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ABSTRACT

Airline industry is one of the most competitive industries existing today and both efficient and effective crew 
schedule is crucial as it has a big impact on the airline's costing. Crew Scheduling Problem involves the 
process of assigning crew to operate a designated route. Lots of literature exist in regards to try to solve the 
Crew Scheduling Problems.

In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew 
pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse open-
source IDE using the Java programming language to solve the crew scheduling problems.

The solution derived from this algorithm has been tested and the results show that the execution time 
obtained by the algorithm is quite fast and it can be relied on to produce the best set balanced crew routes.
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1. INTRODUCTION

Airlines main objective is cost cutting on its day to day operations. Several research and studies have been 
done on airlines  cost  structure  and the findings have been that,  after  the  cost  of  fuel  which cannot  be  
controlled by the airline, the second highest expense is the crew scheduling cost. Crew cost basically covers 
the salaries, layover stipends when out of the base, hotel, transport etc. These costs are probably the most  
important  area  for  potential  airlines  savings and when not  planned properly,  it  can cost  the  airline  and 
therefore becoming a huge problem. With this in mind, airlines are striving to reduce or save on the costs by 
implementing efficient and effective solutions to solve the crew scheduling problems.

Crew Scheduling problems can be defined as those factors that affects the crew operations. The factors can 
be flight cancellations due to weather, equipment unavailability, flight delays, political factor such as union  
politics, crew unavailability such as sickness. It is divided into Crew Pairing and Crew Rostering. 

Crew pairing is a sequence of flight legs or segments that begin and end at a crew base such that in a  
sequence the arrival city of a flight leg coincides with the departure city of the next flight leg and wrong or 
incomplete crew pairing can be very costly to an airline, Deng, G. F., & Lin, W. T. (2010).
Crew pairing problems is divided into two categories; cock-pit crew pairing and cabin crew pairing. Each 
category has its  own rules,  as explained in Shangyao Yan,  Jei-Chi Chang (2002),  cock-pit  crew pairing 
generation is  more complicated than cabin crew because each pilot  is  qualified to fly only one type of  
aircraft.  Crew Pairing problem is usually approached by first generating a huge number of pairings. From 
this huge collection of legal pairings, a set of pairings that has minimal cost and which ensures that each  
flight is manned by exactly one crew is determined.

Once crew pairs have been generated, each single crew is assigned to the pair generated, this is called Crew 
Rostering  Problem.  while  assigning  the  crew  to  flight  pairs,  several  factors  have  to  be  taken  into 
consideration depending on airlines, that is, number of days off per week, number of hours per week, number 
of nights per week in the case of layover flights, age restriction on operating some legs in the case of pilots,  
crew dead heading etc.

The purpose of this paper is to propose an algorithm which automatically controls for all lurking variables, 
thereby getting  feasible  and optimal  solutions  which  can  be useful  in  solving the aforementioned crew 
scheduling problems.



The rest of the document is organized as follows: Section 2 reviews some of existing research done by other  
authors in regards to crew scheduling problems. Section 3 describes the analysis of the proposed algorithm. 
Section 4 reports the computational experiments for the proposed models. Finally, in Section 5, we conclude 
and outline possible research extensions.

2. BACKGROUND AND RELATED WORK

Airline  operations  can  be  very  costly  especially  if  not  managed  and  controlled  properly.  The  airline 
operations  includes  flight  operations  which  consists  of  flight  planning,  air  craft  route  planning,  crew 
scheduling,  et  cetera.  In  this  research  we  are  going  to  focus  on  crew scheduling  and  crew scheduling 
problem.

There are many articles researched on and written in regards to solving crew scheduling problems and in our  
case, we are applying an algorithm optimization to solve the crew scheduling problems.

One of the crew scheduling problems which we are seeking to solve is the Crew pairing issues. Crew cost is  
the biggest expenditure an airline can control, therefore effective assignment of crews to flight is a very 
important aspect of airline planning(see Gopalakrishnan et al.(2005)). Wrong or incomplete crew pairing can 
be very costly to  an airline.  In  Deng  et  al.  (2010),  Ant  Colony Optimization-based algorithm that  was 
proposed by Dorigo in 1992, has been applied to solve the crew scheduling problems. The ACO idea was  
inspired by the behavior of ant colonies that find the shortest route between ant's nest and a source of food, 
and this was applied in crew scheduling problems by applying a flight based scheduling to build the shortest  
path with minimum cost  and use flights as nodes of paths and the connecting edges to conform to the 
constraints between two consecutive flights

In Shangyao Yan et al.  (2002), a column generation approach model was applied to help in minimize crew 
cost and to plan for proper cockpit crew pairing. Unlike cabin crew pairing where a crew can be qualified in  
more than 2 aircraft types, cockpit crew can only be qualified to fly one type of aircraft, thus making the  
generation of the cockpit crew scheduling more complicated. Using the column generation model in Ahuja et 
al.,(1993), the flight timetable and the work rules stated in the article are used to develop two scheduling  
networks  in  order  to  generate  feasibly  pairings.  The  networks  are  called  Standard  crew  network  and 
Augmented crew network. Based on the model we are trying to see if we can apply it on our research to 
solve the crew pairing problems 

For day to day flight operations, there are factors that disrupt the smooth flow of operations, these can be 
weather,  flight  cancellation,  delays  etc  and this  results  to  crew scheduling disruptions  which are  costly.  
Schaefer,  Andrew  J.,  et  al.  (2005),  applied  a  deterministic  crew  scheduling  model  operating  under 
uncertainty under the assumption that all pairings will operate as planned, this model is the SimAir, a Monte 
Carlo Simulation of airline operations based on Rosenberger et al.(2000a).

The column generation approach has also been mentioned in AhmadBeygi, S. et al. (2009), where an Integer 
programming approach is applied to generate airline crew pairings

In Ralf Borndöfer et al. (2005), a column generation approach is applied for solving airline crew scheduling 
problems that is based on a set partitioning model, considering algorithmic aspects such as the use of bundle 
techniques  for  the  fast,  approximate  solution  of  linear  programs,  a  pairing  generator  that  combines 
Lagrangean shortest path and callback techniques, and a novel “rapid branching” IP heuristic

A stochastic crew scheduling model and a solution methodology for integrating disruptions in the evaluation 
of crew schedules was devised in Yen, J. W., & Birge, J. R. (2006). The goal was to use the information to  
find a robust solution that can withstand disruptions. A stochastic integer programming model was used to 
develop a branching algorithm to identify expensive flight connections and finding alternative sources.

Algorithms similar to the SR-GCWS-CS that combines Monte Carlo simulation as explained in AA Juan et 
al.(2011),  can be used to solve combinatorial type problems like the Crew Scheduling Problems  whereby 
some biased random behaviour within the CWS heuristic to perform a search process inside the space of 



feasible solutions are introduced. These feasible solutions consists of a set of round trip routes from the depot  
(in our case, the airport base) that, altogether, satisfy all demands of the nodes by visiting and serving all of  
them  exactly  once.  Different  geometric  statistical  distributions  during  the  randomized  CWS  solution-
construction  process:  every time  a  new edge  is  selected  from the  list  of  available  edges,  a  value  α is 
randomly selected from a uniform distribution. This value is then used to assign exponentially diminishing  
probabilities to each eligible edge according to its position inside the sorted savings list. That way, edges  
with higher savings values are always more likely to be selected from the list, but the exact probabilities  
assigned are variable and they depend upon the concrete distribution selected at each step.

In Vance  et al.  (1997), a new formulation and decomposition approach for solving a new model based on 
selecting a set of duty periods that cover the flights in schedule and building pairings using he duty periods is 
suggested. The formulation is based on linear programming relaxation which provides a stronger bound in  
the optimal integer programming. Just like the algorithm we are trying to solve in our case, in this model, to 
initialize the column generation procedure,  there must  be a feasible solution to the LP relaxation of the 
master problem. An initial  solution can be obtained by constructing an artificial solution using the duty  
periods in any duty period set to build pairings. The other approach would be to start with some known 
feasible solution.

Crew scheduling problems can also be solved using Differential Evolution (DE) method as discussed in  
Santosa, B. et al. (2010). In the paper, the DE algorithm is proven to be able to find the near optimal solution 
accurately for the optimization problem, focusing on developing differential evolution algorithm applied on  
intelligent airline crew rostering system. Differential evolution is an evolutionary population-based algorithm 
proposed by R. Storn and K. Price (1995). Still with evolution method, Marchiori, E. et al. (2000) proposes 
an adaptive heuristic based evolutionary algorithm whose main ingredient is a mechanism for selecting a 
small  core sub problem which is  dynamically updated during the execution.  The mechanism allows the  
algorithm to find covers of good quality in short time.

A network model approach has been used in Yan, S., & Tu, Y. P. (2002) to efficiently and effectively solve  
crew scheduling problems for a Taiwan airline using real constraints. The network allows for the drafted  
flight timetable, and the average cost and number of cabin attendants required for each flight, to formulate 
crew scheduling for a single home base. The model was formulated as a pure network flow problem to solve 
the problem, and a flow decomposition algorithm was applied to obtain the pairings, from the optimal integer 
solutions. The model has a source node and a sink node that represents the same home base, the other nodes 
indicates the location and the time for a duty departure and arrival. The network model is also represented by 
arcs; specifically starting or ending arcs, duty arcs, deadhead arcs, rest arcs, and a cyclic arc

In  Levine,  D.  (1996),  Application  of  a  hybrid  genetic  algorithm  to  airline  crew  scheduling  has  been  
developed  and compared  to  the  traditional  approaches.  The  hybrid  algorithm consists  of  a  steady-state  
genetic algorithm. The algorithm works with a population of candidate solutions. As can be seen in the 
original Genetic Algorithm of Holland J(1975), each candidate solution is represented as a string of bits  
where  the interpretation of  the  bit  string is  problem specific.  The strings then recombines  by using the 
crossover and mutation operators to produce a new generation of strings.

In Juan, A. A.  et al.  (2011), the use of probabilistic or randomized algorithm is used for solving vehicle 
routing problems with non-smooth objective functions. Just like the problem we are trying to solve, we are 
seeking to apply similar approach of biased randomization to solve crew scheduling problems. The approach 
employs a non-uniform probability distributions to add a biased random  behavior to well known savings 
heuristic in order to sample out the best feasible solution.

3.  THE METHODOLOGY RESOLUTION

This methodology is almost similar to the ones discussed in the literature. It involves creating an algorithm to 
balance crew routes.

The major actors in this methodology are

• A pair of Legs where; legs=(leg1, leg2, ...legn) and a leg being a connection between one airport to the 



airport, for example BCN-AGP-BCN

• Airports where; Aiports=(aiport1, airport2....airportn)

When creating the algorithms solutions, we will take the following factors into considerations
• Numbers of flight sectors → There can be routes that have more than 4 sectors, however with proper 

route creation, they can be reduced to only 3 sectors. Lets take an example where we have crew 
route containing BCN-SVQ-BCN-MAD-BCN, this route has 5 sectors but it can be reduced to 4 
sectors by doing a triangle route generation to get BCN-SVQ-MAD-BCN

• Duty time period → Pilots and cabin crew have different duty time period and when generating the 
crew routes, this has to be taken into consideration to avoid bursting out the required hours. 
Depending on airlines and Collective Bargain Agreements (CBA) each type of crew has a minimum 
number of hours that they can operate in a day, in some airlines the pilots can do up to 12 hours and 
cabin crew up to 15 hours

Starting with the first solution, we will generate the Basic routes of paired legs to obtain the leg pairings. To 
do this, we analyze the pseudo-code of the algorithm below
____________________________________________________________________________________
procedure generateBasicRoutesOfPairedLegs(legs)
______________________________________________________________________
% This procedure generates basic roundtrip routes 
% composed of pairs of inverse legs.
% E.g.: (BCN-JFK) + (JFK-BCN) = BCN-JFK-BCN 

01 basicRoutes <- emptyList
02 legs <- sortByStartingTime(legs)
03 while {legs is not empty} do
04   newRoute <- emptyRoute
05   leg <- extractNextLeg(legs)
06   invLeg <- extractInverseLeg(leg, legs)
07   newRoute <- merge(leg, invLeg)
08   basicRoutes <- add(newRoute)
09 end while
10 return basicRoutes

end procedure

The algorithm is trying to generate basic crew routes composed of number of legs

In line 1, we do not have any values in our list yet, thus, our basicRoutes list is empty.
As we can see in line 2, there are available legs, and they will be sorted by their starting time to get the 
sortByStartingTime. This start time is generated from the origin airport leg time and date and the arrival time 
and date of the destination airport.

In line 3, We will verify if the leg is not empty and in line 4, new empty route will be created, the next leg 
will be extracted in line 5, the inverse leg will be extracted in line 6 and in line 7, the next leg and the inverse 
leg will be merged to create the new route. This new route will then be added to the basic route on line 8 and 
the new basic route created will be added to the list of paired legs.

This analysis is represented in the flow chart diagram below (Figure I)



Figure I: Flow chart diagram for creating basic Route pair

Once the basic routes have been generated, we will create the initial solution by merging the basic Route 
solution above starting at each airport. The idea behind this would be to balance the crew routes and return a 
working and feasible crew route combinations. 

The pseudo code for generating the initial solution is as shown below



_________________________________________________________________________
procedure generateInitialSol(legs, airports)
_________________________________________________________________________
% This procedure generates an inital solution by merging
% basic routes (pairs of legs) starting at each airport.
% E.g.: (BCN-MAD-BCN) + (BCN-VAL-BCN) = BCN-MAD-BCN-VAL-BCN

01 globalSol <- emptySol
02 basicRoutes <- generateBasicRoutesOfPairedLegs(legs)
03 for each {airport in airports} do
04   basicRoutes(airport) <- getBasicRoutes(basicRoutes, airport)
05   airportSol <- emptySol
06   while {basicRoutes(airport) is not empty} do 
07     newRoute <- extractNextStartingRoute(basicRoutes(airport))
08     for each {route in basicRoutes(airport)} do
09       tentativeRoute <- merge(newRoute, route)
10       if {tentativeRoute is feasible} then
11         basicRoutes(airport) <- delete(route, basicRoutes(airport))
12         newRoute <- tentativeRoute
13       end if
14     end for
15     airportSol <- add(newRoute, airportSol)
16   end while
17   globalSol <- add(airportSol, globalSol)
18 end for
19 return globalSol

end procedure

The algorithm is trying to generate a feasible pairing solution from the legs and airports (basicRoute), this 
solution is going to be called globalSol.

To start with we do not have a globalSol yet, therefore at line 1 our global solution will be null.
We already have basic routes of paired legs generated from the previous algorithm, therefore in line 2 from 
the generated Basic routes of paired legs we get the basicRoutes. At line 3, we check in each airports an 
array of basicRoutes and aiports to generate the basicRoutes(Airports) in line 4.
There is still no solution generated yet the aiport, therefore at line 5, we have the aiportSol will be null.

At line 6, we will check if the basicRoute above is empty and if it is empty, we go back to getting the Basic 
routes again, otherwise we extract the next starting route (line 7) from the airport's basicRoute and create a 
new route called newRoute

For each route in the basicRoute in line 8, we will merge it with the newRoute to create a tentative route on 
line 9 called tentativeRoute.

We will then check the feasibility of the tentativeRoute line 10 and if feasible, we go ahead and delete the 
basicRoute (line 11) and make the tentativeRoute (line 12) as the newRoute and add the newRoute to the 
globalSol list and then the best feasible solution is returned.

The analysis can be summarized in the flow chart below (Figure II)



Figure II: Flow chart for the InitialSolution
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4. RESULTS ACHIEVED FROM THE ALGORITHM.
The algorithm was developed by applying the Free Software on an Eclipse environment using java version 
1.6.0_37 and  was tested on a simulated schedule that can handle an average of  100 flights per day, both 
domestic and international. Assuming that the crew pairing generation is done manually, it can take lots of 
hours to find a feasible and optimized solution. Once the algorithm was developed successfully,  we put it 
under different types of test to evaluate its efficiency and effectiveness.

The tests that we did were 
• Performance and reliability test to check the approximate time it takes to execute and return the 

output using different types of operating system and processors and different numbers of flights per 
day

• Functional test to check the accuracy of the results returned, possible values that can be derived and 
exceptions

The Table1:Flight Schedules below has a list of possible scheduled flights in a day, 

Table1:FlightSchedules

In the first algorithm of creating basic routes pairs, the algorithm check the possible pairs it can create using 
the flight number, origin and destination to have produce the output in the figure III below

Figure III

In the second algorithm for generating initial solution, the algorithm uses the crew pairs generated in Figure 
III to find the best combination of crew routes and balance them off to produce the output in figure IV

Figure IV

We executed the algorithm using different numbers of flights per day and the Table II below summarizes the 
execution time it took to provide the output in terms of number of flights per day

Pair1: AGP =>CDG
Pair2: CDG => AGP

Flight number Origin Destination Start time Finish Time Date
1015 MAD AGP 1015 1115 02/01/2013
1016 AGP MAD 1215 1315 02/01/2013
1017 MAD AGP 1415 1515 02/01/2013
1018 AGP MAD 1615 1715 02/01/2013
1111 SVQ MAN 0900 1130 02/01/2013
1112 MAN SVQ 1230 1500 02/01/2013
1115 AGP CDG 0715 0945 02/01/2013
1116 CDG AGP 1045 1315 02/01/2013
1201 SVQ BCN 1000 1115 02/01/2013
1202 BCN AMS 1215 1415 02/01/2013
1203 AMS SVQ 1515 1815 02/01/2013
1800 MAD LHR 0600 0800 02/01/2013
1801 LHR MAD 0900 1100 02/01/2013
1802 AGP FCO 0600 0800 02/01/2013
1803 FCO AGP 0900 1100 02/01/2013
1804 AGP LTN 0845 1045 02/01/2013
1805 LTN AGP 1145 1345 02/01/2013
2000 MAD JFK 1000 1835 02/01/2013
2001 JFK MAD 0015 0850 03/01/2013
2960 AGP CDG 0600 0715 03/01/2013
2961 ORY CDG 0815 1015 03/01/2013
2962 CDG ORY 1115 1215 03/01/2013

AGP => CDG => AGP



Table II: Execution time for a number of flights legs paired in a day

Equipment 50 flights 100 flights 200 flights 

Windows 7

Intel(R) Core(TM)2 
Duo CPU P8700 
@2.53Hz 2.53GHz

RAM: 4,00GB

Total elapsed time is 

0h 0m 0s

Total elapsed time is

0h 0m 0s

Total elapsed time is 

0h 0m 0s

openSUSE 12.2, AMD 
Athlon(tm) 64 X2 Dual 
Core Processor 4400+
, RAM 7,00GB 

Total elapsed time is 

0h 0m 0s

Total elapsed time is 

0h 0m 0s

Total elapsed time is 

0h 0m 0s

Windows XP

Genuine Intel(R) CPU 
T2400 @1.83GHz

1.83GHz, RAM: 
1,99GB

Total elapsed time is 

0h 0m 1s

Total elapsed time is 

0h 0m 1s

Total elapsed time is 

0h 0m 1s

As can be seen from the table, depending on the number of flights per day and different equipments with 
different  operating systems and processors,  the time spent  to execute  the  algorithm and produce results  
comes to an average of 1 second.

From the list of flight schedules we have in Table1, the algorithm for generating the basic crew routes/pairs  
was executed to test its functionality. The output results are as shown in Figure V.

 Figure V: Output of available legs



As can be seen in the diagram, the program has generated for us a list of available flight legs, the start time 
of the origin leg, the finish time of the destination leg and the date.
These flight legs are now used to create feasible crew route pattern, which are returned when the algorithm 
generateInitialSol is executed. See figure V: Crew routes balancing

Figure V: Crew routes balancing

The algorithm does a loop to check for a complete flight leg, when it finds the feasible combination, it gives 
a list of the possible combinations. 

In the case that it cannot find a feasible solution in a list of available flight legs, then it does not return the 
unfinished crew route. See figure VI: Unfinished legs below



Figure VI: Unfinished legs

In the figure  VI, the flight legs 1115 and 1116 are not displayed in the initial solution, this is because the  
algorithm did not find a feasible complete balanced crew route. A complete crew pattern has to start at base 
airport and end at base airport, but the mentioned flight legs are not finishing at base airport.

5. CONCLUSIONS
In this paper, we proposed an algorithm optimization models that is used to solve the airline crew scheduling  
problems by generating feasible combination of crew routes and balancing them out. The performance of the 
proposed algorithm was tested for its efficiency and it is worth mentioning that it was fast in comparison 
with manually crew pair generation, having an instance run in an average of 1 second. We also checked its 
functionality of generating a feasible balanced crew route patterns, we got different pattern combinations 
from the available flight schedules and the incomplete flight legs were not displayed as per the functionality 
of the algorithm. We also discussed about other methods that have been used before to solve crew scheduling 
problems and how it can apply to our methodology. 

Although the algorithm was able to solve  the main problem  that is related to crew route generation and 
balancing, it still needs further improvement to enable it generate petal-solutions and local search. We also 
recommend a further study on other algorithms like using the biased randomization to obtain a random and 
feasible crew pairs can be applied as a future work.
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