
 ALGORITHM OPTIMIZATION FOR SOLVING CREW SCHEDULING PROBLEMS

Author: Christine A. Oketch
Director: Dr. Ángel A Juan
The Institute of International Graduate in Computers, multimedia and telecommunications, Universitat
Oberta de Catalunya, 2013

ABSTRACT

Airline industry is one of the most competitive industries existing today and both efficient and effective crew
schedule is crucial as it has a big impact on the airline's costing. Crew Scheduling Problem involves the
process of assigning crew to operate a designated route. Lots of literature exist in regards to try to solve the
Crew Scheduling Problems.

In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew
pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse open-
source IDE using the Java programming language to solve the crew scheduling problems.

The solution derived from this algorithm has been tested and the results show that the execution time
obtained by the algorithm is quite fast and it can be relied on to produce the best set balanced crew routes.

Key Words: Crew Scheduling, Crew Pairing, algorithm optimization, balanced crew routes.

1. INTRODUCTION

Airlines main objective is cost cutting on its day to day operations. Several research and studies have been
done on airlines cost structure and the findings have been that, after the cost of fuel which cannot be
controlled by the airline, the second highest expense is the crew scheduling cost. Crew cost basically covers
the salaries, layover stipends when out of the base, hotel, transport etc. These costs are probably the most
important area for potential airlines savings and when not planned properly, it can cost the airline and
therefore becoming a huge problem. With this in mind, airlines are striving to reduce or save on the costs by
implementing efficient and effective solutions to solve the crew scheduling problems.

Crew Scheduling problems can be defined as those factors that affects the crew operations. The factors can
be flight cancellations due to weather, equipment unavailability, flight delays, political factor such as union
politics, crew unavailability such as sickness. It is divided into Crew Pairing and Crew Rostering.

Crew pairing is a sequence of flight legs or segments that begin and end at a crew base such that in a
sequence the arrival city of a flight leg coincides with the departure city of the next flight leg and wrong or
incomplete crew pairing can be very costly to an airline, Deng, G. F., & Lin, W. T. (2010).
Crew pairing problems is divided into two categories; cock-pit crew pairing and cabin crew pairing. Each
category has its own rules, as explained in Shangyao Yan, Jei-Chi Chang (2002), cock-pit crew pairing
generation is more complicated than cabin crew because each pilot is qualified to fly only one type of
aircraft. Crew Pairing problem is usually approached by first generating a huge number of pairings. From
this huge collection of legal pairings, a set of pairings that has minimal cost and which ensures that each
flight is manned by exactly one crew is determined.

Once crew pairs have been generated, each single crew is assigned to the pair generated, this is called Crew
Rostering Problem. while assigning the crew to flight pairs, several factors have to be taken into
consideration depending on airlines, that is, number of days off per week, number of hours per week, number
of nights per week in the case of layover flights, age restriction on operating some legs in the case of pilots,
crew dead heading etc.

The purpose of this paper is to propose an algorithm which automatically controls for all lurking variables,
thereby getting feasible and optimal solutions which can be useful in solving the aforementioned crew
scheduling problems.

The rest of the document is organized as follows: Section 2 reviews some of existing research done by other
authors in regards to crew scheduling problems. Section 3 describes the analysis of the proposed algorithm.
Section 4 reports the computational experiments for the proposed models. Finally, in Section 5, we conclude
and outline possible research extensions.

2. BACKGROUND AND RELATED WORK

Airline operations can be very costly especially if not managed and controlled properly. The airline
operations includes flight operations which consists of flight planning, air craft route planning, crew
scheduling, et cetera. In this research we are going to focus on crew scheduling and crew scheduling
problem.

There are many articles researched on and written in regards to solving crew scheduling problems and in our
case, we are applying an algorithm optimization to solve the crew scheduling problems.

One of the crew scheduling problems which we are seeking to solve is the Crew pairing issues. Crew cost is
the biggest expenditure an airline can control, therefore effective assignment of crews to flight is a very
important aspect of airline planning(see Gopalakrishnan et al.(2005)). Wrong or incomplete crew pairing can
be very costly to an airline. In Deng et al. (2010), Ant Colony Optimization-based algorithm that was
proposed by Dorigo in 1992, has been applied to solve the crew scheduling problems. The ACO idea was
inspired by the behavior of ant colonies that find the shortest route between ant's nest and a source of food,
and this was applied in crew scheduling problems by applying a flight based scheduling to build the shortest
path with minimum cost and use flights as nodes of paths and the connecting edges to conform to the
constraints between two consecutive flights

In Shangyao Yan et al. (2002), a column generation approach model was applied to help in minimize crew
cost and to plan for proper cockpit crew pairing. Unlike cabin crew pairing where a crew can be qualified in
more than 2 aircraft types, cockpit crew can only be qualified to fly one type of aircraft, thus making the
generation of the cockpit crew scheduling more complicated. Using the column generation model in Ahuja et
al.,(1993), the flight timetable and the work rules stated in the article are used to develop two scheduling
networks in order to generate feasibly pairings. The networks are called Standard crew network and
Augmented crew network. Based on the model we are trying to see if we can apply it on our research to
solve the crew pairing problems

For day to day flight operations, there are factors that disrupt the smooth flow of operations, these can be
weather, flight cancellation, delays etc and this results to crew scheduling disruptions which are costly.
Schaefer, Andrew J., et al. (2005), applied a deterministic crew scheduling model operating under
uncertainty under the assumption that all pairings will operate as planned, this model is the SimAir, a Monte
Carlo Simulation of airline operations based on Rosenberger et al.(2000a).

The column generation approach has also been mentioned in AhmadBeygi, S. et al. (2009), where an Integer
programming approach is applied to generate airline crew pairings

In Ralf Borndöfer et al. (2005), a column generation approach is applied for solving airline crew scheduling
problems that is based on a set partitioning model, considering algorithmic aspects such as the use of bundle
techniques for the fast, approximate solution of linear programs, a pairing generator that combines
Lagrangean shortest path and callback techniques, and a novel “rapid branching” IP heuristic

A stochastic crew scheduling model and a solution methodology for integrating disruptions in the evaluation
of crew schedules was devised in Yen, J. W., & Birge, J. R. (2006). The goal was to use the information to
find a robust solution that can withstand disruptions. A stochastic integer programming model was used to
develop a branching algorithm to identify expensive flight connections and finding alternative sources.

Algorithms similar to the SR-GCWS-CS that combines Monte Carlo simulation as explained in AA Juan et
al.(2011), can be used to solve combinatorial type problems like the Crew Scheduling Problems whereby
some biased random behaviour within the CWS heuristic to perform a search process inside the space of

feasible solutions are introduced. These feasible solutions consists of a set of round trip routes from the depot
(in our case, the airport base) that, altogether, satisfy all demands of the nodes by visiting and serving all of
them exactly once. Different geometric statistical distributions during the randomized CWS solution-
construction process: every time a new edge is selected from the list of available edges, a value α is
randomly selected from a uniform distribution. This value is then used to assign exponentially diminishing
probabilities to each eligible edge according to its position inside the sorted savings list. That way, edges
with higher savings values are always more likely to be selected from the list, but the exact probabilities
assigned are variable and they depend upon the concrete distribution selected at each step.

In Vance et al. (1997), a new formulation and decomposition approach for solving a new model based on
selecting a set of duty periods that cover the flights in schedule and building pairings using he duty periods is
suggested. The formulation is based on linear programming relaxation which provides a stronger bound in
the optimal integer programming. Just like the algorithm we are trying to solve in our case, in this model, to
initialize the column generation procedure, there must be a feasible solution to the LP relaxation of the
master problem. An initial solution can be obtained by constructing an artificial solution using the duty
periods in any duty period set to build pairings. The other approach would be to start with some known
feasible solution.

Crew scheduling problems can also be solved using Differential Evolution (DE) method as discussed in
Santosa, B. et al. (2010). In the paper, the DE algorithm is proven to be able to find the near optimal solution
accurately for the optimization problem, focusing on developing differential evolution algorithm applied on
intelligent airline crew rostering system. Differential evolution is an evolutionary population-based algorithm
proposed by R. Storn and K. Price (1995). Still with evolution method, Marchiori, E. et al. (2000) proposes
an adaptive heuristic based evolutionary algorithm whose main ingredient is a mechanism for selecting a
small core sub problem which is dynamically updated during the execution. The mechanism allows the
algorithm to find covers of good quality in short time.

A network model approach has been used in Yan, S., & Tu, Y. P. (2002) to efficiently and effectively solve
crew scheduling problems for a Taiwan airline using real constraints. The network allows for the drafted
flight timetable, and the average cost and number of cabin attendants required for each flight, to formulate
crew scheduling for a single home base. The model was formulated as a pure network flow problem to solve
the problem, and a flow decomposition algorithm was applied to obtain the pairings, from the optimal integer
solutions. The model has a source node and a sink node that represents the same home base, the other nodes
indicates the location and the time for a duty departure and arrival. The network model is also represented by
arcs; specifically starting or ending arcs, duty arcs, deadhead arcs, rest arcs, and a cyclic arc

In Levine, D. (1996), Application of a hybrid genetic algorithm to airline crew scheduling has been
developed and compared to the traditional approaches. The hybrid algorithm consists of a steady-state
genetic algorithm. The algorithm works with a population of candidate solutions. As can be seen in the
original Genetic Algorithm of Holland J(1975), each candidate solution is represented as a string of bits
where the interpretation of the bit string is problem specific. The strings then recombines by using the
crossover and mutation operators to produce a new generation of strings.

In Juan, A. A. et al. (2011), the use of probabilistic or randomized algorithm is used for solving vehicle
routing problems with non-smooth objective functions. Just like the problem we are trying to solve, we are
seeking to apply similar approach of biased randomization to solve crew scheduling problems. The approach
employs a non-uniform probability distributions to add a biased random behavior to well known savings
heuristic in order to sample out the best feasible solution.

3. THE METHODOLOGY RESOLUTION

This methodology is almost similar to the ones discussed in the literature. It involves creating an algorithm to
balance crew routes.

The major actors in this methodology are

• A pair of Legs where; legs=(leg1, leg2, ...legn) and a leg being a connection between one airport to the

airport, for example BCN-AGP-BCN

• Airports where; Aiports=(aiport1, airport2....airportn)

When creating the algorithms solutions, we will take the following factors into considerations
• Numbers of flight sectors → There can be routes that have more than 4 sectors, however with proper

route creation, they can be reduced to only 3 sectors. Lets take an example where we have crew
route containing BCN-SVQ-BCN-MAD-BCN, this route has 5 sectors but it can be reduced to 4
sectors by doing a triangle route generation to get BCN-SVQ-MAD-BCN

• Duty time period → Pilots and cabin crew have different duty time period and when generating the
crew routes, this has to be taken into consideration to avoid bursting out the required hours.
Depending on airlines and Collective Bargain Agreements (CBA) each type of crew has a minimum
number of hours that they can operate in a day, in some airlines the pilots can do up to 12 hours and
cabin crew up to 15 hours

Starting with the first solution, we will generate the Basic routes of paired legs to obtain the leg pairings. To
do this, we analyze the pseudo-code of the algorithm below
__
procedure generateBasicRoutesOfPairedLegs(legs)
__
% This procedure generates basic roundtrip routes
% composed of pairs of inverse legs.
% E.g.: (BCN-JFK) + (JFK-BCN) = BCN-JFK-BCN

01 basicRoutes <- emptyList
02 legs <- sortByStartingTime(legs)
03 while {legs is not empty} do
04 newRoute <- emptyRoute
05 leg <- extractNextLeg(legs)
06 invLeg <- extractInverseLeg(leg, legs)
07 newRoute <- merge(leg, invLeg)
08 basicRoutes <- add(newRoute)
09 end while
10 return basicRoutes

end procedure

The algorithm is trying to generate basic crew routes composed of number of legs

In line 1, we do not have any values in our list yet, thus, our basicRoutes list is empty.
As we can see in line 2, there are available legs, and they will be sorted by their starting time to get the
sortByStartingTime. This start time is generated from the origin airport leg time and date and the arrival time
and date of the destination airport.

In line 3, We will verify if the leg is not empty and in line 4, new empty route will be created, the next leg
will be extracted in line 5, the inverse leg will be extracted in line 6 and in line 7, the next leg and the inverse
leg will be merged to create the new route. This new route will then be added to the basic route on line 8 and
the new basic route created will be added to the list of paired legs.

This analysis is represented in the flow chart diagram below (Figure I)

Figure I: Flow chart diagram for creating basic Route pair

Once the basic routes have been generated, we will create the initial solution by merging the basic Route
solution above starting at each airport. The idea behind this would be to balance the crew routes and return a
working and feasible crew route combinations.

The pseudo code for generating the initial solution is as shown below

procedure generateInitialSol(legs, airports)

% This procedure generates an inital solution by merging
% basic routes (pairs of legs) starting at each airport.
% E.g.: (BCN-MAD-BCN) + (BCN-VAL-BCN) = BCN-MAD-BCN-VAL-BCN

01 globalSol <- emptySol
02 basicRoutes <- generateBasicRoutesOfPairedLegs(legs)
03 for each {airport in airports} do
04 basicRoutes(airport) <- getBasicRoutes(basicRoutes, airport)
05 airportSol <- emptySol
06 while {basicRoutes(airport) is not empty} do
07 newRoute <- extractNextStartingRoute(basicRoutes(airport))
08 for each {route in basicRoutes(airport)} do
09 tentativeRoute <- merge(newRoute, route)
10 if {tentativeRoute is feasible} then
11 basicRoutes(airport) <- delete(route, basicRoutes(airport))
12 newRoute <- tentativeRoute
13 end if
14 end for
15 airportSol <- add(newRoute, airportSol)
16 end while
17 globalSol <- add(airportSol, globalSol)
18 end for
19 return globalSol

end procedure

The algorithm is trying to generate a feasible pairing solution from the legs and airports (basicRoute), this
solution is going to be called globalSol.

To start with we do not have a globalSol yet, therefore at line 1 our global solution will be null.
We already have basic routes of paired legs generated from the previous algorithm, therefore in line 2 from
the generated Basic routes of paired legs we get the basicRoutes. At line 3, we check in each airports an
array of basicRoutes and aiports to generate the basicRoutes(Airports) in line 4.
There is still no solution generated yet the aiport, therefore at line 5, we have the aiportSol will be null.

At line 6, we will check if the basicRoute above is empty and if it is empty, we go back to getting the Basic
routes again, otherwise we extract the next starting route (line 7) from the airport's basicRoute and create a
new route called newRoute

For each route in the basicRoute in line 8, we will merge it with the newRoute to create a tentative route on
line 9 called tentativeRoute.

We will then check the feasibility of the tentativeRoute line 10 and if feasible, we go ahead and delete the
basicRoute (line 11) and make the tentativeRoute (line 12) as the newRoute and add the newRoute to the
globalSol list and then the best feasible solution is returned.

The analysis can be summarized in the flow chart below (Figure II)

Figure II: Flow chart for the InitialSolution

Group 1

Begin

Legs, airports

generate BasicRouteof pared legs(basicRoutes)

airport in airport is empty?

get basicRoute

basicRoute emty?

create newRoute route in basicRoute?

tentativeRoute

is feasible?

delete basicRoute

tentativeRoute=newRoute

add newRoute to globalSol

display globalSol

Stop

Yes

No

Yes

No

Yes

No

No

Yes

globalSol()

airportSol()

4. RESULTS ACHIEVED FROM THE ALGORITHM.
The algorithm was developed by applying the Free Software on an Eclipse environment using java version
1.6.0_37 and was tested on a simulated schedule that can handle an average of 100 flights per day, both
domestic and international. Assuming that the crew pairing generation is done manually, it can take lots of
hours to find a feasible and optimized solution. Once the algorithm was developed successfully, we put it
under different types of test to evaluate its efficiency and effectiveness.

The tests that we did were
• Performance and reliability test to check the approximate time it takes to execute and return the

output using different types of operating system and processors and different numbers of flights per
day

• Functional test to check the accuracy of the results returned, possible values that can be derived and
exceptions

The Table1:Flight Schedules below has a list of possible scheduled flights in a day,

Table1:FlightSchedules

In the first algorithm of creating basic routes pairs, the algorithm check the possible pairs it can create using
the flight number, origin and destination to have produce the output in the figure III below

Figure III

In the second algorithm for generating initial solution, the algorithm uses the crew pairs generated in Figure
III to find the best combination of crew routes and balance them off to produce the output in figure IV

Figure IV

We executed the algorithm using different numbers of flights per day and the Table II below summarizes the
execution time it took to provide the output in terms of number of flights per day

Pair1: AGP =>CDG
Pair2: CDG => AGP

Flight number Origin Destination Start time Finish Time Date
1015 MAD AGP 1015 1115 02/01/2013
1016 AGP MAD 1215 1315 02/01/2013
1017 MAD AGP 1415 1515 02/01/2013
1018 AGP MAD 1615 1715 02/01/2013
1111 SVQ MAN 0900 1130 02/01/2013
1112 MAN SVQ 1230 1500 02/01/2013
1115 AGP CDG 0715 0945 02/01/2013
1116 CDG AGP 1045 1315 02/01/2013
1201 SVQ BCN 1000 1115 02/01/2013
1202 BCN AMS 1215 1415 02/01/2013
1203 AMS SVQ 1515 1815 02/01/2013
1800 MAD LHR 0600 0800 02/01/2013
1801 LHR MAD 0900 1100 02/01/2013
1802 AGP FCO 0600 0800 02/01/2013
1803 FCO AGP 0900 1100 02/01/2013
1804 AGP LTN 0845 1045 02/01/2013
1805 LTN AGP 1145 1345 02/01/2013
2000 MAD JFK 1000 1835 02/01/2013
2001 JFK MAD 0015 0850 03/01/2013
2960 AGP CDG 0600 0715 03/01/2013
2961 ORY CDG 0815 1015 03/01/2013
2962 CDG ORY 1115 1215 03/01/2013

AGP => CDG => AGP

Table II: Execution time for a number of flights legs paired in a day

Equipment 50 flights 100 flights 200 flights

Windows 7

Intel(R) Core(TM)2
Duo CPU P8700
@2.53Hz 2.53GHz

RAM: 4,00GB

Total elapsed time is

0h 0m 0s

Total elapsed time is

0h 0m 0s

Total elapsed time is

0h 0m 0s

openSUSE 12.2, AMD
Athlon(tm) 64 X2 Dual
Core Processor 4400+
, RAM 7,00GB

Total elapsed time is

0h 0m 0s

Total elapsed time is

0h 0m 0s

Total elapsed time is

0h 0m 0s

Windows XP

Genuine Intel(R) CPU
T2400 @1.83GHz

1.83GHz, RAM:
1,99GB

Total elapsed time is

0h 0m 1s

Total elapsed time is

0h 0m 1s

Total elapsed time is

0h 0m 1s

As can be seen from the table, depending on the number of flights per day and different equipments with
different operating systems and processors, the time spent to execute the algorithm and produce results
comes to an average of 1 second.

From the list of flight schedules we have in Table1, the algorithm for generating the basic crew routes/pairs
was executed to test its functionality. The output results are as shown in Figure V.

 Figure V: Output of available legs

As can be seen in the diagram, the program has generated for us a list of available flight legs, the start time
of the origin leg, the finish time of the destination leg and the date.
These flight legs are now used to create feasible crew route pattern, which are returned when the algorithm
generateInitialSol is executed. See figure V: Crew routes balancing

Figure V: Crew routes balancing

The algorithm does a loop to check for a complete flight leg, when it finds the feasible combination, it gives
a list of the possible combinations.

In the case that it cannot find a feasible solution in a list of available flight legs, then it does not return the
unfinished crew route. See figure VI: Unfinished legs below

Figure VI: Unfinished legs

In the figure VI, the flight legs 1115 and 1116 are not displayed in the initial solution, this is because the
algorithm did not find a feasible complete balanced crew route. A complete crew pattern has to start at base
airport and end at base airport, but the mentioned flight legs are not finishing at base airport.

5. CONCLUSIONS
In this paper, we proposed an algorithm optimization models that is used to solve the airline crew scheduling
problems by generating feasible combination of crew routes and balancing them out. The performance of the
proposed algorithm was tested for its efficiency and it is worth mentioning that it was fast in comparison
with manually crew pair generation, having an instance run in an average of 1 second. We also checked its
functionality of generating a feasible balanced crew route patterns, we got different pattern combinations
from the available flight schedules and the incomplete flight legs were not displayed as per the functionality
of the algorithm. We also discussed about other methods that have been used before to solve crew scheduling
problems and how it can apply to our methodology.

Although the algorithm was able to solve the main problem that is related to crew route generation and
balancing, it still needs further improvement to enable it generate petal-solutions and local search. We also
recommend a further study on other algorithms like using the biased randomization to obtain a random and
feasible crew pairs can be applied as a future work.

ACKNOWLEDGEMENTS
I hereby express my sincere gratitude to Dr. Angel A. Juan for his invaluable
guidance, help and for providing me with the necessary materials that were required for the successful
preparation and completion of this paper.

I would also like to thank to my family and friends for their endless support and help.

REFERENCES
1) AhmadBeygi, S., Cohn, A., & Weir, M. (2009). An integer programming approach to generating airline
crew pairings. Computers & Operations Research, 36(4), 1284-1298.

2) Beasley, J. E., & Cao, B. (1996). A tree search algorithm for the crew scheduling problem. European
Journal of Operational Research, Volume 94 Issue 3, 517-526.

3) Borndörfer, R., Schelten, U., Schlechte, T., & Weider, S. (2006). A column generation approach to airline
crew scheduling. Operations Research Proceedings 2005, 343-348.

4) Deng, G. F., & Lin, W. T. (2010). Ant colony optimization-based algorithm for airline crew scheduling
problem. Expert Systems with Applications. Volume38 Issue 5 Pages 5787-5793

5) Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan press. Ann
Arbor, MI, 1(97), 5.

6) Juan, A. A., Faulin, J., Ferrer, A., Lourenço, H. R., & Barrios, B. (2011). MIRHA: multi-start biased
randomization of heuristics with adaptive local search for solving non-smooth routing problems. TOP, 1-24.

7) Juan, A. A., Faulin, J., Jorba, J., Riera, D., & Masip, D. (2011). On the Use of Monte Carlo Simulation,
Cache and Splitting Techniques to Improve the Clarke and Wright Savings Heuristics. Journal of the
Operational Research Society, 62(6), 1085-1097.

8) Levine, D. (1996). Application of a hybrid genetic algorithm to airline crew scheduling. Computers &
Operations Research, 23(6), 547-558.

9) Marchiori, E., & Steenbeek, A. (2000). An evolutionary algorithm for large scale set covering problems
with application to airline crew scheduling. Real-World Applications of Evolutionary Computing, 370-384.

10) Rosenberger, Jay M., et al. (2002) "A stochastic model of airline operations." Transportation science
Volume 36.issue 4 : Pages 357-377.

11) Santosa, B., Sunarto, A., & Rahman, A. (2010). Using Differential Evolution Method to Solve Crew
Rostering Problem. Applied Mathematics, 1(4), 316-325.

12) Schaefer, Andrew J., et al. (2005) "Airline crew scheduling under uncertainty." Transportation Science
Volume 39 Issue 3 : 340-348.

13) Shangyao Yan, Jei-Chi Chang (2002), Airline cockpit crew scheduling, European Journal of Operational
Research, Volume 136, Issue 3, Pages 501-511, ISSN 0377-2217.

14) Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global
optimisation over continuous spaces. International Computer Science Institute, Berkley, CA, Tech. Rep. TR,
95-012

15) Vance, P. H., Barnhart, C., Johnson, E. L., & Nemhauser, G. L. (1997). Airline crew scheduling: A new
formulation and decomposition algorithm. Operations Research, 45(2), 188-200.

16) Yan, S., & Tu, Y. P. (2002). A network model for airline cabin crew scheduling. European Journal of
Operational Research, 140(3), 531-540.

17) Yan, S., & Chang, J. C. (2002). Airline cockpit crew scheduling. European Journal of Operational
Research, 136(3), 501-511.

18) Yen, J. W., & Birge, J. R. (2006). A stochastic programming approach to the airline crew scheduling
problem. Transportation Science, Volume 40(1), 3-14.

19) Kornilakis, H., & Stamatopoulos, P. (2002). Crew pairing optimization with genetic algorithms. Methods
and Applications of Artificial Intelligence, Pages 109-120.

