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Abstract—Testbeds are a stage between the simulation and the
production stages. To this end they must be as close as possible
to production environments (i.e. real hardware, on the field
deployments) while also keeping the traits of experimentation
facilities (i.e. fault tolerance, ease of deployment, testing and
data collection). This paper presents WiBed, a FOSS platform
for WiFi testbeds based on OpenWRT Linux made to run on
commodity IEEE802.11 WiFi routers part of the Community-
lab.net project, a global testbed for Community networks. WiBed
has been designed to support realistic low layer network exper-
iments (according to the OSI model). This work recolects the
details of the architecture, design and implementation of WiBed
consolidated during its operation as a testbed. In addition to a set
of routing experimentation results obtained during the Wireless
Battlemesh v7 where WiBed was used as testbed platform.

Index Terms—COTS IEEE802.11 routers; wireless testbed;
mesh networks; community networks.

I. INTRODUCTION

Current standard research facilities such as PlanetLab[1] or
Community-lab[2][3] (developed by the Community Networks
Testbed for the Future Internet (CONFINE)[4] project), inte-
grate virtualisation techniques to allow running experiments
in parallel. Nonetheless, the adoption of virtualisation has the
drawbacks of higher node costs due to increased requirements
for computing resources, such as CPU and memory, and
for ensuring proper isolation of experimentation resources,
restricting access to the lower layers of the operating system
and communication stack. As a result, cost increase entails
a reduction of the number of experimentation nodes being
deployed and restricted access to the low layers restrains the
range of supported experiments. WiBed, the testbed platform
presented in this paper, has been envisaged as a complement
to the Community-Lab testbed facility to cope with these two
problems at the cost of foregoing the virtualisation support.

The WiBed architecture has been conceived to diminish the
hardware restrictions: the capability of running a GNU/Linux
system and having two ath9k1 supported Wireless Network
Interface Cards (WNICs) are the minimum conditions set by
design. Currently these conditions are broadly fulfilled by
many of the Commercial off-the-shelf (COTS) wireless routers
available in the retail market for less than 100e, allowing the
deployment of WiBed-like testbed of tenths of nodes for a few
thousand Euros. Thanks to a minimised management system,
WiBed allows experiments from link-layer to application-
layer.

1http://wireless.kernel.org/en/users/Drivers/ath9k

Currently, a WiBed testbed of 20 nodes has been deployed
over two buildings of Universitat Politècnica de Catalunya
(UPC) Campus Nord, Barcelona. The resulting testbed is
available to the researchers as part of the CONFINE project. It
has been successfully used as basis platform for the Wireless
Battle of the Mesh 20142, where several routing experiments
were executed.

The remainder of this paper is organised as follows. Section
II reviews the related work and section III introduces the nec-
essary background. Section IV presents the platform design.
In section V we provide a more detailed view of the platform
implementation and in section VI we describe the testbed
we built at UPC based on the WiBed platform. Section VII
introduces the preliminary results of the routing experiments
performed during the Wireless Battle Mesh v7 using WiBed
as basis platform. In section VIII we discuss the current
development status of the platform, the results gathered during
the BattleMesh event, the work pending, the replicability of
the solution presented and costs entailed. Finally, section IX
presents the conclusions and the lessons learnt.

Fig. 1. WiBed logo

II. RELATED WORK

A. Community-lab

Community-lab is a testbed being built under the CONFINE
project and inspired by PlanetLab. It is, therefore, designed
to be Slice Federation Architecture (SFA) and cOntrol, Man-
agement and Measurement Framework (OMF) compatible,
having the future federation of it as a directive. PlanetLab
concepts have been ported and adapted to the community
networks environment and are referred to with the same
terms. Thanks to the interconnection of the three community
networks involved in CONFINE all nodes can reach each
one another using the Federated E-infrastructure Dedicated
to European Researchers Innovating in Computing network
Architectures (FEDERICA) overlay network. There are indoor
and outdoor nodes. Indoor nodes consist of computers based

2http://battlemesh.org/BattleMeshV7
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on low-power standard PC technology (Intel Atom) meant to
run application level tests. Outdoor nodes consist of embed-
ded nodes with wireless equipment that offers access to the
wireless link-layer to a certain degree allowing lower level
experiments. Conceptually, the access is limited to prevent any
experiment interfering with any another running in parallel,
but in practice currently it is also limited as a result of some
kernel contextualisation limitations. All research devices are
linked to a community device via an Ethernet connection. As
of April 2014 Community-lab has around 80 operational nodes
distributed among three community networks. The advantage
of Community-Lab is to be the first testbed that is embedded
inside of production community network (Guifi.net, AWMN,
FreiFunk), providing thus an experimentation environment
within a real used network with real traffic. Community-Lab
however is limited regarding conducting L1-L3 experiments,
due to potential service interruptions that these experiments
may produce. With regards to this feature, WiBed extends
Community-Lab by enabling L1-L3 experiments.

B. Roofnet

The Roofnet testbed presented by Bicket and Aguayo [5]
in 2003 provides one of the first works on characterizing the
implementation of a WiFi network testbed. It is physically
located on Cambridge/Massachusetts in a total approximate
area of 1.25 Miles (2 KM). The nodes (37) are mainly placed
in houses of MIT students and volunteer citizens houses,
except from the three gateways which are placed in university
buildings and connect the testbed with the MIT wired network.
The nodes are indoor x86 (500MHz) Mini-ITX computers
with a a single 802.11b omnidirectional antenna and a single
Ethernet port. The software is based on RedHat 9 (Linux
Kernel 2.4.20) and it is fully customized and ready to operate
inside the network. A proactive, link-state, source-routing
protocol called Srcr, integrated in each node is responsible
for routing the traffic in the flat and fully meshed network
topology. Further analysis provides in-depth measurements
and simulation results on the link and end-to-end performance
and about the topological characteristics of this network. The
value of Roofnet today is mainly that of having been a path
maker for wireless network testbeds. The WiBed testbed also
follows Roofnet’s approach, being deployed in a relatively
small area.

C. ORBIT

The Open-Access Research Testbed for Next-Generation
Wireless Networks (ORBIT)3 [6] testbed is centred around
the “radio grid emulator”. It provides 400 programmable
radio nodes for at-scale and reproducible emulation of next-
generation wireless network protocols and applications located
in a 460m2 room at Rutgers University, New Jersey, USA. It
can be accessed via an Internet portal, which provides a variety
of services to assist users with setting up a network topology,
programming the radio nodes, executing the experimental

3http://www.orbit-lab.org/

code, and collecting measurements. The testbed also supports
end-to-end wired and wireless experiments using a combi-
nation of ORBIT and OpenFlow switch/router nodes under
the same experimental execution framework. The radio grid
is also supplemented by a number of outdoor and vehicular
nodes (both WiFi and WiMAX) deployed on or around the
university campus, to be used for real-world validation of
results or for application trials. The ORBIT testbed has also
been federated into the Global Environment for Network In-
novation future Internet (GENI)4 research network and can be
used for integrated global-scale Internet experiments involving
wireless access networks. It has been operative since 2005.
While Orbit offers a very comprehensive solution for wireless
network experiments, it is not really open to be used by the
researchers which are targeted with WiBed, i.e. developers
related to community networks and not necessarily linked the
academic community.

D. NITOS

Network Implementation Testbed using Open Source code
(NITOS)5 offered by NITLab, is a wireless experimental
testbed that is designed to achieve reproducibility of exper-
imentation, while also supporting evaluation of protocols and
applications in real-world settings. It has been developed in
the city of Volos, Greece by OneLab partner CERTH, in as-
sociation with NITLab, the Network Implementation Testbed
Laboratory of the Computer and Communication Engineering
Department at the University of Thessaly. NITOS consists
of nodes based on commercial Wi-Fi cards and Linux-based
open-source platforms, which are deployed both inside and
outside of the University of Thessaly’s campus building. Cur-
rently, three kinds of nodes are supported: ORBIT-like nodes,
diskless Alix2c2 PCEngines nodes, and GNU/MIMO nodes.
NITOS is remotely accessible and gives users the opportunity
to implement their protocols and study their behaviour in a
real-case environment. Users can perform their experiments by
reserving slices of the testbed though the NITOS scheduler.
The control and management of the testbed is achieved by
using control Management Framework (OMF) open-source
software. OMF simplifies the procedure of experiment defining
and offers a more centralized way of deploying experiments
and retrieving measurements. CERTH, as part of the OneLab6

project, collaborates with other European institutes and it is in
the process of federating NITOS with other testbed facilities,
in particular PlanetLab Europe, providing in this way access
to a unified European experimental infrastructure. Currently
the testbed has 40 nodes. NITOS as part of PlanetLab and
Fed4Fire, is an open testbed, to be used by external re-
searchers, and in this sense is similar to WiBed. WiBed,
however, uses less-powerful hardware for its nodes, reflecting
more realistically the typical hardware of ad-hoc networks and
community network routers.

4http://www.geni.net/
5http://nitlab.inf.uth.gr/NITlab/index.php/testbed
6http://www.onelab.eu/
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E. w-iLab.t

The w-iLab.t [7] testbed is an office indoor testbed covering
three floors of a building owned by iMinds in Belgium.
In addition to the WiFi mesh/ad-hoc experiments it also
includes support for sensors. The node’s hardware is based
on Alix boards 7 with two 802.11a/b/g radios, dual band
antennas and a set of sensors attached to the USB port. The
nodes run a customized version of Voyage Linux8, a Debian
based distribution for embedded devices. The management
infrastructure is provided by a wired Ethernet network which
connects all the nodes to a central control server. The users of
the testbed access the controller to prepare, deploy, monitor
and obtain the results of the experiments through a web
based interface based on the MoteLab9 software. To allow
full experimentation (including changes in the Kernel) the w-
iLab nodes use Preboot Execution Environment (PXE) and
Network File System (NFS) to select which disk partition
boots (management or experimentation) and to transfer the ex-
perimentation filesystem. After a WiFi experiment completes,
the node automatically reboots to be load with the initial
management partition. W-iLab.t shares many characteristics
with the WiBed testbed platform presented on this work with
the main difference in the management network. Wibed can
use either Ethernet or WiFi for this purpose becoming this
way a more flexible and less expensive solution for testbed
deployments.

F. BOWL

Berlin Open Wireless Lab Network (BOWL[8]) is a hybrid
testbed/hotspot WiFi network with more than 40 outdoor
nodes which allows experimentation and Internet broadband
user access at same time. The complexity of ensuring the
privacy and reliability of broadband users while allowing
experimentation makes the project very challenging. On the
other hand, this feature gives an extra value to the research
since the experiments can be performed in a completely real
environment with real traffic. BOWL is built using three dif-
ferent kind of hardware (ARM, MIPS and x86) with multiple
802.11/a/b/g/n radio cards and at least one Ethernet interface
which is attached to the TUB campus wired network for man-
agement purposes. One of the WiFi radios is used as Access
Point to bring Internet connectivity to plain users, the others
can be used for research purposes. The nodes run OpenWRT
Linux, a very small Operating System for embedded devices
(used in this work too). The central controller implements a
web based front-end to a configuration database which can
be pushed to the nodes (UCI10 style) by a researcher and
which is applied in the first boot throw an auto-configuration
mechanism. Custom filesystem binary images are also allowed,
in this case the node is flashed from scratch with the new
system. The BOWL testbed offers already many features

7http://pcengines.ch/alix.htm
8http://linux.voyage.hk
9http://motelab.eecs.harvard.edu
10http://wiki.openwrt.org/doc/uci

WiBed aims to support. BOWL however is not conceived as an
open testbed, and cannot be used by external people. WiBed,
as part of Community-Lab, will be open to external developers
and researchers.

G. QuRiNet

The Quail Ridge Wireless Mesh Network (QuRiNet)11 [9]
is an experimental wireless mesh and environmental sensor
network, established in 2004 at the Quail Ridge Reserve in
Napa County, California, USA. Set in the wildlands, free
of electromagnetic noise and spectral interference, QuRiNet
provides a wireless mesh testbed for the finer understanding
and development of protocols for medium access control,
efficient routing, efficient mobility support, and experimental
validation of designs proposed by computer scientists. It also
provides both infrastructure for the transmission and sensors
for the collection of environmental, ecological and physiolog-
ical data in real time. QuRiNet is a joint project with the
UC Davis Natural Reserve System and the Networks Lab at
the Department of Computer Science, UC Davis. Currently it
has 34 operational nodes. All the nodes use IEEE802.11n,
while most of them use solar powered due to the lack of
connectivity to the power grid. Different to WiBed, QuRiNet
is an outdoor testbed. While from a system perspective it is
similar to WiBed, however it’s not open for external research.

H. Wireless Battle Mesh

The Wireless Battle Mesh (WBM), also known as the
Battlemesh12, is a totally horizontal event organised and driven
by the participants who get together to test dynamic rout-
ing protocols on temporary testbeds deployed by themselves
to that end. In the sixth edition (Aalborg, Denmark, April
2013) the experiment deployment system was redesigned from
scratch. The resulting design partially set the precedents of the
work presented here (WiBed). Both the code and the data sets
of that edition are publicly available13. The node’s hardware
used is TPlink 4900, a 680MHz MIPS device, dual band, dual
radio and 802.11n/MiMo compatible (same used in WiBed).
The environment of the testbed is in general in extreme bad
conditions, meaning very week links, very noisy spectrum and
a permanent instability of the nodes (people moving them,
switching them off, reinstalling them, etc.). However this is
presented as a feature, since the objective of the event is
to compare the routing protocols and for such purpose the
more challenging the environment the better. On the other
hand, collecting information in this environment is a hard task
or even impossible for some cases. WiBed aims to be very
close in terms of features to the Wireless Battle Mesh testbed.
The Wireless Battle Mesh testbed, however, is a temporal
testbed, only mounted and available during the Wireless Battle
Mesh event. WiBed aims to offer permanent availability to
researchers and developers.

11http://qurinet.ucdavis.edu/
12http://battlemesh.org/
13The code is available as at https://github.com/battlemesh and the results

at http://downloads.battlemesh.org/WBMv6/test data/.
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I. Comparison

Table I and table II summarises the main characteristics of
the analysed testbed. While the WiBed testbed shares some
of its features with other testbeds, it is the only WiFi testbed
for L1-L3 experiments which is truly open to external de-
velopers and researchers (due its combination and integration
to Community-lab). In addition, according to its design, the
WiBed platform is the only one which can be deployed using
low cost hardware (commodity routers) becoming thus the
easiest solution for any research group that needs to perform
network experiments.

III. BACKGROUND

A. COTS IEEE802.11 routers

The router market is offering routers made from COTS
components. These COTS routers (also know as commodity
routers, Customer-premises equipments (CPEs), home gate-
ways, home routers, etc.) are fast, inexpensive, and equipped
with bleeding-edge technology. Compared to routers offered
by the industry’s largest manufacturers, these routers cost a
fraction of that price. Nonetheless, the strategy of offering the
latest innovations while keeping the prices as low as possible
has its downsides such as a limited number of production
series, extremely short release intervals between new models
and a high component variability even between very similar
models. Nowadays, several vendors are offering in the market
various device models sporting dual radios with IEEE802.11n
support, 8MB of flash and 64MB of RAM memory, fast CPUs,
USB sockets, all below the 100elevel.

B. OpenWrt

OpenWrt14 is a Linux distribution that has become the de-
facto standard15 for embedded devices thanks to its accurate
design, frequent updates and small size. OpenWrt provides a
complete Buildroot to easily generate both a cross-compilation
toolchain and a firmware (root filesystem plus a kernel) for the
target architectures. The toolchain consists of gcc as the com-
piler, binutils as the assembler and linker, and µClibc as the
C standard library. The base system of the firmware consists
of the Linux kernel as the operating system kernel and the
following root filesystem components: BusyBox, mac80211,
opkg16 and Unified Configuration Interface (UCI)17. OpenWrt
also provides a feeds system, to integrate additional packages
(over 3.500 available by default) into the firmware18.

C. Wireless Battle Mesh

In the sixth edition of the WBM (referenced in section
II-H) the experiment deployment system was redesigned from

14https://openwrt.org/
15Over 200 specific devices are currently considered supported.
16Opkg: a package management system: http://code.google.com/p/opkg/
17UCI: a configuration command-line interface: http://wiki.openwrt.org/

doc/techref/uci
18For instance, Lua Unified Configuration Interface (LuCI) (http://luci.

subsignal.org/), the OpenWrt standard de-facto web configuration interface
is provided as an external feed.

Fig. 2. System architecture.

scratch. The resulting design partially set the precedents of
the work presented here. Both the code and the data sets of
the that edition are publicly available19. In the seventh edition
(Leipzig, Germany 2014) the battle testbed was deployed using
the WiBed platform. In this edition the project was announced
to the international community and several experiments were
executed. At the time of this writing the final results are being
processed and will be published in the next months. In this
work we have included some initial results which can be found
in section VII.

IV. DESIGN

As shown in Fig.2, testbeds based on the WiBed platform
are composed by a set of COTS routers, the testbed nodes,
forming mesh networks with access to an external testbed
server. The testbed management system follows a server-client
model with the testbed controller (the server software) being
the only means of external interaction with the whole testbed
(thus, neither sysadmins nor researchers should ever log in
to the nodes). The nodes receive orders from the controller
(e.g. ”install a new experiment”) in a pull-based manner, by
periodically sending it a request. The orders are embedded
in the replies the controller issues for the node’s requests.
Controller orders are node-specific, making it possible, for
instance, to stop the experiment execution on a single specific
node but also in a set of nodes.

19The code is available as at https://github.com/battlemesh and the results
at http://downloads.battlemesh.org/WBMv6/test data/.
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TABLE I
TESTBEDS COMPARISON (1/2)

Community-lab RoofNet Orbit Nitos

Location Europe Massachusetts New Jersey Volos/Greece
Administration CONFINE project MIT Rutgers UNI. NITLab
Kind EU research testbed Mesh network Research testbed Research testbed
Year 2011 2003 2005 2009
Number of nodes 80 37 400 40
Environment Indoor Indoor/Outdoor Indoor Indoor/Outdoor
Node’s place Volunteer households Volunteer households Laboratory University
Base hardware x86 (atom) x86 (500MHz) x86 (core i7) x86 (core i2)
WiFi Radios 0/1/2 (ABGN) 1 (B) 1/2 (ABG/ABGN) 2 (ABG/ABGN)
Base software OpenWRT RedHat 9 Linux based Linux based
Main purpose Research L3-L7 Internet and Research Research L1-L7 / Sensors Research in L1-L7 / Sensors
Controller Web-UI none Web-UI Web-UI
Management VPN Overlay Raw over the network Wired/OpenFlow Wired/OMF

TABLE II
TESBEDS COMPARISON (2/2)

QuRiNet WBM w-iLab.t BOWL WiBed

Location California Nomad Ghent/Belgium Berlin Catalonia
Administration UNI. of CAL. WBM participants iMinds TUB UPC
Kind Mesh network Temporal testbed Research testbed Research / Internet Research testbed
Year 2011 2003 2005 2009 2014
Number of nodes 34 10-80 200 58 20-40
Environment Outdoor Indoor Indoor Indoor/Outdoor Indoor
Node’s place Natural Reserve Any University University University
Base hardware x86 (266MHz) MIPS x86 (alix2) ARM/MIPS/x86 MIPS (680MHz)
WiFi Radios 2 (BG) 1/2 (BGN/ABGN) 2 (ABG) 2 (ABGN) 2 (ABGN)
Base software Linux Based OpenWRT VoyageLinux OpenWRT OpenWRT
Main purpose Research L3 Competition / Research Research L1-L3 / Sensors Research L1-L3 / real traffic Research L1-L3
Controller none none Web-UI Web-UI Web-UI
Management Raw over the network Isolated MANET Wired/PXE Wired Isolated MANET

Experiments, as explained in V-B, are filesystem overlays
which are attached to the nodes firmware during the exper-
iment execution. Nodes can run only a single experiment at
a time but different nodes can run different experiments in
parallel. The management system also allows the execution of
commands in the nodes when an experiment is running.

Aside from the experiment deployment tools, WiBed in-
cludes a centralised storage system to ease data collection from
experiments.

In order to relax deployment restrictions, the testbed man-
agement and related nodes-controller communication is estab-
lished over a wireless mesh network, operating independent of
the wireless experimentation network. Although it is recom-
mended to include more wired nodes in order to increase the
testbed resilience, this approach allows to significantly reduce
the costly and time-consuming task of deploying wired net-
work connection in the target experimentation zone. Therefore,
if experiments demand low-level WNICs access, at least two
WNICss are needed to fully isolate the management from the
experimentation network.

V. IMPLEMENTATION

A. Nodes-controller communication

As already mentioned, the nodes are responsible for periodi-
cally pulling the server for new orders by sending requests. Re-
quests are also made in every transition (loop-back transitions
included). Requests contain the node status. Some statuses
entail additional information such as the standard and the error
output in the case of commands executed and mechanisms to
prevent resending data20.

The controller responds to each request with a reply
containing an order. Orders are detailed in Table III.
The experiment object contains Experiment ID,
Action ID (0 FINISH, 1 PREPARE, 2 RUN),
Overlay URL, Overlay HASH; the upgrade object
contains Firmware ID, UNIX time to upgrade
the node, Firmware URL, Firmware HASH.

All messages exchanged are in JSON21 standard text format.

20For specific details see https://wiki.confine-project.eu/wibed:unified-api.
21http://www.json.org/



TABLE III
ORDERS

Order Content
experiment Object describing experiment details

upgrade Object describing firmware upgrade details
commands List of pairs (cmdID, cmdStr)
resultAck cmdID of the last result received from the node

Empty order, nothing to do

Fig. 3. Nodes firmware filesystem architecture.

B. Nodes filesystem architecture

Following the OpenWRT approach, the testbed nodes
filesystem is composed by two parts: a SquashFS read-
only LZMA compressed ROM containing the basic operating
system (kernel, a minimal root filesystem and the testbed
management software) and a JFFS2 mounted as OverlayFS22

over the read-only partition to store filesystem changes.
The standard boot process of OpenWRT is as follows23:

1) The kernel boots from ROM and executes /etc/preinit
2) /etc/preinit executes /sbin/mount root
3) mount root mounts the RW partition and combines it

with the RO partition (/rom) to create a new virtual root
filesystem

4) The bootup continues with /sbin/init

As depicted in Fig.3 WiBed extends this approach by adding
a third component: a second overlay aimed at allocating the
experiment placed in an external storage device24 (such as a
USB stick) . The experiment overlay is only mounted during
the execution of an experiment. As Fig.4 and Fig.5 show, the
process to launch an experiment is as follows:

1) Copy the filesystem provided by the researcher to the
experimentation overlay.

2) Synchronise the files from the standard overlay to the
experimentation one.

3) Configure system to boot with the experimentation over-
lay.

4) Reboot.

22Included in Linux Kernel mainline 3.11
23For further information see http://wiki.openwrt.org/doc/techref/

filesystems.
24The additional storage device overcomes the common space limitation of

the internal storage in current COTS routers.

Fig. 4. Node firmware filesystem in the IDLE status.

Fig. 5. Node firmware filesystem in the RUNNING status.

C. Nodes firmware overview

To coordinate all the processes running in the node, a local
UCI database is used. It is placed on /etc/config/wibed and
contains some static predefined fields such as WiFi channel,
BSSID or node hardware model, a set runtime dynamic fields
such as status, last command executed or current experiment
identifier 25.
A single generic firmware image is used for installation in
all testbed nodes. During the first boot, each node configures
itself writing the changes to the internal overlay.

Firstly, it generates a CRC16-HASH based on the first
network interface MAC address. This hash will be used to
identify the node.

Secondly, it configures the Management Network
(MGMT-NET) according to the parameters specified in
predefined UCI sections. The IP assignment is organised as
follows:

• Static private IPv4 192.168.1.1 for rescue purposes.
• Static private IPv4 10.X.R1.R2/1626.
• Static ULA IPv6 fdba:X:R1R2::1/64.
• Dynamic DHCP IPv4 request to get automatic gateway

network configuration.
Finally, the node starts the pulling process from the con-

troller, announcing current status 0 (INIT) and immediately
changing to status 1 (IDLE) upon receiving a valid response
from the controller (ensuring that the controller correctly
registered the node).

D. Nodes management system

The node states are detailed in Table IV. Fig.6 shows the
node finite-state machine with transitions resulting from a

25https://wiki.confine-project.eu/wibed:config
26X are 8bits predefined and shared by all testbed nodes. R1 and R2 are

16bits from the CRC16-HASH
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Fig. 6. Node finite-state machine.

TABLE IV
NODE STATES

stateID Name Meaning
0 INIT Booting
1 IDLE Idle (waiting for action)
2 PREPARING Downloading overlay
3 READY Overlay ready to be installed
4 DEPLOYING Installing the overlay and rebooting the node
5 RUNNING Experiment running
6 RESETTING Resetting the node to its default configuration
7 UPGRADING Upgrading firmware
8 ERROR Error detected

controller order tagged. The remaining transitions are the result
of node’s local operations. INIT-IDLE transition triggers a
special request including the device model and the firmware
version. ERROR-IDLE and ERROR-INIT are formally an
internal transition but can only be triggered externally via the
execution of a command. All transitions to INIT and to IDLE
imply the unmount of the experiment overlay. RUNNING is
the only state where the experiment overlay is mounted. It
must be noted that UPGRADING is the only state in which
node-server communication is expected to be lost. In any
other state the interruption of the communications leads to
the ERROR state directly or after a given number subsequent
attempts.

E. Controller architecture

The WiBed controller works as a standard web server
(implemented in Python with the Flask framework) providing
an API endpoint to which the nodes of the testbed send their
periodical requests. The controller parses these requests and
stores information about the nodes on a local database, sending
only needed information and/or commands in response to a
node request. Consequently, the network bandwidth required
is optimized.

The registration of new nodes on the controller is made
in a totally reactive manner. When the controller receives an
API request containing a new node id, it will consider that

request as coming from a new node and will add it to the
management database. Nodes are attached to the testbed in
the INIT state and they revert back to that state after an
upgrade. As described in subsection V-D, when nodes are
in the INIT state they send their device model and firmware
version along with the request. This allows the controller to
always know updated hardware details of each node in this
ad-hoc management operation. Updated node information on
the server side allows the delivery of compatible firmware to
testbed nodes and the researchers to choose nodes with similar
hardware and up-to-date firmware, among others.

Currently, the servicing of experiment and firmware
images is done via a simple HTTP response to a GET
request (to static/overlays/<overlayId> or
static/firmwares/<firmwareId>). However, the
system is being designed in a flexible manner to allow future
experimentation with other delivery mechanisms such as
Bittorrent or wireless-mesh-optimized P2P technologies.

A front-end is also provided for researchers and administra-
tors where the state of the nodes can be checked, experiments
started/finished, commands issued and experiment or firmware
images uploaded. An API is planned for these interactions
so as to allow future integration with common management
interfaces in the CONFINE project.

The testbed controller will also be running an NTP server
with which the nodes can synchronise their local clocks
so as to keep them loosely in sync. This is important for
coordinating the order of firmware upgrades (which should be
done from the outside to the inside of the mesh due to possible
incompatibility between versions) and for log analysis after an
experiment.

F. Communication API

To communicate the nodes with the controller a REST-
API has been implemented. Nodes are constantly pulling
the controller throw HTTP to receive the orders and
send information to it. The basis API-URL pulled is
http://[controllerIP]/api/wibednode/[nodeID]. If a node with
the specified node ID did not exist, it is automatically added
to the controller’s database with this call. Every node’s request
contains the status code defined in section V-D. The controller
replies according the finit state machine depending on what the
researcher or the administrator wants to do with the node.

The text protocol used for communication is JSON (simple,
well known and human-readable) as shows the example API
call of figure 7

G. Remote management

In order to manage the nodes remotely a centralized
management system has been implemented. Attached to a
controller’s response, a set of commands can be added as
shows the figure 7. Commands are group in two categories,
the experimentation ones (executed during an experiment by
a researcher) and the administration ones (executed by the
testbed administrators at any time). The output of the executed
commands (both stdout and stderr) are attached to the next



communication message to the controller. This way all nodes
can be managed from a single point, making unnecessary the
individual remote access through SSH27.

Fig. 7. API request/reply example with commands attached

H. Management network

The MGMT-NET is used to connect the research devices
between the and with the testbed controller. Wired connec-
tivity between research nodes is not a requirement for all
WiBed nodes but for at least one (identified as border node).
Consequently, to ensure the controller-node communication,
the MGMT-NET has to be built using WiFi 802.11 standards.
Thus the primary WNICs radio is used to create a AD-HOC
(IBSS) network between all deployed nodes.

The routing protocol BATMAN-ADV28 handles the layer 2
routing by encapsulating Ethernet over Ethernet. The border
nodes make the interconnection between the WiFi testbed and
the controller. As a result of this configuration, from a net-
working point of view, the controller and the nodes are in the
same collision domain. This facilitates the management and
administration of the nodes, since standard auto-configuration
and node access techniques via IPv6 link-local addresses are
possible.
A proper operation of the nodes and experiments is essential
for the usability of the testbed. Therefore, to clearly identify
and handle the cases of correct and abnormal experiment
execution while coping with potential instabilities of the
wireless and multi-hop management network, the system must
combine robustness against temporary connectivity-failures
with restrictive checks and recovery procedures. Only in case
of long-term disconnection and unrecoverable failure, the node
automatically returns to the initial state (even if there is an
experiment running).

I. Data storage

To save the experiment results, a special directory placed
on /save is provided. Its content is synchronised with the con-
troller server once the experiment is finished. Afterwards the
researcher can access the stored data through the controller’s
web interface.

27Secure Shell
28http://open-mesh.org

J. Repository structure

The WiBed platform software has been divided into four
source repositories (using GIT-SCM29). All of them are open
to the public and released under a free licence.

• wibed-packages: the set of OpenWRT compatible pack-
ages implemented to run a WiBed node

• wibed-controller: the central web controller
• openwrt: a frozen version of OpenWRT based on the

current trunk (Barrier Braker)
• openwrt-packages: a frozen version of the main Open-

WRT packages repository
All of them can be found under the master project named
WiBed30. The node’s firmware has been structured as an
OpenWRT feed31. A feed is a collection of packages which
share the same location. It can be imported from any standard
OpenWrt buildroot32.

To preserve the coherence between parts (as the OpenWRT
source is changing quite fast), a frozen clone of the OpenWRT
buildroot and main packages feed is used with some minor
modifications. Finally, the WiBed controller has its own repos-
itory which is not directly related with the node’s repository.

K. Functional diagram

The figure 8 shows a diagram summarizes the executed
steps of a WiBed node from its initial boot to the end of
an experiment.

Fig. 8. Functional diagram for a WiBed node

VI. UPC A6 TESTBED

A. Location

The UPC-A6 Testbed consists of 20 nodes that are deployed
over three buildings of Campus Nord of UPC, Barcelona. The
buildings are in a 260 meters long and 20 metres wide area.
Four of them are four storeys tall and the other two are five
storeys tall. Three gateways are deployed to connect with the
campus wired network. The outer walls and slab floors of the
buildings, made out of rather thick reinforced concrete, are
known to have strong WiFi attenuation effects. Thus the mesh

29http://git-scm.com/
30https://redmine.confine-project.eu/projects/wibed
31http://wiki.openwrt.org/doc/devel/feeds
32http://wiki.openwrt.org/about/toolchain
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TABLE V
TESTBED NODES CHARACTERISTICS

Vendor TP-LINK
model TL-WDR4300
CPU Atheros AR9344@560MHz

OpenWRT target ar71xx
FLASH 8MB
RAM 128MB

Wireless NICs 2
Wireless NIC 1 Atheros AR9341 (2.4 GHz, 2T2R, b/g/n)
Wireless NIC 2 Atheros AR9580 (5GHz, 3T3R), a/n)

Detachable antennas 3
Lan Ethernet ports 4x1 GigE
Wan Ethernet ports 1x1 GigE

USB ports 2
JTAG yes

Serial port yes
PoE No

Power range 12VDC / 1.5A

network of UPC-A6 testbed is expected have not less than six
hops of network diameter.

B. Hardware selection

The specific hardware selected for the UPC-A6 testbed
nodes is the TL-WDR430033 from the TP-LINK vendor that is
available for around 60e, excluding VAT and shipping costs.
Its main characteristics are summarised in Table V. Each node
has a USB stick of 16GB of storage capacity, available for less
than 10e. In addition, the second USB port could be used
for connecting another WIFI WNIC or USB-based spectrum
analyser to further extend experimentation capabilities.

C. Testbed controller

The controller can be installed in any standard x86 com-
patible PC running any Linux distribution. In our case it has
been allocated in a virtual machine (1GB of RAM, 200GB of
storage capacity in Intel i7 shared processor) of the CONFINE
project facilities. The controller can be reach throw the url
http://wibed.ac.upc.edu.

VII. BATTLEMESH V7 EXPERIMENTS

A. Motivation

The routing protocol is probably the most important piece
of a Mesh network. It has the responsibility of decide how the
packets flow among the multiple paths conforming a network.
To this end, a good analysis and further comparison are very
valuables tools for network communities to decide which
protocol to use. The following work recollects a set of results
which were taken during the Battlemesh v7 event in Leipzig,
Germany.

In addition to the achievement of the experimental results,
the usage of the WiBed platform pursuits to test the usability
of the system to deploy a low cost mesh testing environment,
to get feedback from the users and to fix potential problems.

33http://www.tp-link.com/en/products/details/?model=TL-WDR4300

B. Deployment

During the first days of the event a total of 20 WiBed nodes
have been deployed. 16 WiBed nodes have been spread over 3
different floors in the main event building. About 10 of these
16 nodes were located in the main event hall (approximately
300 square-meters workshop room) with highest node density
in a particular corner of this room and the 6 in the below
and above floor of the event hall. Three more nodes have
been placed in a neighbouring building, all belonging to the
same WiFi cloud. One node was battery powered for allowing
mobile-node scenarios. In fact not all node positions were
always exactly known as nodes were sometimes moved to
fulfil specific experimentation-scenario requirements. In each
building 1 of the WiBed-nodes were configured as GW nodes
and blocked for experimental usage. The remaining 18 nodes
were shared between three different experimentation groups
for running tests and different scenarios (each node was used
by at most one experimentation group at any time).

All experiments were performed in a single 5Ghz chan-
nel. However, due to the presence of around 50 participants
with wireless laptops and several other actively used wireless
equipment, also the used 5GHz channel was likely affected by
non-testbed related interference.

C. WiBed integration

Following the WiBed approach and requirements, an over-
lay filesystem packet in tar.gz format has been provided. It
contains all the needed files to perform the experiments in
addition to the protocol binaries and other tools which are
participating in the experiment34.

The overlay includes two special packets named wbm-
testbed and wbm-test-scripts which can be found in the Bat-
tlemesh repository 35. The first one contains a set of scripts
which automatic configures the node and leaves it ready to
participate in the experiments. The second one includes a set
of scripts which will be used to perform the experiments and
recollects the output.

As result, once the overlay is uploaded and installed to the
WiBed nodes, all scripts will be automatically executed and
the node will became ready to start the experimentation which
can be initiated using the remote management interface (API
commands described in section V-F).

D. Protocol Configurations and Assumptions

The highly dynamic and uncontrollable interference in the
measurement environment made it impossible to ensure equal
conditions for sequential experiment executions. Therefore,
to ensure equal (fair) environment conditions for all tested
protocols, all routing protocols were running and observed in
parallel on all nodes, thus all being always exposed to the
exactly same environmental conditions.

The accepted downside of this approach is of course that
protocol overhead introduced by one protocol or by protocol-
observing tools like ping (causing total overhead in the order

34http://wibed.ac.upc.edu/static/overlays/wbm-exp-axn-13.tar.gz
35https://github.com/battlemesh/battlemesh-packages
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of few KB/s, as can be seen from later measurements) slightly
affects the maximum achievable end-to-end throughput of
other protocols (in the order of several MB/s).

Only netperf-tcp-based throughput probes, seeking to mea-
sure the achievable tcp performance of the end-to-end routing
paths established by the individual protocols, were performed
sequentially. This decision has been made because each netperf
test tries to load the capacity of a given end-to-end path with a
maximum of traffic, thus introducing maximum probing-traffic
overhead and interference while on the other hand (given the
tcp-inherent exponential backoff approach) drastically lower-
ing the currently offered load in the presence of packet loss,
leading to highly randomized results when running in parallel
and making the comparison of parallel executions difficult.

All protocols were configured for routing IPv6 traffic using
an individual ULA address prefix per protocol. All protocols
were configured with default parametrizations, thus no envi-
ronment specific customizations have been made apart from
ensuring the routing of the given IPv6 address range. The exact
configuration can be accessed via wbm-config.

To avoid protocol-bootstrapping effects (e.g. unfinished
neighbour-, path- or topology-discovery), all routing protocol
daemons were started at least 200 seconds before any mea-
surement.

E. Measurement Configuration and Assumptions

Follow up measurements were executed from a singe se-
lected node (src-node) by launching a pre-deployed test script
wbm-test and given the id of a single other node (dst-node)
for probing end-to-end path characteristics.

Each follow up measurement last 200 seconds during which
the following additional tools were used to observe protocol
performance and overhead:

• ping6 (unix) command to dst-node ipv6 address with one-
second interval and 1000 bytes icmp user data. The output
of the ping6 command got logged for later end-to-end
packet loss, hop-count, and round-trip time (RTT) over
time analysis.

• top (unix) command for logging protocol-specific CPU
and memory consumption at 1 second intervals.

• mtr (my trace route, unix) command at 1 second interval
for tracing full src-to-dst protocol-established path infor-
mation. Due to the difficulty to correlate or graphically
represent these traces, the obtained log files were not
processed further.

• netperf, executed in repeating rounds (4 rounds), each
probing sequentially the maximum achievable end-to-end
throughput to always the same destination node for 10
seconds via each routing protocol.

• tcpdump, passively capturing the present routing-protocol
overhead of each protocol as received on the wireless
channel by the source node.

F. Experiments

The experiment focused on measuring the overhead and per-
formance of 4 different mesh routing protocol implementations

in static and mobile scenarios. The five tested protocols were
batman-advanced[10] (batadv), bmx6[11], olsr and olsr2[12].
Experiments are grouped in two different scenarios: stationary
and mobile.

1) Stationary scenario: During the stationary scenario the
involved WiBed nodes were not moved, however still affected
by uncontrollable interference conditions from the environ-
ment itself, other parallel experiments executed on other nodes,
and the traffic created by the experiments itself. For the
measurement a couple of source-node and destination-node
was selected intuitively with the objective to select, in terms of
network-topology, rather distant (so non-neighbouring) nodes.

2) Mobile scenario: Apart from the presence of a single
mobile node, always serving as destination node, the mobile
scenario was performed in the same way as the stationary
scenario. During this scenario the mobile node was moved
(carried) manually at slow-walking speed (approximately
1m/second) the about 100 meters back and forth along the
main event hall, downstairs to the lower floor, and along the
lower hall.

G. Protocol-traffic overhead

The protocol network traffic overhead in terms of bytes per
second (figures 12 18). The continuous lines are presenting the
measured overhead over time with a one-second resolution
and the dashed lines the average overhead captured by the
source node over the 200-seconds measurement period. It
should be noted that the captured traffic includes all received
protocol traffic, the traffic created by the capturing node itself
as well as the traffic created by neighbouring nodes (being in
transmission range of the capturing node). Only pure protocol-
traffic was considered (not user-data related traffic) as created
by each protocol to detect and establish the routing inside
the network. For batman-advanced, encapsulating user traffic
inside the same Ethernet frame type as used for protocol traffic,
special filtering rules were used for differentiation.

H. Memory and CPU consumption

Memory and CPU consumption over time per protocol
(figures 11 17 10 16). Both characteristics are not captured
for batman advanced, which, running in kernel space, does not
allow an easy profiling of this data. It can be seen that none
of the captured protocols changed its memory requirements
during this (nor any later) measurement.

I. RRT and hops

Round trip time (RTT) analysis shows the result of the
ping6 tool from the source node to destination node (figures
14 20 13 19). Meaning the time (in milliseconds) needed for
a single packet to go and return. The hops analysis shows the
RTT for each protocol split by the number of hops (nodes
between source and destination in the mesh network). Hops
given for batman-advanced are incorrect due to its layer-2
routing characteristic. As expected, the RTT shows smaller
values for less hops and higher latencies for more hops.
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Fig. 14. Round trip time (ECDF) (stationary).

VIII. DISCUSSION

A. Experiment results

Given the few number of measurements and the high
amount of randomness involved, the results gathered during
this measurement campaign are by no means representative. A
general ranking of protocols can only be done regarding some
few and particular characteristics. For other, if at all, at most
some vague tendencies may be guessed. Main conclusion here
is that much more measurements would be needed for con-
cluding representative results. Thus, observations summarized
in the following must be taken carefully.

OLSR showed in average medium results for measured path
throughput, RTT, and total packet loss. Its observed CPU
and memory consumption was always notable low. Regarding
protocol-traffic overhead, it typically ranged within the most
expensive (bandwidth consuming) protocols.

OLSR2 also showed in average medium results for mea-
sured path throughput, RTT, and total packet loss (OLSR2
driven path throughput was typically lowest but once notable
high). Its observed CPU and memory consumption was always
notably higher than any other protocol. Regarding protocol-
traffic overhead, it showed average cost (bandwidth consuming

more than bmx6 but less than olsr and batman advanced).
BMX6 showed rather good results for measured path

throughput, RTT, and total packet loss (all four throughput
measurements resulted in first or second position). Its observed
CPU and memory consumption showed average cost. Regard-
ing protocol-traffic overhead, it always showed least cost.

Batman advance also showed varying and in average
medium results for measured path throughput, RTT, and total
packet loss. Memory and CPU usage could not be measured.
Regarding protocol-traffic overhead, it typically ranged within
the most expensive (bandwidth consuming) protocols.

B. Limitations and problems of the platform

The main current limitation for the WiBed platform is the
mandatory usage of a specific Linux Kernel (the one included
in the base system). So researches cannot upload their own
Kernel (they might add some pre-compiled modules). This
issue might be solved using kexec36, a tool which can be
used to load a new Kernel in memory without the need of
rebooting. However it would be very dangerous for the entire
testbed due the lack of control on the new loaded Kernel and

36https://www.kernel.org/pub/linux/utils/kernel/kexec
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the possibility of breaking the management system (as a result
the node would be lost and only a manual intervention could
recover it).
Another problem on which we are currently working is
the control on the required functions to guarantee the good
operation of the management system. For instance, if the
researcher rewrites the entire file /etc/config/wireless which
contains the configuration of the WiFi management network,
the connection with the controller would be lost and the node
would become unreachable. To this end, a script executed
every five minutes has been implemented to check if the
connection with the central controller is working. In case of
failure it should reset the node to remove the overlay and start
from scratch with the factory system. However this feature is
not active because the whole platform is not yet stable enough
and it might cause several problems in the entire system (i.e
if the controller has an internal problem, all nodes would be
reset). Currently the nodes just enter into ERROR state in case
of three consecutive failures.

C. Current status and further work

Regarding the platform, although development is still a
work in progress, the main functionalities are implemented

and tested. The main tasks pending are further testing, bug
fixing and synchronising the documentation with the final
implementation.
On the testbed deployment side, twenty nodes are already
deployed and available for experimentation. However the first
plan was to deploy forty in the A1-A3 buildings. It has been
not possible due the not expected problems to deploy the WiFi
management network. The UPC buildings of the lower floors
have reinforced concrete walls, which makes the WiFi signal
very difficult to penetrate.
There have been already some experiments executed such as
the INESC WiFiX37 as part of the CONFINE first Open Call.
Twenty more nodes are already ready to be installed in the
next buildings in order to extend the testbed to forty nodes
during the next months.
The experiments executed during the WBM in Leipzig demon-
strate that WiBed is currently a useful platform for routing ex-
perimentation. Furthermore it was accepted by the community
and now the main code is hosted under the official battlemesh
repository in GitHub38.

37http://win.inescporto.pt/Publications
38http://github.com/battlemesh

http://win.inescporto.pt/Publications
http://github.com/battlemesh


The CONFINE integration at the controller level is a topic
that has not yet been addressed because it requires some
modifications to CONFINE’s controller. This topic is planned
to be dealt with after the testbed is fully deployed and
operational.

D. Costs and replicability

As already mentioned, the entire WiBed platform is a
free/libre-software project, and thus available to everybody.
The total cost of the hardware of the presented 20-nodes UPC
testbed is below 1.500e. The skills required for designing
and implementing wireless experiments may suffice to install
and operate a WiBed-based testbed. Thus, the solution here
presented allows the deployment and execution of a fully
operational wireless testbed at a fraction of the cost required
by most other available testbeds.

IX. CONCLUSION

In this work we have presented WiBed, a platform for
deploying and managing testbeds for experimenting on mesh
networks built on top of COTS IEEE802.11 routers. We have
presented its design, and how nodes evolve throughout the
execution of an experiment and react to commands given by
a central controller. We have also described how these nodes
interconnect to one another and, eventually, to the controller
server. By focusing on a very pragmatic and simple ad-
hoc operation and management we have achieved to reduce
both the budget and effort requirements for the setting up of
link-layer to application-layer experiments over these wireless
testbeds.

We have also presented details regarding an ongoing deploy-
ment of this testbed in a real-world scenario, encompassing
20 nodes spread throughout six buildings at the North campus
at UPC. Once this deployment is complete and the platform
matures, it is our objective to open it to other researchers,
providing a physical testbed on which novel algorithms and
systems designed for wireless mesh networks may be tested
and verified.

According to the comparison made in this work, it has been
seen that the WiBed UPC testbed is the only WiFi testbed
for L1-L3 experiments which is truly open to external devel-
opers and researchers. In addition the implemented platform
is free/libre open source, thus any individual or group of
researchers can use it to quick deploy a low cost WiFi testbed.

Finally we have presented a dynamic routing protocol
comparison experiment as a proof of concept for the usage
of the WiBed platform. Network throughout, memory and
CPU consumptions, round trip time and network overhead
results for stationary and mobile node environments have been
obtained and summarized in this work.
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