 AddFlow1.Nodes.Add(label1)
 AddFlow1.Nodes.Add(label2)
 AddFlow1.Nodes.Add(label3)
 AddFlow1.Nodes.Add(label4)

 ' Create the Parent-Child relationships.
 label1.Parent = link
 label2.Parent = link
 label3.Parent = link

 label4.Parent = link

If we execute this code, it will create the following diagram:

If you move the origin node, only the node “Move with org” and the node “Move with link”
will move.

If you move the destination node, only the node “Move with dst” and the node “Move with
link” will move.

If you stretch the link, only the node “Move with link” will move. Then if you create several
segments, the label node will be attached to the nearer segment and it will follow this
segment.

The node “Don’t move” does not move because its AttachmentStyle is set to
AttachmentStyle.None.

5.6.3 Place nodes inside a node.

You can place a node inside another one using the Dock property which works the same way
as the Dock property for controls. For instance the first child node is placed at the top of the
parent node because its Dock property is set to DockStyle.Top.

 ' VB

 ' Create the "parent" node
 Dim parent As Node = New Node(150, 50, 250, 200)
 parent.Shape.Style = ShapeStyle.Rectangle

 ' Create 5 child nodes
 Dim child1 As Node = New Node(50, 130, 90, 20, "1: Top")
 child1.Shape.Style = ShapeStyle.Rectangle
 child1.DrawColor = Color.Transparent
 child1.FillColor = Color.LightGreen
 child1.AttachmentStyle = AttachmentStyle.Item
 child1.Dock = DockStyle.Top
 child1.Selectable = False

 Dim child2 As Node = New Node(50, 160, 60, 20, "2: Left")
 child2.Shape.Style = ShapeStyle.Rectangle
 child2.DrawColor = Color.Transparent
 child2.FillColor = Color.Yellow
 child2.AttachmentStyle = AttachmentStyle.Item
 child2.Dock = DockStyle.Left
 child2.Selectable = False

 Dim child3 As Node = New Node(50, 190, 60, 20, "3: Bottom")

 child3.Shape.Style = ShapeStyle.Rectangle
 child3.DrawColor = Color.Transparent
 child3.FillColor = Color.LightSalmon
 child3.AttachmentStyle = AttachmentStyle.Item
 child3.Dock = DockStyle.Bottom
 child3.Selectable = False

 Dim child4 As Node = New Node(50, 220, 60, 20, "4: Right")
 child4.Shape.Style = ShapeStyle.Rectangle
 child4.DrawColor = Color.Transparent
 child4.FillColor = Color.LightGray
 child4.AttachmentStyle = AttachmentStyle.Item
 child4.Dock = DockStyle.Right
 child4.Selectable = False

 Dim child5 As Node = New Node(50, 250, 90, 20, "5: Fill")
 child5.Shape.Style = ShapeStyle.Rectangle
 child5.DrawColor = Color.Transparent
 child5.FillColor = Color.LightSlateGray
 child5.AttachmentStyle = AttachmentStyle.Item
 child5.Dock = DockStyle.Fill
 child5.Selectable = False

 ' Add the items to the diagram.
 AddFlow1.Nodes.Add(parent)
 AddFlow1.Nodes.Add(child1)
 AddFlow1.Nodes.Add(child2)
 AddFlow1.Nodes.Add(child3)
 AddFlow1.Nodes.Add(child4)
 AddFlow1.Nodes.Add(child5)

 ' Create the Parent-Child relationships.
 child1.Parent = parent
 child2.Parent = parent
 child3.Parent = parent
 child4.Parent = parent
 child5.Parent = parent

If we execute this code, it will create the following diagram:

Au you can see, you children nodes have been placed automatically in the parent node.

5.7 Some other information about drawing

AddFlow for WinForms provides also some properties that control the general aspect of a
diagram:

AntiAliasing Determines whether anti-aliasing graphics rendering technique is used to display the graph.
Images Returns the collection of images that can be used to display an image in a node.
OwnerDraw Determines whether you want to provide custom drawing for the diagram.
PageScale Returns/sets a value that determines the scaling used to display the graph.
PageUnit Returns/sets a value that determines the unit of measure used to display the graph.
Zoom Returns/sets the horizontal and vertical zooming factors.

5.8 Serialization

There are several methods:

5.8.1 The IXmlSerializable method

AddFlow for WinForms version 2 is supporting the IXmlSerializable interface. Therefore
you can save a diagram in a file using the WriteXml method and de-serialize it using the
ReadXml method. This method is demonstrated in the afEdit and DemoLayout samples
which use also this interface to implement the Cut/Copy/Paste features.

An interesting feature of this method is that it can be customized. Each time a node or a link is
serialized or de-serialized, some events are fired, giving the opportunity to save or load
custom data.

The serialization events are the following:

• BeforeReadXMLNode event. Occurs before a node is de-serialized.
• BeforeWriteXMLNode event. Occurs before a node is serialized.
• BeforeReadXMLLink event. Occurs before a link is de-serialized.
• BeforeWriteXMLLink event. Occurs before a link is serialized.
• ReadXMLLinkExtraData event. Occurs when a link is de-serialized, allowing

loading custom data.
• ReadXMLNodeExtraData event. Occurs when a node is de-serialized, allowing

loading custom data.
• WriteXMLLinkExtraData event. Occurs when a link is serialized, allowing saving

custom data
• WriteXMLNodeExtraData event. Occurs when a node is serialized, allowing saving

custom data

The use of these events is explained in the paragraph Derivation of Node and Link classes and
demonstrated in the DeriveNode sample (and also in the PropertyBag and Tables2 samples).

Following are some examples of diagram xml files.

Example 1

Here, all property values are the default AddFlow values, therefore the xml file is very small.

<?xml version="1.0"?>
<!--AddFlow.net diagram-->
<AddFlow Nodes="6" Links="5">
 <Version>2.1.0.0</Version>
 <Node Index="0" Left="40" Top="40" Width="40" Height="40" />
 <Node Index="1" Left="140" Top="140" Width="40" Height="40" />
 <Node Index="2" Left="140" Top="40" Width="40" Height="40" />
 <Node Index="3" Left="40" Top="140" Width="40" Height="40" />
 <Node Index="4" Left="240" Top="40" Width="40" Height="40" />
 <Node Index="5" Left="240" Top="140" Width="40" Height="40" />
 <Link Index="6" Org="0" Dst="2" />
 <Link Index="7" Org="2" Dst="1" />
 <Link Index="8" Org="1" Dst="5" />
 <Link Index="9" Org="5" Dst="4" />
 <Link Index="10" Org="4" Dst="3" />
</AddFlow>

If you load this diagram with the ReadXml method you obtain the following diagram.

Example 2

Here, some default property values are defined for the nodes (Shape) and the links
(DrawColor).

<?xml version="1.0"?>
<!--AddFlow.net diagram-->
<AddFlow Nodes="6" Links="5">
 <Version>2.1.0.0</Version>
 <DefaultNode>
 <Shape Style="Rectangle" Orientation="so_0" />
 </DefaultNode>
 <DefaultLink>
 <DrawColor>-65536</DrawColor>
 </DefaultLink>
 <Node Index="0" Left="40" Top="40" Width="40" Height="40" />
 <Node Index="1" Left="140" Top="140" Width="40" Height="40" />
 <Node Index="2" Left="140" Top="40" Width="40" Height="40" />
 <Node Index="3" Left="40" Top="140" Width="40" Height="40" />
 <Node Index="4" Left="240" Top="40" Width="40" Height="40" />
 <Node Index="5" Left="240" Top="140" Width="40" Height="40" />
 <Link Index="6" Org="0" Dst="2" />
 <Link Index="7" Org="2" Dst="1" />

 <Link Index="8" Org="1" Dst="5" />
 <Link Index="9" Org="5" Dst="4" />
 <Link Index="10" Org="4" Dst="3" />
</AddFlow>

If you load this diagram with the ReadXml method you obtain the following diagram.

Example 3

Here, a node has a property value distinct from the default value. It is also the case for a link.

<?xml version="1.0"?>
<!--AddFlow.net diagram-->
<AddFlow Nodes="6" Links="5">
 <Version>2.1.0.0</Version>
 <DefaultNode>
 <Shape Style="Rectangle" Orientation="so_0" />
 </DefaultNode>
 <DefaultLink>
 <DrawColor>-65536</DrawColor>
 </DefaultLink>
 <Node Index="0" Left="40" Top="40" Width="40" Height="40" />
 <Node Index="1" Left="140" Top="140" Width="40" Height="40" />
 <Node Index="2" Left="140" Top="40" Width="40" Height="40" />
 <Node Index="3" Left="40" Top="140" Width="40" Height="40" />
 <Node Index="4" Left="240" Top="40" Width="40" Height="40" />
 <Node Index="5" Left="240" Top="140" Width="40" Height="40">
 <Shape Style="MagneticDisk" Orientation="so_0" />
 </Node>
 <Link Index="6" Org="0" Dst="2" />
 <Link Index="7" Org="2" Dst="1" />
 <Link Index="8" Org="1" Dst="5" />
 <Link Index="9" Org="5" Dst="4" />
 <Link Index="10" Org="4" Dst="3">
 <DrawColor>-16776961</DrawColor>
 </Link>
</AddFlow>

If you load this diagram with the ReadXml method you obtain the following diagram:

Example 4

Here, the diagram is a little more complicated.

<?xml version="1.0"?>
<!--AddFlow.net diagram-->
<AddFlow Nodes="6" Links="5">
 <Version>2.1.0.0</Version>
 <DefaultNode>
 <Shape Style="Rectangle" Orientation="so_0" />
 </DefaultNode>
 <DefaultLink>
 <DrawColor>-65536</DrawColor>
 </DefaultLink>
 <Node Index="0" Left="40" Top="40" Width="40" Height="40">
 <Text>A</Text>
 </Node>
 <Node Index="1" Left="140" Top="140" Width="40" Height="40">
 <Text>E</Text>
 </Node>
 <Node Index="2" Left="140" Top="40" Width="40" Height="40">
 <Text>B</Text>
 </Node>
 <Node Index="3" Left="40" Top="140" Width="40" Height="40">
 <Text>D</Text>
 </Node>
 <Node Index="4" Left="240" Top="40" Width="40" Height="40">
 <Text>C</Text>
 </Node>
 <Node Index="5" Left="240" Top="140" Width="40" Height="40">
 <Shape Style="MagneticDisk" Orientation="so_0" />
 <FillColor>-256</FillColor>
 <Text>F</Text>
 </Node>
 <Link Index="6" Org="0" Dst="2" />
 <Link Index="7" Org="2" Dst="1" />
 <Link Index="8" Org="1" Dst="5" />
 <Link Index="9" Org="5" Dst="4" />
 <Link Index="10" Org="4" Dst="3">
 <Line Style="Polyline" OrthogonalDynamic="False" RoundedCorner="True"
DoubleLine="False" />
 <ArrowDst Head="Arrow" Size="Small" Angle="deg30" Filled="True" />
 <DrawColor>-16776961</DrawColor>
 <Text>Back</Text>
 <Point X="360" Y="60" />
 <Point X="360" Y="260" />
 <Point X="140" Y="260" />
 <Point X="60" Y="240" />

 </Link>
</AddFlow>

If you load this diagram with the ReadXml method you obtain the following diagram.

A

E

B

D

C

F

Back

Remarks about the XML format

Currently, there is no DTD or schema provided for the AddFlow XML files. However, we can
give the following information about the structure of our XML files.

1) In the previous examples, the Node elements are placed before the Link elements. This is
not required. This is just because when creating this diagram, the nodes have been created
before the links (and their Z-Order position has not been changed after). And because
AddFlow serializes the items following the Z-Order position, the nodes have been placed
before the links.

2) The number of Node elements must be the same than the Nodes attribute of the AddFlow
element. The number of Link elements must be the same than the Links attribute of the
AddFlow element.

3) Inside a Node or a Link element, the subnodes elements (“Text”, “FillColor”, etc) don’t
need to appear in a specific order. For instance:

 <Node Index="5" Left="240" Top="140" Width="40" Height="40">
 <Shape Style="MagneticDisk" Orientation="so_0" />
 <FillColor>-256</FillColor>
 <Text>F</Text>
 </Node>

will give the same output as:

 <Node Index="5" Left="240" Top="140" Width="40" Height="40">
 <Text>F</Text>
 <Shape Style="MagneticDisk" Orientation="so_0" />
 <FillColor>-256</FillColor>
 </Node>

4) Attributes.

• The Node element has 5 or 6 attributes. The Index, Left, Top, Width and Height
attributes are required. The Custom attribute is optional.

• The Link element has 3 or 4 attributes. The Index, Org and Dst attributes are
required. The Custom attribute is optional.

•

The Custom attribute is described in the paragraph Derivation of Node and Link classes.

5) Subnodes.

All the subnodes of the Node and Link elements are optional.

5.8.2 The XMLFlow method

You may prefer using the old method based on the XMLFlow extension. It is a component,
provided with AddFlow, and which allows saving and loading a diagram or a portion of a
diagram in a XML stream. You can use XMLFlow to save/load a diagram in a file or to
copy/paste a portion of the diagram onto the clipboard or to implement a Drag&Drop feature.

Remarks

• This component is free and its C# source code is provided with AddFlow.
• Its use is demonstrated in the TreeEdit sample provided with AddFlow.
• We do not provide any support for XMLFlow.
• The method using the IXmlSerializable interface is quicker and it avoids using

an additional dll in your project.

5.8.3 Your own method

You may also develop your own method. In such a case, the source code of XMLFlow may
be a starting point for you.

5.9 Printing a diagram

AddFlow itself does not offer any printing feature. However, the printing and the print
previewing of AddFlow diagrams can be performed with the PrnFlow DLL provided with
AddFlow.

This component is free and its C# source code is provided with AddFlow. Its use is
demonstrated in the afEdit sample provided with AddFlow.

Notice that we do not provide any support for PrnFlow.

Notice also the AddFlow PageGrid property which returns/sets a Grid object allowing to set
the properties of the grid used to display printing pages.

5.10Exporting the diagram

5.10.1The Render method

The Render method can be used to display the diagram in any GDI+ drawing area. This
method could be used for instance to implement a “bird view” window.

5.10.2Metafile support

You can export an AddFlow diagram as a Metafile with the ExportMetafile method. The
exported image can be saved in a file, copied in a picture box or in the clipboard. This method
is demonstrated in the afEdit sample provided with AddFlow.

5.10.3SVG support

The SVGFlow dll allows exporting an AddFlow diagram in SVG document.

SVG (Scalable Vector Graphics) is a standard for authoring and deploying two-dimensional
vector graphics using XML documents. SVGs can be used as an element of a HTML
document.

Currently, browsers do not natively support SVG. Therefore, to view an SVG document
within web pages, an SVG viewer needs (like the Adobe SVG Viewer or the Corel SVG
Viewer) to be downloaded and installed in the client browser.

The following code is all you need to do to export an AddFlow diagram in SVG format.

// C#
System.Xml.XmlDocument oDocument =
 Lassalle.Flow.SVG.SVGFlow.FlowToSVG(AddFlow1);
oDocument.Save(fileName);
System.Diagnostics.Process.Start(fileName);

' VB
Dim oDocument As System.Xml.XmlDocument
oDocument = Lassalle.Flow.SVG.SVGFlow.FlowToSVG(AddFlow1)
oDocument.Save(fileName)
System.Diagnostics.Process.Start(fileName)

The last line allows running the browser in order to see the SVG file.

6 Avanced topics
6.1 Undo/Redo

AddFlow provides a powerful multilevel Undo/Redo feature. The history length is limited
only by available memory. However, you can limit it yourself with the UndoSize property.
You can also enable/disable the undo/redo with the CanUndoRedo property.

Updating the user interface

Some properties and methods allow you to properly update the user interface. The CanUndo
and CanRedo methods will tell you if there is something to undo or redo and therefore will
allow you to grey out the menu options. The RedoCode and UndoCode properties return a
code that describes the action waiting to be redone or undone. This will allow your
application to give descriptions of the actions on the undo and redo history.

Grouping basic actions

Every basic action has a code. However, the BeginAction and EndAction methods allow you
to define a group of actions and to assign a code to this group. This is useful if for instance, in
your application, the user can open a dialog box allowing changing several properties of a
node (for instance, its text, its shape and its filling color). You will certainly wish to allow the
user to undo these 3 basic actions in one time.

Notice that you can also stop recording actions with the SkipUndo method and also clear the
Undo/Redo buffer with the ResetUndoRedo buffer.

Another interesting method is the AddToLastAction method. For instance, it allows
grouping some actions with the last recorded action or group of actions.. This is demonstrated
in the Tables2 sample: after having resized a node, therefore when receiving the AfterResize
event, you wish to adjust the shape of its links. However, you wish to group this reshaping
actions with the node resizing action. For that, you use the AddToLastAction method:

' VB
AddFlow1.AddToLastAction()
AdjustAllLinkSegments(node)
AddFlow1.EndAction()

Notice that you have to call the EndAction to terminate the group of actions.

Undo/Redo customization

The undo/redo can be customized. For that, you have to create a custom Task class by
deriving the Task class and then you can insert it in the undo list with the SubmitTask
method.

What can be undone and redone?

The rule is the following: every action that changes a diagram can be undone or redone. This
includes actions like moving or resizing nodes or stretching links or changing a text, a color, a
picture or a font. This includes also actions that only change the internal state of the document
without having any visible effect, for instance, changing the XMoveable property.

However, making a selection does not change the document so you will not be able to undo a
selection. Changing properties of the AddFlow control (zoom, grid, default filling color, etc)
does not change the document too. Therefore, it will not be possible to undo these actions.
And finally, file, print and export operations are clearly not undoable.

AddToLastAction Add the following actions in the last group of actions
BeginAction Start a group of actions that can be undone in one time.
CanRedo Indicates if there is an action that can be redone.
CanUndo Indicates if there is an action that can be undone.
CanUndoRedo Determines whether undo/redo is allowed.
EndAction Terminate a group of actions that can be undone in one time.
Redo Redo, if possible, the last action.
RedoCode Returns the code of the next redoable action.
ResetUndoRedo Clears the undo/redo buffer.
SkipUndo Determines whether the following actions are recorded in the undo manager.
SubmitTask Submit a task (or action) that can be undone and redone.
Undo Undo, if possible, the last action.
UndoCode Returns the code of the next undoable action.
UndoSize Sets and returns the number of undo commands that can be performed.

6.2 Performance tuning

To maintain performance while items are added to the AddFlow control, you should call the
BeginUpdate method. The BeginUpdate method prevents the control from painting until the
EndUpdate method is called.

Also, between the calls to BeginUpdate and EndUpdate, the size of the diagram is not
updated. It is updated only when the EndUpdate method is called. If you need the size of the
diagram before the call to EndUpdate, you can use the GetDiagramSize method.

The two methods BeginUpdate and EndUpdate are used in the Stress sample provided with
AddFlow (and also in the Demo sample)

Other tips for better performances

• Disable the Undo/Redo! If you are creating programmatically a big diagram (as in the
Stress sample), it is also important to disable the undo/redo with the CanUndoRedo
property.

• Do not create link jumps! You should use jumps only for small diagrams (less than
200 nodes) because the algorithm used to find intersections requires considerable
computational resources. By default however, link jumps are not created (See the
Jump property of links).

• If you are assigning many property values to nodes and links, don’t use the ”Old
ActiveX” method to create items. (See the paragraph Another way to create the
diagram)

6.3 Automatic Graph Layout

The primary purpose of an automatic graph layout feature is to offer a way to display graphs
or flow charts in a reasonable manner, following some aesthetic rules.

AddFlow does not provide directly any automatic graph layout feature. However, we propose
LayoutFlow, a set of 5 graph layout components:

o HFlow Hierarchic layout
o OFlow Orthogonal layout
o SFlow Symmetric layout
o SPFlow Series Parallel layout
o TFlow Tree layout

Each of these graph layout components performs a layout on a graph. Performing a layout
automatically positions its nodes (also called vertices) and links (also called edges).

Typically, you can first create your nodes and links inside AddFlow, using the AddFlow API,
giving each node a random or a (0,0) position. Then you call the layout method of the graph
layout control of your choice. This method will position the nodes and the links in a
reasonable manner in the AddFlow control, following some aesthetic rules that depend on the
chosen control (hierarchical with HFlow, symmetric with SFlow, orthogonal with OFlow...).

Remarks

• Currently, HFlow, OFlow, SFlow, SPFlow and TFlow are AddFlow extensions and
you cannot use them without AddFlow. If you just want to perform a layout on a
graph without displaying them in an AddFlow control (for instance because you have
already a way to display the diagram), then you can use both a hidden AddFlow
control and the graph layout control, for instance HFlow, to do that. In such a case,
AddFlow is just used to store the logical structure of the graph and to retrieve via its
API, the resulting positions of its nodes and links.

• The DemoLayout sample installed with AddFlow shows how to use each graph
layout component.

• Only the Logical nodes and links of the AddFlow control are involved in each layout.
This will allow you to apply the layout only to important nodes. For instance, you can
exclude a node just used to display a label by setting its Logical property to false.

• Reflexive links are not taken into account by layout algorithms. Reflexive links are
just translated to follow their origin (and also destination) node.

6.3.1 HFlow (Hierarchic layout)

6.3.1.1 Purpose

HFlow for WinForms is a component that performs a hierarchical layout on a graph. The
hierarchical layout arranges vertices in horizontal layers. The order of the nodes on the layers
is chosen so that the number of crossings is kept as small as possible.

- HFlow layout -

6.3.1.2 Code example

The following VB code is all you need to do to perform a hierarchical layout:

Dim hflow As HFlow = New HFlow()
hflow.LayerDistance = 50 ' Sets the distance between adjacent levels
hflow.VertexDistance = 50 ' Sets the distance between adjacent nodes
hflow.Orientation = North
hflow.LayerWidth = 0 ' No limitation in the number of nodes in a level

hflow.Layout(AddFlow1) ' Perform the hierarchical layout

This code supposes that you have a form containing an AddFlow control. You create the
graph in the AddFlow control, either interactively, either programmatically (in this case,
giving each node a random position or a (0,0) position). Then you apply the HFlow layout to
this graph. And each bode will be placed at a reasonable position.

6.3.1.3 Limitation

HFlow works with any graph, connected or not.

6.3.1.4 Side Effect

After the layout execution:

• the line style of the links is Polyline
• the AdjustOrg and AdjustDst properties are true.

6.3.2 OFlow (Orthogonal layout)

6.3.2.1 Purpose

OFlow for WinForms is a component that performs an orthogonal layout on a graph. The
layout is orthogonal since it produces an orthogonal drawing where each link is drawn as a
polygonal chain of alternating horizontal and vertical segments. The algorithm used is the
Biedl and Kant algorithm.

a

b

c

d

e

f

g

- OFlow layout -

6.3.2.2 Code example

The following VB code is all you need to do to perform an orthogonal layout:

Dim oflow As OFlow = New OFlow()
oflow.xGrid = 50 ' Sets the grid size
oflow.yGrid = 50
oflow.Orientation = North
oflow.Layout(AddFlow1) ' Perform the orthogonal layout

6.3.2.3 Limitation

OFlow works with any graph, connected or not.

Note however that this algorithm is making generous use of space and the resulting layout is
good only with small graphs.

6.3.2.4 Side Effect

After the layout execution:

• the size of the nodes is changed. If the graph is a graph of maximum degree four, then
each node has the same size (determined by the GridSize property). If the degree of a
node is higher than four, then the height of the node is expanded.

• the line style of the links is Polyline.
• the AdjustOrg and AdjustDst properties are true.

6.3.3 SFlow (Symmetric layout)

6.3.3.1 Purpose

SFlow is a component that performs a symmetric layout on a graph. This layout produces a
high degree of symmetry and is particularly useful for undirected graphs, where the directions
of the links are not important. SFlow is using a force-directed algorithm (the GEM method of
Frick, Ludwig and Mehldau) where a graph is viewed as a system of bodies with forces acting
between the bodies.

- SFlow layout -

6.3.3.2 Code example

The following VB code is all you need to do to perform a symmetric layout on a graph:

Dim sflow As SFlow = New SFlow()
sflow.Distance = 50 ' Sets the distance between nodes
sflow.Layout(AddFlow1) ' Perform the symmetric layout

If the Animation property is true, then you can see how the layout is working. It is just for
fun.

6.3.3.3 Limitation

SFlow works with any graph, connected or not. However, it is recommended to work only
with small graphs (less than 200 nodes) because SFlow is using a force-directed method and
force-directed methods are using considerable computational resources.

6.3.3.4 Side Effect

After the layout execution:

• the line style of the links is Polyline and each link is composed of only one segment.
• the AdjustOrg and AdjustDst properties are true.

6.3.4 SPFlow (Series-parallel layout)

6.3.4.1 Purpose

SPFlow is a component that performs a series-parallel layout on a graph. The SP layout
applies only to a specific subset of graphs: series-parallel digraph (more precisely, a set of
series-parallel diagraphs). A series-parallel digraph is defined recursively as follows.
A digraph consisting of two nodes, a source s and a sink t joined by a single link is a series-
parallel digraph.
If G1 and G2 are series-parallel digraphs, so are the digraphs constructed by each of the
following operations:
- the parallel composition: identify the source of G1 with the source of G2 and the sink of G1
with the sink of G2.
- the series composition: identify the sink of G1 with the source of G2.

We use an algorithm (described in the book "Drawing Graphs" Michael Kaufmann - Dorothea
Wagner) that allows drawing series-parallel digraphs with as much symmetry as possible.

- SPFlow layout: DrawingStyle = BusOrthogonalDrawing

- SPFlow layout: DrawingStyle = StraightLine -

- SPFlow layout: DrawingStyle = VisibilityDrawing -

6.3.4.2 Code example

The following VB code is all you need to do to perform a series-parallel layout on a graph:

Dim spflow As SPFlow = New SPFlow()
spflow.LayerDistance = 80 ' Sets the distance between adjacent levels
spflow.VertexDistance = 80 ' Sets the distance between adjacent nodes
spflow.Orientation = Orientation.North
spflow.DrawingStyle = DrawingStyle.BusOrthogonalDrawing
spflow.Layout(AddFlow1) ' Perform the series-parallel layout

If the graph is not a set of series-parallel digraph, an exception is generated.

6.3.4.3 Limitation

The layout applies only to a specific subset of graphs: series-parallel digraphs. One of the
requirements is that this diagram has only one starting node and only one ending node.
However, it is not actually a limitation. If, for instance, the number of ending nodes is greater
than one, then a workaround is to create a dummy node and create a link from each ending
node to this dummy node, then execute the layout and then delete the dummy node (which
causes all the dummy links to be deleted too).

6.3.4.4 Side Effect

After the layout execution:

• the line style of the links is Polyline. Moreover, if the DrawingStyle property is not
BusOrthogonalDrawing, then each link is composed of only one segment.

• the AdjustOrg and AdjustDst properties are true.

6.3.5 TFlow (Tree layout)

6.3.5.1 Purpose

TFlow is a component that performs a tree layout on a graph. This layout applies only to a
specific subset of graphs: rooted trees. In such a graph, no node may have more than one
parent. TFlow offers two drawing styles (DrawingStyle property).

• If the DrawingStyle is Layered, then the drawing of the tree occupies as little space as
possible while satisfying certain aesthetics: nodes at the same level of the tree are
placed on the same line and a parent is centred over its children.

• If the DrawingStyle is Radial, then the root of the tree is placed at the origin and the
layers are concentric circles centred at the origin.

- TFlow layout: DrawingStyle = Layered -

- TFlow layout: DrawingStyle = Radial -

6.3.5.2 Code example

The following VB code is all you need to do to perform a tree layout on a graph:

Dim tflow As TFlow = New TFlow()
tflow.LayerDistance = 1000 ' Sets the distance between adjacent levels
tflow.VertexDistance = 1000 ' Sets the distance between adjacent nodes
tflow.Orientation = Orientation.North
tflow.Layout(AddFlow1) ' Perform the tree layout

If the graph is not a forest of rooted trees, an exception is generated.

6.3.5.3 Limitation

The layout applies only to a specific subset of graphs: rooted trees. More precisely, the layout
applies to forests (sets of rooted trees).

6.3.5.4 Side Effect

After the layout execution:

• the line style of the links is Polyline
• the AdjustOrg and AdjustDst properties are true.

6.4 Link auto-routing

6.4.1 Introduction

The RouteFlow dll allows link auto-routing. It is an AddFlow extension and you cannot use it
without AddFlow.

By default, when the user creates a link between 2 nodes, the link is drawn as a straight line
which may traverse other nodes, as in the following example.

The RouteFlow algorithm allows finding a route between the other nodes which are
considered as obstacles, as illustrated in the following picture.

6.4.2 Method

RouteFlow uses the following rules:

1) Orthogonality rule

 The path is composed of orthogonal segments. A new segment is always orthogonal to the
previous one.

2) Distance rule (we try to decrease the distance towards the destination node) When we
move in a segment:

• If the distance towards the destination node is increasing, then we stop the current
segment and create a new segment allowing decreasing the distance towards the
destination node.

• Else we continue until:
o Either we hit an obstacle (another node)
o Either we reach the X or Y coordinates of the destination.

3) Obstacle rule

• If we hit an obstacle, we backtrack to the previous segment and we continue to move.
• If this is not possible, we move back one step and we create a new segment.

4) Start rule

The first segment is orthogonal to a side of the origin node rectangle. Several methods to
select the starting side are provided via the StartingMethod property.

6.4.3 Code sample

The following VB code is all you need to do to perform a route finding for a link. This code
should be included in the handler of the AfterAddLink event of AddFlow.

' VB
Dim routeFlow As Lassalle.Flow.Router.RouteFlow
routeFlow = New Lassalle.Flow.Router.RouteFlow
routeFlow.StartingMethod = Lassalle.Flow.Router.StartingMethod.AllSides
routeFlow.Grain = 8
routeFlow.MinDistance = 16
routeFlow.FindRoute(e.Link)

// C#
Lassalle.Flow.Router.RouteFlow routeFlow = new
 Lassalle.Flow.Router.RouteFlow();
routeFlow.StartingMethod = Lassalle.Flow.Router.StartingMethod.AllSides;
routeFlow.Grain = 8;
routeFlow.MinDistance = 16;
routeFlow.FindRoute(e.Link);

The RouteLink sample provided with AddFlow demonstrates the link auto-routing performed
by RouteFlow. It may provide a little animation, using the Step event (If the SendStepEvent
property is true, the Step event is sent at each step of the algorithm: this feature is used by the
RouteLink sample).

6.4.4 Limitations

There are some limitations. The auto-routing is performed only if:

• The link is not reflexive
• The line style is Polyline
• The AdjustDst and AdjustOrg properties are true.

Moreover, only logical nodes can be obstacles.

And finally, in some cases (pathological diagrams), the auto-routing algorithm may fail
to provide a correct solution. In such cases, it will just draw only one segment joining the
origin and destination nodes.

6.5 Customization

6.5.1 Overview

There are several ways to customize AddFlow and you can customize the AddFlow
behaviour, the AddFlow drawings and also the data associated to nodes and links.

a) Behaviour customization

• AddFlow capabilities. AddFlow offers you a set of properties allowing customizing
its behavior.

• AddFlow class derivation.

b) Drawing customization

• Custom shapes. You can customize the AddFlow drawings by using the possibility to
create custom shapes for nodes and links.

• OwnerDraw property.You can also customize the AddFlow drawings using the
OwnerDraw property.

c) Data customization

There are 3 ways to associate custom data to a node or link:
• Tag property. You can use it to associate an object to a node or a link
• Property bag. You can use it to easily add new custom properties to nodes and links.
• Derivation of Node and Link classes.

6.5.2 Behavior customization

6.5.2.1 AddFlow capabilities

Following properties allow to set capabilities for an AddFlow control and therefore to
customize it. For instance, if you wish to allow only one link between two nodes, you have
just to unset the CanMultiLink property.

CursorSetting Determines whether default cursors are displayed.
CanChangeDst Determines whether the user can interactively change the destination of a link.
CanChangeOrg Determines whether the user can interactively change the origin of a link.
CanDragScroll Determines whether drag scrolling is allowed or not.
CanDrawNode Determines whether interactive creation of nodes is allowed or not.
CanDrawLink Determines whether interactive creation of links is allowed or not.
CanFireError Determines if the error event is fired or not.

CanLabelEdit Determines whether the user can edit the text of nodes.
CanReflexLink Determines whether interactive creation of reflexive links is allowed or not.
CanMoveNode Determines whether interactive dragging of nodes is allowed or not.
CanSizeNode Determines whether interaction resizing of nodes is allowed or not.
CanStretchLink Determines whether interactive stretching of links is allowed or not.
CanMultiLink Determines whether you can create several links between two nodes.
CanUndoRedo Determines whether undo/redo is allowed.
CycleMode Determines whether cycles are accepted or not.
DefLinkProp Defines the default property values for links.
DefNodeProp Defines the default property values for nodes.
DisplayHandles Determines whether the handles used for selection are displayed or not.
Grid Returns/sets a Grid object allowing to set the properties of the grid.
JumpSize Returns/sets the size of the jumps at the intersection of links.
LinkCreationMode Used to specify how the user can interactively create a link.
LinkHandleSize Defines the size of the linking handle at the center of selected node.
LinkSelectionAreaWidth Ddetermines the width of the area where the user has to click to select a link.
MultiSel Determines whether multiselection of nodes is allowed or not.
OwnerDraw Determines whether you want to provide custom drawing for the diagram.
RemovePointAngle Returns/sets the angle that causes a link point to be removed when stretching a link.
RoundedCornerSize Returns/sets the size of the rounded corners of the link segments.
SelectionHandleSize Defines the size of the selection handles of the selected node.

6.5.2.2 Deriving the AddFlow class

Using inheritance, you can create a new class by adding to or otherwise modifying an existing
class. Of course we can do that. In the following example, we create a new class derived from
the AddFlow class where nodes have a fixed size.

Using Visual Studio .NET, select the menu item File | Add Project | New Project. In the
Add New Project dialog box, select a project type of Visual C# Projects, then choose Empty
Project. Then, right-click the project name in Solution Explorer and select Add New Item
from the context menu. In the Add New Item dialog box, in the Categories list, choose Local
Project Items. In the Template section, choose Code File (Using this template, Visual
Studio will not generate code for you).

Right-click in the References item underneath the project name and select Add Reference
from the context menu. Select these three items from the list in the dialog box that you’re
presented with: Sytem.dll, System.Drawing.dll, System.Windows.Forms.dll. Then, use the
Browse... button to search for the Lassalle.Flow.dll and select it.

Finally, copy and paste the following C# code:

// C#
using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using Lassalle.Flow;

namespace DeriveFlow
{

 public class DeriveFlow : System.Windows.Forms.Form
 {
 public static void Main()
 {
 Application.Run(new DeriveFlow());
 }

 public DeriveFlow()
 {
 Text = "DeriveFlow";
 Size = new Size(750, 550);
 MyFlow myflow = new MyFlow();
 myflow.Parent = this;
 }
 }

 internal class MyFlow : AddFlow
 {
 public MyFlow()
 {
 BackColor = Color.White;
 Dock = DockStyle.Fill;
 AutoScroll = true;
 CanSizeNode = false;
 }

 protected override void OnAfterAddNode(AfterAddNodeEventArgs e)
 {
 e.Node.Size = new SizeF(30, 30);
 }
 }
}

' VB
Imports Lassalle.Flow

Public Class DeriveFlow
 Private Sub DeriveFlow_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Text = "DeriveFlow"
 Size = New Size(750, 550)
 Dim myflow As MyFlow = New MyFlow()
 myflow.Parent = Me
 End Sub
End Class

Public Class MyFlow
 Inherits AddFlow

 Public Sub New()
 BackColor = Color.White
 Dock = DockStyle.Fill
 AutoScroll = True
 CanSizeNode = False
 End Sub

 Protected Overrides Sub OnAfterAddNode(ByVal e As
Lassalle.Flow.AfterAddNodeEventArgs)
 e.Node.Size = New SizeF(30, 30)
 End Sub
End Class

The MyFlow class is derived from the AddFlow class. In its constructor, we set four
properties. The first 3 settings are usual when using AddFlow. The fourth setting
(CanSizeNode = false) disable the possibility to resize nodes. Moreover, we override the
method OnAfterAddNode to force the size of nodes to be limited to 30 in width and also in
heigth.

6.5.3 Drawing customization

6.5.3.1 Custom Shapes

We have seen that the shape of the node is determined by the Shape property of the node and
more precisely by the Style property of the Shape object associated to a node. For instance:

node2.Shape.Style = ShapeStyle.Rectangle;

As indicated in the help file, the ShapeStyle enumeration has 44 predefined shapes. You can
view each of them with the Shapes sample provided with AddFlow. One of these styles is
ShapeStyle.Custom. If you set the Style property of node Shape object equal to
ShapeStyle.Custom, and if you use the GraphicsPath property, you can associate a custom
shape to a node.

The following CreateDiagram8 method gives an example.

// C#
void CreateDiagram8(AddFlow addflow)
{
 // Create a graphics path which will be used for the custom shape
 GraphicsPath path = new GraphicsPath();
 path.AddArc(0, 0, 15, 15, 180, 90);
 path.AddLine(10, 0, 40, 10);
 path.AddLine(40, 10, 50, 0);
 path.AddLine(50, 0, 80, 40);
 path.AddLine(80, 40, 40, 30);
 path.AddLine(40, 30, 0, 40);
 path.AddLine(0, 40, 10, 20);
 path.CloseFigure();
 path.AddEllipse(10,10,10,10);
 path.FillMode = FillMode.Alternate;

 Node dn = (Node)addflow.DefNodeProp.Clone();
 Link dl = (Link)addflow.DefLinkProp.Clone();

 // Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow;
 dn.Shadow.Style = ShadowStyle.RightBottom;

 // Default property values for links created programmatically
 dl.DrawColor = Color.Blue;
 dl.BackMode = BackMode.Opaque;

 // Create 3 nodes and assign them some property values
 Node node1 = new Node(5, 5, 40, 40, “First node”, dn);

 Node node2 = new Node(120, 70, 120, 150, “Second node”, dn);

 node2.Shape.Style = ShapeStyle.Custom;
 node2.Shape.GraphicsPath = path;

 Node node3 = new Node(5, 100, 40, 40, “Third node”, dn);
 node3.Shape.Style = ShapeStyle.Document;

 // Create 3 links
 Link link1 = new Link(“link 1”, dl);

 Link link2 = new Link(“link 2”, dl);
 link2.ArrowDst.Angle = ArrowAngle.deg30;
 link2.Line.Style = LineStyle.Bezier;
 link2.TextColor = Color.Red;

 Link link3 = new Link(“link 3”, dl);
 link3.Line.Style = LineStyle.HVH;

 // Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1);
 addflow.Nodes.Add(node2);
 addflow.Nodes.Add(node3);
 node1.OutLinks.Add(link1, node2);
 node2.OutLinks.Add(link2, node2);
 node2.OutLinks.Add(link3, node3);

 // Add 2 points (therefore 2 segments) to the first link
 link1.Points.Add(new PointF(40, 70));
 link1.Points.Add(new PointF(80, 20));

 // Stretch the reflexive link
 link2.Points[1] = new PointF(110, 10);
 link2.Points[2] = new PointF(200, 10);
}

' VB
Private Sub CreateDiagram8(ByVal addflow As AddFlow)
 ' Create a graphics path which will be used for the custom shape
 Dim path As GraphicsPath = New GraphicsPath()
 path.AddArc(0, 0, 15, 15, 180, 90)
 path.AddLine(10, 0, 40, 10)
 path.AddLine(40, 10, 50, 0)
 path.AddLine(50, 0, 80, 40)
 path.AddLine(80, 40, 40, 30)
 path.AddLine(40, 30, 0, 40)
 path.AddLine(0, 40, 10, 20)
 path.CloseFigure()
 path.AddEllipse(10, 10, 10, 10)
 path.FillMode = FillMode.Alternate

 Dim dn As Node = addflow.DefNodeProp.Clone()
 Dim dl As Link = addflow.DefLinkProp.Clone()

 ' Default property values for nodes created programmatically
 dn.FillColor = Color.LightYellow
 dn.Shadow.Style = ShadowStyle.RightBottom

 ' Default property values for links created programmatically
 dl.DrawColor = Color.Blue
 dl.BackMode = BackMode.Opaque

 ' Create 3 nodes and assign them some property values

 Dim node1 As Node = New Node(5, 5, 40, 40, "First node", dn)

 Dim node2 As Node = New Node(120, 70, 50, 40, "Second node", dn)
 node2.Shape.Style = ShapeStyle.Custom
 node2.Shape.GraphicsPath = path

 Dim node3 As Node = New Node(5, 100, 40, 40, "Third node", dn)
 node3.Shape.Style = ShapeStyle.Document

 ' Create 3 links
 Dim link1 As Link = New Link("link 1", dl)

 Dim link2 As Link = New Link("link 2", dl)
 link2.ArrowDst.Angle = ArrowAngle.deg30
 link2.Line.Style = LineStyle.Bezier
 link2.TextColor = Color.Red

 Dim link3 As Link = New Link("link 3", dl)
 link3.Line.Style = LineStyle.HVH

 ' Add the nodes and the links to the diagram
 addflow.Nodes.Add(node1)
 addflow.Nodes.Add(node2)
 addflow.Nodes.Add(node3)
 node1.OutLinks.Add(link1, node2)
 node2.OutLinks.Add(link2, node2)
 node2.OutLinks.Add(link3, node3)

 ' Add 2 points (therefore 2 segments) to the first link
 link1.Points.Add(New PointF(40, 70))
 link1.Points.Add(New PointF(80, 20))

 ' Stretch the reflexive link
 link2.Points(1) = New PointF(110, 10)
 link2.Points(2) = New PointF(200, 10)
End Sub

Notice that it is necessary to add the following line at the beginning of the program:

using System.Drawing.Drawing2D;

If we compile and execute this program, it will create the following diagram (We have
increased the size of the second node):

6.5.3.2 OwnerDraw property

Even though there are many properties offering a lot of control over the appearance of nodes
and links (colors, font, styles, etc), sometimes that is not enough. You may want to use a
gradient background inside a node, or draw some custom graphics (for instance swim lines)
directly in the background of the AddFlow control.

In these cases, you can use the “OwnerDraw” properties and events to gain total control over
how each item is drawn. You can customize the drawing of a node, a link or the entire
AddFlow control.

Object Property Event Event parameter
AddFlow OwnerDraw DiagramOwnerDraw DiagramOwnerDrawEventArgs
Node OwnerDraw NodeOwnerDraw NodeOwnerDrawEventArgs
Link OwnerDraw LinkOwnerDraw LinkOwnerDrawEventArgs

If the OwnerDraw property is true, then the corresponding event is fired each time the object
needs to be redrawn, giving the possibility to replace the default drawing made by AddFlow
by a custom drawing. Each event parameter class contains a Flags property which specifies
how the drawing is made.

This is demonstrated in the OwnerDraw sample provided with AddFlow. For instance,
following is the code used to draw a node with a hatched background:

' VB
Private Sub AddFlow1_NodeOwnerDraw(ByVal sender As System.Object, ByVal e
As Lassalle.Flow.NodeOwnerDrawEventArgs) Handles AddFlow1.NodeOwnerDraw
 Dim grfx As Graphics = e.Graphics
 Dim node As Node = e.Node

 ' Save the graphics state because it does not belong to us
 ' (although in this case, it not necessary because we do not
 ' alter the Graphics state)
 Dim gs As GraphicsState = grfx.Save()

 Dim hBrush1 As HatchBrush = New HatchBrush(HatchStyle.BackwardDiagonal,
Color.White, Color.Silver)
 grfx.FillRectangle(hBrush1, node.Rect)

 ' Restore the graphics state
 grfx.Restore(gs)

 ' Tell AddFlow not to fill the node (because this is already done)
 e.Flags = Not NodeDrawFlags.Fill
End Sub

// C#
private void node_OwnerDraw(object sender, NodeOwnerDrawEventArgs e)
{
 Graphics grfx = e.Graphics;
 Node node = e.Node;

 // Save the graphics state because it does not belong to us
 // (although in this case, it not necessary because we do not
 // alter the Graphics state)
 GraphicsState gs = grfx.Save();

 HatchBrush hBrush1 = new HatchBrush(HatchStyle.BackwardDiagonal,

Color.White, Color.Silver);
 grfx.FillRectangle(hBrush1, node.Rect);

 // Restore the graphics state
 grfx.Restore(gs);

 // Tell AddFlow not to fill the node (because this is already done)
 e.Flags = e.Flags & ~(NodeDrawFlags.Fill);
}

Of course, your program should have the following line of code:

addflow.NodeOwnerDraw +=
 new AddFlow.NodeOwnerDrawEventHandler(node_OwnerDraw);

6.5.4 Data customization

6.5.4.1 Tag property

The Tag property allows associating an object to a node or a link.

6.5.4.2 Property bag

The property bag allows extending the functionality of nodes and link by adding new
properties. You can do that with the Properties property.

For instance, if you wish to add a new property “Author” to a node and assign the value
"Alice" to this property, you can do that using a single line of code:

' VB
node.Properties("Author").Value = "Alice"

// C#
node.Properties["Author"].Value = "Alice";

In this example, this property is a string but it could be any kind of objects.

The Property bag feature is demonstrated in the PropertyBag sample provided with
AddFlow.

This sample shows also how to save and load these custom data in a XML file, using the
ReadXMLNodeExtraData and WriteXMLNodeExtraData events.

6.5.4.3 Derivation of Node and Link classes

The DeriveNode sample application provided with AddFlow shows how to create a new class
MyNode, derived from the Node class, and how to save and load these custom data in a XML
file, using the following events:

• BeforeReadXMLNode
• BeforeWriteXMLNode
• ReadXMLNodeExtraData
• WriteXMLNodeExtraData

In this paragraph, we are going to describe how to use these four events, using the
DeriveNode sample.

Of course the same kind of events can be used for the links:

• BeforeReadXMLLink
• BeforeWriteXMLLink
• ReadXMLLinkExtraData
• WriteMLLinkExtraData.

6.5.4.3.1 The derived class

The class MyNode, derived from the Node class, contains two new string properties “Author”
and “Comment”.

' VB
Public Class MyNode
 Inherits Node

 Private m_author As String = Nothing
 Private m_comment As String = Nothing

 Public Sub New(ByVal defnode As Node, ByVal author As String, ByVal
comment As String)
 MyBase.New(defnode)
 m_author = author
 m_comment = comment
 End Sub

 Public Property Author() As String
 Get
 Return m_author
 End Get
 Set(ByVal Value As String)
 m_author = Value
 End Set
 End Property

 Public Property Comment() As String
 Get
 Return m_comment
 End Get
 Set(ByVal Value As String)
 m_comment = Value

 End Set
 End Property
End Class

// C#
internal class MyNode : Node
{
 private string m_author = null;
 private string m_comment = null;

 public MyNode(Node defnode, string author, string comment) :
base(defnode)

 {
 m_author = author;
 m_comment = comment;
 }

 public string Author
 {
 get { return m_author; }
 set { m_author = value; }
 }

 public string Comment
 {
 get { return m_comment; }
 set { m_comment = value; }
 }
}

6.5.4.3.2 Interactive creation of of a derived node

The user creates interactively (with the mouse) a MyNode object exactly as he would to create
a node. To implement that, we use the BeforeAddNode event which is fired just before a
node is created interactively (or also programmaticaly if the InteractiveEventsOnly property is
false).

In the handler of this event, the following tasks are done:

• Cancel the node creation
• Instead of creating a node, we create a MyNode object. However, as the MyNode class

inherits form the Node class, our MyNode object is also a Node object.
• The MyNode object is placed at the same place as the node whose creation has been

aborted.
• The MyNode object is then added to the diagram.

The code is the following:

' VB
Private Sub AddFlow1_BeforeAddNode(ByVal sender As System.Object, ByVal e
As Lassalle.Flow.BeforeAddNodeEventArgs) Handles AddFlow1.BeforeAddNode
 e.Cancel.Cancel = True
 Dim mynode As MyNode = New MyNode(AddFlow1.DefNodeProp,Nothing,Nothing)
 mynode.Location = e.Location
 mynode.Size = e.Size
 AddFlow1.Nodes.Add(mynode)
 mynode.Selected = True
End Sub

// C#
private void AddFlow1_BeforeAddNode(object sender,BeforeAddNodeEventArgs e)
{
 e.Cancel.Cancel = true;
 MyNode mynode = new MyNode(AddFlow1.DefNodeProp, null, null);
 mynode.Location = e.Location;
 mynode.Size = e.Size;
 AddFlow1.Nodes.Add(mynode);
 Mynode.Selected = true;
}

Notice however that the BeforeAddNode event is not fired during a de-serialization process.
In this last case, you should use the BeforeReadXMLNode event (described later).

6.5.4.3.3 Add Custom data

In the DeriveNode sample, when the user double click on a node (or click on the “Node
custom data…” menu) and if this node is in fact a MyNode object (which is always the case
in our DeriveNode sample), a dialog box is displayed to allow entering the MyNode object
custom data (here the "Author" and the Comment" strings).

' VB
Private Sub EnterCustomData()
 If TypeOf(AddFlow1.SelectedItem) Is Node Then
 Dim node As Node = AddFlow1.SelectedItem
 If (TypeOf (node) Is MyNode) Then
 Dim mynode As MyNode = node
 Dim nd As NodeData = New NodeData
 nd.MyNode = mynode
 If nd.ShowDialog() = Windows.Forms.DialogResult.OK Then
 AddFlow1.SubmitTask(New MyTask(mynode))
 mynode.Author = nd.TextBoxAuthor.Text
 mynode.Comment = nd.textBoxComment.Text
 End If
 End If
 End If
End Sub

// C#
private void EnterCustomData()
{
 if (AddFlow1.SelectedItem is Node)
 {
 Node node = (Node)AddFlow1.SelectedItem;
 if (node is MyNode)
 {
 MyNode mynode = (MyNode)node;
 NodeData nd = new NodeData();
 nd.MyNode = mynode;
 if (nd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 AddFlow1.SubmitTask(new MyTask(mynode));
 mynode.Author = nd.TextBoxAuthor.Text;
 mynode.Comment = nd.textBoxComment.Text;
 }
 }
 }
}

(Notice the call to SubmitTask to include the custom data change in the undo/redo buffer.
You can find the code of the MyTask class in the DeriveNode sample code)

6.5.4.3.4 Serialization of derived nodes

We have to serialize the type of nodes and the custom data.

How to inform AddFlow of your custom type in the serialization process? You have to use the
BeforeWriteXMLNode event. It is sent just before serializing a node. It allows saving the
value of an attribute named “Custom”. You have to just to pass its value to AddFlow. In our
case, we pass the type of the node (if this type is not the default "Node" type). AddFlow will
save this type in the “Custom” attribute of the “Node” XML element.

' VB
Private Sub AddFlow1_BeforeWriteXMLNode(ByVal sender As System.Object,
ByVal e As Lassalle.Flow.BeforeWriteXMLNodeEventArgs) Handles
AddFlow1.BeforeWriteXMLNode
 If (TypeOf (e.Node) Is MyNode) Then e.Custom = "MyNode"
End Sub

// C#
private void AddFlow1_BeforeWriteXMLNode(object sender,

 BeforeWriteXMLNodeEventArgs e)
{

if (e.Node is MyNode)
e.Custom = "MyNode";

}

How to include your custom data in the serialization process? You have just to use the
WriteMLNodeExtraData event which is fired when serializing a node to allow the
serialization of custom data. In our case, we use it to serialize the Author and Comment
properties if the node is in fact a MyNode object.

' VB
Private Sub AddFlow1_WriteXMLNodeExtraData(ByVal sender As System.Object,
ByVal e As Lassalle.Flow.WriteXMLNodeExtraDataEventArgs) Handles
AddFlow1.WriteXMLNodeExtraData
 If (TypeOf (e.Node) Is MyNode) Then
 Dim mynode As MyNode = e.Node
 If (Not (mynode.Author = Nothing) And mynode.Author.Length > 0) Then
 e.Writer.WriteElementString("Author", mynode.Author)
 End If
 If (Not (mynode.Comment = Nothing) And mynode.Comment.Length > 0) Then
 e.Writer.WriteElementString("Comment", mynode.Comment)
 End If
 End If
End Sub

// C#
private void AddFlow1_WriteXMLNodeExtraData(object sender,

WriteXMLNodeExtraDataEventArgs e)
{
 if (e.Node is MyNode)
 {
 MyNode mynode = (MyNode)e.Node;
 if (mynode.Author != null && mynode.Author.Length > 0)
 e.Writer.WriteElementString("Author", mynode.Author);
 if (mynode.Comment != null && mynode.Comment.Length > 0)
 e.Writer.WriteElementString("Comment", mynode.Comment);
 }
}

The following XML file is an example of a file saved with the DeriveNode sample. Notice
the “Custom” attribute and the “Author” and “Comment” new elements.

<?xml version="1.0"?>
<!--AddFlow.net diagram-->
<AddFlow Nodes="2" Links="0">
 <Version>2.1.0.0</Version>
 <DefaultNode>
 <FillColor>-32</FillColor>
 <Shape Style="Document" Orientation="so_0" />
 </DefaultNode>
 <Node Index="0" Left="49" Top="35" Width="94" Height="66"
Custom="MyNode">
 <Author>Alice</Author>
 <Comment>Interesting</Comment>
 </Node>
 <Node Index="1" Left="190" Top="93" Width="94" Height="72"
Custom="MyNode">
 <Author>Paul</Author>
 <Comment>Serious</Comment>
 </Node>
</AddFlow>

6.5.4.3.5 De-serialization of derived nodes

When a node is created during the de-serialization of a XML stream, the BeforeAddNode
event is not fired. Instead, the BeforeReadXMLNode event is fired and it is fired just before
the node is de-serialized.

The event argument object contains the value of the “Custom” attribute of the node.
Remember that in our case, this attribute contains the type of the node. This type allows
knowing what contructor to use to instantiate the node. Here, there is only one possibility: the
MyNode constructor.

The event argument object has also a Node parameter which contains the default values of the
node properties. These default values have been previously read in the XML file.

The Node object corresponding to the MyNode object is returned to AddFlow since it is
AddFlow that will perform the de-serialization of the node. (The custom properties of the
MyNode object will be read with the ReadXMLNodeExtraData event)

' VB
Private Sub AddFlow1_BeforeReadXMLNode(ByVal sender As System.Object, ByVal
e As Lassalle.Flow.BeforeReadXMLNodeEventArgs)

Handles AddFlow1.BeforeReadXMLNode
 If (e.Custom = "MyNode") Then
 Dim mynode As MyNode = New MyNode(e.DefNode, Nothing, Nothing)
 e.Node = mynode
 End If
End Sub

// C#
private void AddFlow1_BeforeReadXMLNode(object sender,
 BeforeReadXMLNodeEventArgs e)
{
 if (e.Custom == "MyNode")
 {
 MyNode mynode = new MyNode(e.DefNode, null, null);
 e.Node = mynode;
 }
}

The ReadXMLNodeExtraData event is fired when de-serializing a node and each time
AddFlow encounters a custom XML element. In this example, there are two possible custom
elements: "Author" and "Comment".

' VB
Private Sub AddFlow1_ReadXMLNodeExtraData(ByVal sender As System.Object,
ByVal e As Lassalle.Flow.ReadXMLNodeExtraDataEventArgs) Handles
AddFlow1.ReadXMLNodeExtraData
 If (TypeOf (e.Node) Is MyNode) Then
 Dim mynode As MyNode = e.Node
 If (e.Reader.Name = "Author") Then
 mynode.Author = e.Reader.ReadElementContentAsString()
 End If
 If (e.Reader.Name = "Comment") Then
 mynode.Comment = e.Reader.ReadElementContentAsString()
 End If
 End If
End Sub

// C#
private void AddFlow1_ReadXMLNodeExtraData(object sender,

ReadXMLNodeExtraDataEventArgs e)
{
 if (e.Node is MyNode)
 {
 MyNode mynode = (MyNode)e.Node;
 if (e.Reader.Name == "Author")
 mynode.Author = e.Reader.ReadElementContentAsString();
 else if (e.Reader.Name == "Comment")
 mynode.Comment = e.Reader.ReadElementContentAsString();
 }
}

6.6 Conversion guide from the ActiveX Control

AddFlow for WinForms is NOT compatible with the ActiveX version. However, it provides
approximately the same features as the ActiveX version (and also many new features!).

The following lists all properties, methods and events of the AddFlow ActiveX Control and
its corresponding implementations in AddFlow for WinForms, grouped by classes (AddFlow
control, Node class, Link class, etc).

Note: we provide a free tool XToNetFlow that allows converting a diagram created with the
ActiveX version of AddFlow (version 5.4) to a diagram usable by the .NET version of
AddFlow. You may find it at http://www.lassalle.com/download/XToNetFlow.zip. The
source code is included.

6.6.1 AddFlow properties

ActiveX .NET corresponding feature
AdjustOrg AddFlow1.DefLinkProp.AdjustOrg
AdjustDst AddFlow1.DefLinkProp.AdjustDst
Alignment AddFlow1.DefNodeProp.Alignment
AllowArrowKeys None
ArrowDst AddFlow1.DefLinkProp.ArrowDst.Style
ArrowMid AddFlow1.DefLinkProp.ArrowMid.Style
ArrowOrg AddFlow1.DefLinkProp.ArrowOrg.Style
Autorouting See the paragraph Link Autorouting
AutoSize AddFlow1.DefNodeProp.AutoSize
AutoScroll AddFlow1.CanDragScroll
BackColor AddFlow1.BackColor

BackMode AddFlow1.DefNodeProp.BackMode
AddFlow1.DefLinkProp.BackMode

BackPicture None (use instead the more powerful OwnerDraw property)
BorderStyle None (workaround: place the AddFlow control in a Panel control)
CanChangeDst AddFlow1.CanChangeDst
CanChangeOrg AddFlow1.CanChangeOrg
CanDrawNode AddFlow1.CanDrawNode
CanDrawLink AddFlow1.CanDrawLink
CanFireError AddFlow1.CanFireError
CanMoveNode AddFlow1.CanMoveNode
CanMultiLink AddFlow1.CanMultiLink
CanReflexLink AddFlow1.CanReflexLink
CanSizeNode AddFlow1.CanSizeNode
CanStretchLink AddFlow1.CanStretchLink
CanUndoRedo AddFlow1.CanUndoRedo
CustomShapeIndex See the paragraph Custom Shapes
CustomShapes See the paragraph Custom Shapes
DisplayHandles AddFlow1.DisplayHandles

DrawColor AddFlow1.DefNodeProp.DrawColor
AddFlow1.DefLinkProp.DrawColor

http://www.lassalle.com/download/XToNetFlow.zip

DrawStyle AddFlow1.DefNodeProp.DashStyle
AddFlow1.DefLinkProp.DashStyle

DrawWidth AddFlow1.DefNodeProp.DrawWidth
AddFlow1.DefLinkProp.DrawWidth

EditMode AddFlow1.CanLabelEdit
AddFlow1.DefNodeProp.LabelEdit

Ellipsis AddFlow1.DefNodeProp.Trimming
FillColor AddFlow1.DefNodeProp.FillColor

Font AddFlow1.DefNodeProp.Font
AddFlow1.DefLinkProp.Font

ForeColor AddFlow1.DefNodeProp.TextColor
AddFlow1.DefLinkProp.TextColor

GridColor AddFlow1.Grid.Color
GridStyle AddFlow1.Grid.Style

Hidden AddFlow1.DefNodeProp.Hidden
AddFlow1.DefLinkProp.Hidden

JumpSize AddFlow1.JumpSize
LastUserAction None
LinkCreationMode AddFlow1.LinkCreationMode
LinkingHandleSize AddFlow1.LinkHandleSize
LinkStyle AddFlow1.DefLinkProp.Line.Style
LogicalOnly None
MaxDegree None
MaxInDegree None
MaxOutDegree None
MouseIcon AddFlow1.Cursor
MousePointer AddFlow1.Cursor
MultiSel AddFlow1.MultiSel
Nodes AddFlow1.Nodes
NoPrefix None
OrientedText AddFlow1.DefLinkProp.OrientedText
OrthogonalDynamic AddFlow1.DefLinkProp.Line.OrthogonalDynamic
PicturePosition AddFlow1.DefNodeProp.ImagePosition
Pictures AddFlow1.Images
PointedArea AddFlow1.PointedArea
PointedLink AddFlow1.PointedItem
PointedNode AddFlow1.PointedItem
ProportionalBars None
ReadOnly AddFlow1.Enabled
RedoCode AddFlow1.RedoCode
RemovePointAngle AddFlow1.RemovePointAngle
Repaint Use the methods BeginUpdate and EndUpdate
Rigid AddFlow1.DefLinkProp.Rigid
RoundedCorner AddFlow1.DefLinkProp.Line.RoundedCorner
RoundedCornerSize AddFlow1.RoundedCornerSize
RouteGrain See the paragraph Link Autorouting
RouteMinDistance See the paragraph Link Autorouting
RouteStartMethod See the paragraph Link Autorouting
ScrollBars None. Use AddFlow1.AutoScroll
ScrollTrack None

ScrollWheel None
SelectAction AddFlow1.MouseAction
SelectedLink AddFlow1.SelectedItem
SelectedNode AddFlow1.SelectedItem
SelectionHandleSize AddFlow1.SelectionHandleSize
SelectMode None
SelLinks AddFlow1.SelectedItems
SelNodes AddFlow1.SelectedItems
Shadow AddFlow1.DefNodeProp.Shadow.Style
ShadowColor AddFlow1.DefNodeProp.Shadow.Color
Shape AddFlow1.DefNodeProp.Shape.Style
ShapeOrientation AddFlow1.DefNodeProp.Shape.Orientation
ShowGrid AddFlow1.Grid.Draw
ShowJump None. Use instead AddFlow1.DefLink.Jump
ShowPropertyPages None
ShowToolTip AddFlow1.ShowTooltips
SkipUndo AddFlow1.SkipUndo
SnapToGrid AddFlow1.Grid.Snap
SizeArrowDst AddFlow1.DefLinkProp.ArrowDst.Size
SizeArrowMid AddFlow1.DefLinkProp.ArrowMid.Size
SizeArrowOrg AddFlow1.DefLinkProp.ArrowOrg.Size
StretchingPoint AddFlow1.StretchingPoint
Tag AddFlow1.Tag
Transparent AddFlow1.DefNodeProp.Transparent
UndoCode AddFlow1.UndoCode
UndoSize AddFlow1.UndoSize
XExtent AddFlow1.Extent.Width
XGrid AddFlow1.Grid.Size.Width
XScroll AddFlow1.ScrollPosition.X
XShadowOffset AddFlow1.DefNodeProp.Shadow.Size.Width
XZoom AddFlow1.Zoom.X
YExtent AddFlow1.Extent.Height
YGrid AddFlow1.Grid.Size.Height
YScroll AddFlow1.ScrollPosition.Y
YShadowOffset AddFlow1.DefNodeProp.Shadow.Size.Height
YZoom AddFlow1.Zoom.Y

6.6.2 AddFlow methods

ActiveX .NET corresponding feature
BeginAction AddFlow1.BeginAction
CanPaste None
CanRedo AddFlow1.CanRedo
CanUndo AddFlow1.CanUndo
Copy None
DeleteSel AddFlow1.DeleteSel
DeleteMarked None
DisplayPropertyPage None
EndAction AddFlow1.EndAction

ExportPicture AddFlow1.ExportMetafile
GetLinkAtPoint GetItemAt
GetNodeAtPoint GetItemAt
GetVersion None
IsChanged AddFlow1.IsChanged
IsSelChanged AddFlow1.IsSelChanged
LoadFile None (use XMLFlow)
LoadMemory None (use XMLFlow)
Paste None
Redo AddFlow1.Redo
Refresh AddFlow1.Refresh
SaveFile None (use XMLFlow)
SaveImage AddFlow1.ExportMetafile
SaveMemory None (use XMLFlow)

SelectAll
For Each item As Item In AddFlow1.Items
 item.Selected = True
Next

SelectRectangle AddFlow1.GetItemsInRectangle
SetChangedFlag AddFlow1.SetChangedFlag
SetSelChangedFlag AddFlow1.SetSelChangedFlag
StartEdit node.BeginEdit and node.EndEdit
Undo AddFlow1.Undo
ZoomRectangle AddFlow1.ZoomRectangle

6.6.3 AddFlow events

ActiveX .NET corresponding feature
AfterAddLink AddFlow1.AfterAddLink
AfterAddNode AddFlow1.AfterAddNode
AfterEdit AddFlow1.AfterEdit
AfterMove AddFlow1.AfterMove
AfterResize AddFlow1.AfterResize
AfterSelect AddFlow1.AfterSelect
AfterStretch AddFlow1.AfterStretch
BeforeAddLink AddFlow1.BeforeAddLink
BeforeAddNode AddFlow1.BeforeAddNode
BeforeChangeDst AddFlow1.BeforeChangeDst
BeforeChangeOrg AddFlow1.BeforeChangeOrg
BeforeEdit AddFlow1.BeforeEdit
Error None
Scroll AddFlow1.Scroll

6.6.4 Node properties

ActiveX .NET
Alignment node.Alignment
AutoSize node.AutoSize
BackMode node.BackMode

DrawColor node.DrawColor
DrawStyle node.DashStyle
DrawWidth node.DrawWidth
EditMode node.LabelEdit
FillColor node.FillColor
Font node.Font
ForeColor node.TextColor
Height node.Rect.Height or node.Size.Height
Hidden node.Hidden
Index node.Index
InLinks node.InLinks
Key None (use class derivation or the property bag)
Left node.Rect.Left or node.Location.X
Links node.Links
Logical node.Logical
Marked None (use class derivation or the property bag)
MaxDegree None
MaxInDegree None
MaxOutDegree None
Moveable None (use xMoveable and yMoveable)
OutLinks node.OutLinks
Picture None (use the ImageIndex property instead)
PictureIndex node.ImageIndex
PicturePosition node.ImagePosition
Selectable node.Selectable
Selected node.Selected
Shadow node.Shadow.Style
Shape node.Shape.Style
ShapeOrientation node.Shape.Orientation
Sizable None (use xSizeableand ySizeable)
Tag None (use class derivation or the property bag)
TagVariant None (use the new Tag object property instead)
Text node.Text
Tooltip node.Tooltip
Top node.Rect.Top or node.Location.Y
Transparent node.Transparent
UserData None (use class derivation or the property bag)
Width node.Rect.Width or node.Size.Width
xMoveable node.XMoveable
xTextMargin node.TextMargin.Width
xScrollable None
xSizeable node.XSizeable
yMoveable node.YMoveable
yTextMargin node.TextMargin.Height
yScrollable None
ySizeable node.YSizeable
ZOrder node.ZOrder
ZOrderIndex node.ZOrder

6.6.5 Node methods

ActiveX .NET corresponding feature
Clone node.Clone
EnsureVisible node.BringIntoView
GetLinkedNode node.GetLinkedNode
PropertyPage None (Use the DlgFlow component instead)

6.6.6 Link properties

ActiveX .NET
AdjustDst link.AdjustOrg
AdjustOrg link.AdjustDst
ArrowDst link.ArrowDst.Style
ArrowMid link.ArrowMid.Style
ArrowOrg link.ArrowOrg.Style
BackMode link.BackMode
DrawColor link.DrawColor
DrawStyle link.DashStyle
DrawWidth link.DrawWidth
ExtraPoints link.Points
Dst link.Dst
Font link.Font
ForeColor link.TextColor
Hidden link.Hidden
InIndex None
Key None (use class derivation or the property bag)
LinkStyle link.Line.Style
Logical link.Logical
Marked None (use class derivation or the property bag)
Org link.Org
OrientedText link.OrientedText
OrthogonalDynamic link.Line.OrthogonalDynamic
OutIndex None
Rigid link.Rigid
RoundedCorner link.Line.RoundedCorner
Selectable link.Selectable
Selected link.Selected
ShowJump link.Jump
SizeArrowDst link.ArrowDst.Size
SizeArrowMid link.ArrowMid.Size
SizeArrowOrg link.ArrowOrg.Size
Stretchable Link.Stretchable
Tag None (use class derivation or the property bag)
TagVariant None (use the new Tag object property instead)
Text link.Text
TextSegment None. (use the OwnerDraw property)
Tooltip link.Tooltip

UserData None (use class derivation or the property bag)
ZOrder link.ZOrder
ZOrderIndex link.ZOrder

6.6.7 Link methods

ActiveX .NET corresponding feature
Clone link.Clone
EnsureVisible link.BringIntoView
PropertyPage None (Use the DlgFlow component instead)
Reverse link.Reverse

7 Frequently Asked Questions
7.1 General Questions

1. What is AddFlow for WinForms?

AddFlow for WinForms is a .NET Windows Forms Custom control. It provides
approximately the same features as the ActiveX version and also many new features, more
flexibility and a simpler and more powerful object model. It has been completely rewritten in
C# to take advantage of the infrastructure provided by .NET. It is 100% Managed Code.

2. Is it compatible with the ActiveX version?

AddFlow for WinForms is NOT compatible with the current ActiveX version. For instance, if
you are porting an application from VB6, you will have to review almost all the code that uses
AddFlow (however this is just a matter of a few hours).
If you need a strict compatibility, you can use the current ActiveX version (5.4) as a COM
component in a .NET application. However we encourage you to use the .NET version which
is far more powerful and easier to use.

3. What has changed?

AddFlow for WinForms is still easier to use since its programmatic interface has been
changed towards more simplicity.
The "user data" properties (Marked, UserData, Tag, VariantTag, Key) are removed. We just
keep a Tag property allowing attaching any object to a node or a link. However, if you still
need such properties, you could add them by deriving the Node or the Link class. We provide
the "DeriveNode" sample illustrating how to do. Another easier method is to use the
PropertyBag.
Also the Picture property is removed. We just keep the PictureIndex property which is
renamed ImageIndex.
The persistence methods (LoadFile, SaveFile, Copy, Paste, CanPaste) are removed. Instead,
we encourage you to use either the IXMLSerializable interface, either the XMLFlow
component.
Also some properties are grouped: for instance, the Shape and ShapeOrientation properties of
ActiveX version are grouped in only one property, Shape, which is an object of type Shape
which contains 2 properties: Style (Rectangle, Ellipse, Hexagon, ...) and Orientation (North,
East, ...)
And finally, there are also some new properties (Items collection, SelItems collection,
AntiAliasing property, etc) and also all the inherited properties, methods and events.
See the conversion guide in this present document.

4. What are the concrete benefits of using the .Net version instead of the ActiveX
version?

The ActiveX version of AddFlow can be used as a COM component in a .NET application
because COM objects are supported in .NET (however just as 16-bit programs are supported

under 32-bit Windows!). We think anyway that, in the .NET environment, it is better to use
a .NET component. Moreover AddFlow for WinForms offers some concrete benefits:

• The possibility to derive the Node and the Link classes to obtain new objects that fit
your needs

• Anti-aliasing technology to obtain smoother diagrams
• Custom shapes for nodes and arrows
• SVG support

5. What is the license agreement for AddFlow, LayoutFlow?

The key points are the following:
• Each product is licensed per individual developer
• Each product is runtime royalty free
• The evaluation version of each product has a nag screen. You may use it for up to 60

days for trials and design-time evaluation purposes only.

6. Can I use it in a web page?

AddFlow for WinForms is a windows form control, not an ASP control. It executes on the
client, not on the server.
However, Internet Explorer supports the OBJECT tag for hosting ActiveX controls. In .NET,
the OBJECT tag can be used to also host Windows Form controls and provide accesses to the
properties of the hosted control.
For information about licensing, see the paragraph Licensing when using AddFlow in a web
page

7. What platforms does AddFlow for WinForms support?

Our product works on those platforms with .NET support, namely, the following platforms,

Microsoft Windows® 98
Microsoft Windows NT® 4.0 (SP 6a required)
Microsoft Windows Millennium Edition (Windows Me)
Microsoft Windows 2000 (SP2 Recommended)
Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Vista
Microsoft Windows 7

8. What are the benefits of using AddFlow for WinForms

Small deployment assembly. The size of the Lassalle.Flow.dll file is just 332 Kb.
Small programming interface: we have always preferred the quality to the quantity. We refuse
to provide an inflation of classes and properties.
Full integration with the .NET environment.
Great Flexibility.
Runtime royalty free.

7.2 Technical Questions
1. How to associate a context menu to a node?

Under AddFlow, a node is not implemented as a control and it has not any context menu
associated. Therefore, I would use the context menu of AddFlow as in the following example:

// C#
private void AddFlow1_MouseDown(object sender, MouseEventArgs e)
{
 if (e.Button == MouseButtons.Right)
 {
 if (AddFlow1.ContextMenu != null)
 AddFlow1.ContextMenu.Dispose();
 Item item = AddFlow1.PointedItem;
 if (item is Node)
 {
 AddFlow1.ContextMenu = new ContextMenu();
 AddFlow1.ContextMenu.MenuItems.Add(new MenuItem("item1"));
 AddFlow1.ContextMenu.MenuItems.Add(new MenuItem("item2"));
 AddFlow1.ContextMenu.Show(this, new System.Drawing.Point(e.X, e.Y));
 }
 }
}

' VB
Private Sub AddFlow1_MouseDown(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles AddFlow1.MouseDown
 If (e.Button = MouseButtons.Right) Then
 If Not AddFlow1.ContextMenu Is Nothing Then
 AddFlow1.ContextMenu.Dispose()
 End If
 If TypeOf (AddFlow1.PointedItem) Is Lassalle.Flow.Node Then
 AddFlow1.ContextMenu = New ContextMenu()
 AddFlow1.ContextMenu.MenuItems.Add(New MenuItem("item1"))
 AddFlow1.ContextMenu.MenuItems.Add(New MenuItem("item2"))
 AddFlow1.ContextMenu.Show(Me, New System.Drawing.Point(e.X, e.Y))
 End If
 End If
End Sub

2. How to save a diagram in a file?

See the paragraph Serialization

3. Is it possible to display an image in a node?

Yes. See the paragraph Displaying an image in a node

4. Is it possible to use a custom shape for a node?

Yes. See the paragraph Custom Shapes

5. How can we tell when nodes or links receive Mouse events?

By design, we have decided to not associate any click events to nodes and links. It means that
you will have to use the events of the control itself and in the handler of these events, use the
AddFlow properties to know if you have clicked on a node or a link. There is an example in
the afEdit sample provided with AddFlow:

' VB
Private Sub AddFlow1_MouseUp(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles AddFlow1.MouseUp
 Dim item As Item = AddFlow1.SelectedItem
 If Not (item Is Nothing) Then
 If TypeOf (item) Is Node Then
 Dim node As Node = CType(item, Node)
 PropertyGrid1.SelectedObject = node
 Label1.Text = "Selected Node"
 ElseIf TypeOf (item) Is Link Then
 Dim link As Link = CType(item, Link)
 PropertyGrid1.SelectedObject = link
 Label1.Text = "Selected Link"
 End If
 Else
 PropertyGrid1.SelectedObject = AddFlow1
 Label1.Text = "AddFlow control"
 End If
End Sub

// C#
private void AddFlow1_MouseUp(object sender,
 System.Windows.Forms.MouseEventArgs e)
{

Item item = AddFlow1.SelectedItem;
if (item != null)
{

if (item is Node)
{

Node node = (Node)item;
PropertyGrid1.SelectedObject = node;
Label1.Text = "Selected Node";

}
else if (item is Link)
{

Link link = (Link)item;
PropertyGrid1.SelectedObject = link;
Label1.Text = "Selected Link";

}
}
else
{

PropertyGrid1.SelectedObject = AddFlow1;
Label1.Text = "AddFlow control";

}
}

6. How to make the node's border transparent?

You have to use a transparent color:

node.DrawColor = Color.Transparent

7. How to autofit the diagram; i.e. how to adjust the zoom to its maximum while still
keeping all the shapes (nodes, links etc.) in view?

The ZoomRectangle method and the Extent property should allow implementing this
feature:

Dim rc As RectangleF = New RectangleF(New PointF(0, 0), AddFlow1.Extent)
AddFlow1.ZoomRectangle(rc, ZoomType.Isotropic)

8. What is the purpose of HFlow, OFlow, SFlow, SPFlow, TFlow?

See the paragraph Automatic Graph Layout

9. How to execute a layout asynchronously?

This is an important question, in particular when using SFlow which is not very quick in
comparison with OFlow, SPFlow, TFlow or HFlow.
Under .NET, it is the consumer (of a component or a service) that specifies whether a method
is to be run asynchronously or not. The creator of the component does not have to provide an
explicit mechanism to allow the consumer to execute a method asynchronously.
How to call the layout method of SFlow asynchronously? You can use a background thread.
You will have to create the thread, assign it a starting method and start the thread to begin its
work.

Declare a thread in your class:

Thread thread = null;

Suppose you launch the layout from the menu. Following is the code you could use for this
purpose:

void MenuLayoutOnClick(object obj, EventArgs ea)
{
 if (thread != null && thread.IsAlive)
 return;

 // Create the thread and pass it the SFlowLayout method
 ThreadStart ts = new ThreadStart(SFlowLayout);
 thread = new Thread(ts);
 thread.IsBackground = true;

 // Start the thread of execution
 thread.Start();
}

void SFlowLayout()
{
 // Create the SFlow component and perform the force directed Layout
 SFlow sflow = new SFlow();

 sflow.VertexDistance = 50;
 sflow.Layout(addflow);
}

10. How to manage so that the layout algorithm applies only to a subset of the graph?

Only the nodes and links whose Logical property is true are taken into account by the Layout
method of HFlow, OFlow, SFlow, SPFlow and TFlow.

By default, the Logical property of an item (node or link) is true. You have just to set it to
false to cause the Layout algorithm to ignore the item.

This will allow you to apply the layout only to important nodes. For instance, you can exclude
the nodes that are just used to display a label by setting their Logical property to false. The
layout will position only the important (logical) nodes. The secondary (not logical) nodes will
not be moved by the layout.
Therefore, after the execution of the layout, you will have to programmatically move the
secondary nodes so that they retrieve their correct position relatively to the main nodes.

	1 Introduction
	2 Version enhancements
	2.1 Version 2.3.2 enhancements
	2.2 Version 2.3.1 enhancements
	2.3 Version 2.3 enhancements
	2.4 Version 2 enhancements
	2.4.1 Serialization
	2.4.2 New events
	2.4.3 Property bag
	2.4.4 Parent-Child relationship
	2.4.5 Undo/Redo enhancements
	2.4.6 Minor enhancements
	2.4.7 Compatibility

	3 Getting Started
	3.1 Installation
	3.2 AddFlow extensions
	3.3 Samples
	3.4 Licensing
	3.4.1 3.4.1 Type of licenses
	3.4.2 How it works?
	3.4.3 Licensing problems

	3.5 Customize Visual Studio for WinForms

	4 Interactive creation of a diagram
	4.1 Overview
	4.2 Create a diagram interactively
	4.2.1 Draw a node
	4.2.2 Draw a link
	4.2.3 Stretch a link
	4.2.4 Draw a reflexive link
	4.2.5 Multiselection
	4.2.6 Change properties of a node or a link
	4.2.7 Add a text to a node
	4.2.8 Adjust the link origin and destination points
	4.2.9 Change the destination or the origin node of a link

	5 Programmatic creation of a diagram
	5.1 Overview
	5.2 Diagram creation
	5.2.1 Our first program
	5.2.2 Another way to create the diagram
	5.2.3 Node Properties
	5.2.4 Link Properties
	5.2.5 Changing property values
	5.2.6 Default property values
	5.2.7 The DefNodeProp and DefLinkProp properties
	5.2.8 Stretching the links

	5.3 Displaying an image in a node
	5.4 Selection of items
	5.4.1 Interactive selection
	5.4.2 Programmatic selection
	5.4.3 Selection events
	5.4.4 Hit Testing

	5.5 Diagram navigation
	5.6 Parent-Child relationship
	5.6.1 Attach a label to a node
	5.6.2 Attach a label to a link
	5.6.3 Place nodes inside a node.

	5.7 Some other information about drawing
	5.8 Serialization
	5.8.1 The IXmlSerializable method
	5.8.2 The XMLFlow method
	5.8.3 Your own method

	5.9 Printing a diagram
	5.10 Exporting the diagram
	5.10.1 The Render method
	5.10.2 Metafile support
	5.10.3 SVG support

	6 Avanced topics
	6.1 Undo/Redo
	6.2 Performance tuning
	6.3 Automatic Graph Layout
	6.3.1 HFlow (Hierarchic layout)
	6.3.1.1 Purpose
	6.3.1.2 Code example
	6.3.1.3 Limitation
	6.3.1.4 Side Effect

	6.3.2 OFlow (Orthogonal layout)
	6.3.2.1 Purpose
	6.3.2.2 Code example
	6.3.2.3 Limitation
	6.3.2.4 Side Effect

	6.3.3 SFlow (Symmetric layout)
	6.3.3.1 Purpose
	6.3.3.2 Code example
	6.3.3.3 Limitation
	6.3.3.4 Side Effect

	6.3.4 SPFlow (Series-parallel layout)
	6.3.4.1 Purpose
	6.3.4.2 Code example
	6.3.4.3 Limitation
	6.3.4.4 Side Effect

	6.3.5 TFlow (Tree layout)
	6.3.5.1 Purpose
	6.3.5.2 Code example
	6.3.5.3 Limitation
	6.3.5.4 Side Effect

	6.4 Link auto-routing
	6.4.1 Introduction
	6.4.2 Method
	6.4.3 Code sample
	6.4.4 Limitations

	6.5 Customization
	6.5.1 Overview
	6.5.2 Behavior customization
	6.5.2.1 AddFlow capabilities
	6.5.2.2 Deriving the AddFlow class

	6.5.3 Drawing customization
	6.5.3.1 Custom Shapes
	6.5.3.2 OwnerDraw property

	6.5.4 Data customization
	6.5.4.1 Tag property
	6.5.4.2 Property bag
	6.5.4.3 Derivation of Node and Link classes
	6.5.4.3.1 The derived class
	6.5.4.3.2 Interactive creation of of a derived node
	6.5.4.3.3 Add Custom data
	6.5.4.3.4 Serialization of derived nodes
	6.5.4.3.5 De-serialization of derived nodes

	6.6 Conversion guide from the ActiveX Control
	6.6.1 AddFlow properties
	6.6.2 AddFlow methods
	6.6.3 AddFlow events
	6.6.4 Node properties
	6.6.5 Node methods
	6.6.6 Link properties
	6.6.7 Link methods

	7 Frequently Asked Questions
	7.1 General Questions
	7.2 Technical Questions

