
 Abstract— this paper presents a pattern recognition method
focused on paintings images. The purpose is construct a system
able to recognize authors or art styles based on common elements
of his work (here called patterns). The method is based on
comparing images that contain the same or similar patterns. It
uses different computer vision techniques, like SIFT and SURF,
to describe the patterns in descriptors, K-Means to classify and
simplify these descriptors, and RANSAC to determine and detect
good results. The method are good to find patterns of known
images but not so good if they are not

Index Terms— Art paintings, computer vision, feature
description, image processing, local features, object recognition,
pattern recognition.

I. INTRODUCTION

COMPUTER vision is a branch of science and technology

dedicated to extract information from digital images, in order
to artificially simulate the human visual system on a machine.
The purpose of the computer vision is to program computers
to "understand" the features of a scene or an image. There are
different kinds of studies inside computer vision like image
processing, detection, pattern recognition, evaluation of
results, statistical learning. In this paper, I focused on pattern
recognition. Pattern recognition is the science that deals with
the processes of engineering, computer science and math-
related physical on abstract objects, in order to extract
information for making joint properties between those objects.

I've just studied a Master's Degree in Open Source and, to
finish it, I needed to make a project related with an open
source technology. There was the option of working for a
company or to do a research project. I chose second because
I've always found interesting the scientific studies and I'd
always wanted to participate on one.

Among the available research proposals, there was one over
computer vision techniques in museum environments. I found
it very attractive because I love art and especially painting.
There were different lines of research but I wanted to focus
mine on search and classification of common elements on
paintings able to determine a computer the image's style, the
historical period or the specific author.

There are some interesting proposals on the problem of
automatic classification on artwork nowadays, but the capacity
of the machine is still far from human capabilities. When we
(as humans) look at a painting, we have the ability to know if
this is a renaissance or impressionist painting, if it is a Van

 This work is my final project of the University Master's Degree
Programme in Free Software (UOC University).

Gogh, a Dalí or a Monet. We have cognitive abilities that
allow it, either by color, the elements of the work, style, or
altogether. A machine, a computer is unable to do this. The
question is how could this computer be able to acquire these
skills? There are many possible approaches to achieve this
objective. I've wanted to focus my study on "pattern
recognition", understand pattern as an element within the work
that distinguish and identify the authors. Some examples of
patterns could be:

Fig. 1. On left side the pattern could be the crosses. On right side the pattern
could be the clocks.

These patterns will be used by the system to classify and
compare these in other images and so, be able to classify
the artwork by author and style.

This paper is structured in seven points: In I), I introduce
the subject of the research. In II), I expose the actual state-of-
art. In III), I describe the methods and technologies that I’ve
used. In the IV), I explain the pipeline and how the method is.
In V), I explain in detail all the experiments and their results.
In VI), I expose the conclusions. The last, VII) I analyze
possible improvements, future works and things that it have
been pending.

II.PREVIOUS WORK

There is an extensive literature on computer vision
nowadays. The ones related to this study are in terms like
interest point detection: Harris corner detector [1], based on
the eigenvalues of the second moment matrix, was one of the
most used detector method. However, Harris corners are not
scale-invariant. Lindeberg [2] introduced the concept of
automatic scale selection which allows to detect interest points
in an image, each with their own characteristic scale.
Mikolajczyk and Schmid [3] refined this method, creating
robust and scale-invariant feature detectors with high
repeatability. Lowe [4] proposed to approximate the Laplacian
of Gaussians (LoG) by a Difference of Gaussians (DoG) filter.
Related on this studies, there were another focused on interest

Xavi Escriche Galindo

Searching patterns in painting images with
computer vision techniques (January 2013)

point and feature description: SIFT [5] have been shown to
outperform the others. SIFT computes a histogram of local
oriented gradients around the interest point and stores the bins
in a 128- dimensional vector (8 orientation bins for each of 4 ×
4 location bins). There were another good methods but there
was one who increases the results in a faster way: SURF [6],
[7] that was inspired by SIFT descriptor. SURF is based on
sums of 2D Haar wavelet responses and makes an efficient use
of integral images using an integer approximation to the
determinant of Hessian blob detector,

In clustering terms, there are so many different algorithms
but I focused on K-Means. K-Means is one of the simplest
unsupervised learning algorithms that solve the well known
clustering problem. The procedure follows a simple and easy
way to classify a given data set through a certain number of
clusters (assume k clusters) fixed a priori. This was first used
by J. MacQueen [8], inspired on the idea Hugo Steinhaus [9]
but the standard algorithm was first proposed by Stuart Lloyd
in 1957, but it wasn't published until 1982 [10]. In 1965, E. W.
Forgy [11] published essentially the same method, which is
why it is sometimes referred to as Lloyd-Forgy, too. A more
efficient version was proposed and published by Hartigan and
Wong [12], [13]. There are another good cluster learning
techniques like Nistér and Stewénius [14] Vocabulary Trees.
This is similar to the k-means but is more efficient on a large
vocabularies.

I used another technique called homography. This is a
mathematical concept based on projective transformations that
determines a correspondence between two flat geometric
shapes, so each point and each line of a figure, corresponding
respectively to a point and a line to the other. RANSAC [15]
algorithm is used to remove data from atypical set of
correspondences. I read some articles [16], [17] where they
use RANSAC to find homographies between the images,
similar to my solution.

Finally, there are other studies in the state-of-art related
to my study that although I haven't used it, I think it's good to
name here: HOG [18] are also a feature descriptors technique
of object detection, based on counting occurrences of gradient
orientation in localized portions of an image. FERNS [19],
[20] is a new methodology for recognizing images based on a
simple, efficient and robust algorithm that eliminates
unnecessary preprocessing using a non hierarchical structures
called ferns.

III. METHODOLOGIES

To realize my project, I had to use open source tools that
they could be able to process images and also, make some
kind of functions on them. For this purpose I selected OpenCV
that permits to make it. OpenCV (Open Source Computer
Vision) is an open source library of programming functions for
real time computer vision. It is released under a BSD license1.
It is free for both academic and commercial use. Inside
OpenCV are so many libraries and functions that permit me to
use the next methodologies:

1 http://creativecommons.org/licenses/BSD

A. SIFT

In 2004, David G. Lowe published an article [1] where
presents a method called Scale-invariant feature transform
(SIFT) used to detect and describe local features on images.
These features are invariant to rotation and scale effects
between images and provide a rather large coincidence when
there are substantial changes in terms of distortion, noise, or
change the lighting in the picture.

This algorithm is used for many applications, including:
object recognition, mapping, robotic navigation, image
stitching, 3D modeling, gesture recognition, video tracking
and motion tracking.

This method consists on comparing the individual features
of the image with a database of features known objects using a
fast nearest neighbor algorithm, followed by a Hough
transform to identify groups belonging to a single object, and
finally perform verification through least-squares solution.

A SIFT feature is a selected image region (also called
keypoint) with an associated descriptor.

A SIFT keypoint is a circular image region with an
orientation. It is described by a geometric frame of four
parameters: the keypoint center coordinates x and y, its scale
(the radius of the region), and its orientation (an angle
expressed in radians).

A SIFT descriptor is a 3-D spatial histogram of the image
gradients in characterizing the appearance of a keypoint. The
gradient at each pixel is regarded as a sample of a three-
dimensional elementary feature vector, formed by the pixel
location and the gradient orientation. Samples are weighed by
the gradient norm and accumulated in a 3-D histogram h,
which (up to normalization and clamping) forms the SIFT
descriptor of the region. An additional Gaussian weighting
function is applied to give less importance to gradients farther
away from the keypoint center.

Fig. 2. shows how a keypoint descriptor is created. First (as show on left
side), by computing the gradient magnitude and orientation at each image
sample point in a region around the keypoint location. These are weighted by
a Gaussian window, indicated by the circle. Then (as shown on the right),
these samples are accumulated into orientation histograms summarizing the
contents over 4x4 sub-regions with the length of each arrow corresponding
to the sum of the gradient magnitudes near that direction within the region.
This figure shows a 2x2 descriptor array computed from an 8x8 set of
samples.

http://creativecommons.org/licenses/BSD

B. SURF

In 2006, Herbert Bay presents an article [2] improved and
revised two years later, in 2008 [3]. These articles presents
another detector and robust image descriptor algorithm called
SURF: Speeded Up Robust Features. This algorithm is used
for computer vision systems such as object recognition. SURF
was inspired by SIFT descriptor, although it is several times
faster and according to the authors. SURF is based on sums of
2D Haar wavelet responses and makes an efficient use of
integral images. As basic image features it uses a Haar wavelet
approximation of the determinant of Hessian blob detector.

Fig. 3. shows the properties of the descriptor for three distinctively different
image intensity patterns within a sub-region. The descriptor entries of a sub-
region represent the nature of the underlying intensity pattern. (On left side)
A case of a homogeneous region, all values are relatively low. (On left
middle) In presence of frequencies in x direction, the value of ∑|dx| is high,
but all others remain low. If the intensity is gradually increasing in x
direction, both values ∑dx and ∑ |dx| are high.

C. K-Means

Cluster analysis or Clustering is the task of grouping a set
of objects in such a way that objects in the same group (called
cluster) are more similar (in some sense or another) to each
other than to those in other groups.

In 1967, James MacQueen presents K-means Clustering
[4]. This algorithm is a simple and easy clustering method
used to minimize the mean squared Euclidean distance
between objects in a given data set. This objects are classified
through a certain number of clusters (assume k clusters) fixed
a priori. The main idea is to define k centroids, one for each
cluster. These k centroids represent the average value of the
objects near every cluster.

Fig. 4. shows a set of points in two colors, one for each cluster. In this case
the k=2. The Centroids represents the mean value of each cluster.

D. RANSAC

In 1981, Martin A. Fischler and Robert C. Bolles presented
an algorithm called RANSAC ("RANdom SAmple Consensus")
[5]. This is an iterative robust method to estimate parameters
of a model from a set of observed data which contains
outliers. The idea is that the data consists of inlier (data whose
distribution can be explained by some set of model
parameters), and outlier (data that do not fit the model). Data
can be subject to noise. The outliers can come, for example,
from extreme values of the noise or from erroneous
measurements or incorrect hypotheses about the interpretation
of data.

It is a non-deterministic algorithm because it produces a
reasonable result only with a certain probability, with this
probability increasing as more iteration is allowed.

RANSAC algorithm can be applied to get the homography
of each image pair. Homography is a concept in the
mathematical science of geometry. A homography is an
invertible transformation from a projective space (for
example, the real projective plane) to itself that maps straight
lines to straight lines. In the field of computer vision, any two
images of the same planar surface in space are related by a
homography.

Fig. 5. shows a comparison with 181 matching pairs.

Fig. 6. shows the same image after applying RANSAC. This removes the
“outliers”. Now the number of matches are 139.

IV. PIPELINE

Through the combined use of the methods in the previous
section, I have built a system able to perform a series of
experiments to help me get to recognize patterns in images. I
separate the process in two phases:

Fig. 7 shows he training phase scheme.

The Fig. 7. shows the first phase, the “training phase”. In
this phase the system learn from the images of the database
and build a vocabulary with these images and store them in an
index structure (a decision tree).

On the left, there's a database that consists in a set of images
(I1, I2... In) representing the data required for the system to
learn. Each image contains one or more patterns. For example:

Fig. 8 On left side, we can see the image that contains two patterns (in this
case, a cross). On right side, the green squares shows every pattern.

The first thing we have to do is select images that contain
the pattern we want to find (in our case, the crosses). For each
image, we will cut the pieces of the pattern and store those
images in new files. For example:

Image1.jpg

Image1-0.jpg

Image1-1.jpg

Fig. 9. On left side, we have the original. On right side, we have the two
images. The names of these will be the name of the original image -i.jpg,
where “i” is an index.

Once we have selected, cut and saved all pictures, we will
have our training dataset with all of our patterns. Now, we
need a method to describe these patterns. There are different
methods to do that but I have chosen SIFT or SURF because
they are well known in the world of computer vision. These
are used to detect and describe local features in images. These
features will help us to describe and classify our image
patterns.

First of all, the system creates the detector and descriptor
objects. These can be of many types2. Although, in this study, I
have focused only on SIFT, SURF and USURF. The last one is
equivalent to SURF but it doesn't compute the orientation of
each descriptor. Then, it read all the images and applies the
detector to find their keypoints and the descriptor to extract
their descriptors.

Once it has the descriptors of all images, it applies kmeans
clustering in all the set of images descriptors. This method
consist in find all the closest centers for each descriptor. This
also constructs a vocabulary with all these center values. This
method also extracts all the equivalences between every image
descriptor and the nearest center to it. This is what we call
“visual vocabulary” because describes all the images in the
vocabulary. Finally, it constructs a structure (similar to a tree)
with all the k centers has every image. For example:

Image Number K-Centers

Image 1 (1, 4, 5, …, n)

Image 2 (2, 3, 5, …, m)

This structure, that we called “decision tree” will be used
after to decide which images are candidate (as we saw on the
next phase)

Fig. 10 shows the production phase scheme.

This consists in the “production phase” because we can do
different searching test.

On the left side of Fig. 10, there's the query image. This
represents the image that we want to compare with the images
from their vocabulary to see if it contains one or more of the
predefined patterns. The system doesn't know a priori if it
contains.

To this image, the system also applies SIFT or SURF to
detect his keypoints and extract his descriptors. The next that
it has to do is apply a “manual kmeans”. This is not as apply
kmeans on the query image descriptors because we need to
compare to the vocabulary descriptors. This is what we called
“describe image”. To do this, first, it applies a function that
transforms all the query image descriptors to k-center
descriptors keeping the nearest center for each descriptor. For
example:

Descriptor number Nearest K-Center number

Descriptor1 3

Descriptor2 120

The way to select the closest center is comparing the all the
Euclidean distances (in each dimension and in absolute

2 Feature Detectors, Descriptor Extractors

http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html

values) between every image descriptor and all the center
descriptors. The once who has the less sum of all differences
values, that is the selected center, the closest one.

Once it has this information, the next step to do is compare
the query image with all the images of the vocabulary (trying
to find the defined vocabulary patterns on it). To do this, it
makes a voting process that consists in looking for every
vocabulary image if it has the k-center descriptor of
imageQuery. The result of this process is an array that contains
the number of votes, or what is the same, the number of
centers that has each image of the vocabulary. For example:

Image Number Number of votes

Image 1 10 votes

Image 2 23 votes

The next step of the algorithm consists in compare every
voted image discriminating those who have obtained few
votes, because this means that they are not similar with the
query image. The system only process those who has a
number of votes >= to a defined parameter. If the image
satisfies the condition, then it selects.

For every selected image, it gives his descriptors and
transforms them into k-centers transforming (in the same way
mentioned above for the queryImage).

Then it looks for his space points (X, Y) with the same k
center in two images. Of this way, it obtains the
correspondence between the points of the two images with the
same k-center. It constructs two arrays of points, one for the
queryImage and one for the imageSelected:

ImageSelectedX ImageSelectedY ImageQueryX' ImageQueryX'

123 234 23 100

1 100 34 134

The last step is to look if these points are similar. To do that,
it uses the RANSAC algorithm to find homographies between
these correspondence points. The system performs some
homographies and evaluates if they are good or bad. This will
determine if the query image contains a pattern or not.

There are different ways to determine whether the
homography is good or not. Once is calculating a determinant
to the homography. If the value of determinant is closed to 1
(0.9... or 1.0...) it consider that is a good homography.

Also uses another method. This consist in obtain the four
corner points, with a square form, from the selected image
(objCorners). Then, it performs a perspective transformation
on these corners image applying the homography obtained
before. The result to apply the perspective on this objCorners
in the queryImage returns a result with another four point
figure (sceneCornersObject).

With these two 4-points objects it knows also if it's a good
or a bad homography. If the object obtained by applying the
perspective (sceneCornersObject) looks like a similar square
form of the objCorners (with a margin error defined in another
parameter) it has a good homography. A good result has the
next form (saved in a result image):

Fig. 11. Shows the matches (points correspondence) between 2 images. The
green square shows how a good homography finds the cross pattern.

It's possible that the image query contains more than one
pattern. That's why the system performs more homographies.
Once it find a good homography, removes the points inside the
green square (also called “inliers”) and it remake the
RANSAC algorithm with the rest of the points that has query
image.

After doing the process for the entire voted images loop, the
system saves another image result that it will contain all the
patterns searched well:

Fig. 12. This image shows an image with two green squares. This means that
the system have found the two possible patterns. This represents a 100% of
success.

V. RESULTS

I've made an application3 in C++ language using OpenCV4

library (both open source technologies) to develop the search
pattern system. The application is made using different
OpenCV modules (core, highgui, imgproc, features2d and
calib3d).

This application will allow us to analyze the results
qualitatively. After applying different experiments, we can
quantize these results to display them in a numerical and
graphical way. We obtain an error for each experiment.

The idea is to test the system with N images to obtain N
errors (E1, E2... En). With these, we can calculate the mean of
all the errors and obtain a final error, which will serve us to
analyze and evaluate our experiments.

3 https://github.com/kaneda75/SearchPatternsInArt
4 http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/
https://github.com/kaneda75/SearchPatternsInArt

1) Instance identification (with the query image on dataset)

The experiment consists on compare all the images of a 10
image data set that contains one or more pattern (crosses). The
query image is include on the data set. I made one test for
every image, for every algorithm type (SIFT, SURF, USURF)
and for a range of k centers (from 1 to the total number of
descriptions in the data set). The system returns an error on
every test, defined as:

Error type Result

Found 0 patterns 0%

Found #P* patterns 1/#P (2P Image: 50% if found 1, 100% if found 2)

Found all patterns 100%

*#P is the number of patterns that has an image.

I look if the images are correct and I write the result error
for all of the tests for every image. So, I analyze these in a
qualitative way but I write every value on a file. With these
values, I calculate the mean of the error for all the images:

Fig. 13. Comparison of different descriptors. Top: SIFT. Bottom: SURF and
U-SURF using 64 elements in each descriptor.

On Fig.13. we can see the obtained results and we can
define some conclusions: SIFT, uses less descriptors (523)
than SURF (2012) in this set. This thing makes SIFT faster
and better to recognize patterns. The optimal k is near the
number of total descriptors. This means that these algorithms
function well when the images are more similar. The method
is valid to find patterns of images inside the dataset.

2) Instance identification (Applying effects)

 This experiment consist on apply the same methodology of
experiment 1, but applying different effects on the query
image. First applying a Gaussian blur5 that smooth the image.
The results are good in some cases if the Gaussian kernel size
is little.

Fig. 14. Shows the match in a smooth image with gaussian kernel size =11

If the effect applied is higher (kernel size=21) the method
can't match any image.

A second effect I tested is to resize the image query. The
method doesn't work well if it resize the image to his double
size (size * 2) or if it resizes to the middle (size / 2). If we
apply two resizes together, first multiplying the image size * 2
and the divide the size / 2, the method works perfect, as good
as experiment 1.

3) Instance identification (leave-one-out)

This experiment consist on apply the same methodology of
experiment 1, but in this case, leaving out the data set, the
patterns of the query image. I've tested the same proofs of
experiment 1, but in this case all the results are negative. The
method cannot find any pattern.

VI. CONCLUSION

Through these experiments, we've seen how this method
works very well recognizing patterns in images when they
form part of our set (our database). In a large database with
many patterns classified of images of all the works of different
artists, this system would be valid to identify the works and
artists.

Furthermore, SIFT and SURF algorithms work very well
comparing the same images, but not so well when the patterns
are similar, but not equal. This is because the way that they
describe images are very detailed.

5http://en.wikipedia.org/wiki/Gaussian_blur

http://en.wikipedia.org/wiki/Gaussian_blur

VII. FUTURE WORK

In order to proceed with the study of searching pattern
matching, it could be good to do different things: make other
tests changing the system parameters that we tried, trying to
get more and not so accurate matches. Maybe, modifying the
way the patterns are described, using other methods which
were not SIFT and SURF. Furthermore, tests could be made
with databases that have many more patterns. In this way the
system would have more information and would be easier to it
to recognize patterns. Another option would be remake the
way that we consider found the pattern (with the
homography). Definitely researching and testing more.

ACKNOWLEDGMENT

I would particularly like to thank Xavier Baró Solé who has
taught me on most of the methodologies and has suggested
numerous improvements on the content and presentation of
this paper. Also, I would like to thank Àgata Lapedriza Garcia
who guided me at the beginning of my study.

Also, I want to thank my parents and my girlfriend Betty for
all the patience and encouragement they have given me.

IMAGE CREDITS

Fig.1 “Sabata” Antoni Tàpies (1995) (also on Fig. 14), “The Persistence of
Memory” Salvador Dalí (1931) .
Fig.2. [5] “Distinctive image features from scale-invariant keypoints”.
Fig.3. [7] “SURF: Speeded Up Robust Features” .
Fig.4. http://www.mathworks.es/es/help/stats/kmeans.html .
Fig.5-6 www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj4/www/mdougla1 .
Fig.8,9,11,12. “Asimétric” Antoni Tàpies (2007) .

REFERENCES

[1] C. Harris and M. Stephens. “A combined corner and edge detector”.
Proceedings of the Alvey Vision Conference, pp. 147-151, 1988.

[2] T. Lindeberg. “Feature detection with automatic scale selection”. IJCV,
Vol. 30, No. 2, pp. 79-116, 1998.

[3] K. Mikolajczyk and C. Schmid. “Indexing based on scale invariant
interest points”. ICCV, Vol. 1, pp. 525-531, 2001.

[4] D. G. Lowe. “Object recognition from local scale-invariant features”.
ICCV, 1999.

[5] D. G. Lowe. “Distinctive image features from scale-invariant
keypoints”. International Journal of Computer Vision, Vol. 60, No. 2, pp.
91-110, 2004.

[6] H. Bay, T. Tuytelaars, and L.Van Gool. “Surf: Speeded up robust
features”. European Conference on Computer Vision, Vol. 1, pp. 404-
417, 2006.

[7] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up
Robust Features”, Computer Vision and Image Understanding (CVIU),
Vol. 110, No. 3, pp. 346-359, 2008.

[8] J. B. MacQueen. “Some Methods for classification and Analysis of
Multivariate Observations”, Proceedings of 5-Th Berkeley Symposium
on Mathematical Statistics and Probability, Berkeley, University of
California Press, Vol. 1, pp. 281-297, 1967.

[9] H. Steinhaus. “Sur la division des corps matériels en parties”, Bulletin
de l’Académie Polonaise des Sciences, Classe III, Vol. 4, No. 12, pp.
801-804, 1956.

[10] S. P. Lloyd, (1957). "Least square quantization in PCM". Bell Telephone
Laboratories Paper. IEEE Transactions on Information Theory, Vol. 28,
No. 2, pp. 129-137. Published in journal much later: 1982.

[11] E.W. Forgy. "Cluster analysis of multivariate data: efficiency versus
interpretability of classifications". Biometrics, Vol. 21, pp. 768-769,
1965.

[12] J.A. Hartigan. “Clustering algorithms”. John Wiley & Sons, Inc, 1975.

[13] J.A. Hartigan and M. A. Wong. "Algorithm AS 136: A K-Means
Clustering Algorithm". Journal of the Royal Statistical Society, Series C
(Applied Statistics), Vol. 28, No. 1, pp. 100-108, 1979.

[14] D. Nistér and H. Stewénius. “Scalable recognition with a vocabulary
tree”. CVPR, Vol. 2, pp. 2161-2168, 2006.

[15] M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography”. Communications of the ACM, Vol. 24, No. 6,
pp. 381-395, 1981.

[16] L. Moisan, P. Moulon and P. Monasse. “Automatic Homographic
Registration of a Pair of Images, with A Contrario Elimination of
Outliers”, Image Processing On Line (ISSN 2105-1232), 2012.

[17] E. Vincent, and R. Laganire. “Detecting Planar Homographies in an
Image Pair”, IEEE Symp. Image and Signal Processing and Analysis, pp.
182-187, 2001.

[18] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human
Detection”, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005.

[19] M. Ozuysal, P. Fua, and V. Lepetit. “Fast Keypoint Recognition in Ten
Lines of Code”. Proc. CVPR, 2007.

[20] M. Ozuysal, M. Calonder, V. Lepetit and P. Fua. “Fast Keypoint
Recognition Using Random Ferns”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 32, pp. 448-461, 2010.

http://www.masdearte.com/images/masdearte/e_tapies_asimetric.jpg
http://www.masdearte.com/images/masdearte/e_tapies_asimetric.jpg
http://www.masdearte.com/images/masdearte/e_tapies_asimetric.jpg
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj4/www/mdougla1
http://www.mathworks.es/es/help/stats/kmeans.html
ftp://ftp.vision.ee.ethz.ch/publications/articles/eth_biwi_00517.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://en.wikipedia.org/wiki/The_Persistence_of_Memory
http://en.wikipedia.org/wiki/The_Persistence_of_Memory
http://en.wikipedia.org/wiki/The_Persistence_of_Memory
http://en.wikipedia.org/wiki/The_Persistence_of_Memory
http://experimenta.biz/revistaexperimenta/archives/198%20
http://experimenta.biz/revistaexperimenta/archives/198%20
http://experimenta.biz/revistaexperimenta/archives/198%20

	I. INTRODUCTION
	II. Previous work
	III. Methodologies
	A. SIFT
	B. SURF
	C. K-Means
	D. RANSAC

	IV. Pipeline
	V. Results
	1) Instance identification (with the query image on dataset)
	2) Instance identification (Applying effects)
	3) Instance identification (leave-one-out)

	VI. Conclusion
	VII. FUTURE WORK

